JP2001089238A - Molded thermlly insulating material and heat shield - Google Patents

Molded thermlly insulating material and heat shield

Info

Publication number
JP2001089238A
JP2001089238A JP26889199A JP26889199A JP2001089238A JP 2001089238 A JP2001089238 A JP 2001089238A JP 26889199 A JP26889199 A JP 26889199A JP 26889199 A JP26889199 A JP 26889199A JP 2001089238 A JP2001089238 A JP 2001089238A
Authority
JP
Japan
Prior art keywords
felt
insulating material
heat insulating
carbon
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26889199A
Other languages
Japanese (ja)
Other versions
JP4338844B2 (en
Inventor
Toshiji Hiraoka
利治 平岡
Katsuhide Nagaoka
勝秀 長岡
Naoto Ota
直人 太田
Yasuhisa Ogita
泰久 荻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP26889199A priority Critical patent/JP4338844B2/en
Priority to PCT/JP2000/004118 priority patent/WO2001006169A1/en
Publication of JP2001089238A publication Critical patent/JP2001089238A/en
Application granted granted Critical
Publication of JP4338844B2 publication Critical patent/JP4338844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/04Inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • C04B2237/385Carbon or carbon composite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • C04B2237/765Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube

Abstract

PROBLEM TO BE SOLVED: To provide a molded thermally insulating material which exhibits an excellent thermally insulating characteristic for a long period of time, has an excellent shape retaining property and is used for a high-temperature atmosphere furnace having excellent mechanical strength. SOLUTION: The molded thermally insulating material of a sandwich structure is contituted by laminating felt-like carbon fibers 13 and expanded graphite sheets 12 and sandwiching this laminate with C/C materials 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温雰囲気炉に使
用される成形断熱材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded heat insulating material used in a high-temperature atmosphere furnace.

【0002】[0002]

【従来の技術】従来より、高温雰囲気炉に使用される断
熱材としては、フェルト状炭素繊維からなる成形体が知
られている。
2. Description of the Related Art Conventionally, as a heat insulating material used in a high-temperature atmosphere furnace, a molded article made of felt-like carbon fiber has been known.

【0003】しかしながら、フェルト状炭素繊維からな
る成形体は、保形性、機械的強度が十分でなく、また、
比表面積が大きいため、周囲の雰囲気と反応しやすく、
例えば、半導体単結晶引き上げ炉等に使用された場合、
同時に使用されている黒鉛製若しくは炭素繊維強化炭素
複合材(以下、C/C材という。)からなる部材に比較
すると、非常に速く炭化ケイ素化してしまい、形状を維
持できなくなり一部が欠落したりする。また、断熱性も
悪くなり、断熱材として十分に機能しないという問題が
ある。
[0003] However, molded articles made of felt-like carbon fibers have insufficient shape retention and mechanical strength.
Due to its large specific surface area, it easily reacts with the surrounding atmosphere,
For example, when used in a semiconductor single crystal pulling furnace, etc.,
Compared to a member made of graphite or a carbon fiber reinforced carbon composite material (hereinafter referred to as C / C material) used at the same time, silicon carbide is formed very quickly, the shape cannot be maintained, and some parts are missing. Or Further, there is a problem that the heat insulating property is deteriorated and the heat insulating material does not function sufficiently.

【0004】また、実開平4−104434号公報に
は、フェルト状炭素繊維からなる断熱材の表面に炭素質
のシートを炭素質接合部材により機械的に接合した成形
断熱材が提案されている。この成形断熱材の表面に接合
した炭素質シートを剥離しないようにすることを目的と
して成されている。そのため、表面の炭素質シートは、
炭素質接合部材で機械的に接合されているため剥離せ
ず、保形性に関しては、フェルト状炭素繊維のみからな
る断熱材に比較すると優れた成形断熱材となっている。
しかしながら、炭素質シート自体が機械的強度が低いた
め、成形断熱材全体での機械的強度を改善するまでには
至っていなかった。また、フェルト状炭素繊維が剥き出
しになっている成形断熱材は使用中に発塵し、炉内を汚
染する。雰囲気(例えばSiOガス)の存在下で使用す
るとそれが一層助長される。そのため、断熱特性が変わ
るという問題を有していた。
Japanese Utility Model Laid-Open No. 4-104434 proposes a molded heat insulating material in which a carbonaceous sheet is mechanically joined to a surface of a heat insulating material made of felt-like carbon fibers by a carbonaceous joining member. The purpose is to prevent the carbonaceous sheet bonded to the surface of the molded heat insulating material from being peeled off. Therefore, the carbonaceous sheet on the surface
Since it is mechanically joined by the carbonaceous joining member, it does not peel off, and it is a molded heat insulating material which is excellent in shape retention as compared with a heat insulating material consisting only of felt-like carbon fibers.
However, since the mechanical strength of the carbonaceous sheet itself is low, the mechanical strength of the entire molded heat insulating material has not been improved. Further, the molded heat insulating material from which the felt-like carbon fibers are exposed generates dust during use and contaminates the inside of the furnace. When used in the presence of an atmosphere (for example, SiO gas), it is further promoted. For this reason, there was a problem that the heat insulation characteristics changed.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明は、前
記事情に鑑みてなされたものであり、長期間にわたり優
れた断熱性を発揮するとともに、保形性に優れ、機械的
強度に優れた高温雰囲気炉に使用される断熱材を提供す
ることを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above circumstances, and has excellent heat insulating properties over a long period of time, excellent shape retention properties, and excellent mechanical strength. An object of the present invention is to provide a heat insulating material used in a high-temperature atmosphere furnace.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するた
め、本発明者らは、鋭意研究を重ね、フェルト状炭素繊
維と膨張黒鉛シートを積層し、この積層体をC/C材で
挟み込むサンドウィッチ構造、場合によっては積層体を
C/C材で全て覆う構造とすることで、機械的強度に優
れ、炉内汚染が少なく、且つ耐久性に優れ、長期間にわ
たり優れた断熱材とすることができることを見出し、本
発明を完成した。
Means for Solving the Problems In order to solve the above problems, the present inventors have conducted intensive studies, laminated felt carbon fibers and expanded graphite sheets, and sandwiched the laminate with a C / C material. By having a structure, and in some cases, a structure in which the laminate is entirely covered with the C / C material, it is possible to provide an excellent heat-insulating material having excellent mechanical strength, less contamination in the furnace, excellent durability, and excellent durability over a long period of time. We have found that we can do this and completed the present invention.

