JPH11247654A - Exhaust emission control device using nox stored and reduced type three-way catalyst - Google Patents

Exhaust emission control device using nox stored and reduced type three-way catalyst

Info

Publication number
JPH11247654A
JPH11247654A JP10067645A JP6764598A JPH11247654A JP H11247654 A JPH11247654 A JP H11247654A JP 10067645 A JP10067645 A JP 10067645A JP 6764598 A JP6764598 A JP 6764598A JP H11247654 A JPH11247654 A JP H11247654A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
way catalyst
nox
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10067645A
Other languages
Japanese (ja)
Inventor
Hiroaki Kaneko
浩昭 金子
Hitoshi Onodera
仁 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10067645A priority Critical patent/JPH11247654A/en
Publication of JPH11247654A publication Critical patent/JPH11247654A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain deterioration of purifying performance to the minimum by sufficiently supplying HC and Co to a NOx stored and reduced type three-way catalyst, and providing a means for feedback controlling the air fuel ratio of combustion mixture to a target air fuel ratio. SOLUTION: A first air fuel ratio detecting means 4, a NOx stored and reduced type three-way catalyst 2, a three-way catalyst 3, and a second air fuel ratio detecting means 5 are sequentially arranged, a first air duel ratio feedback means 6a and a second air fuel feedback means 6b are connected to the first air fuel ratio detecting means 4 and the second air fuel ratio detecting means 5 in such a manner as to perform data communication, the first air fuel ratio feedback means 6a feedback controls the air fuel ratio of exhaust mixture to a target air fuel ratio according to the exhaust air fuel ratio detected by the first air fuel ratio detecting means 4, and the second air fuel ratio feedback means 6b feedback controls the air fuel ratio of the combustion mixture to a target air fuel ratio according to the exhaust air fuel ratio detected by the second air fuel ratio detecting means 5 immediately after the target air duel ratio of combustion mixture is swtiched from lean to storichiometry or rich.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車(ガソリ
ン、ディーゼル)、ボイラーなどの内燃機関から排出さ
れる排気ガス中の炭化水素(以下「HC」という。)、
一酸化炭素(以下「CO」という。)及び窒素酸化物
(以下「NOx」という。)を浄化するNOx吸蔵還元
型三元触媒を使用した排気ガス浄化装置に係り、更に詳
細には、排気ガス通路にNOx吸蔵還元型三元触媒を配
置してNOx浄化率を向上させた排気ガス浄化装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hydrocarbons (hereinafter referred to as "HC") in exhaust gas discharged from internal combustion engines such as automobiles (gasoline and diesel) and boilers.
The present invention relates to an exhaust gas purifying apparatus using a NOx storage reduction type three-way catalyst for purifying carbon monoxide (hereinafter referred to as "CO") and nitrogen oxides (hereinafter referred to as "NOx"). The present invention relates to an exhaust gas purification device in which a NOx storage reduction type three-way catalyst is disposed in a passage to improve a NOx purification rate.

【0002】[0002]

【従来の技術】近年、石油資源の枯渇問題や地球温暖化
問題から、低燃費自動車の要求が高まっており、ガソリ
ン自動車に対しては、希薄燃焼自動車の開発が注目され
ている。
2. Description of the Related Art In recent years, there has been an increasing demand for fuel-efficient vehicles due to the depletion of petroleum resources and the problem of global warming, and the development of lean-burn vehicles has attracted attention for gasoline vehicles.

【0003】かかる希薄燃焼自動車では、希薄燃焼走行
時において、排気空燃比が理論空燃比(以下「ストイ
キ」という。)より酸素濃度の高い酸素過剰雰囲気(以
下「リーン雰囲気」という。)となるが、リーン雰囲気
で通常の三元触媒を使用すると、NOxの浄化作用が不
十分となるため、リーン雰囲気になってもNOxを浄化
できる触媒の開発が望まれていた。
In such a lean-burn vehicle, during lean-burn operation, the exhaust air-fuel ratio becomes an oxygen-rich atmosphere (hereinafter, referred to as "lean atmosphere") having an oxygen concentration higher than a stoichiometric air-fuel ratio (hereinafter, referred to as "stoichiometric"). When a normal three-way catalyst is used in a lean atmosphere, the action of purifying NOx becomes insufficient. Therefore, it has been desired to develop a catalyst that can purify NOx even in a lean atmosphere.

【0004】このような要望に対して、特開平7−13
9397号公報等には、リーン雰囲気で排気ガス中のN
Oxを吸収し、吸収したNOxをストイキ又はそれより
酸素濃度が低い酸素欠乏雰囲気(以下「リッチ雰囲気」
という。)で放出して還元処理するNOx吸蔵還元型三
元触媒を排気系に設けた機関が開示され、特開平8−2
70440号公報等には、NOx吸蔵還元型三元触媒の
上流側及び下流側に三元触媒をそれぞれ配置した排気ガ
ス浄化装置が開示されている。
In response to such a demand, Japanese Patent Application Laid-Open No.
No. 9397 discloses that N 2 in exhaust gas in a lean atmosphere is used.
Ox is absorbed, and the absorbed NOx is converted to stoichiometric oxygen-deficient atmosphere (hereinafter referred to as "rich atmosphere") having a lower oxygen concentration.
That. Japanese Patent Laid-Open No. 8-2 discloses an engine in which an exhaust system is provided with a NOx storage-reduction type three-way catalyst which releases and reduces the exhaust gas in the exhaust system.
Japanese Patent No. 70440 discloses an exhaust gas purifying apparatus in which three-way catalysts are arranged upstream and downstream of a NOx storage reduction three-way catalyst, respectively.

【0005】[0005]

【発明が解決しようとする課題】しかし、排気系におい
て、NOx吸蔵還元型三元触媒より上流側に通常の三元
触媒を配置すると、この三元触媒の酸化反応によってH
C及びCOが消費されてしまうため、燃焼混合気の空燃
比がリーン域からリッチ域に変化した場合、NOx吸蔵
還元型三元触媒から放出されたNOxが還元処理される
際に必要となるHC及びCOが十分供給されなくなると
いう課題があった。この様な状況において、NOx吸蔵
還元型三元触媒から放出されたNOxを還元処理するた
めに必要なHC及びCOをNOx吸蔵還元型三元触媒に
供給するためには、リッチ度合いを高める手段が採られ
るが、NOx吸蔵還元型三元触媒では、排気ガス温度や
劣化状態によってNOxを吸収し又は放出する能力が変
化するため、必要以上に酸素リッチ度合いを高めてしま
うことがあり、逆にHC及びCOの浄化性能が悪化する
という課題があった。
However, if an ordinary three-way catalyst is arranged upstream of the NOx storage reduction type three-way catalyst in the exhaust system, the oxidation reaction of the three-way catalyst causes H
Since C and CO are consumed, when the air-fuel ratio of the combustion mixture changes from a lean region to a rich region, HC required when the NOx released from the NOx storage reduction type three-way catalyst is subjected to the reduction treatment. In addition, there is a problem that CO is not sufficiently supplied. In such a situation, in order to supply HC and CO required for reducing the NOx released from the NOx storage reduction type three-way catalyst to the NOx storage reduction type three-way catalyst, a means for increasing the degree of richness is required. However, in the NOx storage-reduction type three-way catalyst, the ability to absorb or release NOx changes depending on the exhaust gas temperature or the state of deterioration, so that the degree of oxygen richness may be increased more than necessary. In addition, there was a problem that the purification performance of CO deteriorated.

【0006】本発明は、このような技術の有する課題に
鑑みてなされたものであり、その目的とするところは、
排気空燃比がリーンからストイキ又はリッチに切り換わ
った際にNOx浄化率が向上し、且つリッチ域において
HC及びCOの浄化性能の悪化を最小限に抑制すること
ができる排気ガス浄化装置を提供することにある。
[0006] The present invention has been made in view of the problems of such technology, and has as its object the following.
Provided is an exhaust gas purifying apparatus capable of improving the NOx purification rate when the exhaust air-fuel ratio switches from lean to stoichiometric or rich, and minimizing deterioration of HC and CO purifying performance in a rich region. It is in.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究した結果、NOx吸蔵還元型三元
触媒より排気系下流側に配置した三元触媒中の酸素スト
レージ能力に寄与する成分量を低減することなどによ
り、NOxを還元処理するために必要となるHC及びC
OがNOx吸蔵還元型三元触媒に十分供給されること及
び、排気空燃比に基づき燃焼混合気の空燃比を目標空燃
比にフィードバック制御する空燃比フィードバック手段
を設けることなどにより、NOx吸蔵還元型三元触媒の
HC及びCOの浄化性能の悪化が最小限に抑制されるこ
とを見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the oxygen storage capacity in the three-way catalyst disposed downstream of the NOx storage reduction type three-way catalyst in the exhaust system is reduced. HC and C required to reduce NOx by reducing the amount of contributing components
O is sufficiently supplied to the NOx storage-reduction type three-way catalyst, and air-fuel ratio feedback means for feedback-controlling the air-fuel ratio of the combustion mixture to the target air-fuel ratio based on the exhaust air-fuel ratio is provided. The inventors have found that deterioration of the purification performance of the three-way catalyst for HC and CO is suppressed to a minimum, and have completed the present invention.

