JP3925015B2 - Internal combustion engine exhaust gas purification device, purification method, and purification catalyst - Google Patents

Internal combustion engine exhaust gas purification device, purification method, and purification catalyst Download PDF

Info

Publication number
JP3925015B2
JP3925015B2 JP32364299A JP32364299A JP3925015B2 JP 3925015 B2 JP3925015 B2 JP 3925015B2 JP 32364299 A JP32364299 A JP 32364299A JP 32364299 A JP32364299 A JP 32364299A JP 3925015 B2 JP3925015 B2 JP 3925015B2
Authority
JP
Japan
Prior art keywords
exhaust gas
mol
catalyst
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32364299A
Other languages
Japanese (ja)
Other versions
JP2001137666A (en
Inventor
雅人 金枝
幸二郎 奥出
秀宏 飯塚
更成 永山
寿生 山下
雄一 北原
修 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32364299A priority Critical patent/JP3925015B2/en
Publication of JP2001137666A publication Critical patent/JP2001137666A/en
Application granted granted Critical
Publication of JP3925015B2 publication Critical patent/JP3925015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車エンジン等の内燃機関から排出される燃焼排ガスなどのように、窒素酸化物(以下、NOxという)を含有する排ガスからNOxを効率良く浄化する排ガス浄化装置,排ガス浄化触媒及び浄化方法に係わる。
【0002】
【従来の技術】
近年、自動車用内燃機関において空燃比を燃料希薄とするリーンバーンエンジンが注目されている。しかし、リーンバーンエンジンの排ガスは、O2 濃度が該排ガスに含まれる還元成分を完全燃焼するのに必要な化学量論比を超える酸化雰囲気(以下、酸化雰囲気)となる。このような酸化雰囲気下においては、従来の三元触媒は充分なNOx浄化性能を示さない。従って、酸化雰囲気下においてNOx,HC及びCOの中で特にNOxを効果的に浄化する触媒の開発が望まれている。
【0003】
リーンバーンエンジン用の排ガス浄化装置として、WO93/07363及びWO93/08383には、排ガス通路に燃料希薄燃焼時に排ガス中のNOxを吸収し、排ガス中の酸素濃度が低下すると吸収したNOxを放出するNOx吸収剤を設置することが記載されている。
【0004】
また、特開平10−212933号公報には、排気通路に燃料希薄燃焼時に排ガス中のNOxを化学吸着し燃料過剰燃焼時に吸着したNOxを接触還元するNOx吸着還元触媒を設置することが示されている。
【0005】
【発明が解決しようとする課題】
本発明は、希薄燃焼時に排ガス中のNOxを捕捉し、理論空燃比および燃料過剰燃焼時に捕捉したNOxを還元する排ガス浄化触媒を備えた排ガス浄化装置において、該触媒によるNOx浄化性能を高めることにある。特に500℃のような高温域を含む広い温度範囲で高いNOx浄化性能を発現し、また高温800℃に加熱されたあと或いはSOxによって被毒されたあとでも高いNOx浄化性能を保有するようにすることにある。
【0006】
【課題を解決するための手段】
本発明の触媒は、多孔質担体上に触媒活性成分としてRh,Pt,Pdの少なくとも一種と、アルカリ金属と、BとPから選ばれた少なくとも一種と、Mn,Cu,Co,Ni,Si及びTiから選ばれた少なくとも1種と、を有することを特徴とする。ここで触媒活性成分とは、排ガスを浄化するために作用する成分を意味する。
【0007】
アルカリ金属は排ガス中のNOxを捕捉する役割を持つ。担体に担持されるアルカリ金属は一種でもよいが、二種以上担持されていると更に活性が向上する。またアルカリ土類金属を加えると、活性が向上する。二種以上を組み合わせることにより触媒に新たな活性点が生じ、NOx捕捉能力が高まるためではないかと考える。
【0008】
アルカリ金属の担持量は多孔質担体1.9mol部に対して金属元素換算で、一種類当り0.05mol部以上3mol 部以下が好ましい。ここでmol 部とは、各成分のmol数換算での含有比率を表したものであり、例えばA成分1.9mol 部に対してB成分の担持量が3mol 部ということは、A成分の絶対量の多少に関わらず、mol数換算でAが1.9に対しBが3の割合で担持されていることを意味する。アルカリ金属担持量が一種類当り0.05mol部より少ない場合には、アルカリ金属担持による活性向上効果は必ずしも十分とはなり得ず、一方3mol 部より多いとアルカリ金属の比表面積が低下するようになる。アルカリ金属に加えて更にアルカリ土類金属を担持する場合、アルカリ金属の場合と同様の理由により、その担持量は多孔質担体1.9mol部に対して金属元素換算で、一種類当り0.05mol部以上3mol 部以下が好ましい。
【0009】
またRh,Pt,Pdの少なくとも一種を触媒中に含むことにより、触媒のNOx浄化性能,耐熱性能,耐SOx性能が向上する。担持されるRh,Pt,Pdは一種でもよいが二種以上担持されていると更に活性が向上する。貴金属同士が相互作用を及ぼしあっているためと考える。
【0010】
貴金属の担持量は多孔質担体1.9mol部に対して金属元素換算で少なくとも一種を各々、Ptの場合は0.002mol部以上0.05mol部以下、Rhの場合は0.0003mol部以上0.01mol部以下、Pdの場合は0.001部以上0.2 mol 部以下とすることが望ましい。貴金属の担持量が上記範囲に示す量より少ないと貴金属添加効果は小さく、上記範囲に示す量より多いと貴金属自身の比表面積が小さくなり、やはり貴金属添加効果が小さくなる。
【0011】
BおよびPは単体または酸化物の形態、もしくはアルカリ金属,Alから選ばれた少なくとも一種との複合酸化物の形態で存在し、酸化雰囲気下においてNOxを捕捉する働き、及び還元剤であるCO,炭化水素等を触媒表面上に引きつける役割を持つものと考えられ、更に触媒の耐熱性,耐SOx性を向上させる働きがある。触媒調製時のB又はPを混ぜる順序、或いは焼成温度等をコントロールすることにより、酸化物の形態や複合酸化物の形態で存在させることができる。
【0012】
BまたはP担持量は多孔質担体1.9mol部に対して元素換算で、少なくともどちらか一方を各々0.01mol部以上2mol 部以下とすることが好ましい。BまたはP担持量が0.01mol部より少ないとB,P担持効果は不十分となり、2mol部より多いと触媒の比表面積が低下するため好ましくない。
【0013】
また多孔質担体は基材上に担持しても良く、その場合基材1Lに対し多孔質担体の担持量を0.3mol以上4mol 以下とするとNOx浄化性能にとって好ましい。多孔質担体担持量が0.3mol部より少ないと多孔質担体担持効果は不十分となり、4mol 部より多いと多孔質担体自体の比表面積が低下するため好ましくない。
【0014】
上記成分に加えて、希土類金属の少なくとも1種を担持させると、よりNOx浄化性能及び高温耐久性能が向上する。この場合、多孔質担体1.9mol部に対して金属元素換算で、希土類金属の少なくとも1種を0.02mol部以上1mol 部以下含むことが好ましい。0.02mol部より少ないと希土類金属添加効果が不十分であり、1mol 部より多いと触媒の比表面積が低下するため好ましくない。希土類金属としてはLa,Nd,Ceが好ましい。