【0007】すなわち、本発明の成形断熱材は、フェル
ト状炭素繊維と膨張黒鉛シートとが交互に積層され、C
/C材によって挟持されていることを特徴とする。ま
た、フェルト状炭素繊維と膨張黒鉛シートとが交互に積
層され、C/C材によって挟持されるとともに、残りの
面がC/C材で覆われていることを特徴とする。また、
前記炭素繊維強化炭素複合材が径の異なる2個の円筒で
あり、前記2個の円筒間に、前記フェルト状炭素繊維と
前記膨張黒鉛シートとが径方向に交互に積層され、前記
炭素繊維強化炭素複合材によって挟持されていることが
好ましい。また、その場合、その上下の面がC/C材で
覆われていることが好ましい。前記フェルト状炭素繊維
と膨張黒鉛シートとからなる積層体のかさ密度が0.1
〜0.3g/cm3 であることが好ましい。また、フェ
ルト状炭素繊維と膨張黒鉛シートの割合がフェルト状炭
素繊維厚さ3〜10mmに対し、膨張黒鉛シートが1層
であることが好ましい。また、不純物含有量が10pp
m以下であることが好ましい。更には、表面に熱分解炭
素若しくはガラス状炭素が被覆されていることが好まし
い。
That is, in the molded heat insulating material of the present invention, felt-like carbon fibers and expanded graphite sheets are alternately laminated, and C
/ C material. Further, the carbon fiber sheet is characterized in that felt-like carbon fibers and expanded graphite sheets are alternately laminated and sandwiched by a C / C material, and the remaining surface is covered with the C / C material. Also,
The carbon fiber reinforced carbon composite material is two cylinders having different diameters, and the felt-like carbon fiber and the expanded graphite sheet are alternately laminated in the radial direction between the two cylinders, and It is preferable to be sandwiched by the carbon composite material. In that case, it is preferable that the upper and lower surfaces are covered with a C / C material. The bulk density of the laminate comprising the felt-like carbon fibers and the expanded graphite sheet is 0.1
It is preferably ~0.3g / cm 3. Further, it is preferable that the ratio of the felt-like carbon fiber and the expanded graphite sheet is one layer of the expanded graphite sheet with respect to the felt-like carbon fiber thickness of 3 to 10 mm. In addition, the impurity content is 10 pp.
m or less. Further, it is preferable that the surface is coated with pyrolytic carbon or glassy carbon.

【0008】これら、フェルト状炭素繊維と膨張黒鉛シ
ートを交互に複数層積層して積層体として、この積層体
をC/C材で挟み込んだサンドウィッチ構造にすること
で、フェルト状炭素繊維の断熱材としての特徴、膨張黒
鉛シートの持つガス不透過性や、熱遮蔽性、C/C材の
機械強度等の各材料の機能を併せ持った材料とすること
ができる。また、2個の径の異なるC/C材の円筒の間
に該積層体を挟み込むことで、前記フェルト状炭素繊維
を圧縮した状態で容易に保つことができる。すなわち、
機械的強度にすぐれ、断熱特性が長期にわたり維持でき
る成形断熱材とすることができる。さらには、C/C材
で挟持されていない残りの面を覆うことで、これら積層
体からの発塵を完全に防止することができる。ここで、
残りの面とは、例えば、積層体が中空の円筒形状の場合
は、その上下の面をいう。また、積層体が直方体の場合
は、積層方向に対して平行な面をいう。
The felt-like carbon fiber heat insulating material is formed by alternately laminating a plurality of felt-like carbon fibers and expanded graphite sheets to form a laminate and sandwiching the laminate with a C / C material. , A material having both functions of each material such as gas impermeability, heat shielding property, and mechanical strength of C / C material of the expanded graphite sheet. In addition, by sandwiching the laminate between two C / C cylinders having different diameters, the felt-like carbon fibers can be easily maintained in a compressed state. That is,
A molded heat insulating material having excellent mechanical strength and capable of maintaining heat insulating properties for a long time can be obtained. Further, by covering the remaining surface not sandwiched by the C / C material, dust generation from these laminates can be completely prevented. here,
The remaining surfaces refer to upper and lower surfaces, for example, when the laminate has a hollow cylindrical shape. When the laminate is a rectangular parallelepiped, it refers to a plane parallel to the lamination direction.

【0009】ここで、本発明で使用されるC/C材は、
一般的な製法で製作されたものでよく、例えば、予め、
所定の形状のプリプレグを製作し、このプリプレグを積
層後、熱圧成形し成形体としたもの、若しくは、フィラ
メントワインディング法によって製作し、成形体とした
ものである。これらは、所望の断熱材の形状に合わせ、
適宜その製作法を選択して製作することができる。この
C/C材を構成する炭素繊維としては、PAN系、ピッ
チ系等が例示できる。
Here, the C / C material used in the present invention is:
It may be manufactured by a general manufacturing method, for example, in advance,
A prepreg having a predetermined shape is produced, and the prepreg is laminated and then hot-pressed to form a molded product, or a molded product produced by a filament winding method. These match the shape of the desired insulation,
It can be manufactured by appropriately selecting the manufacturing method. Examples of the carbon fiber constituting the C / C material include a PAN type and a pitch type.

【0010】また、フェルト状炭素繊維は、一般的な方
法で製作されたものでよく、フェルト状炭素繊維のみか
らなるもの、或いは、フェルト状炭素繊維に樹脂等が含
浸され、炭化、黒鉛化されたものであってもよい。この
フェルト状炭素繊維を構成する炭素繊維としては、例え
ば、ポリアクリロニトリル、レーヨン、セルロース系繊
維の高分子系繊維、ピッチ系繊維を素材とする炭素繊維
が例示でき、これらのうち、1若しくは2以上が使用さ
れる。さらに、本発明におけるフェルト状炭素繊維は、
密度が0.05〜0.15g/cm3 、好ましくは0.
07〜0.12g/cm3 であるものがよい。このよう
な密度範囲とすることで、後述する、径の異なるC/C
材の間で圧縮させて積層することが可能となる。そし
て、圧縮の程度を調整して、積層する枚数を調整するこ
とで、断熱特性を調整することが可能となる。
The felt-like carbon fiber may be manufactured by a general method. The felt-like carbon fiber may be made of only the felt-like carbon fiber, or the felt-like carbon fiber may be impregnated with a resin or the like, carbonized or graphitized. May be used. Examples of the carbon fibers constituting the felt-like carbon fibers include polyacrylonitrile, rayon, polymer fibers of cellulosic fibers, and carbon fibers made of pitch fibers. Is used. Further, the felt-like carbon fiber in the present invention,
The density is 0.05 to 0.15 g / cm 3 , preferably 0.1 to 0.1 g / cm 3 .
It is preferably from 0.7 to 0.12 g / cm 3 . With such a density range, C / C having different diameters, which will be described later, is used.
It becomes possible to compress and laminate between materials. Then, by adjusting the degree of compression and adjusting the number of layers to be laminated, it is possible to adjust the heat insulation properties.

