JPH02227244A - Molding insulated material - Google Patents
Molding insulated materialInfo
- Publication number
- JPH02227244A JPH02227244A JP1049234A JP4923489A JPH02227244A JP H02227244 A JPH02227244 A JP H02227244A JP 1049234 A JP1049234 A JP 1049234A JP 4923489 A JP4923489 A JP 4923489A JP H02227244 A JPH02227244 A JP H02227244A
- Authority
- JP
- Japan
- Prior art keywords
- bulk density
- carbon fiber
- heat insulating
- insulating material
- temperature side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 20
- 238000000465 moulding Methods 0.000 title 1
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 75
- 239000004917 carbon fiber Substances 0.000 claims abstract description 75
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 67
- 239000011810 insulating material Substances 0.000 claims description 49
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 229910002804 graphite Inorganic materials 0.000 claims description 13
- 239000010439 graphite Substances 0.000 claims description 13
- 230000007423 decrease Effects 0.000 claims description 4
- 239000012774 insulation material Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 abstract description 19
- 239000011347 resin Substances 0.000 abstract description 19
- 238000009413 insulation Methods 0.000 abstract description 15
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 3
- 101150069512 RHO1 gene Proteins 0.000 abstract 1
- 101150012845 RHO2 gene Proteins 0.000 abstract 1
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 150000001247 metal acetylides Chemical class 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 23
- 238000000034 method Methods 0.000 description 17
- 238000010304 firing Methods 0.000 description 13
- 239000005011 phenolic resin Substances 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 10
- 239000011295 pitch Substances 0.000 description 9
- 229920001568 phenolic resin Polymers 0.000 description 6
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000005087 graphitization Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000007767 bonding agent Substances 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- -1 that is Substances 0.000 description 2
- VZXTWGWHSMCWGA-UHFFFAOYSA-N 1,3,5-triazine-2,4-diamine Chemical compound NC1=NC=NC(N)=N1 VZXTWGWHSMCWGA-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000011134 resol-type phenolic resin Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、高温熱処理時の断熱材や緩衝材等として好適
な成形断熱材に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a molded heat insulating material suitable as a heat insulating material, a cushioning material, etc. during high temperature heat treatment.
[従来の技術と発明が解決しようとする課題]近年、真
空蒸着炉、半導体単結晶成長炉、セラミックス焼結炉や
C/Cコンポジット焼成炉等による高温熱処理が重要視
されている。この高温熱処理時には、断熱材に、耐熱性
、断熱性、機械的強度及び耐久性に優れ、高温で物性劣
化が生じないことが必要とされる。従って、炭素繊維を
出発原料とする断熱材の有用性が高まっている。[Prior Art and Problems to be Solved by the Invention] In recent years, high-temperature heat treatment using vacuum evaporation furnaces, semiconductor single crystal growth furnaces, ceramic sintering furnaces, C/C composite firing furnaces, and the like has become important. During this high-temperature heat treatment, the heat insulating material is required to have excellent heat resistance, heat insulating properties, mechanical strength, and durability, and to not cause deterioration of physical properties at high temperatures. Therefore, the usefulness of heat insulating materials using carbon fiber as a starting material is increasing.
上記の点に鑑み、炭素繊維フェルトに炭化可能な樹脂を
含浸させ、含浸フェルトを積層圧縮しつつ所望の厚さと
嵩密度をもつ成形物とし、次いで成形物を成形断熱材と
する成形断熱材の製造方法が提案されている(特公昭5
0−35930号公報参照)。In view of the above points, carbon fiber felt is impregnated with a carbonizable resin, the impregnated felt is laminated and compressed to form a molded product having a desired thickness and bulk density, and then the molded product is used as a molded heat insulating material. A manufacturing method has been proposed (Tokuko Sho 5)
0-35930).
しかしながら、この方法では、嵩密度の同じ複数の炭素
繊維フェルトを積層するので、得られた成形断熱材の嵩
密度が一定であり、断熱効率が十分でない。However, in this method, since a plurality of carbon fiber felts having the same bulk density are laminated, the bulk density of the obtained molded heat insulating material is constant, and the heat insulating efficiency is not sufficient.
炭素繊維製フェルト等を素材とする成形断熱材の断熱性
は、一般に、断熱材の空隙部、すなわち熱伝導率の小さ
な空気層の割合及び繊維の方向性に依存する。The heat insulating properties of a molded heat insulating material made of carbon fiber felt or the like generally depend on the proportion of voids in the heat insulating material, that is, air spaces with low thermal conductivity, and the orientation of the fibers.
一方、嵩密度、温度と熱伝導率は、実験によると、第7
図のような関係にあることがわかった。On the other hand, bulk density, temperature and thermal conductivity are the seventh
It was found that there is a relationship as shown in the figure.
すなわち、中温度域で嵩密度の大きな断熱材と小さな断
熱材の熱伝導率が逆転しているのである。In other words, in the medium temperature range, the thermal conductivity of a heat insulating material with a large bulk density and that of a heat insulating material with a small bulk density are reversed.
従って、嵩密度が均一である従来の断熱材中の温度分布
は、嵩密度が小さい場合は、第4図中a1大きい場合は
第4図中すで示されるような曲線になる。それ故、高温
側から低温側に向って連続的に嵩密度が変り、各温度で
最も熱伝導率が小さい値を得るような断熱材を作製すれ
ば、第4図中Cで示されるように、断熱性能は最も優れ
、低温側の外表面の温度は、前記第4図のa、bの場合
よりも低くなり、理想的な断熱性を示す。Therefore, the temperature distribution in a conventional heat insulating material having a uniform bulk density becomes a curve as already shown in FIG. 4 when the bulk density is small and when a1 in FIG. 4 is large. Therefore, if you create a heat insulating material whose bulk density changes continuously from the high temperature side to the low temperature side and the thermal conductivity is the lowest at each temperature, the result will be as shown by C in Figure 4. , the heat insulation performance is the best, and the temperature of the outer surface on the low temperature side is lower than in cases a and b in FIG. 4, showing ideal heat insulation performance.