【0015】
また、Mn,Co,Ni,Cu,Ti,Siの少なくとも1種を担持させることにより、NOx浄化率が向上し、耐熱性能,耐SOx性能も向上する。特にMnはアルカリ金属,アルカリ土類金属と相互作用をすることにより耐熱性能が向上し、またTi,Siはアルカリ金属,アルカリ土類金属と複合化し、耐SOx性能が向上すると考えられる。Mn,Co,Ni,Cu,Ti,Siの担持量はその少なくとも一種を、多孔質担体1.9mol部に対して元素換算で、0.01mol部以上2mol部以下の範囲とすることが好ましい。
【0016】
また、上記触媒のみでも炭化水素およびCOの除去性能があるが、その性能が不十分な場合、その触媒の前段または後段または両方に炭化水素およびCOの燃焼触媒を設置して内燃機関からの燃焼排ガスを浄化するのも好ましい方法である。
【0017】
本発明による排ガス浄化触媒の形状は、用途に応じ各種の形状で適用できる。コージェライト,ステンレス等の各種材料からなるハニカム構造体に各種成分を担持した触媒粉末をコーティングして得られるハニカム形状を始めとし、ペレット状,板状,粒状,粉末状等として適用できる。
【0018】
排ガス浄化触媒の調製方法は、含浸法,混練法,共沈法,ゾルゲル法,イオン交換法,蒸着法等の物理的調製方法や化学反応を利用した調製方法等いずれも適用可能である。
【0019】
排ガス浄化触媒の出発原料としては、硝酸化合物,酢酸化合物,錯体化合物,水酸化物,炭酸化合物,有機化合物などの種々の化合物や金属及び金属酸化物を用いることができる。
【0020】
多孔質担体としては、アルミナのほかにチタニア,シリカ,シリカ−アルミナ,ジルコニア,マグネシア等の金属酸化物や複合酸化物等を用いることができる。本発明の触媒は、ハニカム構造等の基体にコーティングして用いることができる。基体はコージェライトが最適であるが、金属製のものを用いても良好な結果を得ることができる。
【0021】
【発明の実施の形態】
図1は本発明の排ガス浄化装置の一実施態様を示す全体構成図である。
【0022】
本発明の排ガス浄化装置はリーンバーン可能なエンジン99,エアフローセンサー2,スロットバルブ3等を擁する吸気系,酸素濃度センサー(orA/Fセンサー)7,排ガス温度センサー8,触媒出口ガス温度センサー9,排ガス浄化触媒10等を擁する排気系及び制御ユニット(ECU)11等から構成される。
【0023】
ECUは入出力インターフェイスとしてのI/O,LSI,演算処理装置MPU,多数の制御プログラムを記憶させた記憶装置RAM及びROM,タイマーカウンター等により構成される。
【0024】
以上の排気浄化装置は以下のように機能する。エンジンへの吸入空気はエアクリーナー1によりろ過された後エアフローセンサー2により計量され、スロットバルブ3を経て、さらにインジェクター5から燃料噴射を受け混合気としてエンジン99に供給される。エアフローセンサー信号その他のセンサー信号はECU(Engine Control Unit)へ入力される。
【0025】
ECUでは内燃機関の運転状態及び排ガス浄化触媒の状態を評価して運転空燃比を決定し、インジェクター5の噴射時間等を制御して混合気の燃料濃度を所定値に設定する。シリンダーに吸入された混合気はECU11からの信号で制御される点火プラグ6により着火され燃焼する。燃焼排ガスは排気浄化系に導かれる。排気浄化系には排ガス浄化触媒10が設けられ、ストイキ運転時にはその三元触媒機能により排ガス中のNOx,HC,COを浄化し、また、リーン運転時にはNOx捕捉能によりNOxを浄化すると同時に併せ持つ燃焼機能により、HC,COを浄化する。さらにECUの判定及び制御信号により、リーン運転時には排ガス浄化触媒のNOx浄化能力を常時判定して、NOx浄化能力が低下した場合燃焼の空燃比等をリッチ側にシフトして触媒のNOx捕捉能を回復させる。以上の操作により本装置ではリーン運転,ストイキ(含むリッチ)運転の全てのエンジン燃焼条件下における排ガスを効果的に浄化する。
【0026】
以下、具体的な例で本発明を説明するが、本発明はこれらの実施例により制限されるものではない。
【0027】
「参考例1」
アルミナ粉末とアルミナの前駆体からなり硝酸酸性に調製したスラリーをコージェライト製ハニカム(400セル/inc2)にコーティングした後、乾燥焼成して、ハニカムの見掛けの容積1リットルあたり1.9molのアルミナをコーティングしたアルミナコートハニカムを得た。該アルミナコートハニカムに、ジニトロジアンミンPt硝酸溶液と硝酸Rh溶液の混合溶液を含浸した後、200℃で乾燥、続いて600℃で焼成した。次に、硝酸Na溶液にH3BO3を溶かした溶液、または硝酸Na溶液とリン酸溶液の混合溶液をそれぞれ該Pt,Rh担持ハニカムに含浸し、200℃で乾燥、続いて600℃で焼成した。以上により、アルミナ1.9molに対して、元素換算でRh0.0022mol,Pt0.014mol,Na0.8mol,B0.1molを含有する参考触媒1、及びアルミナ1.9molに対して、元素換算でRh0.0022mol,Pt0.014mol,Na0.8mol,P0.1mol を含有する参考触媒2を得た。以下この触媒をそれぞれ0.8Na0.1B−RhPt/Al23及び0.8Na0.1P−RhPt/Al23のように表記する。他の触媒についても同様の表記とする。
【0028】
同様にして、B,P,Rh,Pt,Al23の担持量は変えず、Naの代りにLi,K,Rb,Csをそれぞれ0.8mol担持した参考触媒3〜10、またB,P,Rh,Pt,Al23の担持量は変えず、BまたはPの少なくとも1種と、アルカリ金属,アルカリ土類金属を2種以上含む参考触媒11〜22,B,P,Rh,Al23の担持量は変えず、BまたはPの少なくとも1つと、アルカリ金属の少なくとも1つとアルカリ土類金属を含む参考触媒23〜41を得た。更に参考触媒1と同様にして、B及びPを含まず、アルミナ1.9molに対して、金属換算でRh0.0022mol,Pt0.014mol、及び0.8molのNa,Li,K,Rb,Cs,Mg,Ca,Sr,Baを担持した比較例触媒1〜9,B,Pを含まず、Rh,Pt,Al23の担持量は変えず、アルカリ金属,アルカリ土類金属の少なくとも1つを含む比較例触媒10〜24を得た。
【0029】
[試験例1]
(試験方法)
上記触媒に対して、次の条件でNOx浄化性能試験を行った。容量6c.c.のハニカム触媒を石英ガラス製反応管中に固定した。この反応管を電気炉中に導入し、反応管に導入されるガス温度が300℃,400℃,500℃となるように加熱制御した。反応管に導入されるガスは、自動車のエンジンが理論空燃比で運転されているときの排ガスを想定したモデルガス(以下ストイキモデルガス)と、自動車のエンジンがリーンバーン運転を行っているときの排ガスを想定したモデルガス(以下、リーンモデルガス)を3分毎に切り替えて導入した。ストイキモデルガスの組成は、NOx:1000ppm,C36:600ppm,CO:0.5%,CO2 :5%,O2 :0.5%,H2 :0.3%,H2O :10%,N2 :残部とした。リーンモデルガスの組成は、NOx:600ppm,C36:500ppm, CO:0.1%,CO2 :10%,O2 :5%,H2O :10%,N2:残部とした。この時、触媒出入口の総NOx量を測定し、NOx浄化率を次式により算出した。
【0030】
NOx浄化率(%)=((リーンに切り替え後4分間に触媒に流入した総NOx量)−(リーンに切り替え後4分間に触媒から流出した総NOx量))÷(リーンに切り替え後4分間に触媒に流入した総NOx量)×100
以上のようにNOx浄化率を求める試験を試験例1とする。
【0031】
(試験結果)
参考触媒1〜41,比較例触媒1〜24を、試験例1により評価した結果を表1に示す。なお、ストイキ燃焼運転時のNOx浄化率は300℃で常に90%以上、400℃では100%であり、三元性能も十分に具備している。参考触媒の性能はリーン燃焼運転とストイキ燃焼運転を複数回繰り返しても各運転中のNOx浄化率は不変であった。また、リーン燃焼運転においてHC及びCO浄化率は90%以上であった。Rh,Pt,Pdの少なくとも1種と、アルカリ金属と、BまたはPから選ばれる少なくとも1種を有する参考触媒は、高温領域である500℃を含め全測定温度範囲において比較例触媒よりも明らかにNOx浄化率が高い。
【0032】
【表1(1)】