【0011】また、膨張黒鉛シートは、特に制限され
ず、優れたガス不浸透性を有するもの、例えば、室温に
おける窒素ガスのガス透過率が1×10-4cm2 /s以
下、好ましくは5×10-5cm2 /s以下であるものが
好ましい。このようなガス不浸透性に優れた膨張黒鉛シ
ートを使用して、前記フェルト状炭素繊維と積層体を形
成することで、断熱材内部でのガスの対流を防止する事
ができるとともに、幅射熱を遮蔽することができる。
The expanded graphite sheet is not particularly limited and has excellent gas impermeability, for example, a gas permeability of nitrogen gas at room temperature of 1 × 10 −4 cm 2 / s or less, preferably 5 × 10 −4 cm 2 / s. × 10 -5 cm 2 / s that is less. By forming a laminate with the felt-like carbon fiber using such an expanded graphite sheet having excellent gas impermeability, it is possible to prevent gas convection inside the heat insulating material, Heat can be shielded.

【0012】そして、フェルト状炭素繊維と膨張黒鉛シ
ートを積層する際は、フェルト状炭素繊維を圧縮した状
態で、膨張黒鉛シートと積層することで、これらからな
る積層体のかさ密度を0.1〜0.3g/cm3 、好ま
しくは0.15〜0.25g/cm3 に調整することが
できる。密度調整することで、断熱特性を調整すること
ができる。
When laminating the felt-like carbon fiber and the expanded graphite sheet, the felt-like carbon fiber is compressed and laminated with the expanded graphite sheet so that the bulk density of the laminate made of these is 0.1%. It can be adjusted to 0.3 g / cm 3 , preferably 0.15 to 0.25 g / cm 3 . By adjusting the density, the heat insulation properties can be adjusted.

【0013】また、フェルト状炭素繊維と膨張黒鉛シー
トの割合がフェルト状炭素繊維厚さ3〜10mmに対
し、膨張黒鉛シートを1層挿入することで、断熱特性を
調整することができる。
Further, the heat insulating property can be adjusted by inserting one layer of the expanded graphite sheet with respect to the felt carbon fiber thickness of 3 to 10 mm in the ratio of the felt-like carbon fiber and the expanded graphite sheet.

【0014】また、2000℃以上の高温で、ハロゲン
ガス雰囲気下で処理を行い、不純物含有量が灰分量で1
0ppm以下であることが好ましい。ここでいう灰分量
は、試料20gを正確に測定し、白金製のルツボ(容積
50cc)に装填し、酸素気流中(2〜3l/min)
で、950℃の温度で、保持し、灰化した後、デシケー
タ中で自然冷却後、残った灰分量を測定したものをい
う。
Further, the treatment is carried out at a high temperature of 2,000 ° C. or more in a halogen gas atmosphere, and the impurity content is 1 ash content.
It is preferably at most 0 ppm. The amount of ash referred to here is determined by accurately measuring 20 g of a sample, loading the sample into a platinum crucible (volume: 50 cc), and placing it in an oxygen stream (2 to 3 l / min).
, After holding at a temperature of 950 ° C., ashing, cooling naturally in a desiccator, and measuring the remaining ash content.

【0015】本発明における成形断熱材は、以上のよう
に構成されており、各種高温雰囲気炉、特に、半導体単
結晶引き上げ炉や、光ファイバ製造用熱処理炉等に好適
に使用することができる。特に、半導体単結晶引き上げ
炉(以下、CZ炉という。)においては、従来、CZ炉
構成部材であるインナーシールド、ロアーリング、アッ
パーリング、ヒートシールド等は、断熱材と別々に設け
られているが、本発明の成形断熱材を使用することで、
これら両者を併せた特性を発現させることができ、炉内
の有効処理範囲を拡大することが可能となる。
The molded heat insulating material of the present invention is configured as described above, and can be suitably used in various high-temperature atmosphere furnaces, particularly, a semiconductor single crystal pulling furnace, a heat treatment furnace for manufacturing an optical fiber, and the like. Particularly, in a semiconductor single crystal pulling furnace (hereinafter, referred to as a CZ furnace), an inner shield, a lower ring, an upper ring, a heat shield, and the like, which are components of the CZ furnace, are conventionally provided separately from a heat insulating material. By using the molded heat insulating material of the present invention,
The combined characteristics of these two can be exhibited, and the effective processing range in the furnace can be expanded.

【0016】以下、図面を参照しつつ、本発明における
成形断熱材をCZ炉のヒートシールドとして使用する場
合について詳細に説明する。
Hereinafter, the case where the molded heat insulating material of the present invention is used as a heat shield of a CZ furnace will be described in detail with reference to the drawings.

【0017】[0017]

【発明の実施の形態】図1は、本発明の成形断熱材をC
Z炉のヒートシールドとして使用する場合の一実施例を
示す概略図である。本発明におけるヒートシールド1
は、膨張黒鉛シート12とフェルト状炭素繊維13とか
らなる積層体14とを、外周側及び内周側から挟持する
C/C材11とで構成されている。
FIG. 1 shows a molded heat insulating material of the present invention.
It is the schematic which shows one Example at the time of using as a heat shield of a Z furnace. Heat shield 1 of the present invention
Is composed of a C / C material 11 that sandwiches a laminate 14 composed of an expanded graphite sheet 12 and felt-like carbon fibers 13 from the outer peripheral side and the inner peripheral side.

【0018】C/C材11a,11bは、一般的なC/
C材の製作法によればよく、炭素繊維クロスプリプレグ
を硬化して成形体とする。若しくは、フィラメントワイ
ンディング法により円筒状に成形する等して、径の異な
る円筒状のC/C材からなる成形体を製作し、内周側と
なる径の小さいC/C材11aと、外周側となる径の大
きいC/C材11bを準備する。これら成形体は、焼成
して、炭化させ、黒鉛化させた状態であっても、プリプ
レグ及びフィラメントワインディング等による成形の際
に使用した樹脂が硬化した段階の状態であってもよい。
The C / C materials 11a and 11b are made of a general C / C material.
According to the method of manufacturing the C material, the carbon fiber cloth prepreg is cured to form a molded body. Alternatively, a cylindrical molded body made of cylindrical C / C materials having different diameters is manufactured by, for example, forming into a cylindrical shape by a filament winding method, and a C / C material 11a having a small diameter on the inner peripheral side and an outer peripheral side are formed. A C / C material 11b having a large diameter is prepared. These molded bodies may be in a state of being baked, carbonized and graphitized, or in a state where a resin used in molding by prepreg, filament winding or the like is cured.