しかし、そのような断熱材を作製することは工業的に極
めて困難である。However, it is industrially extremely difficult to produce such a heat insulating material.
本発明の目的は、嵩密度の異なる断熱材を複数枚用いて
、理想に近い性能を有する断熱材を作製することにある
。An object of the present invention is to use a plurality of heat insulating materials having different bulk densities to produce a heat insulating material having near-ideal performance.
[発明の構成]
本発明は、外部の雰囲気温度に拘らず優れた断熱性を確
保するには、外部の雰囲気温度に応じて断熱材の最適な
嵩密度が存在することに着目してなされたものである。[Structure of the Invention] The present invention was made based on the fact that in order to ensure excellent heat insulation properties regardless of the external ambient temperature, there is an optimum bulk density of the heat insulating material depending on the external ambient temperature. It is something.
すなわち、本発明は、複数層の炭素繊維製フェルトが、
炭化物若しくは黒鉛化物で接合、又は黒鉛シートを介し
て、炭化物若しくは黒鉛化物で接合された成形断熱材で
あって、各層を形成する炭素繊維製フェルトの嵩密度が
、各層内で略一定であって、かつ接合面と直角な方向に
嵩密度が段階的に減少している成形断熱材により、上記
課題を解決するものである。That is, in the present invention, a plurality of layers of carbon fiber felt,
A molded heat insulating material bonded with carbide or graphitized material, or bonded with carbide or graphitized material via a graphite sheet, in which the bulk density of the carbon fiber felt forming each layer is approximately constant within each layer. The above problem is solved by a molded heat insulating material whose bulk density decreases stepwise in the direction perpendicular to the joint surface.
また本発明は、接合面と平行な少なくとも1つの外表面
に黒鉛シートを有する成形断熱材により、上記課題を解
決するものである。The present invention also solves the above problem by using a molded heat insulating material having a graphite sheet on at least one outer surface parallel to the joint surface.
なお、本明細書における用語の定義は次の通りである。The definitions of terms used in this specification are as follows.
不融化とは、ピッチ系繊維を、酸素存在下、例えば20
0〜450℃程度の温度で加熱して表面に耐熱層を形成
し、焼成時の溶融を防止する処理を言う。耐炎化処理と
は、ピッチ系繊維以外のフェノール樹脂繊維等の炭素含
有物質を、酸素存在下、例えば200〜450℃程度の
温度で加熱して表面に耐熱層を形成し、焼成時の溶融を
防止する処理を言う。Infusibility refers to pitch-based fibers in the presence of oxygen, for example, 20
This is a process in which a heat-resistant layer is formed on the surface by heating at a temperature of about 0 to 450°C to prevent melting during firing. Flame-retardant treatment involves heating carbon-containing materials such as phenolic resin fibers other than pitch-based fibers in the presence of oxygen at a temperature of, for example, 200 to 450°C to form a heat-resistant layer on the surface to prevent melting during firing. Refers to the process to prevent.
炭化とは、フェノール樹脂等の炭素含有物質を、例えば
450〜1500℃程度の温度で焼成処理することを言
う。黒鉛化とは、炭素含有物質を、例えば1500〜3
000℃程度の温度で焼成処理することを言い、結晶構
造が黒鉛化していないときでも黒鉛化の概念に含める。Carbonization refers to firing a carbon-containing substance such as a phenol resin at a temperature of, for example, about 450 to 1500°C. Graphitization refers to converting carbon-containing substances into
It refers to firing treatment at a temperature of approximately 000°C, and it is included in the concept of graphitization even when the crystal structure is not graphitized.
本明細書では炭素繊維とは炭化又は黒鉛化された繊維を
言う。In this specification, carbon fiber refers to carbonized or graphitized fiber.
本発明の成形断熱材を構成する炭素繊維製フェルトの炭
素繊維としては、例えば、ポリアクリロニトリル、フェ
ノール樹脂、レーヨン等の高分子繊維を素材とする炭素
繊維や、石油ピッチ、石炭ピッチ、液晶ピッチ等のピッ
チ系炭素繊維が挙げられ、少なくとも一種使用される。Examples of the carbon fibers of the carbon fiber felt constituting the molded heat insulating material of the present invention include carbon fibers made from polymer fibers such as polyacrylonitrile, phenol resin, and rayon, petroleum pitch, coal pitch, liquid crystal pitch, etc. Examples include pitch-based carbon fibers, and at least one type thereof is used.
各繊維は、例えば繊維径5〜30771等適宜のものが
使用できる。Appropriate fibers such as fiber diameters of 5 to 30,771 can be used for each fiber.
炭素繊維製フェルトの厚みは、通常5〜200−程度で
十分である。また積層数は、所望する成形断熱材の厚み
等に応じて適宜使用できる。The thickness of the carbon fiber felt is usually about 5 to 200 mm. Further, the number of laminated layers can be used as appropriate depending on the desired thickness of the molded heat insulating material.