Figure 0003925015
【0033】
【表1(2)】
Figure 0003925015
【0034】
【表1(3)】
Figure 0003925015
【0035】
「参考例2」
参考例1と同様の方法で、アルミナ1.9molに対して元素換算で0.8molのNa,Li,K及び0.1molのB及びPt0.014mol,Pd0.014molを担持した参考触媒42〜44、またアルミナ1.9molに対して元素換算で0.8molのNa,Li,K及び0.1molのP及びPt0.014mol,Pd0.014molを担持した参考触媒45〜47を得た。
【0036】
同様に0.1molのB,0.8molのNa,Li,K及びRh0.0022mol,Pd0.014mol を担持した参考触媒48〜50、また0.1molのP,0.8molのNa,Li,K及びRh0.0022mol,Pd0.014mol を担持した参考触媒51〜53を得た。
【0037】
同様に参考触媒20,21にそれぞれPd0.014molを担持した参考触媒54,55を得た。
【0038】
同様に0.8molのNa,Li,K及びPt0.014mol,Pd0.014molを担持した比較例触媒25〜27、また0.8molのNa,Li,K及びRh0.0022mol,Pd0.014molを担持した比較例触媒28〜30を得た。
【0039】
[試験例2]
(試験方法)
参考触媒1,6,9,12,16,19,20,21,40,42〜55,比較例触媒1〜5,21,24〜30を800℃で5h焼成し、その後は試験例1の方法で試験を行った。
【0040】
(試験結果)
参考触媒1,6,9,12,16,19,20,21,40,42〜55,比較例触媒1〜5,21,24〜30を、試験例2により評価した結果を表2に示す。アルカリ金属を含む触媒について、B及びPから選ばれた少なくとも一種及びRh,Pt,Pdから選ばれた少なくとも一種を含む参考触媒の方が、高温領域である500℃を含め全測定温度範囲において比較例触媒よりも明らかにNOx浄化率が高く、耐熱性能に優れている。
【0041】
【表2(1)】
Figure 0003925015
【0042】
【表2(2)】
Figure 0003925015
【0043】
「実施例3」
参考例1と同様の方法で、参考触媒54,55にそれぞれMn,Co,Ni,Cuを添加した触媒、実施例触媒56〜63を調製した。試験例2で各触媒の評価を行った。Mn,Co,Ni,Cuの担持量はアルミナ1.9molに対し金属元素換算で0.2molとした。
【0044】
(試験結果)
実施例触媒56〜63を試験例2により評価した結果を表3に示す。表2に示した比較例触媒1〜5,21,24〜30に対し、Mn,Co,Ni,Cuを添加した実施例触媒の活性は高く、耐熱性能に優れている。
【0045】
【表3】
Figure 0003925015
【0046】
「実施例4」
参考例1と同様の方法で実施例触媒56,60にそれぞれTi,Siを含む実施例触媒64〜67を調製した。Ti,Siの担持量はアルミナ1.9molに対し元素換算で0.1molとした。
【0047】
[試験例3]
(試験方法)
試験例1において、反応管中にSO2 添加リーンガスのみを1.5h流通させた。リーンガスへのSO2 添加量は0.01%とした。この後、試験例1の方法でNOx浄化率を測定した。
【0048】
(試験結果)
実施例触媒64〜67,比較例触媒1,21を、試験例3により評価した結果を表4に示す。実施例触媒64〜67は、比較例触媒1,21よりもNOx浄化率が高く、耐SOx性能に優れている。
【0049】
【表4】
Figure 0003925015
【0050】
「実施例5」
参考例1と同様の方法で実施例触媒64,66にそれぞれCe,La,Ndをアルミナ1.9molに対し金属元素換算で0.2mol添加した実施例触媒68〜73を調製した。試験は試験例2と同様とした。
【0051】
(試験結果)
試験例2により評価したNOx浄化率を表5に示す。実施例触媒68〜73は表2に示した比較例触媒1〜5,21,24〜30よりも明らかにNOx浄化率が高く、耐熱性能に優れている。
【0052】
【表5】
Figure 0003925015
【0053】
「実施例6」
参考例1と同様の方法で、実施例触媒68,71についてBまたはP含有量を変化させた触媒を調製した。試験は試験例1と同様とした。
【0054】
(試験結果)
実施例触媒68,71についてBまたはP含有量を変化させた触媒を、試験例1により評価したときの400℃でのNOx浄化率を表6に示す。上記触媒はBまたはPの担持量が各々元素換算で0.01mol〜2mol のときNOx浄化率が80%を超え、高いNOx浄化率を示す。
【0055】
【表6】
Figure 0003925015
【0056】
「実施例7」
参考例1と同様の方法で実施例触媒68,71について、それぞれNa,Li,K含有量を変化させた触媒を調製した。試験は試験例1と同様とした。
【0057】
(試験結果)
試験例1により評価した400℃でのNOx浄化率の結果を表7に示す。それぞれの触媒においてNa,Li,Kの担持量が各々0.05mol以上3mol 以下のとき400℃のNOx浄化率が80%を超え、高いNOx浄化率を示す。
【0058】
【表7】
Figure 0003925015
【0059】
「実施例8」
参考例1と同様の方法で実施例68,71のRh,Pt,Pd含有量を変化させた触媒を調製した。試験は試験例1と同様とした。
【0060】
(試験結果)
試験例1により評価した400℃でのNOx浄化率を表8に示す。Rh,Pt,Pdの担持量が金属換算でそれぞれ、Ptの場合0.002mol以上0.05mol以下,Rhの場合0.0003mol以上0.01mol以下,Pdの場合0.001mol以上0.2mol以下のとき400℃のNOx浄化率が80%を超え、高いNOx浄化率が得られる。
【0061】
【表8】
Figure 0003925015
【0062】
Figure 0003925015
【0063】
Figure 0003925015
【0064】
「実施例9」
参考例1と同様の方法で実施例触媒68〜73のCe,La,Nd添加量を変化させた触媒を調製した。試験は試験例2と同様とした。
【0065】
(試験結果)
試験例2により評価した400℃でのNOx浄化率を表9に示す。Ce,La,Ndの担持量が金属換算で0.02mol以上1mol 以下のとき800℃,5h耐熱後の400℃のNOx浄化率が80%を超え、高いNOx浄化率が得られる。
【0066】
【表9】
Figure 0003925015
【0067】
「実施例10」
参考例1と同様の方法で実施例触媒56〜63のMn,Co,Ni,Cu添加量を変化させた触媒を調製した。試験は試験例2と同様とした。
【0068】
(試験結果)
試験例2により評価した400℃でのNOx浄化率を表10に示す。Mn,Co,Ni,Cuの担持量が金属換算で0.01mol以上2mol 以下のとき800℃,5h耐熱後の400℃のNOx浄化率が80%を超え、高いNOx浄化率が得られる。
【0069】
【表10】
Figure 0003925015
【0070】
「実施例11」
参考例1と同様の方法で実施例触媒64,66に関してはTi添加量を、実施例触媒65,67に関してはSi添加量を変化させた触媒を調製した。
【0071】
(試験結果)
試験例3により評価した400℃でのNOx浄化率を表11に示す。Ti,Siの担持量が元素換算で0.01mol以上2mol 以下のときSOx被毒後の400℃のNOx浄化率が50%を超え、高いNOx浄化率が得られる。
【0072】
【表11】
Figure 0003925015
【0073】
「実施例12」
参考例1と同様の方法で実施例触媒64,66においてAl23コーティング量を変化させた触媒を調製した。
【0074】
(試験結果)
試験例1により評価した400℃でのNOx浄化率を表12に示す。例えば、Al23コーティング量がAl23換算でハニカム容積1Lに対して0.1molの場合、NaLiKPdBMnTi−RhPt/0.1Al23と表記した。
【0075】
Al23コーティング量がAl23換算でハニカム容積1Lに対して0.3mol以上4 mol以下のとき400℃のNOx浄化率が80%を超え、高いNOx浄化率が得られる。
【0076】
【表12】
Figure 0003925015
【0077】
「実施例13」
炭化水素およびCOの燃焼触媒として、参考例1と同様の方法でRh,Ptのみを担持した触媒を調製した。Rh,Ptの含有量は金属換算でアルミナ1.9molに対して、Rh0.002mol,Pt0.01molとした。試験は試験例1と同様とし、実施例触媒64,66について、その前段または後段に該炭化水素およびCOの燃焼触媒を設置した場合、また全く該炭化水素およびCOの燃焼触媒を設置しない場合についてその炭化水素及びCO除去率を測定した。
【0078】
なお、C36浄化率及びCO浄化率はそれぞれ次式により算出した。
【0079】
36浄化率(%)=((リーンに切り替え後4分間に触媒に流入した総C36 量)−(リーンに切り替え後4分間に触媒から流出した総C36量))÷(リーンに切り替え後4分間に触媒に流入した総C36量)×100
CO浄化率(%)=((リーンに切り替え後4分間に触媒に流入した総CO量) −(リーンに切り替え後4分間に触媒から流出した総CO 量))÷(リーンに切り替え後4分間に触媒に流入した総CO量)×100
測定温度は400℃とした。
【0080】
(試験結果)
試験例1と同様の方法により評価した400℃でのC36浄化率,CO浄化率を表13に示す。実施例触媒64,66の前段または後段に炭化水素およびCOの燃焼触媒を設置すると炭化水素,CO除去性能が向上する。
【0081】
【表13】
Figure 0003925015
【0082】
【発明の効果】
本発明によれば、酸素が過剰に存在する雰囲気下においても有害物質、特に窒素酸化物を高効率で浄化することができ、さらに耐熱性能,耐SOx性能にも優れているため、高い浄化性能を長期間維持することができる。
【図面の簡単な説明】
【図1】本発明の排ガス浄化装置の一実施態様を示す構成図である。
【符号の説明】
1…エアクリーナー、2…エアフローセンサー、3…スロットバルブ、5…インジェクター、6…点火プラグ、7…酸素濃度センサー(またはA/Fセンサー)、8…排ガス温度センサー、9…触媒出口ガス温度センサー、10…排ガス浄化触媒、11…ECU、99…エンジン。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus, an exhaust gas purification catalyst, and purification that efficiently purify NOx from exhaust gas containing nitrogen oxides (hereinafter referred to as NOx), such as combustion exhaust gas discharged from an internal combustion engine such as an automobile engine. Related to the method.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a lean burn engine in which an air-fuel ratio is lean in an automobile internal combustion engine has attracted attention. However, the exhaust gas of the lean burn engine becomes an oxidizing atmosphere (hereinafter referred to as an oxidizing atmosphere) in which the O 2 concentration exceeds the stoichiometric ratio necessary for complete combustion of the reducing component contained in the exhaust gas. Under such an oxidizing atmosphere, the conventional three-way catalyst does not exhibit sufficient NOx purification performance. Therefore, development of a catalyst that effectively purifies NOx in NOx, HC and CO under an oxidizing atmosphere is desired.
[0003]
As exhaust gas purification devices for lean burn engines, WO93 / 07363 and WO93 / 08383 absorb NOx in exhaust gas during lean fuel combustion in the exhaust gas passage, and release the absorbed NOx when the oxygen concentration in the exhaust gas decreases. The installation of an absorbent is described.
[0004]
Japanese Laid-Open Patent Publication No. 10-212933 discloses that an NOx adsorption reduction catalyst that chemically adsorbs NOx in exhaust gas during lean fuel combustion and catalytically reduces NOx adsorbed during excessive fuel combustion is installed in the exhaust passage. Yes.
[0005]
[Problems to be solved by the invention]
The present invention is to improve NOx purification performance of an exhaust gas purification apparatus equipped with an exhaust gas purification catalyst that captures NOx in exhaust gas during lean combustion and reduces NOx captured during stoichiometric air-fuel ratio and excessive fuel combustion. is there. In particular, a high NOx purification performance is exhibited in a wide temperature range including a high temperature region such as 500 ° C., and a high NOx purification performance is maintained even after being heated to a high temperature of 800 ° C. or poisoned by SOx. There is.
[0006]
[Means for Solving the Problems]
The catalyst of the present invention comprises at least one of Rh, Pt, Pd as a catalytically active component on a porous carrier, an alkali metal, at least one selected from B and P , Mn, Cu, Co, Ni, Si, and And at least one selected from Ti . Here, the catalytically active component means a component that acts to purify the exhaust gas.
[0007]
The alkali metal has a role of capturing NOx in the exhaust gas. The alkali metal supported on the carrier may be one kind, but the activity is further improved when two or more kinds are supported. In addition, the activity is improved by adding an alkaline earth metal. It is thought that combining two or more types may cause a new active point in the catalyst and increase the NOx trapping ability.
[0008]