【0019】これらC/C材11a,11bは、厚みを
0.5〜10.0mm、好ましくは1.0〜2.0mm
としておくことが好ましい。これによって、保形性を向
上させるとともに、機械的強度の高い断熱材とすること
ができる。
These C / C materials 11a and 11b have a thickness of 0.5 to 10.0 mm, preferably 1.0 to 2.0 mm.
It is preferable to keep Thereby, while maintaining shape retention, it can be set as the heat insulating material with high mechanical strength.

【0020】次に、内周側となる径の小さいC/C材1
1aの表面に膨張黒鉛シート12と、フェルト状炭素繊
維13の順に交互に同心円上に積層していく。そして、
最外層、すなわち、外周側のC/C材11bと接する層
には、膨張黒鉛シート12となるように積層することが
好ましい。なお、内周側C/C材11aの表面に、先ず
フェルト状炭素繊維13を、次いで膨張黒鉛シート12
の順に交互に積層し、外周のC/C材11bにフェルト
状炭素繊維13が接するようになっていてもよい。しか
しながら、内外周のC/C材11a,11bに膨張黒鉛
シート12が接するように積層すると、フェルト状炭素
繊維13がガスと直接接するのを防げるので好ましい。
Next, the C / C material 1 having a small diameter on the inner peripheral side
The expanded graphite sheet 12 and the felt-like carbon fibers 13 are alternately laminated on the surface of the surface 1a in the order of concentric circles. And
The outermost layer, that is, the layer in contact with the C / C material 11b on the outer peripheral side is preferably laminated so as to form the expanded graphite sheet 12. In addition, first, felt-like carbon fiber 13 and then expanded graphite sheet 12 are applied to the surface of the inner peripheral side C / C material 11a.
, And the felt-like carbon fibers 13 may be in contact with the outer C / C material 11b. However, it is preferable to laminate the expanded graphite sheet 12 so as to be in contact with the C / C materials 11a and 11b on the inner and outer peripheries, since the felt-like carbon fibers 13 can be prevented from directly contacting the gas.

【0021】ここで、使用する膨張黒鉛シート12は可
撓性を有し、ガス透過率が1×10 -4cm2 /s以下、
好ましくは5×10-5cm2 /s以下であることが好ま
しい。このようなガス透過率とすることで、断熱材内部
のガスの対流を防止する事ができる。
Here, the expanded graphite sheet 12 used is acceptable.
Flexible, gas permeability 1 × 10 -FourcmTwo/ S or less,
Preferably 5 × 10-FivecmTwo/ S or less
New With such a gas permeability, the inside of the heat insulating material
Gas convection can be prevented.

【0022】フェルト状炭素繊維13は、密度が0.0
5〜0.15g/cm3 、好ましくは0.07〜0.1
2g/cm3 であるものが好ましい。これによって、圧
縮率を調整することができるからである。
The felt-like carbon fiber 13 has a density of 0.0
5 to 0.15 g / cm 3 , preferably 0.07 to 0.1
It is preferably 2 g / cm 3 . Thereby, the compression ratio can be adjusted.

【0023】フェルト状炭素繊維13と膨張黒鉛シート
12との積層体14をC/C材11aとともに、プラス
チック製のバッグに入れ、外部より、真空ポンプ等を利
用してバッグ内の空気を抜き、バッグ内の圧力を調節す
ること所定の厚さに整える。
The laminate 14 of the felt-like carbon fiber 13 and the expanded graphite sheet 12 is put in a plastic bag together with the C / C material 11a, and the air in the bag is evacuated from outside using a vacuum pump or the like. By adjusting the pressure in the bag, it is adjusted to a predetermined thickness.

【0024】そして、真空状態のバッグ内の積層体14
に、外周側のC/C材11bを被せ、真空バッグを取り
除く。真空を解くと、積層体14中のフェルト状炭素繊
維13が膨張する。これによって、積層体14中のフェ
ルト状炭素繊維13は、圧縮された状態で、C/C材1
1a、11bによって、挟持された状態となる。
Then, the laminate 14 in the bag in a vacuum state is
Is covered with the C / C material 11b on the outer peripheral side, and the vacuum bag is removed. When the vacuum is released, the felt-like carbon fibers 13 in the laminate 14 expand. Thereby, the felt-like carbon fibers 13 in the laminate 14 are compressed, and the C / C material 1
A state of being sandwiched by 1a and 11b is obtained.

【0025】この状態で、使用することが可能である
が、内部の積層体14に樹脂を浸透させることが好まし
い。これによって、C/C材11a,11bと、膨張黒
鉛シート12と、フェルト状炭素繊維13との相互間の
結合を強くすることができる。さらに、場合によっては
上下の端面に、C/C材11を被せる。これで、フェル
ト状炭素繊維13が露出せず、フェルト状炭素繊維13
と膨張黒鉛シート12からなる積層体を完全にC/C材
で被覆することができ、使用中の発塵を抑制することが
できる。なお、ここで使用するC/C材11は、内外周
に使用しているC/C材11a,11bと同様に厚み
0.5〜10mmであるものが好ましい。
In this state, it is possible to use the resin, but it is preferable to make resin penetrate into the internal laminate 14. Thereby, the bond between the C / C materials 11a and 11b, the expanded graphite sheet 12, and the felt-like carbon fiber 13 can be strengthened. Further, in some cases, the C / C material 11 is put on the upper and lower end faces. As a result, the felt-like carbon fibers 13 are not exposed, and the felt-like carbon fibers 13 are not exposed.
And the laminate made of the expanded graphite sheet 12 can be completely covered with the C / C material, and the generation of dust during use can be suppressed. It is preferable that the C / C material 11 used here has a thickness of 0.5 to 10 mm, like the C / C materials 11a and 11b used for the inner and outer circumferences.