【0008】即ち、本発明のNOx吸蔵還元型三元触媒
を使用した排気ガス浄化装置は、排気系の上流側から、
NOx吸蔵還元型三元触媒、三元触媒を順次配置した排
気ガス浄化装置において、上記NOx吸蔵還元型三元触
媒が、リーン雰囲気で排気ガス中のNOxを吸収し、吸
収したNOxを理論空燃比又はリッチ雰囲気で放出して
還元処理するNOx吸蔵還元型三元触媒であって、白
金、パラジウム及びロジウムから成る群より選ばれた少
なくとも1種の貴金属を多孔質担体に担持した貴金属担
持粉末と、 次式 LnαBOβ・・・ (式中のLnは、La、Ce、Nd及びSmから成る群
より選ばれた少なくとも1種、Bは、Fe、Co、Ni
及びMnから成る群より選ばれた少なくとも1種を示
し、0<α<1、0<β<4である。)で表される複合
酸化物粉末と、Mg、Ca、Sr、Ba、Na、K及び
Csから成る群より選ばれた少なくとも1種の金属の炭
酸塩を含有し、上記三元触媒が、白金、パラジウム及び
ロジウムから成る群より選ばれた少なくとも1種を含有
し、且つ上記三元触媒に含まれるセリア及び/又はセリ
アを含む複合酸化物の量が触媒1リットル当たり5〜3
0gであることを特徴とする。
That is, the exhaust gas purifying apparatus using the NOx storage reduction type three-way catalyst of the present invention comprises:
In an exhaust gas purifying apparatus in which a NOx storage reduction type three-way catalyst and a three-way catalyst are sequentially arranged, the NOx storage reduction type three-way catalyst absorbs NOx in exhaust gas in a lean atmosphere and converts the absorbed NOx into a stoichiometric air-fuel ratio. Or a NOx occlusion reduction type three-way catalyst that performs a reduction treatment by releasing in a rich atmosphere, and a noble metal-supported powder in which at least one noble metal selected from the group consisting of platinum, palladium, and rhodium is supported on a porous carrier; LnαBOβ (where Ln is at least one selected from the group consisting of La, Ce, Nd and Sm, and B is Fe, Co, Ni
And Mn, wherein 0 <α <1 and 0 <β <4. ), And a carbonate of at least one metal selected from the group consisting of Mg, Ca, Sr, Ba, Na, K and Cs. , Palladium and rhodium, and the amount of ceria and / or ceria-containing composite oxide contained in the three-way catalyst is 5 to 3 per liter of the catalyst.
0 g.

【0009】また、本発明のNOx吸蔵還元型三元触媒
を使用した排気ガス浄化装置の好適形態は、NOx吸蔵
還元型三元触媒より上流側に配置されて排気空燃比を検
出する第1空燃比検出手段と、上記NOx吸蔵還元型三
元触媒より下流側に配置されて排気空燃比を検出する第
2空燃比検出手段を備え、更に、通常状態において、上
記第1空燃比検出手段で検出される排気空燃比に基づき
燃焼混合気の空燃比を目標空燃比にフィードバック制御
する第1空燃比フィードバック手段と、燃焼混合気の目
標空燃比がリーンから理論空燃比又はリッチに切り換え
られた直後において、上記第2空燃比検出手段で検出さ
れる排気空燃比に基づき燃焼混合気の空燃比を目標空燃
比にフィードバック制御する第2空燃比フィードバック
手段を付加して成ることを特徴とする。
A preferred embodiment of the exhaust gas purifying apparatus using the NOx storage-reduction type three-way catalyst of the present invention is a first air-conditioner disposed upstream of the NOx storage-reduction type three-way catalyst for detecting the exhaust air-fuel ratio. Fuel ratio detecting means, and second air-fuel ratio detecting means disposed downstream of the NOx storage reduction type three-way catalyst and detecting an exhaust air-fuel ratio. In a normal state, the first air-fuel ratio detecting means detects the exhaust air-fuel ratio. First air-fuel ratio feedback means for feedback-controlling the air-fuel ratio of the combustion mixture to the target air-fuel ratio based on the exhaust air-fuel ratio to be performed, and immediately after the target air-fuel ratio of the combustion mixture is switched from lean to the stoichiometric air-fuel ratio or rich. A second air-fuel ratio feedback means for feedback-controlling the air-fuel ratio of the combustion mixture to a target air-fuel ratio based on the exhaust air-fuel ratio detected by the second air-fuel ratio detection means. It is characterized in.

【0010】[0010]

【作用】本発明の内燃機関の排気ガス浄化装置において
は、排気空燃比がリーンからストイキ又はリッチに切り
換わった際、NOx吸蔵還元型三元触媒に吸収されたN
Oxは、NOx吸蔵還元型三元触媒から放出され、その
後還元処理されるが、NOx吸蔵還元型三元触媒より排
気系下流側に配置された三元触媒中の酸素ストレージ能
力に寄与する成分量が低減されているため、三元触媒の
酸化反応によって消費されるHC及びCOの量が減少
し、還元処理に必要なHC及びCOがNOx吸蔵還元型
三元触媒に十分供給されることから、NOxの浄化率が
向上する。
In the exhaust gas purifying apparatus for an internal combustion engine according to the present invention, when the exhaust air-fuel ratio is switched from lean to stoichiometric or rich, the NOx absorbed and reduced by the three-way NOx storage reduction type catalyst is used.
Ox is released from the NOx storage-reduction type three-way catalyst and then reduced, but the amount of component that contributes to the oxygen storage capacity in the three-way catalyst disposed downstream of the NOx storage-reduction type three-way catalyst in the exhaust system Is reduced, the amount of HC and CO consumed by the oxidation reaction of the three-way catalyst is reduced, and the HC and CO required for the reduction treatment are sufficiently supplied to the NOx storage reduction type three-way catalyst. The purification rate of NOx is improved.

【0011】また、NOx吸蔵還元型三元触媒より排気
系上流側及び下流側に設置した空燃比検出手段の出力信
号を用いて、排気空燃比がリーン域からリッチ域に切り
換わった際において、リッチに保持する時間を制御する
と、NOx吸蔵還元型三元触媒の劣化状態や作動温度に
依存することなく、リーン域で吸収されたNOxが十分
に放出されて還元処理されるため、NOxの浄化率が向
上するだけでなく、必要以上のHC及びCOを供給しな
くてすみ、リッチ域におけるHC及びCOの浄化性能の
悪化も最小限に抑えられる。
Further, when the exhaust air-fuel ratio is switched from a lean region to a rich region by using output signals of air-fuel ratio detecting means installed upstream and downstream of the exhaust system from the NOx storage reduction type three-way catalyst, If the time for which the fuel is kept rich is controlled, the NOx absorbed in the lean region is sufficiently released and reduced without depending on the deterioration state and the operating temperature of the NOx storage reduction type three-way catalyst. In addition to improving the efficiency, it is not necessary to supply more HC and CO than necessary, and deterioration of the purification performance of HC and CO in the rich region is minimized.

【0012】[0012]

【発明の実施の形態】本発明の排気ガス浄化装置につ
き、図面を参照して説明する。本発明はこれに限定され
るものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An exhaust gas purifying apparatus according to the present invention will be described with reference to the drawings. The present invention is not limited to this.