The supported amount of alkali metal is preferably 0.05 mol part or more and 3 mol part or less per one kind in terms of metal element with respect to 1.9 mol part of the porous carrier. Here, the mol part represents the content ratio of each component in terms of the number of moles. For example, the loading amount of B component relative to 1.9 mol part of A component is 3 mol parts. It means that A is 1.9 and B is supported in a ratio of 3 in terms of mol, regardless of the amount. When the amount of alkali metal supported is less than 0.05 mol part per type, the activity improvement effect by alkali metal support cannot necessarily be sufficient, while when it exceeds 3 mol part, the specific surface area of alkali metal is lowered. Become. When an alkaline earth metal is further supported in addition to the alkali metal, the supported amount is 0.05 mol per kind in terms of metal element with respect to 1.9 mol parts of the porous carrier for the same reason as in the case of the alkali metal. The amount is preferably from 3 parts to 3 mol.
[0009]
Further, by containing at least one of Rh, Pt, and Pd in the catalyst, the NOx purification performance, heat resistance performance, and SOx resistance performance of the catalyst are improved. The supported Rh, Pt, and Pd may be one kind, but if two or more kinds are supported, the activity is further improved. This is because noble metals interact with each other.
[0010]
The amount of noble metal supported is at least one metal element equivalent in terms of 1.9 mol parts of the porous carrier, 0.002 mol parts to 0.05 mol parts in the case of Pt, and 0.0003 mol parts to 0.003 mol parts in the case of Rh. In the case of Pd, the content is preferably 0.001 part or more and 0.2 mol part or less. When the amount of the noble metal supported is less than the amount shown in the above range, the effect of adding the noble metal is small.
[0011]
B and P are present in the form of a simple substance or an oxide, or in the form of a complex oxide with at least one selected from alkali metals and Al, function to trap NOx in an oxidizing atmosphere, and CO, which is a reducing agent, It is considered to have a role of attracting hydrocarbons and the like on the catalyst surface, and further has a function of improving the heat resistance and SOx resistance of the catalyst. By controlling the order of mixing B or P at the time of catalyst preparation, or the calcination temperature, it can be present in the form of an oxide or complex oxide.
[0012]
The amount of B or P supported is preferably 0.01 mol part or more and 2 mol part or less for at least one of them in terms of element with respect to 1.9 mol part of the porous carrier. If the amount of B or P supported is less than 0.01 mol part, the effect of supporting B or P is insufficient, and if it exceeds 2 mol part, the specific surface area of the catalyst decreases, which is not preferable.
[0013]
Further, the porous carrier may be supported on a base material. In that case, it is preferable for NOx purification performance that the amount of the porous carrier supported is 0.3 mol or more and 4 mol or less with respect to 1 L of the base material. When the amount of the porous carrier supported is less than 0.3 mol part, the effect of supporting the porous carrier is insufficient, and when it exceeds 4 mol part, the specific surface area of the porous carrier itself is lowered, which is not preferable.
[0014]
In addition to the above components, when at least one rare earth metal is supported, the NOx purification performance and the high temperature durability performance are further improved. In this case, it is preferable to contain 0.02 mol part or more and 1 mol part or less of at least one rare earth metal in terms of metal element with respect to 1.9 mol part of the porous carrier. If the amount is less than 0.02 mol part, the effect of rare earth metal addition is insufficient, and if it exceeds 1 mol part, the specific surface area of the catalyst is lowered, which is not preferable. As the rare earth metal, La, Nd, and Ce are preferable.
[0015]
Further, by supporting at least one of Mn, Co, Ni, Cu, Ti, and Si, the NOx purification rate is improved, and the heat resistance performance and SOx resistance performance are also improved. In particular, Mn is considered to improve heat resistance by interacting with alkali metal and alkaline earth metal, and Ti and Si are combined with alkali metal and alkaline earth metal to improve SOx resistance. It is preferable that at least one of the supported amounts of Mn, Co, Ni, Cu, Ti, Si is in the range of 0.01 mol part or more and 2 mol part or less in terms of element with respect to 1.9 mol part of the porous carrier.
[0016]
In addition, the above catalyst alone has hydrocarbon and CO removal performance, but if the performance is insufficient, a combustion catalyst of hydrocarbon and CO is installed in the front stage, the rear stage or both of the catalyst, and combustion from the internal combustion engine is performed. It is also a preferable method to purify the exhaust gas.
[0017]
The shape of the exhaust gas purifying catalyst according to the present invention can be applied in various shapes depending on applications. The present invention can be applied to a honeycomb structure obtained by coating a honeycomb structure made of various materials such as cordierite and stainless steel with a catalyst powder carrying various components, as well as pellets, plates, granules, and powders.
[0018]
As the method for preparing the exhaust gas purification catalyst, any of a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, and a vapor deposition method and a preparation method using a chemical reaction can be applied.
[0019]
As starting materials for the exhaust gas purification catalyst, various compounds such as nitric acid compounds, acetic acid compounds, complex compounds, hydroxides, carbonic acid compounds, organic compounds, metals, and metal oxides can be used.
[0020]
As the porous carrier, in addition to alumina, metal oxides such as titania, silica, silica-alumina, zirconia, and magnesia, composite oxides, and the like can be used. The catalyst of the present invention can be used by coating on a substrate such as a honeycomb structure. Cordierite is optimal for the substrate, but good results can be obtained even if a metal substrate is used.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an overall configuration diagram showing an embodiment of an exhaust gas purification apparatus of the present invention.
[0022]
The exhaust gas purifying apparatus of the present invention comprises a lean burnable engine 99, an air flow sensor 2, an intake system having a slot valve 3, etc., an oxygen concentration sensor (or A / F sensor) 7, an exhaust gas temperature sensor 8, a catalyst outlet gas temperature sensor 9, The exhaust system includes an exhaust gas purification catalyst 10 and the like, and a control unit (ECU) 11 and the like.
[0023]
The ECU includes an I / O as an input / output interface, an LSI, an arithmetic processing unit MPU, a storage device RAM and ROM storing a number of control programs, a timer counter, and the like.
[0024]
The above exhaust purification device functions as follows. The intake air to the engine is filtered by the air cleaner 1 and then measured by the air flow sensor 2. The fuel is injected from the injector 5 through the slot valve 3 and supplied to the engine 99 as an air-fuel mixture. The airflow sensor signal and other sensor signals are input to an ECU (Engine Control Unit).
[0025]
The ECU evaluates the operating state of the internal combustion engine and the state of the exhaust gas purification catalyst to determine the operating air-fuel ratio, and controls the injection time of the injector 5 to set the fuel concentration of the air-fuel mixture to a predetermined value. The air-fuel mixture sucked into the cylinder is ignited and burned by a spark plug 6 controlled by a signal from the ECU 11. The combustion exhaust gas is led to an exhaust purification system. An exhaust gas purification catalyst 10 is provided in the exhaust gas purification system. During stoichiometric operation, the three-way catalyst function purifies NOx, HC, CO in the exhaust gas, and during lean operation, NOx is purified by NOx trapping capability and combustion is combined with it. Purifies HC and CO by function. Further, the ECU's determination and control signals always determine the NOx purification capacity of the exhaust gas purification catalyst during lean operation, and if the NOx purification capacity decreases, the combustion air / fuel ratio, etc. is shifted to the rich side to increase the NOx trapping capacity of the catalyst. Let me recover. With the above operation, the present apparatus effectively purifies exhaust gas under all engine combustion conditions of lean operation and stoichiometric (including rich) operation.