複数の炭素繊維製フェルトは、炭化物又は黒鉛化物で積
層一体化されている。従って、成形断熱材の機械的強度
も大きい。接合剤としての炭化物又は黒鉛化物は、例え
ば、接合面に塗布した樹脂を焼成することにより得るこ
とができる。樹脂としては、例えば、フェノール樹脂、
フラン樹脂、キシレン樹脂、尿素樹脂、メラミン樹脂、
グアナミン樹脂、エポキシ樹脂、ジアリルフタレート樹
脂、ポリウレタン、不飽和ポリエステル、熱硬化性アク
リル樹脂、ポリイミドなどの熱硬化性樹脂が例示され、
一種または二種以上混合して使用される。上記樹脂のう
ち特にフェノール樹脂が好ましい。A plurality of carbon fiber felts are laminated and integrated with carbide or graphitized material. Therefore, the mechanical strength of the molded heat insulating material is also high. The carbide or graphitized material used as the bonding agent can be obtained, for example, by firing a resin applied to the bonding surface. As the resin, for example, phenol resin,
Furan resin, xylene resin, urea resin, melamine resin,
Examples include thermosetting resins such as guanamine resin, epoxy resin, diallyl phthalate resin, polyurethane, unsaturated polyester, thermosetting acrylic resin, and polyimide.
Used alone or in combination of two or more. Among the above resins, phenolic resins are particularly preferred.
成形断熱材は、第3図(A)に示されるように、複数層
の炭素繊維製フェルト(la)(lb)(lc)が、炭
化物又は黒鉛化物(2a)(2b)で接合されていても
よく、第3図(B)に示されるように、黒鉛シート(3
)を介して、黒鉛シート(3)と、炭素繊維製フェルト
(la) (lb) (lc)とが黒鉛シート(3)両
側の炭化物又は黒鉛化物(2a) (2b)で接合され
ていてもよい。また第3図(C)に示されるように、複
数層の炭素繊維製フェルト(la) (lb) (lc
)が、炭化物又は黒鉛化物(2b) (2b)で接合さ
れていと共に、接合面と平行な少なくとも1つの外表面
に黒鉛シート(3)が炭化物は黒鉛化物(2a)で接合
されていてもよい。As shown in Figure 3 (A), the molded heat insulating material is made up of multiple layers of carbon fiber felt (LA) (LB) (LC) bonded with carbide or graphitized material (2a) (2b). As shown in Figure 3(B), graphite sheets (3
), even if the graphite sheet (3) and the carbon fiber felt (la) (lb) (lc) are joined by the carbide or graphitized material (2a) (2b) on both sides of the graphite sheet (3). good. Moreover, as shown in FIG. 3(C), multiple layers of carbon fiber felt (la) (lb) (lc
) may be bonded with a carbide or graphitized material (2b) (2b), and a graphite sheet (3) may be bonded with a graphitized material (2a) on at least one outer surface parallel to the bonding surface. .
なお、接合は、当該部に樹脂を塗布した後、各フェルト
を加圧・加温して一体化した後、焼成して炭化又は黒鉛
化したものでもよいし、各炭素繊維製フェルトに樹脂を
含浸し、ウェットな状態で各フェルトを加圧・加温して
一体化した後、焼成して形成された炭化物又は黒鉛化物
であってもよい。後者の場合、積極的に接合剤としての
樹脂の塗布は必要ではない。In addition, the joining may be done by applying resin to the relevant part, pressurizing and heating each felt to integrate it, and then firing it to carbonize or graphitize it, or by applying resin to each carbon fiber felt. It may be a carbide or a graphitized material formed by impregnating each felt, pressing and heating the felts in a wet state to integrate them, and then firing the felts. In the latter case, it is not necessary to actively apply a resin as a bonding agent.
そして、成形断熱材を構成する複数層の炭素繊維製フェ
ルト(la) (lb) (lc)の嵩密度ρ1、ρ2
、ρ3は、接合面と直角な方向に段階的に小さくなって
いる。すなわち、高温側では嵩密度の大きいものを使用
し、低温側では嵩密度の小さいものを使用するようにし
、その間は、段階的に高温側から低温側に向って、嵩密
度が段階的に小さくなるように配置して使用する。The bulk densities ρ1 and ρ2 of multiple layers of carbon fiber felt (la) (lb) (lc) constituting the molded heat insulating material are
, ρ3 become smaller stepwise in the direction perpendicular to the joint surface. In other words, a material with a high bulk density is used on the high temperature side, a material with a low bulk density is used on the low temperature side, and in between, the bulk density is gradually decreased from the high temperature side to the low temperature side. Arrange and use as shown.
従って、該断熱材は、低温域及び高温域の全ての温度場
において優れた断熱性を示す。複数の炭素繊維製フェル
トの嵩密度は、使用する温度に応じて適宜設定すること
ができるが、通常0.01〜0.5g/cj、好ましく
は0.1〜0.35g/aJ程度の嵩密度の範囲内で変
化している。嵩密度が0.O1g/aJ未満であると低
温域での断熱性が十分でないだけでなく、強度も小さい
。また0、5g/aJを越えると高温域での断熱性が十
分でない。また上記構成の成形断熱材は、嵩密度分布が
一定の断熱体よりも断熱性に優れるので、全体として厚
みを小さくすることができ経済的であると共に、成形断
熱材の熱容量も小さくすることができる。Therefore, the heat insulating material exhibits excellent heat insulating properties in all temperature fields, both low and high temperatures. The bulk density of the plurality of carbon fiber felts can be set appropriately depending on the temperature at which they are used, but the bulk density is usually about 0.01 to 0.5 g/cj, preferably about 0.1 to 0.35 g/aJ. The density varies within a range. Bulk density is 0. If it is less than 1 g/aJ, not only will the heat insulation properties at low temperatures be insufficient, but the strength will also be low. Moreover, if it exceeds 0.5 g/aJ, the heat insulation properties in the high temperature range will not be sufficient. In addition, the molded heat insulating material with the above structure has better heat insulation properties than a heat insulating material with a constant bulk density distribution, so it is economical because the overall thickness can be reduced, and the heat capacity of the molded heat insulating material can also be reduced. can.