【0013】図1は、本発明に係るNOx吸蔵還元型三
元触媒を使用した排気ガス浄化装置の基本構成の一例を
表すブロック図である。同図において、この浄化装置で
は、内燃機関1の排気系の上流側から、第1空燃比検出
手段4、NOx吸蔵還元型三元触媒2、三元触媒3、第
2空燃比検出手段5が順次配置されている。また、第1
空燃比検出手段4及び第2空燃比検出手段5に対し、第
1空燃比フィードバック手段6a及び第2空燃比フィー
ドバック手段6bがデータ通信可能に接続されており、
第1空燃比フィードバック手段6aは、第1空燃比検出
手段4で検出された排気空燃比に基づき排気混合気の空
燃比を目標空燃比にフィードバック制御し、第2空燃比
フィードバック手段6bは、燃焼混合気の目標空燃比が
リーンからストイキ又はリッチに切り換えられた直後に
おいて、第2空燃比検出手段5で検出された排気空燃比
に基づき燃焼混合気の空燃比を目標空燃比にフィードバ
ック制御する。
FIG. 1 is a block diagram showing an example of a basic configuration of an exhaust gas purifying apparatus using a NOx storage reduction type three-way catalyst according to the present invention. In this figure, in this purification device, a first air-fuel ratio detecting means 4, a NOx storage reduction type three-way catalyst 2, a three-way catalyst 3, and a second air-fuel ratio detecting means 5 are arranged from the upstream side of the exhaust system of the internal combustion engine 1. They are arranged sequentially. Also, the first
The first air-fuel ratio feedback unit 6a and the second air-fuel ratio feedback unit 6b are connected to the air-fuel ratio detection unit 4 and the second air-fuel ratio detection unit 5 so that data communication is possible.
The first air-fuel ratio feedback means 6a feedback-controls the air-fuel ratio of the exhaust gas mixture to the target air-fuel ratio based on the exhaust air-fuel ratio detected by the first air-fuel ratio detection means 4, and the second air-fuel ratio feedback means 6b Immediately after the target air-fuel ratio of the mixture is switched from lean to stoichiometric or rich, the air-fuel ratio of the combustion mixture is feedback-controlled to the target air-fuel ratio based on the exhaust air-fuel ratio detected by the second air-fuel ratio detection means 5.

【0014】図2は、本発明に係るNOx吸蔵還元型三
元触媒を使用した排気ガス浄化装置の一例を示すシステ
ム構成図である。なお、図1に示したものと実質的に同
一の部材には同一の符号を付し、その説明を省略する。
図2において、符号7は燃料噴射弁、符号8は排気管を
示しており、この排気管8を介して、燃料噴射弁7、内
燃機関1、NOx吸蔵還元型三元触媒2を内蔵したケー
シング及び三元触媒3を内蔵したケーシングが連通して
いる。また、排気管8には、排気空燃比を検出する第1
空燃比センサ4a及び第2空燃比センサ5aが、それぞ
れNOx吸蔵還元型三元触媒2の上流、三元触媒3の下
流に配置されており、第1空燃比センサ4a、第2空燃
比センサ5a及び燃料噴射弁7の出力は、上述した第1
空燃比フィードバック手段6a及び第2空燃比フィード
バック手段6bの機能を果たすコントロールユニット6
に接続されている。
FIG. 2 is a system configuration diagram showing an example of an exhaust gas purifying apparatus using the NOx storage reduction type three-way catalyst according to the present invention. It is to be noted that the same members as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
In FIG. 2, reference numeral 7 denotes a fuel injection valve, and reference numeral 8 denotes an exhaust pipe. A casing containing the fuel injection valve 7, the internal combustion engine 1, and the NOx storage reduction three-way catalyst 2 via the exhaust pipe 8. The casing containing the three-way catalyst 3 is in communication with the casing. In addition, a first pipe for detecting an exhaust air-fuel ratio is provided in the exhaust pipe 8.
An air-fuel ratio sensor 4a and a second air-fuel ratio sensor 5a are arranged upstream of the NOx storage reduction type three-way catalyst 2 and downstream of the three-way catalyst 3, respectively. The first air-fuel ratio sensor 4a and the second air-fuel ratio sensor 5a And the output of the fuel injection valve 7 is the first
A control unit 6 that functions as the air-fuel ratio feedback means 6a and the second air-fuel ratio feedback means 6b
It is connected to the.

【0015】ここで、NOx吸蔵還元型三元触媒2は、
排気空燃比がリーン域であるときに排気ガス中のNOx
を吸収し、この吸収したNOxを排気空燃比がストイキ
又はリッチ域であるときに還元処理する触媒であり、例
えばアルミナを担持基材とし、この担体基材上にセシウ
ム、カリウムに代表されるアルカリ金属、バリウムに代
表されるアルカリ土類金属から選ばれた少なくとも一つ
と、白金、パラジウム、ロジウムの様な貴金属から選ば
れた少なくとも一つが担持されている。
Here, the NOx storage reduction type three-way catalyst 2 is
NOx in exhaust gas when the exhaust air-fuel ratio is in the lean region
Is a catalyst for reducing the absorbed NOx when the exhaust air-fuel ratio is in a stoichiometric or rich range. For example, an alumina as a supporting base material, and an alkali typified by cesium and potassium are formed on the supporting base material. At least one selected from metals and alkaline earth metals represented by barium and at least one selected from noble metals such as platinum, palladium and rhodium are supported.

【0016】また、三元触媒3においては、酸素ストレ
ージ能力に寄与する成分であるセリア(CeO2)の量
が調整されている。具体的には、従来の三元触媒では、
触媒1リットル当たり50〜60gであるのに対し、本
発明では、触媒1リットル当たり5〜30g、好ましく
は触媒1リットル当たり5〜15gに調整されている。
In the three-way catalyst 3, the amount of ceria (CeO 2 ), which is a component contributing to the oxygen storage capacity, is adjusted. Specifically, in a conventional three-way catalyst,
In the present invention, the amount is adjusted to 5 to 30 g per liter of the catalyst, preferably 5 to 15 g per liter of the catalyst, in contrast to 50 to 60 g per liter of the catalyst.

【0017】第1空燃比センサ4a及び第2空燃比セン
サ5aとしては、排気ガス中の酸素濃度に基づき排気空
燃比を検出するセンサを用いることができるが、理論空
燃比のみを検出するストイキセンサであってもよく、ま
た排気空燃比を広域に検出できる広域空燃比センサであ
ってもよい。
As the first air-fuel ratio sensor 4a and the second air-fuel ratio sensor 5a, sensors that detect the exhaust air-fuel ratio based on the oxygen concentration in the exhaust gas can be used, but a stoichiometric sensor that detects only the stoichiometric air-fuel ratio is used. Or a wide-range air-fuel ratio sensor capable of detecting the exhaust air-fuel ratio in a wide range.

【0018】コントロールユニット6では、運転条件に
応じて目標空燃比を決定し、その目標空燃比の混合気が
形成されるように燃料噴射量(噴射パルス幅)が演算さ
れ、燃料噴射弁7に対する燃料噴射信号が決定される。
なお、目標空燃比としては、ストイキ及びリッチのみな
らず、リーンも設定することができる構成となってい
る。
The control unit 6 determines a target air-fuel ratio in accordance with operating conditions, calculates a fuel injection amount (injection pulse width) so as to form an air-fuel mixture of the target air-fuel ratio. A fuel injection signal is determined.
In addition, as the target air-fuel ratio, not only stoichiometric and rich but also lean can be set.

【0019】また、コントロールユニット6では、通常
は第1空燃比センサ4aで検出される排気空燃比を目標
空燃比に近づけるように、例えば、比例積分制御等によ
り、燃料噴射量を補正するための空燃比フィードバック
補正係数(操作量)を設定することなどが行われる(こ
の機能が第1空燃比フィードバック手段6aに相当す
る。)。なお、目標空燃比のリーンからストイキ又はリ
ッチへの切り換えは、運転条件(加速、負荷・回転の変
化)によって行われる他、本来目標空燃比としてリーン
空燃比が設定される条件下であっても、NOx吸蔵還元
型三元触媒2におけるNOx吸収量が限界値に達してい
ると推定されるときは、一時的にリッチ制御が行える設
定になっており、NOxを還元処理するための一時的な
リッチ域への切り換えも含まれる。
The control unit 6 normally corrects the fuel injection amount by, for example, proportional integral control so that the exhaust air-fuel ratio detected by the first air-fuel ratio sensor 4a approaches the target air-fuel ratio. For example, setting of an air-fuel ratio feedback correction coefficient (operating amount) is performed (this function corresponds to the first air-fuel ratio feedback means 6a). The switching of the target air-fuel ratio from lean to stoichiometric or rich is performed according to operating conditions (acceleration, changes in load / rotation), and even under conditions where a lean air-fuel ratio is originally set as the target air-fuel ratio. When it is estimated that the NOx absorption amount in the NOx storage reduction type three-way catalyst 2 has reached the limit value, the setting is such that the rich control can be temporarily performed, and the temporary control for the NOx reduction processing is performed. Switching to the rich range is also included.