[0026]
EXAMPLES Hereinafter, although this invention is demonstrated with a specific example, this invention is not restrict | limited by these Examples.
[0027]
"Reference Example 1"
A cordierite honeycomb (400 cells / inc2) is coated with a slurry made of alumina powder and an alumina precursor and prepared to be nitric acid, and then dried and fired to obtain 1.9 mol of alumina per liter of apparent volume of the honeycomb. A coated alumina coated honeycomb was obtained. The alumina-coated honeycomb was impregnated with a mixed solution of a dinitrodiammine Pt nitric acid solution and a nitric acid Rh solution, dried at 200 ° C., and then fired at 600 ° C. Next, the Pt / Rh supporting honeycomb is impregnated with a solution of H 3 BO 3 dissolved in a sodium nitrate solution or a mixed solution of sodium nitrate solution and phosphoric acid solution, dried at 200 ° C., and then fired at 600 ° C. did. From the above, with respect to 1.9 mol of alumina, the reference catalyst 1 containing Rh 0.0022 mol, Pt 0.014 mol, Na 0.8 mol, and B 0.1 mol in terms of element and 1.9 mol of alumina in terms of element Rh Reference catalyst 2 containing 0022 mol, Pt 0.014 mol, Na 0.8 mol, P 0.1 mol was obtained. Hereinafter referred to as the catalyst, respectively 0.8Na0.1B-RhPt / Al 2 O 3 and 0.8Na0.1P-RhPt / Al 2 O 3 . The same notation is used for other catalysts.
[0028]
Similarly, the supported amounts of B, P, Rh, Pt, and Al 2 O 3 were not changed, and reference catalysts 3 to 10 each supporting 0.8 mol of Li, K, Rb, and Cs instead of Na, and B, The supported amounts of P, Rh, Pt, and Al 2 O 3 are not changed, and the reference catalysts 11 to 22 , B, P, Rh, and B containing at least one of B or P and two or more of alkali metals and alkaline earth metals are used. The supported amount of Al 2 O 3 was not changed, and reference catalysts 23 to 41 containing at least one of B or P, at least one alkali metal, and alkaline earth metal were obtained. Further, in the same manner as in Reference Catalyst 1 , B and P are not contained, and 1.9 mol of alumina is Rh 0.0022 mol, Pt 0.014 mol, and 0.8 mol Na, Li, K, Rb, Cs, Comparative catalysts 1-9, Mg, Ca, Sr, and Ba supported, Mg, Ca, Sr, Ba are not included, Rh, Pt, Al 2 O 3 loading is not changed, and at least one of alkali metals and alkaline earth metals Comparative Examples 10-24 containing
[0029]
[Test Example 1]
(Test method)
A NOx purification performance test was performed on the catalyst under the following conditions. A honeycomb catalyst having a capacity of 6 cc was fixed in a reaction tube made of quartz glass. This reaction tube was introduced into an electric furnace, and the temperature of the gas introduced into the reaction tube was controlled to be 300 ° C, 400 ° C, and 500 ° C. The gas introduced into the reaction tube is model gas (hereinafter referred to as stoichiometric model gas) that assumes exhaust gas when the automobile engine is operated at the stoichiometric air-fuel ratio, and when the automobile engine is performing lean burn operation. Model gas assuming exhaust gas (hereinafter referred to as lean model gas) was introduced by switching every 3 minutes. The composition of the stoichiometric model gas is NOx: 1000 ppm, C 3 H 6 : 600 ppm, CO: 0.5%, CO 2 : 5%, O 2 : 0.5%, H 2 : 0.3%, H 2 O : 10%, N 2 : The balance. The composition of the lean model gas was NOx: 600 ppm, C 3 H 6 : 500 ppm, CO: 0.1%, CO 2 : 10%, O 2 : 5%, H 2 O: 10%, N 2 : balance . At this time, the total NOx amount at the catalyst inlet / outlet was measured, and the NOx purification rate was calculated by the following equation.
[0030]
NOx purification rate (%) = ((total NOx amount flowing into the catalyst in 4 minutes after switching to lean) − (total NOx amount flowing out of the catalyst in 4 minutes after switching to lean)) ÷ (4 minutes after switching to lean) Total NOx amount flowing into the catalyst) x 100
The test for obtaining the NOx purification rate as described above is referred to as Test Example 1.
[0031]
(Test results)
Table 1 shows the results of evaluation of Reference Catalysts 1 to 41 and Comparative Catalysts 1 to 24 in Test Example 1. Note that the NOx purification rate during stoichiometric combustion operation is always 90% or more at 300 ° C. and 100% at 400 ° C., and the three-way performance is sufficiently provided. Regarding the performance of the reference catalyst , the NOx purification rate during each operation was unchanged even when the lean combustion operation and the stoichiometric combustion operation were repeated a plurality of times. In the lean combustion operation, the HC and CO purification rates were 90% or more. The reference catalyst having at least one selected from Rh, Pt, and Pd, an alkali metal, and B or P is clearly more than the comparative example catalyst in the entire measured temperature range including 500 ° C. that is a high temperature range. NOx purification rate is high.
[0032]
[Table 1 (1)]
Figure 0003925015
[0033]
[Table 1 (2)]
Figure 0003925015
[0034]
[Table 1 (3)]
Figure 0003925015
[0035]
"Reference Example 2"
In the same manner as in Reference Example 1, reference catalysts 42 to 44 supporting 0.8 mol of Na, Li, K and 0.1 mol of B, Pt 0.014 mol, and Pd 0.014 mol in terms of element with respect to 1.9 mol of alumina. Reference catalysts 45 to 47 carrying 0.8 mol of Na, Li, K, 0.1 mol of P, 0.014 mol of Pt, and 0.014 mol of Pd in terms of element with respect to 1.9 mol of alumina were obtained.
[0036]
Similarly, 48 to 50 of the reference catalyst carrying 0.1 mol of B, 0.8 mol of Na, Li, K and Rh of 0.0022 mol and Pd of 0.014 mol, 0.1 mol of P, 0.8 mol of Na, Li and K And Reference Catalysts 51 to 53 carrying Rh 0.0022 mol and Pd 0.014 mol were obtained.
[0037]
Afforded Reference catalyst 54 and 55 carrying the Pd0.014mol each Likewise reference catalysts 20,21.
[0038]
Similarly, Comparative Catalysts 25-27 carrying 0.8 mol of Na, Li, K and Pt 0.014 mol, Pd 0.014 mol, and 0.8 mol of Na, Li, K and Rh 0.0022 mol, Pd 0.014 mol were carried. Comparative catalyst 28-30 was obtained.
[0039]
[Test Example 2]
(Test method)
Reference catalysts 1, 6, 9, 12, 16, 19, 20, 21, 40, 42 to 55, and comparative example catalysts 1 to 5, 21, and 24 to 30 were calcined at 800 ° C. for 5 hours. The method was tested.
[0040]
(Test results)
Table 2 shows the results of evaluation of Reference Catalysts 1, 6, 9, 12, 16, 19, 20, 21, 40, 42 to 55 and Comparative Catalysts 1 to 5, 21, and 24 to 30 according to Test Example 2. . For a catalyst containing an alkali metal, a reference catalyst containing at least one selected from B and P and at least one selected from Rh, Pt, Pd is compared in the entire measurement temperature range including 500 ° C. which is a high temperature region. The NOx purification rate is clearly higher than that of the example catalyst, and the heat resistance is excellent.
[0041]
[Table 2 (1)]
Figure 0003925015
[0042]
[Table 2 (2)]
Figure 0003925015
[0043]
"Example 3"
In the same manner as in Reference Example 1 , catalysts obtained by adding Mn, Co, Ni, and Cu to Reference Catalysts 54 and 55, and Example Catalysts 56 to 63 were prepared. In Test Example 2, each catalyst was evaluated. The supported amount of Mn, Co, Ni, and Cu was 0.2 mol in terms of metal element with respect to 1.9 mol of alumina.
[0044]
(Test results)
Table 3 shows the results of evaluation of Example Catalysts 56 to 63 in Test Example 2. The comparative example catalysts 1 to 5, 21, and 24 to 30 shown in Table 2 have high activity and excellent heat resistance performance of the example catalysts to which Mn, Co, Ni, and Cu are added.
[0045]
[Table 3]
Figure 0003925015
[0046]
Example 4
In the same manner as in Reference Example 1 , Example catalysts 64 to 67 containing Ti and Si in Example catalysts 56 and 60 were prepared. The supported amount of Ti and Si was 0.1 mol in terms of element with respect to 1.9 mol of alumina.