成形断熱材の形状は、用途に応じて選択され、平板状や
、断面多角形、円筒状などであってもよく、断面中空状
であってもよい。The shape of the molded heat insulating material is selected depending on the application, and may be flat, polygonal, cylindrical, or hollow in cross section.
なお、複数層の炭素繊維製フェルトの嵩密度が、段階的
に減少していると、高温域及び低温域での断熱性を確保
することができる。すなわち、第1図に示すように、嵩
密度ρが0.18g/−の炭素繊維製フェルト(la)
で高温域における断熱性を、嵩密度ρが0.10g/c
jの炭素繊維製フェルト(1b)で低温域における断熱
性を確保できる。上記成形断熱材は、第2図中、実線で
示されるように、嵩密度ρの異なる炭素繊維製フェルト
が外部雰囲気温度Tで最も熱伝導率λが小さくなるよう
に積層一体化している。なお、第2図中、破線で示され
る低嵩密度の炭素繊維製フェルトや一点破線で示される
高嵩密度の炭素繊維製フェルトを単独で用いても高温域
及び低温域での断熱性が十分でない。Note that if the bulk density of the multiple layers of carbon fiber felt decreases in stages, it is possible to ensure heat insulation in the high temperature range and the low temperature range. That is, as shown in FIG. 1, carbon fiber felt (la) with a bulk density ρ of 0.18 g/-
The insulation property in the high temperature range is determined by the bulk density ρ of 0.10 g/c.
The carbon fiber felt (1b) of j can ensure heat insulation in the low temperature range. In the molded heat insulating material, as shown by the solid line in FIG. 2, carbon fiber felts having different bulk densities ρ are laminated and integrated so that the thermal conductivity λ is the smallest at the external ambient temperature T. In addition, even if the low bulk density carbon fiber felt shown by the broken line in Figure 2 or the high bulk density carbon fiber felt shown by the dotted line are used alone, the insulation properties in the high and low temperature ranges are sufficient. Not.
上記構造の成形断熱材は、嵩密度の異なる複数の炭素繊
維製フェルトに炭化又は黒鉛化可能な樹脂を含浸させて
積層し、加圧加熱した後、焼成することにより得ること
ができる。すなわち、工程図である第5図に示されるよ
うに、嵩密度の大きな炭素繊維製フェルトAと、嵩密度
の小さな炭素繊維製フェルトBとを用いる。嵩密度の大
きな炭素繊維製フェルトAは、炭素繊維製フェルトに樹
脂を含浸させ、圧縮して焼成することにより得てもよい
が、この場合、嵩密度の大きな炭素繊維性フェルトの空
隙率が低下する。従って、含浸樹脂を用いることなく、
嵩密度の大きな炭素繊維製フェルトを次のようにして作
製するのが好ましい。The molded heat insulating material having the above structure can be obtained by impregnating a plurality of carbon fiber felts with different bulk densities with a resin that can be carbonized or graphitized, stacking them, heating them under pressure, and then firing them. That is, as shown in FIG. 5, which is a process diagram, a carbon fiber felt A having a large bulk density and a carbon fiber felt B having a small bulk density are used. Carbon fiber felt A with a large bulk density may be obtained by impregnating carbon fiber felt with a resin, compressing it and firing it, but in this case, the porosity of the carbon fiber felt with a large bulk density decreases. do. Therefore, without using impregnating resin,
It is preferable to produce a carbon fiber felt having a large bulk density as follows.
すなわち、不融化されたピッチ系繊維又は炭素繊維(以
下、特に断わりのない限り炭素繊維と総称する)と、耐
炎化処理をした又は耐炎化処理をしていないフェノール
樹脂繊維(以下、フェノール樹脂繊維という)とを混紡
し、機械的に接合圧縮した後、焼成することにより作製
できる。In other words, infusible pitch-based fibers or carbon fibers (hereinafter collectively referred to as carbon fibers unless otherwise specified) and phenolic resin fibers that have been flame-retardantly treated or not flame-retardantly treated (hereinafter phenolic resin fibers) It can be produced by blending and mechanically bonding and compressing the mixture, and then firing it.
以下に、樹脂を含浸させることなく、嵩密度の大きな炭
素繊維製フェルトを作製する方法を、具体的に説明する
。Below, a method for producing carbon fiber felt with a large bulk density without impregnating it with resin will be specifically described.
先ず、炭素繊維とフェノール樹脂繊維とを混紡する。混
紡割合は、通常、炭素繊維/フェノール樹脂繊維−5/
95〜9515、好ましくは10/90〜90/10、
更に好ましくは25/75〜75/25重量%程度であ
る。炭素繊維が5重量%未満であると、フェノール樹脂
繊維と混合して紡績用カードで紡出するとき、混紡の均
整度がばらつき、かつ炭素繊維が1毛してしまう虞があ
る。また炭素繊維が95重量%を越えると嵩密度を高め
ることが困難である。上記範囲内で混紡割合を調整する
ことにより、炭素繊維製フェルトの嵩密度を容易に制御
できる。なお、炭素繊維単独で炭素繊維製フェルトを作
製すると、剪断強度が小さいため、機械的接合圧縮工程
で繊維の切断が生じ易く、繊維同士の絡み合いや嵩密度
を高めるので困難である。First, carbon fiber and phenol resin fiber are blended. The blending ratio is usually carbon fiber/phenolic resin fiber-5/
95-9515, preferably 10/90-90/10,
More preferably, it is about 25/75 to 75/25% by weight. If the carbon fiber content is less than 5% by weight, when the mixture is mixed with phenolic resin fibers and spun using a spinning card, the uniformity of the blend may vary and the carbon fibers may form a single fiber. Furthermore, if the carbon fiber content exceeds 95% by weight, it is difficult to increase the bulk density. By adjusting the blending ratio within the above range, the bulk density of the carbon fiber felt can be easily controlled. In addition, it is difficult to produce a carbon fiber felt using only carbon fibers because the shear strength is low, so the fibers are likely to be cut during the mechanical bonding and compression process, which increases the entanglement of the fibers and the bulk density.