【0020】更に、コントロールユニット6は、目標空
燃比がリーンからストイキ又はリッチに切り換えられた
直後においては、第2空燃比センサ5aの出力変化に応
じて上記空燃比フィードバック制御を実行するようにな
っている。(この機能が第2空燃比フィードバック手段
6bに相当する。)図3に、かかる第2空燃比フィード
バック手段6bによるフィードバック制御の一例を示
す。
Further, immediately after the target air-fuel ratio is switched from lean to stoichiometric or rich, the control unit 6 executes the air-fuel ratio feedback control according to a change in the output of the second air-fuel ratio sensor 5a. ing. (This function corresponds to the second air-fuel ratio feedback means 6b.) FIG. 3 shows an example of feedback control by the second air-fuel ratio feedback means 6b.

【0021】図3においては、まず、ステップ11(以
下「S11」と略す。)で、NOxを還元処理するため
の空燃比制御が必要かどうかが判別される。そして、S
11でNOxを還元処理するための空燃比制御が必要で
あると判断すると、目標空燃比がリーン域からリッチ域
に切り換えられる(S12)。
In FIG. 3, first, in step 11 (hereinafter abbreviated as "S11"), it is determined whether or not air-fuel ratio control for reducing NOx is necessary. And S
If it is determined in step 11 that air-fuel ratio control for reducing NOx is necessary, the target air-fuel ratio is switched from a lean region to a rich region (S12).

【0022】次に、第1空燃比センサ4a及び第2空燃
比センサ5aの出力が検出され(S13)、第2空燃比
センサ5aの出力が第1空燃比センサ4aの出力よりリ
ッチであるかどうかが判断される(S14)。第2空燃
比センサ5aの出力が第1空燃比センサ4aの出力より
リッチでない場合には、第2空燃比センサ5aの出力が
第1空燃比センサ4aの出力よりリッチになるまで空燃
比をリッチ化する。第2空燃比センサ5aの出力が所定
値SLr(図4参照)よりリッチになれば、ステップS
15に進み、空燃比をリーンに反転する。
Next, the outputs of the first air-fuel ratio sensor 4a and the second air-fuel ratio sensor 5a are detected (S13), and the output of the second air-fuel ratio sensor 5a is richer than the output of the first air-fuel ratio sensor 4a. It is determined whether or not (S14). If the output of the second air-fuel ratio sensor 5a is not richer than the output of the first air-fuel ratio sensor 4a, the air-fuel ratio is increased until the output of the second air-fuel ratio sensor 5a becomes richer than the output of the first air-fuel ratio sensor 4a. Become If the output of the second air-fuel ratio sensor 5a becomes richer than the predetermined value SLr (see FIG. 4), step S
Proceed to 15 to invert the air-fuel ratio lean.

【0023】ここで、NOx吸蔵還元型三元触媒で還元
処理がなされ、NOx吸蔵還元型三元触媒からNOxが
脱離している間は、空燃比をリッチ化するために供給さ
れたHC及びCOにより、それぞれ酸化と還元が行わ
れ、第2空燃比センサ5aの出力がストイキ近傍に保た
れる。その後、NOx吸蔵還元型三元触媒から脱離する
NOxの量が減少すると、バランスが崩れ、第2空燃比
センサ5aの出力がリッチ方向に動き、第1空燃比セン
サ4aと第2空燃比センサ5aの出力が等しくなった時
点でNOxの脱離が終了したと考えられる(図4)。し
かる後、第2空燃比センサの出力は、第1空燃比センサ
の出力よりリッチになるので、上述の如くリーンへの反
転を行えばよいことになる。
Here, the reduction process is performed by the NOx storage reduction type three-way catalyst, and while NOx is desorbed from the NOx storage reduction type three-way catalyst, HC and CO supplied to enrich the air-fuel ratio are supplied. As a result, oxidation and reduction are performed, respectively, and the output of the second air-fuel ratio sensor 5a is maintained near the stoichiometric state. Thereafter, when the amount of NOx desorbed from the NOx storage reduction type three-way catalyst decreases, the balance is lost, the output of the second air-fuel ratio sensor 5a moves in a rich direction, and the first air-fuel ratio sensor 4a and the second air-fuel ratio sensor It is considered that the desorption of NOx has ended when the outputs of 5a become equal (FIG. 4). Thereafter, the output of the second air-fuel ratio sensor becomes richer than the output of the first air-fuel ratio sensor, so that it is sufficient to perform the inversion to lean as described above.

【0024】上述の様に、第1空燃比センサ4aと第2
空燃比センサ5aの出力をもとに目標空燃比をリッチか
らリーンに反転すると、リーン運転時にNOx吸蔵還元
型三元触媒が吸収したNOxを十分に脱離させることが
でき、且つHC及びCOの排出を抑制することができる
(図5)。この際、下流側に配置された三元触媒3に含
まれる酸素ストレージ成分であるセリアを低減させるよ
り、短期間で効果的にNOxを脱離させることが可能に
なる。また、第1空燃比センサ4aと第2空燃比センサ
5aの出力をもとに、目標空燃比のリッチからリーンヘ
の反転を行うことで、温度等によりNOx吸収量が変化
したり、経時変化によってNOx吸収量や酸素ストレー
ジ量に変化があっても、NOx吸収量に見合ったNOx
の脱離条件を設定することができるようになる。
As described above, the first air-fuel ratio sensor 4a and the second air-fuel ratio
When the target air-fuel ratio is reversed from rich to lean based on the output of the air-fuel ratio sensor 5a, the NOx absorbed by the NOx storage reduction type three-way catalyst during lean operation can be sufficiently desorbed, and HC and CO emissions can be reduced. Emission can be suppressed (FIG. 5). At this time, it is possible to effectively desorb NOx in a short period of time rather than reducing ceria, which is an oxygen storage component contained in the three-way catalyst 3 disposed downstream. In addition, by inverting the target air-fuel ratio from rich to lean based on the outputs of the first air-fuel ratio sensor 4a and the second air-fuel ratio sensor 5a, the NOx absorption amount changes with temperature or the like, Even if there is a change in the NOx absorption amount or the oxygen storage amount, the NOx that matches the NOx absorption amount
Can be set.

【0025】図6は、本発明の排気ガス浄化装置のシス
テムの他の一例を示すもので、図2では、第1空燃比セ
ンサ4aをNOx吸蔵還元型三元触媒2より排気上流側
に配置し、第2空燃比センサ5aを三元触媒3の排気下
流側に配置しているが、この図に示すように、第2空燃
比センサ5aをNOx吸蔵還元型三元触媒2と三元触媒
3の間に配置した場合であっても、図2に示した例と同
様の結果が得られる。
FIG. 6 shows another example of the system of the exhaust gas purifying apparatus of the present invention. In FIG. 2, the first air-fuel ratio sensor 4a is arranged on the exhaust gas upstream side of the NOx storage reduction type three-way catalyst 2. Although the second air-fuel ratio sensor 5a is disposed on the exhaust downstream side of the three-way catalyst 3, the second air-fuel ratio sensor 5a is connected to the NOx storage reduction type three-way catalyst 2 and the three-way catalyst as shown in FIG. 3, the same result as in the example shown in FIG. 2 can be obtained.

【0026】上述の図3に示した例では、リッチスパイ
クの形状を図7の様な矩形波としたが、図8の様に、リ
ッチスパイクの形状を三角波にしても、上述と同様な効
果が得られる。
In the example shown in FIG. 3 described above, the shape of the rich spike is a rectangular wave as shown in FIG. 7. However, as shown in FIG. Is obtained.

【0027】[0027]

【実施例】以下、本発明を実施例、比較例及び試験例に
より詳細に説明するが、本発明はこれら実施例に限定さ
れるものではない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples, Comparative Examples, and Test Examples, but the present invention is not limited to these Examples.

【0028】[NOx吸蔵還元型三元触媒の製造] (触媒1)硝酸パラジウム水溶液を活性アルミナ粉末に
含浸し、乾燥後、空気中400℃で1時間焼成して、パ
ラジウム担持アルミナ粉末(粉末A)を得た。この粉末
のパラジウム濃度は5.6重量%であった。また、炭酸
ランタンと炭酸コバルトの混合物にクエン酸を加え、乾
燥後、700℃で焼成し、粉末(粉末B)を得た。この
粉末は金属原子比でランタン/コバルト=0.8/1の
割合で含有する。上述のようにして得られた粉末A60
0g、粉末B300g、水900gを磁性ボールミルに
投入し、混合粉砕してスラリー液を得た。
[Production of NOx storage-reduction type three-way catalyst] (Catalyst 1) Activated alumina powder was impregnated with an aqueous solution of palladium nitrate, dried and calcined at 400 ° C. for 1 hour in air to obtain palladium-supported alumina powder (powder A). ) Got. The palladium concentration of this powder was 5.6% by weight. Further, citric acid was added to a mixture of lanthanum carbonate and cobalt carbonate, dried, and calcined at 700 ° C. to obtain a powder (powder B). This powder contains lanthanum / cobalt at a ratio of 0.8 / 1 in a metal atomic ratio. Powder A60 obtained as described above
0 g, powder B (300 g) and water (900 g) were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid.