[0047]
[Test Example 3]
(Test method)
In Test Example 1, only the lean gas containing SO 2 was passed through the reaction tube for 1.5 hours. The amount of SO 2 added to the lean gas was 0.01%. Thereafter, the NOx purification rate was measured by the method of Test Example 1.
[0048]
(Test results)
Table 4 shows the results of evaluation of Example Catalysts 64 to 67 and Comparative Example Catalysts 1 and 21, according to Test Example 3. The example catalysts 64 to 67 have a higher NOx purification rate than the comparative example catalysts 1 and 21, and are superior in SOx resistance performance.
[0049]
[Table 4]
Figure 0003925015
[0050]
"Example 5"
In the same manner as in Reference Example 1 , Example Catalysts 68 to 73 were prepared by adding 0.2 mol of Ce, La, and Nd to 1.9 mol of alumina in terms of metal element to Example Catalysts 64 and 66, respectively. The test was the same as in Test Example 2.
[0051]
(Test results)
Table 5 shows the NOx purification rate evaluated in Test Example 2. The example catalysts 68 to 73 clearly have a higher NOx purification rate than the comparative example catalysts 1 to 5, 21 and 24 to 30 shown in Table 2, and are excellent in heat resistance.
[0052]
[Table 5]
Figure 0003925015
[0053]
"Example 6"
In the same manner as in Reference Example 1 , catalysts having different B or P contents were prepared for Example Catalysts 68 and 71. The test was the same as in Test Example 1.
[0054]
(Test results)
Table 6 shows the NOx purification rate at 400 ° C. when the catalysts of Example Catalysts 68 and 71 having different B or P contents were evaluated according to Test Example 1. The above catalyst exhibits a high NOx purification rate with a NOx purification rate exceeding 80% when the supported amount of B or P is 0.01 mol to 2 mol in terms of elements.
[0055]
[Table 6]
Figure 0003925015
[0056]
"Example 7"
Catalysts with different Na, Li, and K contents were prepared for Example Catalysts 68 and 71 in the same manner as in Reference Example 1 . The test was the same as in Test Example 1.
[0057]
(Test results)
Table 7 shows the results of the NOx purification rate at 400 ° C. evaluated by Test Example 1. When the supported amounts of Na, Li and K are 0.05 mol or more and 3 mol or less in each catalyst, the NOx purification rate at 400 ° C. exceeds 80%, and a high NOx purification rate is exhibited.
[0058]
[Table 7]
Figure 0003925015
[0059]
"Example 8"
Catalysts having different Rh, Pt, and Pd contents in Examples 68 and 71 were prepared in the same manner as in Reference Example 1 . The test was the same as in Test Example 1.
[0060]
(Test results)
Table 8 shows the NOx purification rate at 400 ° C. evaluated by Test Example 1. The amount of Rh, Pt, Pd supported in terms of metal is 0.002 mol to 0.05 mol in the case of Pt, 0.0003 mol to 0.01 mol in the case of Rh, and 0.001 mol to 0.2 mol in the case of Pd. When the NOx purification rate at 400 ° C. exceeds 80%, a high NOx purification rate is obtained.
[0061]
[Table 8]
Figure 0003925015
[0062]
Figure 0003925015
[0063]
Figure 0003925015
[0064]
"Example 9"
Catalysts were prepared in the same manner as in Reference Example 1 , except that the amounts of Ce, La, and Nd added to Example catalysts 68 to 73 were changed. The test was the same as in Test Example 2.
[0065]
(Test results)
Table 9 shows the NOx purification rate at 400 ° C. evaluated by Test Example 2. When the supported amount of Ce, La, and Nd is 0.02 mol or more and 1 mol or less in terms of metal, the NOx purification rate at 800 ° C. and 400 ° C. after 5 hours of heat resistance exceeds 80%, and a high NOx purification rate is obtained.
[0066]
[Table 9]
Figure 0003925015
[0067]
"Example 10"
In the same manner as in Reference Example 1 , catalysts were prepared by changing the amounts of Mn, Co, Ni, and Cu added in Example catalysts 56 to 63. The test was the same as in Test Example 2.
[0068]
(Test results)
Table 10 shows the NOx purification rate at 400 ° C. evaluated by Test Example 2. When the supported amount of Mn, Co, Ni, Cu is 0.01 mol or more and 2 mol or less in terms of metal, the NOx purification rate at 800 ° C. and 400 ° C. after 5 hours of heat resistance exceeds 80%, and a high NOx purification rate is obtained.
[0069]
[Table 10]
Figure 0003925015
[0070]
"Example 11"
In the same manner as in Reference Example 1 , a catalyst was prepared in which the Ti addition amount was changed for the example catalysts 64 and 66 and the Si addition amount was changed for the example catalysts 65 and 67.
[0071]
(Test results)
Table 11 shows the NOx purification rate at 400 ° C. evaluated by Test Example 3. When the loading amount of Ti and Si is 0.01 mol or more and 2 mol or less in terms of element, the NOx purification rate at 400 ° C. after SOx poisoning exceeds 50%, and a high NOx purification rate is obtained.
[0072]
[Table 11]
Figure 0003925015
[0073]
"Example 12"
In the same manner as in Reference Example 1 , catalysts having different Al 2 O 3 coating amounts were prepared in Example Catalysts 64 and 66.
[0074]
(Test results)
Table 12 shows the NOx purification rate at 400 ° C. evaluated by Test Example 1. For example, when the Al 2 O 3 coating amount is 0.1 mol in terms of Al 2 O 3 with respect to 1 L of honeycomb volume, it is expressed as NaLiKPdBMnTi—RhPt / 0.1Al 2 O 3 .
[0075]
When the Al 2 O 3 coating amount is 0.3 mol or more and 4 mol or less with respect to 1 L of honeycomb volume in terms of Al 2 O 3 , the NOx purification rate at 400 ° C. exceeds 80%, and a high NOx purification rate is obtained.
[0076]
[Table 12]
Figure 0003925015
[0077]
"Example 13"
As a hydrocarbon and CO combustion catalyst, a catalyst carrying only Rh and Pt was prepared in the same manner as in Reference Example 1 . The contents of Rh and Pt were Rh 0.002 mol and Pt 0.01 mol with respect to 1.9 mol of alumina in terms of metal. The test is the same as in Test Example 1, and when the hydrocarbon and CO combustion catalysts are installed before or after the Example Catalysts 64 and 66, or when the hydrocarbon and CO combustion catalysts are not installed at all. The hydrocarbon and CO removal rates were measured.
[0078]
The C 3 H 6 purification rate and the CO purification rate were calculated by the following equations, respectively.
[0079]
C 3 H 6 purification rate (%) = ((total C 3 H 6 flowing into the catalyst in 4 minutes after switching to lean) Amount)-(total amount of C 3 H 6 flowing out of the catalyst in 4 minutes after switching to lean)) ÷ (total amount of C 3 H 6 flowing into the catalyst in 4 minutes after switching to lean) × 100
CO purification rate (%) = ((total amount of CO flowing into the catalyst in 4 minutes after switching to lean)-(total amount of CO flowing out of the catalyst in 4 minutes after switching to lean)) ÷ (4 minutes after switching to lean) Total CO flowed into the catalyst) x 100
The measurement temperature was 400 ° C.
[0080]
(Test results)
Table 13 shows the C 3 H 6 purification rate and CO purification rate at 400 ° C. evaluated by the same method as in Test Example 1. If a hydrocarbon and CO combustion catalyst is installed in the upstream or downstream of Example Catalysts 64 and 66, the hydrocarbon and CO removal performance is improved.
[0081]
[Table 13]
Figure 0003925015
[0082]
【The invention's effect】
According to the present invention, harmful substances, particularly nitrogen oxides, can be purified with high efficiency even in an atmosphere where oxygen is excessively present, and furthermore, the heat resistance performance and the SOx resistance performance are excellent. Can be maintained for a long time.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of an exhaust gas purification apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Air cleaner, 2 ... Air flow sensor, 3 ... Slot valve, 5 ... Injector, 6 ... Spark plug, 7 ... Oxygen concentration sensor (or A / F sensor), 8 ... Exhaust gas temperature sensor, 9 ... Catalyst exit gas temperature sensor DESCRIPTION OF SYMBOLS 10 ... Exhaust gas purification catalyst, 11 ... ECU, 99 ... Engine.