【0026】積層体14に樹脂を浸透させた後に、15
0〜200℃で熱処理し、樹脂を硬化させる。次いで、
800〜1000℃で熱処理し、樹脂を炭化させる。次
に、この成形体をハロゲンガス雰囲気の大気圧下で18
00〜2200℃で黒鉛化処理及び高純度化処理を行
う。ここで、ハロゲンガスとは、ハロゲンまたはその化
合物のガスのことであり、例えば塩素や塩素化合物、フ
ッ素、フッ素化合物を用いることができると共に、塩素
とフッ素とを同一分子内に含む化合物(モノクロロトリ
フルオルメタン、トリクロロモノフルオルメタン、ジク
ロルフルオルエタン、トリクロロモノフルオルエタン
等)を用いることができる。そして、これらハロゲン系
ガスとの反応により成形体中に含まれる不純物、特に金
属不純物がハロゲン化物として蒸発および揮散され、除
去される。これによって、不純物含有量を灰分量で10
ppm以下とすることができ、高純度が要求されるCZ
炉のヒートシールドや断熱材等として使用することがで
きる。
After the resin is impregnated into the laminate 14, 15
Heat treatment at 0 to 200 ° C. to cure the resin. Then
Heat treatment at 800 to 1000 ° C. to carbonize the resin. Next, the molded body was subjected to an atmospheric pressure of halogen gas atmosphere for 18 hours.
The graphitization treatment and the high-purification treatment are performed at 00 to 2200 ° C. Here, the halogen gas is a gas of halogen or a compound thereof, for example, chlorine, a chlorine compound, fluorine, a fluorine compound, and a compound containing chlorine and fluorine in the same molecule (monochlorotrifluoro). Methane, trichloromonofluoromethane, dichlorofluoroethane, trichloromonofluoroethane, etc.). Then, by the reaction with these halogen-based gases, impurities contained in the compact, particularly metal impurities, are evaporated and vaporized as halides and removed. As a result, the impurity content is reduced to 10 ash content.
ppm or less, CZ that requires high purity
It can be used as a heat shield or a heat insulator for a furnace.

【0027】次に、熱分解炭素をCVD法で、含浸・被
覆することが好ましい。ここでいうCVD法は、熱分解
炭素を表面の開気孔より内部にまで浸透析出させる所謂
CVI法を包含する方法であって、炭化水素類、例え
ば、炭素数1〜8、特に炭素数3のプロパンやメタンガ
ス等の炭化水素ガスもしくは炭化水素化合物を用い、炭
化水素濃度3〜30%好ましくは5〜15%とし、全圧
を100Torr以下好ましくは50Torr以下の操
作をする。このような操作を行った場合、炭化水素が基
材表面付近で脱水素、熱分解、重合などによって巨大炭
素化合物を形成し、これが基材上に沈積、析出し、更に
脱水素反応が進み緻密な熱分解炭素層が形成され、ある
いは浸透して含浸される。析出の温度範囲は一般に80
0〜2500℃までの広い範囲であるが、熱分解炭素を
できるだけ多く含浸するためには1300℃以下の比較
的低温領域で処理することが好ましい。また析出時間を
50時間以上、さらには100時間以上とすることで内
部にまで熱分解炭素を形成させることができる。さらに
析出時間を50時間以上、さらには100時間以上とす
ることによって、内部の隅々にまで熱分解炭素を形成す
ることが可能となり、内部からのガスの発生の抑制に寄
与する。また含浸の程度を高めるために、等温法、温度
勾配法、圧力勾配法等が使用でき、時間の短縮及び緻密
化を可能にするパルス法を使用してもよい。
Next, it is preferable to impregnate and coat the pyrolytic carbon by the CVD method. The CVD method referred to here is a method including a so-called CVI method in which pyrolytic carbon is permeated and deposited from the open pores on the surface to the inside, and includes hydrocarbons, for example, hydrocarbons having 1 to 8 carbon atoms, particularly 3 carbon atoms. The operation is performed at a hydrocarbon concentration of 3 to 30%, preferably 5 to 15%, and a total pressure of 100 Torr or less, preferably 50 Torr or less, using a hydrocarbon gas or a hydrocarbon compound such as propane or methane gas. When such an operation is performed, the hydrocarbon forms a giant carbon compound near the surface of the base material by dehydrogenation, thermal decomposition, polymerization, etc., which deposits and precipitates on the base material, and the dehydrogenation reaction further proceeds, resulting in a dense body. A pyrolytic carbon layer is formed or penetrated and impregnated. The temperature range for the precipitation is generally 80
Although it is a wide range from 0 to 2500 ° C., it is preferable to perform the treatment in a relatively low temperature range of 1300 ° C. or less in order to impregnate as much pyrolytic carbon as possible. By setting the deposition time to 50 hours or more, and more preferably 100 hours or more, pyrolytic carbon can be formed inside. Further, by setting the deposition time at 50 hours or more, and more preferably at 100 hours or more, pyrolytic carbon can be formed at every corner of the inside, which contributes to suppressing generation of gas from the inside. Further, in order to increase the degree of impregnation, an isothermal method, a temperature gradient method, a pressure gradient method, or the like can be used, and a pulse method capable of shortening time and densifying may be used.

【0028】また、前述の熱分解炭素の代わりにガラス
状炭素を被覆することもできる。ガラス状炭素は、フェ
ノール樹脂等の熱硬化性樹脂に浸すか、若しくは刷毛塗
り等の任意の方法で表面に塗布する。そして、窒素雰囲
気中で硬化、焼成して樹脂を炭素化する。その結果、表
面全面をガラス状炭素で被覆することができる。
Further, glassy carbon can be coated instead of the above-mentioned pyrolytic carbon. The glassy carbon is immersed in a thermosetting resin such as a phenolic resin, or applied to the surface by any method such as brushing. Then, the resin is cured and fired in a nitrogen atmosphere to carbonize the resin. As a result, the entire surface can be covered with glassy carbon.

【0029】なお、本発明の成形断熱材は、円筒状に限
定されるものではなく、膨張黒鉛シートとフェルト状炭
素繊維が交互に積層してなる積層体をC/C材によって
挟み込んだサンドウィッチ構造であれば、板状の成形体
であってもよい。そして、C/C材で挟持されていない
残りの面をC/C材で覆い、フェルト状炭素繊維が表面
に露出しないようにすることが好ましい。これによっ
て、フェルト状炭素繊維を構成する炭素繊維が炉内に飛
散することを抑制することができる。
The molded heat insulating material of the present invention is not limited to a cylindrical shape, but has a sandwich structure in which a laminate formed by alternately laminating expanded graphite sheets and felt-like carbon fibers is sandwiched between C / C materials. If so, a plate-like molded body may be used. Then, it is preferable that the remaining surface not sandwiched by the C / C material is covered with the C / C material so that the felt-like carbon fiber is not exposed on the surface. Thereby, it is possible to suppress the carbon fibers constituting the felt-like carbon fibers from scattering into the furnace.