【0029】このスラリー液をコーディライト質モノリ
ス担体(1.3L、400セル)に付着させ、空気流に
てセル内の余剰のスラリーを除去し、130℃で乾燥し
た後、空気中400℃で1時間焼成し、コート層重量1
50g/Lのモノリス担体を得た。得られた150g/
Lのモノリス担体に酢酸バリウム水溶液を含浸し、13
0℃で乾燥した後、空気中400℃で1時間焼成して、
炭酸バリウムを担持した触媒1を得た。このようにして
得られた本触媒のバリウム量は酸化物換算で20g/L
であった。
This slurry liquid is adhered to a cordierite monolithic carrier (1.3 L, 400 cells), excess slurry in the cells is removed by an air stream, dried at 130 ° C., and then dried at 400 ° C. in air. Bake for 1 hour, coat layer weight 1
A monolith carrier of 50 g / L was obtained. The obtained 150 g /
The monolithic carrier L was impregnated with an aqueous barium acetate solution,
After drying at 0 ° C, it is baked for 1 hour at 400 ° C in air,
Catalyst 1 supporting barium carbonate was obtained. The barium content of the catalyst thus obtained was 20 g / L in terms of oxide.
Met.

【0030】(触媒2)BaをCsとした以外は、触媒
1と同様の操作を繰り返し、本触媒を得た。
(Catalyst 2) The same operation as in the case of the catalyst 1 was repeated except that Ba was changed to Cs, to obtain the present catalyst.

【0031】(触媒3)硝酸ロジウム水溶液を活性アル
ミナに含浸し、乾燥後、空気中400℃で1時間焼成し
て、ロジウム担持粉末(粉末C)を得た。この粉末のロ
ジウム濃度は2.0重量%であった。ジニトロジアンミ
ン白金水溶液を活性アルミナに含浸し、乾燥後、空気中
400℃で1時間焼成して、白金担持粉末(粉末D)を
得た。この粉末の白金濃度は4.0重量%であった。上
述のようにして得られた粉末C106g、粉末D265
g、粉末B300g、活性アルミナ粉末229g、水9
00gを磁性ボールミルに投入し、混合粉砕してスラリ
ー液を得た。
(Catalyst 3) Activated alumina was impregnated with an aqueous solution of rhodium nitrate, dried and calcined at 400 ° C. for 1 hour in air to obtain a rhodium-supported powder (powder C). The rhodium concentration of this powder was 2.0% by weight. Activated alumina was impregnated with an aqueous solution of dinitrodiammine platinum, dried, and calcined in air at 400 ° C. for 1 hour to obtain a platinum-supported powder (powder D). The platinum concentration of this powder was 4.0% by weight. 106 g of powder C obtained as described above, powder D265
g, powder B 300 g, activated alumina powder 229 g, water 9
00g was charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid.

【0032】このスラリー液をコーディライト質モノリ
ス担体(1.3L、400セル)に付着させ、空気流に
てセル内の余剰のスラリーを除去し、130℃で乾燥し
た後、400℃で1時間焼成し、コート層重量150g
/Lのモノリス担体を得た。得られた150g/Lのモ
ノリス担体に酢酸バリウム水溶液を含浸し、130℃で
乾燥した後、空気中400℃で1時間焼成して、炭酸バ
リウムを担持した触媒3を得た。このようにして得られ
た本触媒のバリウム量は酸化物換算で30g/Lであっ
た。
This slurry liquid was attached to a cordierite type monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed by an air stream, dried at 130 ° C., and then at 400 ° C. for 1 hour. Baking, coat layer weight 150g
/ L of the monolith carrier was obtained. The obtained 150 g / L monolithic carrier was impregnated with a barium acetate aqueous solution, dried at 130 ° C., and calcined at 400 ° C. for 1 hour in the air to obtain a catalyst 3 supporting barium carbonate. The barium content of the catalyst thus obtained was 30 g / L in terms of oxide.

【0033】(触媒4)バリウムをセシウムに代えた以
外は、触媒3と同様の操作を繰り返し、本触媒を得た。
(Catalyst 4) The same operation as in Catalyst 3 was repeated, except that barium was replaced by cesium, to obtain the present catalyst.

【0034】[三元触媒の製造] (触媒5)まず、活性アルミナ粉末に硝酸パラジウム水
溶液を噴霧し、その後焼成してパラジウム1.19重量
%を担持したパラジウム1.19重量%担持アルミナ粉
末を得た。これとは別に、硝酸ジルコニウムと硝酸セリ
ウムを含む水溶液にアンモニア水溶液を添加し、生成し
た沈殿物を焼成して、ジルコニア・セリウム複合酸化物
を得た。このようにして得られたパラジウム1.19重
量%担持アルミナ粉末772g及びジルコニア・セリウ
ム複合酸化物428gと酢酸10重量%水溶液1200
gを磁性ボールミルに投入し、混合粉砕してスラリー液
を得た。
[Production of Three-Way Catalyst] (Catalyst 5) First, an aqueous palladium nitrate solution was sprayed on activated alumina powder, and then calcined to obtain 1.19% by weight of palladium-supported alumina powder supporting 1.19% by weight of palladium. Obtained. Separately, an aqueous ammonia solution was added to an aqueous solution containing zirconium nitrate and cerium nitrate, and the resulting precipitate was fired to obtain a zirconia-cerium composite oxide. The thus obtained palladium 1.19 wt% supported alumina powder 772 g, zirconia / cerium composite oxide 428 g, and acetic acid 10 wt% aqueous solution 1200
g was charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid.

【0035】このスラリー液をコーディライト質モノリ
ス担体に塗布し、空気流にてセル内の余剰のスラリーを
取り除いて乾燥し、400℃で1時間焼成し、コート層
重量140g/Lのモノリス担体を得た。
This slurry liquid is applied to a cordierite type monolithic carrier, the excess slurry in the cell is removed by an air stream, dried, and baked at 400 ° C. for 1 hour to obtain a monolithic carrier having a coat layer weight of 140 g / L. Obtained.

【0036】次に、活性アルミナ粉末に硝酸ロジウム水
溶液を噴霧し、その後焼成してロジウム1.0重量%を
担持したロジウム担持アルミナを得た。これとは別に、
活性アルミナ粉末に硝酸パラジウム水溶液を噴霧し、そ
の後焼成してパラジウム1.07重量%を担持したパラ
ジウム1.07重量%担持アルミナ粉末を得た。このよ
うにして得られたロジウム担持アルミナ粉末114g、
パラジウム1.07重量%担持アルミナ粉末306g及
び上記ジルコニア・セリウム複合酸化物0gと酢酸10
重量%水溶液900gを磁性ボールミルに投入し、混合
粉砕してスラリー液を得た。
Next, an aqueous rhodium nitrate solution was sprayed on the activated alumina powder, and then calcined to obtain rhodium-supported alumina carrying 1.0% by weight of rhodium. Aside from this,
An aqueous solution of palladium nitrate was sprayed on the activated alumina powder and then calcined to obtain an alumina powder carrying 1.07% by weight of palladium carrying 1.07% by weight of palladium. 114 g of the rhodium-supported alumina powder thus obtained,
306 g of alumina powder supported on 1.07% by weight of palladium, 0 g of the zirconia / cerium composite oxide, and acetic acid 10
A 900% by weight aqueous solution was charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid.

【0037】このスラリー液を上記コート層重量140
g/Lのモノリス担体に塗布し、空気流にてセル内の余
剰のスラリーを取り除き、乾燥した後、400℃で1時
間焼成し、コート層総重量210g/Lを担持した触媒
5を得た。
This slurry liquid was applied to the coating layer having a weight of 140.
g / L of a monolithic carrier, the excess slurry in the cell was removed by an air stream, dried, and calcined at 400 ° C. for 1 hour to obtain a catalyst 5 carrying a total weight of 210 g / L of the coat layer. .