次いで、混紡繊維をシート状にした混紡ウェブを形成し
た後、混紡ウェブをニードルパンチ等で機械的に接合圧
縮し、フェルトの嵩密度を大きくする。混紡ウェブは、
従来慣用の方法、例えば紡績用カードを用いる方法等に
より作製できる。混紡繊維の方向は一方向に揃っていて
もよく、方向性がなくてもよい。また上記機械的接合圧
縮手段としては、混紡ウェブを縫合するステッチ法等で
あってもよいが、ニードルパンチ法が好ましい。Next, after a blended web is formed by forming a sheet of blended fibers, the blended web is mechanically bonded and compressed using a needle punch or the like to increase the bulk density of the felt. The blended web is
It can be produced by a conventional method, such as a method using a spinning card. The direction of the blended fibers may be aligned in one direction, or there may be no directionality. The mechanical joining and compressing means may be a stitching method for stitching the blended web together, but a needle punching method is preferable.
なお、混紡して接合圧縮すると、厚みを薄くしても機械
的強度が著しく低下することがない。フェルトの圧縮度
、嵩密度は、接合箇所の密度や接合回数等を調整するこ
とにより容易に制御することができる。In addition, when blended and bonded and compressed, the mechanical strength does not drop significantly even if the thickness is reduced. The degree of compression and bulk density of the felt can be easily controlled by adjusting the density of the joints, the number of times of joining, etc.
そして、圧縮されたフェルトを焼成することにより高密
度炭素繊維製フェルトが得られる。Then, by firing the compressed felt, a high-density carbon fiber felt is obtained.
焼成工程での炭化及び黒鉛化は、通常、真空下又は不活
性雰囲気中で行なわれる。なお、炭素繊維として不融化
したピッチ系繊維を使用するとき、該ピッチ系繊維も炭
化乃至黒鉛化される。Carbonization and graphitization in the firing process are usually carried out under vacuum or in an inert atmosphere. Note that when infusible pitch-based fibers are used as carbon fibers, the pitch-based fibers are also carbonized or graphitized.
次に、第5図に基づき、上記方法によって得られた高密
度炭素繊維製フェルトを用いて、本発明の嵩密度が段階
的に異なる成形断熱材を製造する方法について述べる。Next, based on FIG. 5, a method for manufacturing the molded heat insulating material having stepwise different bulk densities according to the present invention will be described using the high-density carbon fiber felt obtained by the above method.
高嵩密度炭素繊維製フェルトA及び嵩密度が小さな炭素
繊維製フェルトBに溶剤で希釈したフェノール樹脂等の
熱硬化性樹脂を含浸させ、加熱しながら加圧し、一体成
形する。この後、炭化又は黒鉛化することにより、第3
図(A)のような嵩密度が厚み方向に異なる成形断熱材
を得る。この場合、炭素繊維製フェルトの代りに、混紡
によって得られた炭素繊維製フェルトのうち嵩密度の異
なるフェルトを用いてもよく、また高高密度炭素繊維製
フェルトと低嵩密度炭素繊維製フェルトのうちいずれか
1層を用い、他方を複数枚用いてもよく、またそれぞれ
複数枚ずつ組合せてもよい。A high bulk density carbon fiber felt A and a low bulk density carbon fiber felt B are impregnated with a thermosetting resin such as a phenol resin diluted with a solvent, and are pressed while heating to be integrally molded. After this, by carbonizing or graphitizing, the third
A molded heat insulating material having a bulk density different in the thickness direction as shown in Figure (A) is obtained. In this case, instead of carbon fiber felt, felts with different bulk densities among carbon fiber felts obtained by blending may be used, or high-density carbon fiber felt and low-bulk density carbon fiber felt may be used. One of these layers may be used and a plurality of the other layer may be used, or a plurality of each layer may be combined.
その他、第2の製造方法としては、次のような方法があ
る。第6図に示すように、炭素繊維製フェルトに前記樹
脂溶液を含浸させた後、加熱しながら、加圧し、所望の
嵩密度となるように圧縮し、嵩密度が略均−な成形体を
得る。得られた成形体から嵩密度の異なる炭素繊維製フ
ェルトを2つ以上、嵩密度が段階的に小さくなるように
積層し、再度加熱しながら、加圧し、複数のフェルトを
一体化する。この際、接合するフェルト面には、炭化又
は黒鉛化可能な炭素材質の接着剤が塗布される。In addition, as the second manufacturing method, there are the following methods. As shown in FIG. 6, after impregnating carbon fiber felt with the resin solution, it is heated and compressed to a desired bulk density to form a molded body with approximately uniform bulk density. obtain. Two or more carbon fiber felts having different bulk densities are laminated from the obtained molded body so that the bulk densities become gradually smaller, and the plurality of felts are integrated by applying pressure while heating again. At this time, a carbon adhesive that can be carbonized or graphitized is applied to the felt surfaces to be joined.