【0030】[0030]

【実施例】以下、実施例により、本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0031】(実施例1)かさ密度0.08g/cm3
のフェルト状炭素繊維と、ガス透過率が5×10 -5cm
2 /sの膨張黒鉛シートとを、フェノール樹脂を含浸さ
せたフェルト状炭素繊維の層が8層となるように交互に
積層し、積層体のかさ密度が0.2g/cm3 となるよ
うに積層体を熱圧プレス成形により42mmに圧縮し
た。積層体の断面のフェルト状炭素繊維と膨張黒鉛シー
トの割合は、フェルト5.1mmに対し黒鉛シート1層
であった。この積層体をさらに上下より厚さ1.2m
m、フェノール樹脂を含浸させたC/C材で挟み込み、
サンドウィッチ構造とし、熱圧プレス成形し、200×
200mm、厚さ42.4mmの板状の成形体を得た。
この成形体を焼成し、樹脂等を炭化した後、ハロゲンガ
ス雰囲気、温度2000℃の条件で黒鉛化と同時に高純
度化処理を行い、不純物含有量を灰分量で10ppm以
下の高純度成形断熱材を得た。
(Example 1) Bulk density 0.08 g / cmThree
Felt carbon fiber with a gas permeability of 5 × 10 -Fivecm
Two/ S expanded graphite sheet impregnated with phenolic resin
Alternately so that the layers of felted carbon fibers become 8 layers
Laminated, the bulk density of the laminated body is 0.2 g / cmThreeWill be
The laminate is compressed to 42 mm by hot pressing.
Was. Felt carbon fiber and expanded graphite sheet of laminate cross section
The ratio of felt is one layer of graphite sheet per 5.1 mm of felt
Met. The thickness of this laminated body is 1.2 m above and below.
m, sandwiched by C / C material impregnated with phenolic resin,
Sandwich structure, hot press molding, 200 ×
A plate-shaped compact having a thickness of 200 mm and a thickness of 42.4 mm was obtained.
After firing this molded body and carbonizing the resin etc., the halogen gas
High purity at the same time as graphitization under the conditions of a gas atmosphere and a temperature of 2000 ° C.
Ash content to reduce the ash content to 10 ppm or less.
The following high-purity molded insulation was obtained.

【0032】(実施例2)積層体中のフェルト状炭素繊
維の層を8層とし、この積層体を圧縮して、かさ密度を
0.15g/cm3 とした以外、実施例1と同様の方法
で200×200mm、厚さ56mmの板状の成形断熱
材を得た。なお、積層体の断面のフェルト状炭素繊維と
膨張黒鉛シートの割合は、フェルト6.8mmに対し黒
鉛シート1層であった。さらに、実施例1同様の高純度
化処理を行い高純度成形断熱材を得た。
Example 2 Same as Example 1 except that the number of felt carbon fiber layers in the laminate was eight, and the laminate was compressed to a bulk density of 0.15 g / cm 3 . By the method, a plate-shaped molded heat insulating material having a size of 200 × 200 mm and a thickness of 56 mm was obtained. The ratio between the felt-like carbon fibers and the expanded graphite sheet in the cross section of the laminate was one layer of graphite sheet with respect to 6.8 mm of felt. Further, the same high-purification treatment as in Example 1 was performed to obtain a high-purity molded heat insulating material.

【0033】(実施例3)積層体中のフェルト状炭素繊
維の層を8層とし、この積層体を圧縮して、かさ密度を
0.3g/cm3 とし、実施例1と同様の方法で200
×200mm、厚さ28mmの板状の成形断熱材とし、
さらに、端面をC/C材で覆った。なお、積層体の断面
のフェルト状炭素繊維と膨張黒鉛シートの割合は、フェ
ルト3.3mmに対し黒鉛シート1層であった。さら
に、実施例1同様の高純度化処理を行い高純度成形断熱
材を得た。
Example 3 Eight layers of felt-like carbon fibers in the laminate were compressed, and the laminate was compressed to a bulk density of 0.3 g / cm 3 , in the same manner as in Example 1. 200
× 200mm, 28mm thick plate-shaped molded heat insulating material,
Further, the end face was covered with a C / C material. The ratio of the felt-like carbon fiber and the expanded graphite sheet in the cross section of the laminate was one layer of the graphite sheet with respect to the felt of 3.3 mm. Further, the same high-purification treatment as in Example 1 was performed to obtain a high-purity molded heat insulating material.

【0034】(実施例4)実施例1で得られた高純度成
形断熱材を、CVD法により膜厚20μmの熱分解炭素
被覆を行い断熱材とした。
Example 4 The high-purity molded heat insulating material obtained in Example 1 was coated with a 20 μm-thick pyrolytic carbon film by a CVD method to obtain a heat insulating material.

【0035】(比較例1)かさ密度0.08g/cm3
のフェルト状炭素繊維のみを実施例1と同質同形状のC
/C材で、実施例1と同様の方法で、挟み込み、200
×200mm、厚さ40mmの板状の成形断熱材を得
た。
(Comparative Example 1) Bulk density 0.08 g / cm 3
Of the same shape and shape as in Example 1 using only
/ C material, sandwiched in the same manner as in Example 1,
A plate-like molded heat insulating material having a size of 200 mm and a thickness of 40 mm was obtained.

【0036】実施例1乃至3及び比較例1の成形断熱材
を、それぞれ室温から1600℃までの範囲において、
連続的に熱伝導率を測定した。熱伝導率の測定は、真空
中で所定温度にさらされた断熱材の最外層と、反対側の
最外層との温度を測定し、熱伝導率を算出した。また、
SiOガスと反応させて電子顕微鏡で観察し、その反応
の度合いを積層方向にX線で線分析を行い評価した。ま
た、発塵の程度は振とう機に5分間かけて篩分けし、発
生する塵の量を測定した。
Each of the molded heat-insulating materials of Examples 1 to 3 and Comparative Example 1 was used in the range of room temperature to 1600 ° C.
The thermal conductivity was measured continuously. The thermal conductivity was measured by measuring the temperatures of the outermost layer of the heat insulating material exposed to a predetermined temperature in a vacuum and the outermost layer on the opposite side, and calculating the thermal conductivity. Also,
The reaction with SiO gas was observed with an electron microscope, and the degree of the reaction was evaluated by X-ray analysis in the stacking direction. In addition, the degree of dust generation was measured by sieving with a shaker for 5 minutes, and the amount of generated dust was measured.

【0037】熱伝導率の測定結果を図2にまとめて示
す。
FIG. 2 shows the measurement results of the thermal conductivity.

【0038】また、表1にSiOガスとの反応の程度及
び発塵の程度の結果をまとめて示す。
Table 1 summarizes the results of the degree of reaction with SiO gas and the degree of dust generation.

【0039】[0039]

【表1】 [Table 1]

【0040】図2より、実施例1乃至4の成形断熱材
は、低温における熱伝導率が0.07〜0.09W/
(m・K)であり、その熱伝導率の上昇曲線が比較例の
成形断熱材に比べ滑らかとなった。すなわち、低温では
伝熱しやすく、高温では逆に伝熱しにくいという断熱特
性が優れていることを示すものである。
FIG. 2 shows that the heat insulating materials of Examples 1 to 4 have a thermal conductivity of 0.07 to 0.09 W /
(M · K), and the rise curve of the thermal conductivity was smoother than the molded heat insulating material of the comparative example. In other words, it indicates that the heat insulating property is excellent, in that heat is easily transferred at low temperatures and difficult to transfer at high temperatures.