Claims (12)

空燃比がリーンの排ガスと空燃比がリッチ或いはストイキの排ガスとが交互に流入する機関排ガス流路に排ガス浄化触媒が設置された排ガス浄化装置において、前記排ガス浄化触媒が、多孔質担体と該担体に担持された触媒活性成分とを有し、該触媒活性成分がRh,Pt,Pdの少なくとも一種と、アルカリ金属と、B及びPから選ばれた少なくとも一種と、Mn,Cu,Co,Ni,Si及びTiから選ばれた少なくとも1種と、を含むことを特徴とする内燃機関の排ガス浄化装置。In the exhaust gas purification apparatus in which the exhaust gas purification catalyst is installed in the engine exhaust gas flow path in which the exhaust gas having a lean air-fuel ratio and the exhaust gas having a rich or stoichiometric air / fuel ratio flows alternately, the exhaust gas purification catalyst includes a porous carrier and the carrier. A catalytically active component supported on the catalyst, wherein the catalytically active component is at least one selected from Rh, Pt, Pd, an alkali metal, at least one selected from B and P , Mn, Cu, Co, Ni, An exhaust gas purifying device for an internal combustion engine, comprising at least one selected from Si and Ti . 請求項1において、前記触媒活性成分が更にアルカリ土類金属を含むことを特徴とする内燃機関の排ガス浄化装置。  2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the catalytically active component further contains an alkaline earth metal. 請求項1又は2において、前記多孔質担体が基材上に担持されていることを特徴とする内燃機関の排ガス浄化装置。  The exhaust gas purifying apparatus for an internal combustion engine according to claim 1 or 2, wherein the porous carrier is supported on a base material. 請求項1ないし3のいずれか1項において、前記触媒活性成分が更に希土類金属の少なくとも1種を有することを特徴とする内燃機関の排ガス浄化装置。4. An exhaust gas purification apparatus for an internal combustion engine according to claim 1 , wherein the catalytically active component further contains at least one rare earth metal. 請求項1ないし4に記載された内燃機関の排ガス浄化装置であって、An exhaust gas purification apparatus for an internal combustion engine according to claim 1,
該排ガス浄化触媒の前段と後段の少なくとも一方に炭化水素と一酸化炭素を燃焼する燃焼触媒を配置したことを特徴とする内燃機関の排ガス浄化装置。An exhaust gas purification apparatus for an internal combustion engine, characterized in that a combustion catalyst for burning hydrocarbons and carbon monoxide is disposed in at least one of a front stage and a rear stage of the exhaust gas purification catalyst.
内燃機関の排ガス流路に設置された排ガス浄化触媒に空燃比がリーンの排ガスと空燃比がリッチ或いはストイキの排ガスを交互に流入させて該排ガスを浄化する方法において、前記排ガス浄化触媒が、多孔質担体と該担体に担持された触媒活性成分とを有し、該触媒活性成分がRh,Pt,Pdの少なくとも一種と、アルカリ金属と、B又はPから選ばれた少なくとも一種と、Mn,Cu,Co,Ni,Si及びTiから選ばれた少なくとも1種と、を含むことを特徴とする内燃機関の排ガス浄化方法。In a method for purifying exhaust gas by alternately flowing exhaust gas having a lean air-fuel ratio and exhaust gas having a rich or stoichiometric air-fuel ratio to an exhaust gas purification catalyst installed in an exhaust gas flow path of an internal combustion engine, the exhaust gas purification catalyst is porous. And a catalytically active component supported on the carrier, wherein the catalytically active component is at least one selected from Rh, Pt, and Pd, an alkali metal, and B or P , and Mn, Cu And an exhaust gas purification method for an internal combustion engine, comprising: at least one selected from Co, Ni, Si and Ti . 請求項6において、前記触媒活性成分が更にアルカリ土類金属を含むことを特徴とする内燃機関の排ガス浄化方法。  The exhaust gas purification method for an internal combustion engine according to claim 6, wherein the catalytically active component further contains an alkaline earth metal. 請求項6または7において、前記触媒活性成分が更に希土類金属の少なくとも1種を有することを特徴とする内燃機関の排ガス浄化方法。8. The exhaust gas purification method for an internal combustion engine according to claim 6 , wherein the catalytically active component further contains at least one rare earth metal. 多孔質担体表面にRh,Pt及びPdの少なくとも一種と、アルカリ金属と、B及びPから選ばれた少なくとも一種と、Mn,Cu,Co,Ni,Si及びTiから選ばれた少なくとも1種と、を有し、
該多孔質担体1.9mol部に対して、Rh,Pt,Pdの少なくとも1種を、金属元素換算で、Rhを0.0003mol部以上0.01mol部以下、Ptを0.002mol部以上0.05mol 部以下、Pdを0.001mol部以上0.2mol部以下の範囲内で含み、アルカリ金属を金属元素換算で1種類当り0.05mol 部以上3mol部以下の範囲内で含み、BとPの少なくとも一種を元素換算で0.01mol部以上2mol 部以下の範囲内で含み、Mn,Cu,Co,Ni,Si及びTiから選ばれた少なくとも1種を元素換算で0 . 01 mol 部以上2 mol 部以下の範囲内で含み、
前記Rh,Pt,Pdおよびアルカリ金属を金属或いは酸化物の形態で、前記B,Pを単体或いは酸化物或いはB,P以外の他元素との複合酸化物の形態で、前記Mn,Cu,Co,Ni,Si及びTiを金属または酸化物または単体の形態で含むことを特徴とする内燃機関の排ガス浄化触媒。
At least one of Rh, Pt and Pd on the surface of the porous carrier, an alkali metal, at least one selected from B and P, and at least one selected from Mn, Cu, Co, Ni, Si and Ti; Have
With respect to 1.9 mol parts of the porous carrier, at least one of Rh, Pt, and Pd is converted into metal elements, Rh is 0.0003 mol part to 0.01 mol part and Pt is 0.002 mol part to 0.05 mol. Pd is contained in the range of 0.001 mol part or more and 0.2 mol part or less, and the alkali metal is contained in the range of 0.05 mol part or more and 3 mol part or less per type in terms of metal element. one hints in terms of element within the range of 2mol portion than 0.01mol unit, Mn, Cu, Co, 0 . 01 mol or more parts 2 mol unit Ni, at least one element selected from Si and Ti in terms of element Within the following range,
The Rh, Pt, Pd and alkali metals in the form of metals or oxides, the B and P in the form of simple substances or oxides or complex oxides with other elements other than B and P, the Mn, Cu, Co , Ni, Si, and Ti in the form of a metal, oxide, or simple substance, an exhaust gas purification catalyst for an internal combustion engine.
請求項9において、前記多孔質担体上に更にアルカリ土類金属を有し、該担体1.9mol部に対してアルカリ土類金属を金属元素換算で1種類当り0.05mol部以上3mol 部以下の範囲で含み、該アルカリ土類金属を金属あるいは酸化物の形態で含むことを特徴とする内燃機関の排ガス浄化触媒。10. The porous support according to claim 9 , further comprising an alkaline earth metal on the porous support, and 0.05 mol part or more and 3 mol part or less per one kind of alkaline earth metal in terms of metal element with respect to 1.9 mol part of the support. An exhaust gas purifying catalyst for an internal combustion engine, characterized in that the catalyst contains an alkaline earth metal in the form of a metal or an oxide. 請求項9又は10において、前記多孔質担体が基材上に担持され、基材1Lに対し前記多孔質担体を0.3mol以上4mol 以下の範囲内で含むことを特徴とする内燃機関の排ガス浄化触媒。The exhaust gas purification of an internal combustion engine according to claim 9 or 10 , wherein the porous carrier is supported on a base material, and the porous carrier is contained in a range of 0.3 mol to 4 mol with respect to the base material 1L. catalyst. 請求項9ないし11のいずれか1項において、前記多孔質担体上に更に希土類金属の少なくとも1種を有し、該多孔質担体1.9mol部に対して該希土類金属の少なくとも1種を金属元素換算で0.02mol部以上1mol 部以下の範囲内で含み、該希土類金属を金属または酸化物の形態で含むことを特徴とする内燃機関の排ガス浄化触媒。12. The method according to claim 9 , further comprising at least one rare earth metal on the porous carrier, wherein at least one rare earth metal is added to the 1.9 mol part of the porous carrier as a metal element. An exhaust gas purification catalyst for an internal combustion engine, which is contained in a range of 0.02 mol part or more and 1 mol part or less in terms of conversion, and contains the rare earth metal in the form of a metal or an oxide.
JP32364299A 1999-11-15 1999-11-15 Internal combustion engine exhaust gas purification device, purification method, and purification catalyst Expired - Fee Related JP3925015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32364299A JP3925015B2 (en) 1999-11-15 1999-11-15 Internal combustion engine exhaust gas purification device, purification method, and purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32364299A JP3925015B2 (en) 1999-11-15 1999-11-15 Internal combustion engine exhaust gas purification device, purification method, and purification catalyst