【0038】(触媒6)まず、活性アルミナ粉末にセリ
ウム8重量%、ジルコニウム4重量%、ランタン4重量
%を担持し、その後焼成してセリウム・ジルコニウム・
ランタン・アルミナ粉末を得た。この粉末を撹拌しなが
ら硝酸パラジウム水溶液を噴霧し、その後焼成してパラ
ジウム1.16重量%を担持したパラジウム担持アルミ
ナ粉末を得た。このようにして得られたパラジウム担持
アルミナ粉末900g及び硝酸酸性アルミナゾル900
gと酢酸10重量%水溶液1200gを磁性ボールミル
に投入し、混合粉砕してスラリー液を得た。
(Catalyst 6) First, 8% by weight of cerium, 4% by weight of zirconium, and 4% by weight of lanthanum are supported on activated alumina powder, and then calcined to obtain cerium, zirconium,
A lanthanum-alumina powder was obtained. An aqueous palladium nitrate solution was sprayed on the powder while stirring, and then calcined to obtain a palladium-supported alumina powder supporting 1.16% by weight of palladium. 900 g of the thus-obtained palladium-supported alumina powder and 900 g of the nitric acid acidic alumina sol were obtained.
g and a 10% by weight aqueous solution of acetic acid (1200 g) were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid.

【0039】このスラリー液をコーディライト質モノリ
ス担体に塗布し、空気流にてセル内の余剰のスラリーを
取り除いて乾燥し、400℃で1時間焼成し、コート層
重量142g/Lのモノリス担体を得た。
This slurry liquid was applied to a cordierite type monolithic carrier, excess slurry in the cell was removed by an air stream, dried, and baked at 400 ° C. for 1 hour to obtain a monolithic carrier having a coat layer weight of 142 g / L. Obtained.

【0040】次に、活性アルミナ粉末に硝酸ロジウム水
溶液を噴霧し、その後焼成してロジウム1.0重量%を
担持したロジウム担持アルミナを得た。このようにして
得られたロジウム担持アルミナ粉末114g、上記パラ
ジウム担持アルミナ粉末279g及び硝酸酸性アルミナ
ゾル400gと酢酸10重量%水溶液900gを磁性ボ
ールミルに投入し、混合粉砕してスラリー液を得た。
Next, an aqueous rhodium nitrate solution was sprayed on the activated alumina powder, and then calcined to obtain rhodium-supported alumina carrying 1.0% by weight of rhodium. 114 g of the rhodium-supported alumina powder thus obtained, 279 g of the palladium-supported alumina powder, 400 g of nitric acid acidic alumina sol and 900 g of a 10% by weight aqueous solution of acetic acid were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid.

【0041】このスラリー液を上記コート層重量142
g/Lのモノリス担体に塗布し、空気流にてセル内の余
剰のスラリーを取り除き、乾燥した後、400℃で1時
間焼成し、コート層重量213g/Lを担持した触媒6
を得た。
This slurry liquid was coated with the above-mentioned coat layer weight 142.
g / L of a monolithic carrier, the excess slurry in the cell was removed by an air stream, dried, and calcined at 400 ° C. for 1 hour to obtain a catalyst 6 supporting a coat layer weight of 213 g / L.
I got

【0042】(触媒7)セリウム8重量%をセリウム4
重量%に代えた以外は、触媒6と同様の操作を繰り返
し、本触媒を得た。
(Catalyst 7) 8% by weight of cerium was added to cerium 4
The same operation as in the case of the catalyst 6 was repeated, except that the amount was changed to% by weight, to obtain the present catalyst.

【0043】(触媒8)まず、活性アルミナ粉末にセリ
ウム8重量%、ジルコニウム4重量%、ランタン4重量
%を担持し、その後焼成してセリウム・ジルコニウム・
ランタン・アルミナ粉末を得た。このセリウム・ジルコ
ニウム・ランタン・アルミナ粉末を撹拌しながら硝酸パ
ラジウム水溶液を噴霧し、その後焼成してパラジウム
2.0重量%を担持したパラジウム2.0重量%担持ア
ルミナ粉末を得た。また、これとは別に、セリウム・ジ
ルコニウム・ランタン・アルミナ粉末を撹拌しながらジ
ニトロジアミン白金水溶液を噴霧し、その後焼成して白
金2.0重量%を担持した白金2.0重量%担持アルミ
ナ粉末を得た。このようにして得られたパラジウム2.
0重量%担持アルミナ粉末386g及び白金2.0重量
%担持アルミナ粉末386gと酢酸10重量%水溶液1
200gを磁性ボールミルに投入し、混合粉砕してスラ
リー液を得た。
(Catalyst 8) First, 8% by weight of cerium, 4% by weight of zirconium, and 4% by weight of lanthanum are supported on activated alumina powder, and then calcined to obtain cerium, zirconium.
A lanthanum-alumina powder was obtained. An aqueous solution of palladium nitrate was sprayed while stirring the cerium-zirconium-lanthanum-alumina powder, and then calcined to obtain an alumina powder carrying 2.0% by weight of palladium carrying 2.0% by weight of palladium. Separately, a cerium-zirconium-lanthanum-alumina powder is sprayed with an aqueous solution of dinitrodiamine platinum while being stirred, and then calcined to form a 2.0% by weight platinum-supported alumina powder supporting 2.0% by weight of platinum. Obtained. 1. Palladium thus obtained
386 g of 0 wt% supported alumina powder and 386 g of platinum 2.0 wt% supported alumina powder and 10 wt% acetic acid aqueous solution 1
200 g was charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid.

【0044】このスラリー液をコーディライト質モノリ
ス担体に塗布し、空気流にてセル内の余剰のスラリーを
取り除いて乾燥し、400℃で1時間焼成し、コート層
重量140g/Lのモノリス担体を得た。
This slurry liquid was applied to a cordierite-based monolithic carrier, excess slurry in the cell was removed with an air stream, dried, and calcined at 400 ° C. for 1 hour to obtain a monolithic carrier having a coat layer weight of 140 g / L. Obtained.

【0045】次に、活性アルミナ粉末に硝酸ロジウム水
溶液を噴霧し、その後焼成してロジウム1.0重量%を
担持したロジウム担持アルミナを得た。このようにして
得られたロジウム担持アルミナ粉末114g及び上記パ
ラジウム2.0重量%担持アルミナ粉末306gと酢酸
10重量%水溶液900gを磁性ボールミルに投入し、
混合粉砕してスラリー液を得た。
Next, an aqueous rhodium nitrate solution was sprayed on the activated alumina powder, and then calcined to obtain rhodium-supported alumina carrying 1.0% by weight of rhodium. 114 g of the rhodium-supported alumina powder thus obtained, 306 g of the above-described palladium 2.0% by weight supported alumina powder, and 900 g of a 10% by weight aqueous solution of acetic acid were charged into a magnetic ball mill,
The mixture was pulverized to obtain a slurry liquid.

【0046】このスラリー液を上記コート層重量140
g/Lのモノリス担体に塗布し、空気流にてセル内の余
剰のスラリーを取り除き、乾燥した後、400℃で1時
間焼成し、コート層重量210g/Lを担持した触媒8
を得た。
This slurry liquid was applied to the coating layer having a weight of 140.
g / L of a monolithic carrier, the excess slurry in the cells was removed by an air stream, dried, and calcined at 400 ° C. for 1 hour to obtain a catalyst 8 supporting a coat layer weight of 210 g / L.
I got

【0047】(比較触媒1)ジルコニア・セリウム複合
酸化物0gをジルコニア・セリウム複合酸化物95gに
代えた以外は、触媒5と同様の操作を繰り返し、本触媒
を得た。
(Comparative catalyst 1) The same operation as in catalyst 5 was repeated, except that 0 g of the zirconia / cerium composite oxide was replaced with 95 g of the zirconia / cerium composite oxide, to obtain the present catalyst.

【0048】(耐久方法)排気量4400ccのエンジ
ンの排気系に各例の触媒を装着し、入口温度を700℃
とし、50時間運転した。 [装置性能試験]上述のようにして得られた各種触媒を
用い、表1に示すような触媒構成により、実施例1〜7
及び比較例1の排気ガス浄化装置を組み立てた。これら
の装置につき、下記の方法で試験を行い、得られた結果
を表1に示す。 (評価方法)排気量2000ccのエンジン排気系の同
一流路中に、表1に示すように触媒を装着し、Air/
Fuel=11.0とAir/Fuel=22.0を交
互に繰り返すように運転し、触媒入口温度を上流側45
0℃、下流側350℃とし、この切り換え運転1サイク
ルのトータル転化率を求めた。
(Durability method) The catalyst of each example was attached to the exhaust system of an engine with a displacement of 4400 cc, and the inlet temperature was set to 700 ° C.
And operated for 50 hours. [Equipment Performance Test] Using the various catalysts obtained as described above and the catalyst configurations shown in Table 1, Examples 1 to 7 were used.
And the exhaust gas purifying apparatus of Comparative Example 1 was assembled. These devices were tested by the following method, and the obtained results are shown in Table 1. (Evaluation method) A catalyst was mounted as shown in Table 1 in the same flow path of an engine exhaust system with a displacement of 2000 cc, and the Air /
Fuel = 11.0 and Air / Fuel = 22.0 were alternately operated, and the catalyst inlet temperature was raised to the upstream 45 ° C.
At 0 ° C. and 350 ° C. on the downstream side, the total conversion in one cycle of this switching operation was determined.