また断熱性能をより向上させるために、少なくとも1つ
の接合面に、焼成により炭化又は黒鉛化する樹脂を塗布
した黒鉛シートを配して積層、焼成し、第3図(B)に
示されるような成形断熱材を作製してもよい。さらには
、第3図(C)に示されるように、表面に黒鉛シートを
貼着した後、焼成してもよい。In addition, in order to further improve the heat insulation performance, a graphite sheet coated with a resin that carbonizes or graphitizes when fired is placed on at least one joint surface, laminated and fired, and a graphite sheet as shown in Figure 3 (B) is placed. Molded insulation may also be made. Furthermore, as shown in FIG. 3(C), a graphite sheet may be attached to the surface and then fired.
[発明の効果]
以上のように、本発明の成形断熱材によれば、複数層の
炭素繊維製フェルトを炭化物又は黒鉛化物で接合し一体
化しており、かつ嵩密度が一端がら他端に向って減少し
ているので、高温側に高嵩密度のフェルトを配し、低温
側に低嵩密度のフェルトを配して使用することにより、
高温側では熱伝導率の低い高嵩密度のフェルトの性能を
、また低温側では熱伝導率の低い低重密度のフェルトの
性能を享受でき、優れた断熱性を示す。[Effects of the Invention] As described above, according to the molded heat insulating material of the present invention, multiple layers of carbon fiber felt are bonded and integrated with carbide or graphitide, and the bulk density varies from one end toward the other end. Therefore, by placing high bulk density felt on the high temperature side and low bulk density felt on the low temperature side,
On the high temperature side, you can enjoy the performance of high bulk density felt with low thermal conductivity, and on the low temperature side, you can enjoy the performance of low density felt with low thermal conductivity, demonstrating excellent heat insulation properties.
さらに、黒鉛シートを接合面と平行な外表面に配した場
合は、断熱性能がより向上する。Furthermore, when the graphite sheet is arranged on the outer surface parallel to the bonding surface, the heat insulation performance is further improved.
[実施例]
以下に、実施例に基づいて、本発明をより詳細に説明す
る。[Examples] The present invention will be described in more detail below based on Examples.
実施例1
嵩密度の大きな炭素繊維製フェルトを次のようにして作
製した。すなわち、ピッチ系炭素繊維(単繊維直径13
−1■ドナツク製)50重量%と、耐炎化処理したフェ
ノール樹脂繊維(商品名カイノール、日本カイノール社
製)50重量%とを混紡した。次いで、混紡ウェブを形
成し、二ドルパンチにより、嵩密度的0.13g/cj
のフェルトを作製した。そして、不活性雰囲気中、温度
950℃で焼成し炭化し、厚み約20wun、嵩密度0
.15g/−の嵩密度の大きなシート状炭素繊維製フェ
ルトAを作製した。Example 1 A carbon fiber felt with a large bulk density was produced as follows. That is, pitch-based carbon fiber (single fiber diameter 13
-1) 50% by weight (manufactured by Donutku Co., Ltd.) and 50% by weight of flame-retardant phenol resin fiber (trade name: Kynor, manufactured by Nippon Kynor Co., Ltd.) were blended. Next, a blended web is formed, and the bulk density is 0.13 g/cj by double punching.
felt was made. Then, it is fired and carbonized at a temperature of 950°C in an inert atmosphere, with a thickness of about 20 wun and a bulk density of 0.
.. A sheet-like carbon fiber felt A having a large bulk density of 15 g/- was produced.
また嵩密度の小さな炭素繊維製フェルトとして、ピッチ
系炭素繊維(単繊維直径13p1■ドナツク製)を用い
、上記と同様にニードルバンチし、厚み20M、嵩密度
的0.05g/−の嵩密度の小さなシート状炭素繊維製
フェルトBを作製した。In addition, as a carbon fiber felt with a small bulk density, pitch-based carbon fiber (single fiber diameter 13p1 made by Donatsuku) was used and needle-bunched in the same manner as above, with a thickness of 20M and a bulk density of 0.05g/-. A small sheet-like carbon fiber felt B was produced.
嵩密度の大きな炭素繊維製フェルトAと嵩密度の小さな
炭素繊維製フェルトBに、レゾール型フェノール樹脂(
30重量%メタノール溶液)を含浸率70重量%でそれ
ぞれ含浸させた。次いで、上記各炭素繊維フェルトA、
Bを積層し、プレス機で加圧した状態で、1時間かけて
温度170℃に昇温し、同温度で2時間保つことにより
、上記フェノール樹脂を硬化させた。そして、プレス機
から積層成形体を取出し、窒素ガス雰囲気中、1℃/分
の速度で昇温し、温度1300℃で3時間保持すること
により、焼成炭化して、厚み31 mmの目的とする層
状で、かつ嵩密度の異なる成形断熱材を得た。この成形
断熱材の厚み方向にスライスし、嵩密度分布を調べたと
ころ、一方の炭素繊維製フェルトは嵩密度0.22g/
aJ、他方の炭素繊維製フェルトは嵩密度0.08g/
−の範囲であった。このようにして得られた成形断熱材
は、高嵩密度側が高温側になるように配して使用するこ
とにより、優れた断熱性を発揮した。Carbon fiber felt A with high bulk density and carbon fiber felt B with low bulk density are combined with resol type phenolic resin (
30% by weight methanol solution) was impregnated at an impregnation rate of 70% by weight. Next, each of the above carbon fiber felts A,
The phenol resin was cured by laminating B and pressurizing it with a press, raising the temperature to 170° C. over 1 hour, and keeping at the same temperature for 2 hours. Then, the laminated molded body was taken out from the press machine, heated at a rate of 1°C/min in a nitrogen gas atmosphere, and held at a temperature of 1300°C for 3 hours to be sintered and carbonized to a desired thickness of 31 mm. A molded thermal insulation material having a layered structure and having different bulk densities was obtained. When this molded insulation material was sliced in the thickness direction and the bulk density distribution was examined, one carbon fiber felt had a bulk density of 0.22g/
aJ, the other carbon fiber felt has a bulk density of 0.08 g/
It was in the range of −. The molded heat insulating material thus obtained exhibited excellent heat insulating properties when used with the high bulk density side facing the high temperature side.
実施例2
実施外1の製造過程で得られた炭素繊維製フェルトA、
Bの積層体を真空中で、3℃/分の速度で昇温し、20
00℃で3時間保持し、黒鉛化することにより、厚み約
30Mの成形断熱材を得た。Example 2 Carbon fiber felt A obtained in the manufacturing process of Example 1,
The temperature of the laminate B was raised in vacuum at a rate of 3°C/min, and the temperature was increased to 20°C.
A molded heat insulating material with a thickness of about 30 M was obtained by holding at 00° C. for 3 hours and graphitizing it.
そして、上記実施例1と同様にして成形断熱材の嵩密度
分布を調べたところ、一方の炭素繊維製フェルトは嵩密
度0.21g/aJ、他方の炭素繊維製フェルトは嵩密
度0.08g/−であった。このようにして得られた成
形断熱材は、高嵩密度側が高温側になるように配して使
用することにより、優れた断熱性を発揮した。Then, when the bulk density distribution of the molded heat insulating material was examined in the same manner as in Example 1, one carbon fiber felt had a bulk density of 0.21 g/aJ, and the other carbon fiber felt had a bulk density of 0.08 g/aJ. -It was. The molded heat insulating material thus obtained exhibited excellent heat insulating properties when used with the high bulk density side facing the high temperature side.
第1図は本発明の一例である成形断熱材を示す概略断面
図、
第2図は第1図に示す成形断熱材における外部温度Tと
熱伝導率λと断熱材の嵩密度ρとの関係を示す模式図、
第3図(A)(B) (C)はそれぞれ本発明の成形断
熱材の積層状態の一例を示す概略断面図、第4図は成形
断熱材の温度分布を示す概略図、第5図は本発明の成形
断熱材の製造方法の一例を示す工程図、
第6図は本発明の成形断熱材の製造方法の他の例を示す
工程図、
第7図は外部雰囲気温度Tと熱伝導率λと断熱材の嵩密
度ρとの関係を示す模式図である。
(la) (lb) (lc) ・=炭素繊維製フェル
ト、(2a) (2b)・・・炭化物又は黒鉛化物、(
3)・・・黒鉛シートFig. 1 is a schematic cross-sectional view showing a molded heat insulating material which is an example of the present invention, and Fig. 2 is a relationship between external temperature T, thermal conductivity λ, and bulk density ρ of the heat insulating material in the molded heat insulating material shown in Fig. 1. 3(A), 3(B), and 3(C) are schematic cross-sectional views each showing an example of the laminated state of the molded heat insulating material of the present invention, and FIG. 4 is a schematic diagram showing the temperature distribution of the molded heat insulating material. , FIG. 5 is a process diagram showing an example of the method for manufacturing a molded heat insulating material of the present invention, FIG. 6 is a process chart showing another example of the method for manufacturing a molded heat insulating material of the present invention, and FIG. 7 is a process diagram showing an example of the method for manufacturing a molded heat insulating material of the present invention. FIG. 2 is a schematic diagram showing the relationship between T, thermal conductivity λ, and bulk density ρ of a heat insulating material. (la) (lb) (lc) = carbon fiber felt, (2a) (2b)...carbide or graphitide, (
3)...graphite sheet
Claims (2)
黒鉛化物で接合、又は黒鉛シートを介して、炭化物若し
くは黒鉛化物で接合された成形断熱材であって、各層を
形成する炭素繊維製フェルトの嵩密度が、各層内で略一
定であって、かつ接合面と直角な方向に嵩密度が段階的
に減少していることを特徴とする成形断熱材。1. A molded heat insulating material in which multiple layers of carbon fiber felt are bonded with carbide or graphitized material, or bonded with carbide or graphitized material via a graphite sheet, and the bulk density of the carbon fiber felt forming each layer is , a molded heat insulating material characterized in that the bulk density is substantially constant within each layer and gradually decreases in a direction perpendicular to the bonding surface.