【0041】[0041]

【発明の効果】フェルト状炭素繊維と膨張黒鉛シートを
交互に積層した積層体をC/C材で挟み込んだサンドウ
ィッチ構造とし、積層体の密度及びフェルト状炭素繊維
と膨張黒鉛シートの積層割合を調整することで、断熱特
性を調整することが可能となる。さらに、フェルト状炭
素繊維が表面に露出しないようにC/C材で覆うように
することで、フェルト状炭素繊維からの発塵を抑制する
ことができる。また、表面が機械的強度の高いC/C材
であるため、取り扱いが非常に容易であり、周囲の雰囲
気ガスとの反応を抑制することが可能となり、長寿命
で、保形性に優れ、断熱特性に優れた成形断熱材とする
ことができる。
According to the present invention, a laminated structure in which felt-like carbon fibers and expanded graphite sheets are alternately laminated is sandwiched between C / C materials, and the density of the laminate and the lamination ratio of felt-like carbon fibers and expanded graphite sheets are adjusted. By doing so, it is possible to adjust the heat insulation properties. Further, by covering the felt-like carbon fiber with a C / C material so that the felt-like carbon fiber is not exposed on the surface, dust generation from the felt-like carbon fiber can be suppressed. In addition, since the surface is made of a C / C material having high mechanical strength, it is very easy to handle, it is possible to suppress the reaction with the surrounding atmosphere gas, and it has a long life and excellent shape retention. A molded heat insulating material having excellent heat insulating properties can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における成形断熱材の一実施形態例を示
す概略図である。
FIG. 1 is a schematic view showing one embodiment of a molded heat insulating material according to the present invention.

【図2】実施例における成形断熱材の室温から1600
℃における熱伝導率の測定結果を示す図である。
FIG. 2 is a graph showing the relationship between the temperature of the molded heat insulating material and the room temperature in the example.
It is a figure which shows the measurement result of the thermal conductivity in ° C.

【符号の説明】[Explanation of symbols]

11 C/C材 11a,11b C/C材 12 膨張黒鉛シート 13 フェルト状炭素繊維 14 積層体 11 C / C material 11a, 11b C / C material 12 Expanded graphite sheet 13 Felt-like carbon fiber 14 Laminated body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 直人 香川県三豊郡大野原町中姫2181−2 東洋 炭素株式会社内 (72)発明者 荻田 泰久 香川県三豊郡大野原町中姫2181−2 東洋 炭素株式会社内 Fターム(参考) 4G032 AA04 AA52 BA01 GA06  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Naoto Ota 211-2-2 Nakahime, Onohara-cho, Mitoyo-gun, Kagawa Prefecture Toyo Carbon Co., Ltd. (72) Inventor Yasuhisa Ogita 211-2-2 Nakahime, Onohara-cho, Mitoyo-gun, Kagawa Toyo Carbon F term in reference (reference) 4G032 AA04 AA52 BA01 GA06

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 フェルト状炭素繊維と膨張黒鉛シートと
が交互に積層され、炭素繊維強化炭素複合材によって挟
持されている成形断熱材。
1. A molded heat insulating material in which felt-like carbon fibers and expanded graphite sheets are alternately laminated and sandwiched by a carbon fiber reinforced carbon composite material.
【請求項2】 フェルト状炭素繊維と膨張黒鉛シートと
が交互に積層され、炭素繊維強化炭素複合材によって挟
持されるとともに、残りの面が炭素繊維強化炭素複合材
に覆われている成形断熱材。
2. A molded heat insulating material in which felt-like carbon fibers and expanded graphite sheets are alternately laminated and sandwiched by a carbon fiber reinforced carbon composite material, and the remaining surface is covered with the carbon fiber reinforced carbon composite material. .
【請求項3】 前記炭素繊維強化炭素複合材が径の異な
る2個の円筒であり、前記2個の円筒間に、前記フェル
ト状炭素繊維と前記膨張黒鉛シートとが径方向に交互に
積層され、前記炭素繊維強化炭素複合材によって挟持さ
れている請求項1記載の成形断熱材。
3. The carbon fiber-reinforced carbon composite material is two cylinders having different diameters, and the felt-like carbon fibers and the expanded graphite sheet are alternately laminated in the radial direction between the two cylinders. The molded heat insulating material according to claim 1, which is sandwiched by said carbon fiber reinforced carbon composite material.
【請求項4】 前記炭素繊維強化炭素複合材が径の異な
る2個の円筒であり、前記2個の円筒間に、前記フェル
ト状炭素繊維と前記膨張黒鉛シートとが径方向に交互に
積層され、前記炭素繊維強化炭素複合材によって挟持さ
れるとともに、上下面が炭素繊維強化炭素複合材に覆わ
れている請求項2記載の成形断熱材。
4. The carbon fiber reinforced carbon composite material is two cylinders having different diameters, and the felt-like carbon fibers and the expanded graphite sheet are alternately laminated in the radial direction between the two cylinders. The molded heat insulating material according to claim 2, which is sandwiched by the carbon fiber reinforced carbon composite material and has upper and lower surfaces covered with the carbon fiber reinforced carbon composite material.
【請求項5】 前記フェルト状炭素繊維と膨張黒鉛シー
トからなる積層体のかさ密度が0.1〜0.3g/cm
3 である請求項1乃至4いずれか記載の成形断熱材。
5. The laminate comprising the felt-like carbon fiber and the expanded graphite sheet has a bulk density of 0.1 to 0.3 g / cm.
3 is claims 1 to 4 shaped heat insulating material according to any one.
【請求項6】 フェルト状炭素繊維と膨張黒鉛シートの
割合が、フェルト状炭素繊維厚さ3〜10mmに対し、
膨張黒鉛シートが1層である請求項1乃至5いずれか記
載の成形断熱材。
6. The ratio of the felt-like carbon fiber and the expanded graphite sheet is such that the felt-like carbon fiber thickness is 3 to 10 mm.
The molded heat insulating material according to any one of claims 1 to 5, wherein the expanded graphite sheet has one layer.
【請求項7】 不純物含有量が10ppm以下である請
求項1乃至6いずれか記載の成形断熱材。
7. The molded heat insulating material according to claim 1, which has an impurity content of 10 ppm or less.
【請求項8】 熱分解炭素の被覆をしてなる請求項1乃
至7いずれか記載の成形断熱材。
8. The molded heat insulating material according to claim 1, which is coated with pyrolytic carbon.
【請求項9】 ガラス状炭素の被覆をしてなる請求項1
乃至7いずれか記載の成形断熱材。
9. The method according to claim 1, wherein the glassy carbon is coated.
8. The molded heat insulating material according to any one of claims 7 to 7.
【請求項10】 請求項1乃至9いずれか記載の成形断
熱材を用いたヒートシールド。
10. A heat shield using the molded heat insulating material according to claim 1.
JP26889199A 1999-07-19 1999-09-22 Molded insulation and heat shield Expired - Fee Related JP4338844B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26889199A JP4338844B2 (en) 1999-07-19 1999-09-22 Molded insulation and heat shield
PCT/JP2000/004118 WO2001006169A1 (en) 1999-07-19 2000-06-22 Formed heat insulating material and heat shield