【0049】[0049]

【表1】 [Table 1]

【0050】表1の結果から、セリア及び/又はセリア
を含む複合酸化物の量が触媒1リットル当たり5〜30
gである三元触媒を使用した場合(実施例1〜7)は、
HCの転化率及びNOxの転化率はいずれも良好である
のに対し、セリアCeO2及びセリアを含む複合酸化物
の量が触媒1リットル当たり30gより多い三元触媒を
使用した場合(比較例1)には、HCの転化率は良好で
あるが、NOxの転化率が実施例1〜7より低下するこ
とがわかった。
From the results shown in Table 1, the amount of ceria and / or the complex oxide containing ceria was 5 to 30 per liter of the catalyst.
g (Examples 1 to 7)
While the HC conversion and the NOx conversion were both good, a three-way catalyst containing more than 30 g of the complex oxide containing ceria CeO 2 and ceria per liter of the catalyst was used (Comparative Example 1). ) Shows that the conversion of HC is good, but the conversion of NOx is lower than in Examples 1 to 7.

【0051】[0051]

【発明の効果】以上説明してきたように、本発明によれ
ば、NOx吸蔵還元型三元触媒の下流側に配置された三
元触媒中の酸素ストレージ能力に寄与する成分の量を低
減することなどしたため、排気空燃比がリーンからスト
イキ又はリッチに切り換わった際にNOx吸蔵還元型三
元触媒に十分なHC及びCOが供給できるようになり、
NOxの浄化率が向上する排気ガス浄化装置を提供する
ことができる。
As described above, according to the present invention, the amount of components contributing to the oxygen storage capacity in the three-way catalyst disposed downstream of the NOx storage reduction three-way catalyst can be reduced. For this reason, when the exhaust air-fuel ratio switches from lean to stoichiometric or rich, sufficient HC and CO can be supplied to the NOx storage reduction type three-way catalyst,
An exhaust gas purification device with an improved NOx purification rate can be provided.

【0052】また、本発明によれば、排気空燃比に基づ
き燃焼混合気の空燃比を目標空燃比にフィードバック制
御する空燃比フィードバック手段を設けることなどをし
たため、HC及びCOの浄化性能の悪化を最小限に抑制
することができる排気ガス浄化装置を提供することも可
能となる。
Further, according to the present invention, air-fuel ratio feedback means for feedback-controlling the air-fuel ratio of the combustion mixture to the target air-fuel ratio based on the exhaust air-fuel ratio is provided. It is also possible to provide an exhaust gas purification device that can be minimized.

【0053】[0053]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るNOx吸蔵還元型三元触媒を用い
た排気ガス浄化装置の墓本構成の一例を表すブロック図
である。
FIG. 1 is a block diagram illustrating an example of a tombstone configuration of an exhaust gas purifying apparatus using a NOx storage reduction type three-way catalyst according to the present invention.

【図2】本発明に係るNOx吸蔵還元型三元触媒を用い
た排気ガス浄化装置のシステムの一例を表す構成図であ
る。
FIG. 2 is a configuration diagram illustrating an example of a system of an exhaust gas purification device using a NOx storage reduction type three-way catalyst according to the present invention.

【図3】本発明に係る排気ガス浄化装置の第2空燃比フ
ィードバック手段による制御の一例を示すフローチャー
トである。
FIG. 3 is a flowchart illustrating an example of control by a second air-fuel ratio feedback unit of the exhaust gas purifying apparatus according to the present invention.

【図4】空燃比センサ出力とNOxの脱離状態を示す図
である。
FIG. 4 is a diagram illustrating an output of an air-fuel ratio sensor and a desorption state of NOx.

【図5】図3を実施した場合における空燃比センサ出力
及びNOx、HCの排出状態御の一例を示す図である。
FIG. 5 is a diagram showing an example of control of an air-fuel ratio sensor output and NOx and HC emission states when FIG. 3 is implemented.

【図6】本発明に係るNOx吸蔵還元型三元触媒を用い
た排気ガス浄化装置のシステムの他の一例を表す構成図
である。
FIG. 6 is a configuration diagram showing another example of the system of the exhaust gas purifying apparatus using the NOx storage reduction type three-way catalyst according to the present invention.

【図7】図3における空燃比制御の波形を示す図であ
る。
FIG. 7 is a diagram showing a waveform of air-fuel ratio control in FIG. 3;

【図8】空燃比制御の波形の他の一例を示す図である。FIG. 8 is a diagram showing another example of the waveform of the air-fuel ratio control.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 NOx吸蔵還元型三元触媒 3 三元触媒 4 第1空燃比検出手段 4a 第1空燃比センサ 5 第2空燃比検出手段 5a 第2空燃比センサ 6 コントロールユニット 6a 第1空燃比フィードバック手段 6b 第2空燃比フィードバック手段 7 燃料噴射弁 8 排気管 DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 NOx storage reduction type three-way catalyst 3 Three-way catalyst 4 1st air-fuel ratio detection means 4a 1st air-fuel ratio sensor 5 2nd air-fuel ratio detection means 5a 2nd air-fuel ratio sensor 6 Control unit 6a 1st air-fuel ratio feedback Means 6b Second air-fuel ratio feedback means 7 Fuel injection valve 8 Exhaust pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 3/24 ZAB F01N 3/28 ZAB 3/28 ZAB 301C 301 F02D 41/14 ZAB F02D 41/14 ZAB 310A 310 310F B01D 53/36 102B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F01N 3/24 ZAB F01N 3/28 ZAB 3/28 ZAB 301C 301 F02D 41/14 ZAB F02D 41/14 ZAB 310A 310 310F B01D 53 / 36 102B