ートを有する請求項1記載の成形断熱材。2. The molded insulation material according to claim 1, further comprising a graphite sheet on at least one outer surface parallel to the joint surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1049234A JP2607670B2 (en) | 1989-03-01 | 1989-03-01 | Molded insulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1049234A JP2607670B2 (en) | 1989-03-01 | 1989-03-01 | Molded insulation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02227244A true JPH02227244A (en) | 1990-09-10 |
JP2607670B2 JP2607670B2 (en) | 1997-05-07 |
Family
ID=12825207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1049234A Expired - Lifetime JP2607670B2 (en) | 1989-03-01 | 1989-03-01 | Molded insulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2607670B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000141526A (en) * | 1998-11-13 | 2000-05-23 | Nippon Carbon Co Ltd | Carbon fiber-forming heat insulation material |
JP2004527441A (en) * | 2001-01-10 | 2004-09-09 | アルバニー インターナショナル テクニウエィブ インコーポレイテッド | Thermal protection system with variable fiber density |
JP2008201125A (en) * | 2007-01-26 | 2008-09-04 | Ibiden Co Ltd | Sheet material and its manufacturing method, exhaust gas treatment device and its manufacturing method, and muffler |
CN102092138A (en) * | 2010-12-13 | 2011-06-15 | 成都飞机工业(集团)有限责任公司 | Method for automatically laying tape and preheating prepreg tape by hot air |
CN103467000A (en) * | 2013-09-11 | 2013-12-25 | 上海骐杰碳素材料有限公司 | Compound thermal insulation material manufactured by using waste fibers and manufacturing method thereof |
JP2014211221A (en) * | 2013-04-22 | 2014-11-13 | 大日本印刷株式会社 | Heat insulation member |
JP2017137200A (en) * | 2016-02-01 | 2017-08-10 | 大阪ガスケミカル株式会社 | Surface treated molding heat insulation material and manufacturing method therefor |
WO2024071096A1 (en) * | 2022-09-28 | 2024-04-04 | イビデン株式会社 | Heat insulating material |
WO2024203847A1 (en) * | 2023-03-31 | 2024-10-03 | イビデン株式会社 | Heat insulating material for combustion chamber, water heater, and boiler |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3915094B2 (en) | 2002-09-17 | 2007-05-16 | Smc株式会社 | Solenoid valve with terminal box |
US9458612B2 (en) | 2013-03-15 | 2016-10-04 | Delta Faucet Company | Integrated solenoid valve for an electronic faucet |
JP6602523B2 (en) | 2013-06-04 | 2019-11-06 | ニチアス株式会社 | Insulation material and method for producing insulation material |
CN111971438B (en) | 2017-11-21 | 2022-11-04 | 德尔塔阀门公司 | Electronic faucet and wireless control module |
-
1989
- 1989-03-01 JP JP1049234A patent/JP2607670B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000141526A (en) * | 1998-11-13 | 2000-05-23 | Nippon Carbon Co Ltd | Carbon fiber-forming heat insulation material |
JP2004527441A (en) * | 2001-01-10 | 2004-09-09 | アルバニー インターナショナル テクニウエィブ インコーポレイテッド | Thermal protection system with variable fiber density |
JP2008201125A (en) * | 2007-01-26 | 2008-09-04 | Ibiden Co Ltd | Sheet material and its manufacturing method, exhaust gas treatment device and its manufacturing method, and muffler |
CN102092138A (en) * | 2010-12-13 | 2011-06-15 | 成都飞机工业(集团)有限责任公司 | Method for automatically laying tape and preheating prepreg tape by hot air |
JP2014211221A (en) * | 2013-04-22 | 2014-11-13 | 大日本印刷株式会社 | Heat insulation member |
CN103467000A (en) * | 2013-09-11 | 2013-12-25 | 上海骐杰碳素材料有限公司 | Compound thermal insulation material manufactured by using waste fibers and manufacturing method thereof |
JP2017137200A (en) * | 2016-02-01 | 2017-08-10 | 大阪ガスケミカル株式会社 | Surface treated molding heat insulation material and manufacturing method therefor |
WO2024071096A1 (en) * | 2022-09-28 | 2024-04-04 | イビデン株式会社 | Heat insulating material |
WO2024203847A1 (en) * | 2023-03-31 | 2024-10-03 | イビデン株式会社 | Heat insulating material for combustion chamber, water heater, and boiler |
Also Published As
Publication number | Publication date |
---|---|
JP2607670B2 (en) | 1997-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1305268B1 (en) | Carbon-matrix composites compositions and methods related thereto | |
KR102664327B1 (en) | Carbon substrate for gas diffusion layer including carbon fibers with unidirectional orientation and gas diffusion layer emplying the same | |
JP5205671B2 (en) | Heat resistant composite material | |
US20120219778A1 (en) | Composite material containing soft carbon fiber felt and hard carbon fiber felt | |
EP1908740B1 (en) | CARBON-FIBER-REINFORCED SiC COMPOSITE MATERIAL AND SLIDE MEMBER | |
US20130011602A1 (en) | C/c composite material and method of manufacturing the same | |
JP2607670B2 (en) | Molded insulation | |
WO2019087846A1 (en) | Molded heat insulation material with surface layer and method for manufacturing same | |
JP2015174807A (en) | Carbon fiber-based heat insulation material, and manufacturing method of the same | |
KR101628461B1 (en) | Carbon fiber insulator and preparing method for thereof | |
JPH03121398A (en) | Heat insulating material | |
WO2020059819A1 (en) | Carbon-fiber-molded heat insulator and manufacturing method thereof | |
JPH03248838A (en) | Heat insulation material | |
JPH10291869A (en) | Carbon heat insulating material and its production | |
JP2007012440A (en) | Porous carbon material for fuel cell, thermal conductive member made of carbon fiber reinforced plastic, and manufacturing method of these | |
JP2019043099A (en) | Carbon fiber sheet laminate and manufacturing method therefor | |
JP2018076963A (en) | Molded adiabatic material and process of manufacture thereof | |
JPH0314665A (en) | High density felt made of carbon fiber and its production | |
JP2008044201A (en) | Carbon fiber sheet and its manufacturing method | |
JPH03277538A (en) | Heat insulating material | |
JP2594952B2 (en) | Molded heat insulating material and its manufacturing method | |
JPH03141170A (en) | Heat-insulation material and production thereof | |
WO2024071096A1 (en) | Heat insulating material | |
JPH0714798Y2 (en) | Press members for high temperature and high pressure press | |
JPH05283264A (en) | Electrode and capacitor using it |