Publications (2)

Publication Number Publication Date
JP2001137666A JP2001137666A (en) 2001-05-22
JP3925015B2 true JP3925015B2 (en) 2007-06-06

Family

ID=18157011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32364299A Expired - Fee Related JP3925015B2 (en) 1999-11-15 1999-11-15 Internal combustion engine exhaust gas purification device, purification method, and purification catalyst

Country Status (1)

Country Link
JP (1) JP3925015B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674092B2 (en) * 2010-07-09 2015-02-25 三井金属鉱業株式会社 Exhaust gas purification catalyst and method for producing the same
JPWO2013098987A1 (en) * 2011-12-28 2015-04-30 三井金属鉱業株式会社 EXHAUST GAS PURIFYING CATALYST, ITS MANUFACTURING METHOD, AND EXHAUST GAS PURIFYING CATALYST COMPOSITION
WO2013098987A1 (en) * 2011-12-28 2013-07-04 三井金属鉱業株式会社 Carrier for exhaust gas purifying catalysts, exhaust gas purifying catalyst and method for producing same

Also Published As

Publication number Publication date
JP2001137666A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
EP1967263B1 (en) Catalytic Material And Catalyst For Purifying Exhaust Gas Component
US6729125B2 (en) Exhaust gas purifying system
JP5826285B2 (en) NOx absorption catalyst
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JPH10118458A (en) Catalyst and method for removing nitrogen oxide
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP3374569B2 (en) Exhaust gas purification catalyst and purification method
JP3704701B2 (en) Exhaust gas purification catalyst
JPH10118457A (en) Exhaust gas cleaning apparatus for internal combustion engine
JP3925015B2 (en) Internal combustion engine exhaust gas purification device, purification method, and purification catalyst
JP2003245523A (en) Exhaust gas cleaning system
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP4254208B2 (en) Internal combustion engine exhaust gas purification device, purification method and catalyst
JP4352586B2 (en) Internal combustion engine having exhaust gas purification catalyst
JP2002168117A (en) Exhaust emission control system
JP2005205302A (en) Exhaust gas cleaning catalyst and apparatus for combustion engine
JP4039128B2 (en) Exhaust gas purification catalyst, exhaust gas purification method and exhaust gas purification device for internal combustion engine
JP2003135970A (en) Exhaust gas cleaning catalyst
JP4073168B2 (en) Exhaust gas purification method for internal combustion engine, exhaust gas purification device, and exhaust gas purification catalyst
JP4333612B2 (en) Exhaust gas purification device and exhaust gas purification catalyst
JP5641360B2 (en) Exhaust gas purification catalyst and use thereof
JP3825264B2 (en) Internal combustion engine exhaust gas purification catalyst, internal combustion engine using the same, and exhaust gas purification method therefor
JP2003200061A (en) Exhaust gas purifying catalyst and exhaust gas purifying device
JP2003343252A (en) Exhaust gas purifying system
JP2004122122A (en) Exhaust gas purifying catalyst and exhaust gas purifying apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

LAPS Cancellation because of no payment of annual fees