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 排気系の上流側から、NOx吸蔵還元型
三元触媒、三元触媒を順次配置した排気ガス浄化装置に
おいて、 上記NOx吸蔵還元型三元触媒が、リーン雰囲気で排気
ガス中のNOxを吸収し、吸収したNOxを理論空燃比
又はリッチ雰囲気で放出して還元処理するNOx吸蔵還
元型三元触媒であって、 白金、パラジウム及びロジウムから成る群より選ばれた
少なくとも1種の貴金属を多孔質担体に担持した貴金属
担持粉末と、 次式 LnαBOβ・・・ (式中のLnは、La、Ce、Nd及びSmから成る群
より選ばれた少なくとも1種、Bは、Fe、Co、Ni
及びMnから成る群より選ばれた少なくとも1種を示
し、0<α<1、0<β<4である。)で表される複合
酸化物粉末と、 Mg、Ca、Sr、Ba、Na、K及びCsから成る群
より選ばれた少なくとも1種の金属の炭酸塩を含有し、 上記三元触媒が、白金、パラジウム及びロジウムから成
る群より選ばれた少なくとも1種を含有し、且つ上記三
元触媒に含まれるセリア及び/又はセリアを含む複合酸
化物の量が、触媒1リットル当たり5〜30gであるこ
とを特徴とするNOx吸蔵還元型三元触媒を使用した排
気ガス浄化装置。
1. An exhaust gas purifying apparatus in which a NOx storage-reduction type three-way catalyst and a three-way catalyst are sequentially arranged from an upstream side of an exhaust system. A NOx storage-reduction type three-way catalyst that absorbs NOx and releases the absorbed NOx at a stoichiometric air-fuel ratio or in a rich atmosphere for reduction treatment, wherein at least one noble metal selected from the group consisting of platinum, palladium and rhodium And a noble metal-supported powder having the following formula: LnαBOβ (where Ln is at least one selected from the group consisting of La, Ce, Nd and Sm, and B is Fe, Co, Ni
And Mn, wherein 0 <α <1 and 0 <β <4. And a carbonate of at least one metal selected from the group consisting of Mg, Ca, Sr, Ba, Na, K and Cs. And at least one selected from the group consisting of palladium and rhodium, and the amount of ceria and / or ceria-containing composite oxide contained in the three-way catalyst is 5 to 30 g per liter of the catalyst. An exhaust gas purifying apparatus using a NOx storage reduction type three-way catalyst, characterized in that:
【請求項2】 上記複合酸化物粉末が、次式 (Ln1-δCδ)αBOβ・・・ (式中のLnは、La、Ce、Nd及びSmから成る群
より選ばれた少なくとも1種、Cは、Ba及びKから選
ばれた少なくとも1種、Bは、Fe、Co、Ni及びM
nから成る群より選ばれた少なくとも1種を示し、0<
δ<1、0.8<α<1、βは、各元素の原子価を満足
する酸素量である。)で表されることを特徴とする請求
項1記載の排気ガス浄化装置。
2. The composite oxide powder according to the following formula (Ln 1 -δCδ) αBOβ (where Ln is at least one selected from the group consisting of La, Ce, Nd and Sm; Is at least one selected from Ba and K, and B is Fe, Co, Ni and M
n at least one selected from the group consisting of
δ <1, 0.8 <α <1, β are oxygen amounts that satisfy the valence of each element. 2. The exhaust gas purifying apparatus according to claim 1, wherein:
【請求項3】 上記貴金属担持粉末が、パラジウム及び
/又はロジウムを多孔質担体に担持して成ることを特徴
とする請求項1又は2記載の排気ガス浄化装置。
3. The exhaust gas purifying apparatus according to claim 1, wherein the noble metal-supported powder is formed by supporting palladium and / or rhodium on a porous carrier.
【請求項4】 上記貴金属担持粉末が、パラジウムを多
孔質担体に担持して成ることを特徴とする請求項1又は
2記載の排気ガス浄化装置。
4. The exhaust gas purifying apparatus according to claim 1, wherein the noble metal-supported powder has palladium supported on a porous carrier.
【請求項5】 燃焼混合気の目標空燃比が、リーンから
理論空燃比又はリッチに切り換えられた直後において、
燃焼混合気の空燃比をフィードバック制御し、上記NO
x吸蔵還元型三元触媒より下流側における排気空燃比を
リーンから理論空燃比又はリッチに反転させることを特
徴とする請求項1〜4のいずれか1つの項に記載の排気
ガス浄化装置。
5. Immediately after the target air-fuel ratio of the combustion mixture is switched from lean to the stoichiometric air-fuel ratio or rich,
Feedback control of the air-fuel ratio of the combustion air-fuel mixture
The exhaust gas purifying apparatus according to any one of claims 1 to 4, wherein an exhaust air-fuel ratio downstream of the x storage reduction three-way catalyst is inverted from lean to a stoichiometric air-fuel ratio or rich.
【請求項6】 上記NOx吸蔵還元型三元触媒より上流
側に配置されて排気空燃比を検出する第1空燃比検出手
段と、該NOx吸蔵還元型三元触媒より下流側に配置さ
れて排気空燃比を検出する第2空燃比検出手段を備え、 更に、通常状態において、上記第1空燃比検出手段で検
出される排気空燃比に基づき燃焼混合気の空燃比を目標
空燃比にフィードバック制御する第1空燃比フィードバ
ック手段と、燃焼混合気の目標空燃比がリーンから理論
空燃比又はリッチに切り換えられた直後において、上記
第2空燃比検出手段で検出される排気空燃比に基づき燃
焼混合気の空燃比を目標空燃比にフィードバック制御す
る第2空燃比フィードバック手段を付加して成ることを
特徴とする請求項1〜5のいずれか1つの項に記載の排
気ガス浄化装置。
6. A first air-fuel ratio detecting means disposed upstream of the NOx occlusion reduction type three-way catalyst to detect an exhaust air-fuel ratio, and an exhaust gas disposed downstream of the NOx occlusion reduction type three-way catalyst. A second air-fuel ratio detecting means for detecting an air-fuel ratio is provided. In a normal state, the air-fuel ratio of the combustion mixture is feedback-controlled to a target air-fuel ratio based on the exhaust air-fuel ratio detected by the first air-fuel ratio detecting means. Immediately after the first air-fuel ratio feedback means and the target air-fuel ratio of the combustion air-fuel mixture are switched from lean to the stoichiometric air-fuel ratio or rich, the combustion air-fuel ratio is determined based on the exhaust air-fuel ratio detected by the second air-fuel ratio detection means. The exhaust gas purifying apparatus according to any one of claims 1 to 5, further comprising second air-fuel ratio feedback means for performing feedback control of the air-fuel ratio to a target air-fuel ratio.
【請求項7】 上記第2空燃比フィードバック手段が、
燃焼混合気の目標空燃比がリーンから理論空燃比又はリ
ッチに切り換えられた直後において、上記第2空燃比検
出手段の出力が所定値になるまでフィードバック制御す
ることを特徴とする請求項5又は6記載の排気ガス浄化
装置。
7. The second air-fuel ratio feedback means,
The feedback control is performed until the output of the second air-fuel ratio detection means reaches a predetermined value immediately after the target air-fuel ratio of the combustion mixture is switched from lean to the stoichiometric air-fuel ratio or rich. An exhaust gas purifying apparatus as described in the above.
JP10067645A 1998-03-04 1998-03-04 Exhaust emission control device using nox stored and reduced type three-way catalyst Pending JPH11247654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10067645A JPH11247654A (en) 1998-03-04 1998-03-04 Exhaust emission control device using nox stored and reduced type three-way catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10067645A JPH11247654A (en) 1998-03-04 1998-03-04 Exhaust emission control device using nox stored and reduced type three-way catalyst

Publications (1)

Publication Number Publication Date
JPH11247654A true JPH11247654A (en) 1999-09-14

Family

ID=13350971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10067645A Pending JPH11247654A (en) 1998-03-04 1998-03-04 Exhaust emission control device using nox stored and reduced type three-way catalyst

Country Status (1)

Country Link
JP (1) JPH11247654A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6725650B2 (en) 2000-08-22 2004-04-27 Mazda Motor Corporation Exhaust gas purifying system for engine
JP2008248860A (en) * 2007-03-30 2008-10-16 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
CN105587387A (en) * 2016-01-06 2016-05-18 顾钰锋 Two-stage highly effective reducing type three-way catalyst
WO2017082563A1 (en) * 2015-11-10 2017-05-18 희성촉매 주식회사 Exhaust purification catalyst for stoichiometrically operated gasoline engine
KR101865744B1 (en) * 2016-11-17 2018-06-08 현대자동차 주식회사 Device for purifying exhaust gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6725650B2 (en) 2000-08-22 2004-04-27 Mazda Motor Corporation Exhaust gas purifying system for engine
JP2008248860A (en) * 2007-03-30 2008-10-16 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
WO2017082563A1 (en) * 2015-11-10 2017-05-18 희성촉매 주식회사 Exhaust purification catalyst for stoichiometrically operated gasoline engine
CN105587387A (en) * 2016-01-06 2016-05-18 顾钰锋 Two-stage highly effective reducing type three-way catalyst
CN105587387B (en) * 2016-01-06 2018-02-02 克康(重庆)排气控制系统有限公司 Double-stage high-efficient reduced form ternary catalyzing unit
KR101865744B1 (en) * 2016-11-17 2018-06-08 현대자동차 주식회사 Device for purifying exhaust gas

Similar Documents

Publication Publication Date Title
US6729125B2 (en) Exhaust gas purifying system
RU2213870C2 (en) Method to control operation of exhaust gas converter provided with sulfur trap and nitrogen oxides catalyst- accumulator
JP4092441B2 (en) Exhaust gas purification catalyst
EP1188908A2 (en) Exhaust gas purifying system
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
EP1180390A1 (en) Exhaust emission control system for internal combustion engines, exhaust emission control method and exhaust emission control catalyst
JP3544400B2 (en) Exhaust gas purification catalyst
JP2001123827A (en) Exhaust gas control system
JP4450396B2 (en) Exhaust gas purification device using NOx occlusion reduction type three-way catalyst
JP3284313B2 (en) Gas engine exhaust gas purification method
JPH11247654A (en) Exhaust emission control device using nox stored and reduced type three-way catalyst
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JP2003245523A (en) Exhaust gas cleaning system
JPH06246159A (en) Ternary catalyst for purifying gas engine exhaust gas and method for purifying the exhaust gas
JP2002168117A (en) Exhaust emission control system
JP3272015B2 (en) Exhaust gas purification catalyst
JP3925015B2 (en) Internal combustion engine exhaust gas purification device, purification method, and purification catalyst
JP3338889B2 (en) Exhaust gas purification device
JPH0871424A (en) Catalyst for purification of exhaust gas
JP2004100483A (en) Exhaust gas cleaning method
JP2000271428A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning method
JP2000042369A (en) Purifying device for exhaust gas from internal combustion engine, purifying method of exhaust gas and purifying catalyst for exhaust gas
JP3549687B2 (en) Exhaust gas purification catalyst, exhaust gas purification device, and exhaust gas purification method
JP2002273226A (en) Catalyst for purifying exhaust gas and its manufacturing method
JP3477982B2 (en) Exhaust gas purification catalyst and exhaust gas purification method