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20501799 1999-07-19
JP11-205017 1999-07-19
JP26889199A JP4338844B2 (en) 1999-07-19 1999-09-22 Molded insulation and heat shield

Publications (2)

Publication Number Publication Date
JP2001089238A true JP2001089238A (en) 2001-04-03
JP4338844B2 JP4338844B2 (en) 2009-10-07

Family

ID=26514797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26889199A Expired - Fee Related JP4338844B2 (en) 1999-07-19 1999-09-22 Molded insulation and heat shield

Country Status (2)

Country Link
JP (1) JP4338844B2 (en)
WO (1) WO2001006169A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129960A1 (en) * 2007-04-18 2008-10-30 Toyo Tanso Co., Ltd. Expandable graphite sheet, method for protecting carbonaceous crucible using the expandable graphite sheet, and single crystal pulling apparatus
WO2011106580A2 (en) * 2010-02-26 2011-09-01 Morgan Advanced Materials And Technology Inc. Carbon-based containment system
WO2013113445A1 (en) * 2012-02-03 2013-08-08 Sgl Carbon Se Heat shield with outer fibre winding
WO2019087846A1 (en) * 2017-10-30 2019-05-09 大阪ガスケミカル株式会社 Molded heat insulation material with surface layer and method for manufacturing same
JP7008155B1 (en) * 2021-07-29 2022-01-25 株式会社ノリタケカンパニーリミテド heating furnace
WO2023032865A1 (en) * 2021-09-06 2023-03-09 積水化学工業株式会社 Laminate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016219214A1 (en) * 2016-10-04 2018-04-05 Schunk Kohlenstofftechnik Gmbh Method for producing a component and component
KR102094925B1 (en) * 2018-05-03 2020-03-30 에스케이씨 주식회사 Multilayer graphite sheet having excellent electromagnetic shielding property and thermal conductivity, and preparation method thereof
DE102018217237A1 (en) * 2018-10-09 2020-04-09 Sgl Carbon Se Hollow cylindrical carbon fiber structure
DE102020208931A1 (en) * 2020-07-16 2022-01-20 Sgl Carbon Se composite material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3028571B2 (en) * 1990-08-28 2000-04-04 大日本インキ化学工業株式会社 Manufacturing method of carbon fiber insulation
JPH0732532A (en) * 1993-07-19 1995-02-03 Mitsubishi Chem Corp Carbon fiber molded heat insulating material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129960A1 (en) * 2007-04-18 2008-10-30 Toyo Tanso Co., Ltd. Expandable graphite sheet, method for protecting carbonaceous crucible using the expandable graphite sheet, and single crystal pulling apparatus
JP2008266061A (en) * 2007-04-18 2008-11-06 Toyo Tanso Kk Expansible graphite sheet, protection method for carbonaceous crucible using the same, and single crystal pulling system
WO2011106580A2 (en) * 2010-02-26 2011-09-01 Morgan Advanced Materials And Technology Inc. Carbon-based containment system
WO2011106580A3 (en) * 2010-02-26 2011-12-15 Morgan Advanced Materials And Technology Inc. Carbon-based containment system
WO2013113445A1 (en) * 2012-02-03 2013-08-08 Sgl Carbon Se Heat shield with outer fibre winding
US11333290B2 (en) 2012-02-03 2022-05-17 Sgl Carbon Se Heat shield with outer fiber winding and high-temperature furnace and gas converter having a heat shield
WO2019087846A1 (en) * 2017-10-30 2019-05-09 大阪ガスケミカル株式会社 Molded heat insulation material with surface layer and method for manufacturing same
JPWO2019087846A1 (en) * 2017-10-30 2021-01-28 大阪ガスケミカル株式会社 Molded insulation with surface layer and its manufacturing method
JP7198215B2 (en) 2017-10-30 2022-12-28 大阪ガスケミカル株式会社 Molded heat insulating material with surface layer and method for manufacturing the same
JP7008155B1 (en) * 2021-07-29 2022-01-25 株式会社ノリタケカンパニーリミテド heating furnace
WO2023032865A1 (en) * 2021-09-06 2023-03-09 積水化学工業株式会社 Laminate

Also Published As

Publication number Publication date
JP4338844B2 (en) 2009-10-07
WO2001006169A1 (en) 2001-01-25

Similar Documents

Publication Publication Date Title
JPS5829129Y2 (en) Multilayer molded insulation material for vacuum furnaces
US5217657A (en) Method of making carbon-carbon composites
TW539612B (en) Composite carbonaceous heat insulator
US20120219778A1 (en) Composite material containing soft carbon fiber felt and hard carbon fiber felt
JP4338844B2 (en) Molded insulation and heat shield
GB2197618A (en) Panels
US20180045260A1 (en) System and Method for Ceramic Doping of Carbon Fiber Composite Structures
JP6742855B2 (en) Molded heat insulating material and manufacturing method thereof
JP4514846B2 (en) High purity carbon fiber reinforced carbon composite material and method for producing the same
JP6726037B2 (en) Method for manufacturing SiC/SiC composite material
JPH02227244A (en) Molding insulated material
WO2023008392A1 (en) Thermal insulation material and method for producing thermal insulation material
JPH01167210A (en) Processed article of carbonaceous felt and production thereof
JPH03248838A (en) Heat insulation material
JP3983459B2 (en) Carbon fiber reinforced carbon composite screw
JPS63149142A (en) Multilayer molded heat insulator and manufacture thereof
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
CN114773077B (en) Composite silicon carbide fiber hard felt and preparation method and application thereof
JP3494533B2 (en) Method for producing oxidation resistant C / C composite
KR810001940B1 (en) Multi layer insulating material for heating furnace
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JP5252562B2 (en) Manufacturing method of heat dissipation sheet
JP2000086365A (en) Jig for heat treating furnace
JP2024048874A (en) Insulation
JPH0316907A (en) Production of glass like carbon sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees