WO2019087846A1 - Molded heat insulation material with surface layer and method for manufacturing same - Google Patents
Molded heat insulation material with surface layer and method for manufacturing same Download PDFInfo
- Publication number
- WO2019087846A1 WO2019087846A1 PCT/JP2018/039191 JP2018039191W WO2019087846A1 WO 2019087846 A1 WO2019087846 A1 WO 2019087846A1 JP 2018039191 W JP2018039191 W JP 2018039191W WO 2019087846 A1 WO2019087846 A1 WO 2019087846A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon fiber
- sheet
- expanded graphite
- heat insulating
- insulating material
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/83—Carbon fibres in a carbon matrix
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
Definitions
- the present invention relates to a molded heat insulating material using carbon fiber, and more particularly to a molded heat insulating material provided with a surface layer for enhancing durability.
- Carbon fiber thermal insulation materials are used in various applications because they are excellent in thermal stability and thermal insulation performance and are lightweight.
- Such heat insulating materials include carbon fiber felts formed by entanglement of carbon fibers, and carbon fiber-based molded heat insulating materials containing carbon fibers and a carbonized product of a resin material.
- the carbon fiber felt has an advantage of being excellent in flexibility
- the carbon fiber based molded heat insulating material has an advantage of being excellent in shape stability and capable of being finely processed.
- a molded heat insulating material using carbon fibers includes a felt type molded heat insulating material in which a resin material is impregnated with carbon fiber felt in which carbon fibers are entangled and carbonized, or a carbon fiber milled by a wet method or a dry method (short There is a short fiber type molded heat insulating material obtained by molding and carbonizing a fiber) with a synthetic resin.
- a carbon fiber-based molded heat insulating material is excellent in thermal stability, heat insulating performance, and shape stability, so a crystal growth furnace such as silicon, sapphire, silicon carbide, etc., a heat treatment furnace used for sintering metals and ceramics, It is used as a heat insulating material for high temperature furnaces such as hot isostatic pressure furnaces (HIP furnaces) and vacuum deposition furnaces.
- HIP furnaces hot isostatic pressure furnaces
- an oxidizing gas such as oxygen gas is mixed into the production atmosphere.
- Oxygen gas is highly active (reactive), and the carbon fiber-based heat insulating material reacts with oxygen gas to produce carbon oxides (carbon monoxide, carbon dioxide, etc.).
- the carbon fiber is particularly deteriorated, the skeletal structure constituted by the carbon fiber is broken, and the heat insulating effect obtained by the skeletal structure forming a large number of spaces is lowered.
- carbon fibers are pulverized and released into the atmosphere in the furnace, which may lower the product quality.
- Patent Document 1 proposes a technique for bonding an expanded graphite sheet obtained by rolling expanded graphite to the surface of a shaped heat insulating material.
- the substantially graphite-impregnated expanded graphite sheet can prevent the penetration of gas into the interior of the shaped heat insulating material and can prevent the deterioration of the shaped heat insulating material.
- the inventors of the present invention examined the technology of Patent Document 1 and found that there were the following problems.
- the expanded graphite sheet is formed by rolling the expanded graphite into a sheet, and there is no binder component for binding between the graphite layers. For this reason, when the expanded graphite sheet is used in a reactive gas atmosphere for a long time or used in an environment susceptible to oxidation wear, deterioration such as dissociation becomes noticeable on the surface, and exfoliation of the graphite layer, etc. There is a problem that the gas permeation preventing function is lost and the life of the molded heat insulating material can not be extended.
- the present invention has been made to solve the above-mentioned problems, and it has been possible to suppress the permeation of gas into the inside of the molded heat insulating material over a long period of time without causing the decrease of the heat insulating effect and the unnecessary cost increase. Intended to provide thermal insulation.
- the present invention concerning a molded heat insulating material for solving the above-mentioned subject is constituted as follows.
- a carbon fiber based molded heat insulating material, an expanded graphite sheet laminated on the carbon fiber based molded heat insulating material, and a carbon fiber sheet protective layer laminated in contact with the expanded graphite sheet, the carbon fiber sheet protective layer A molded thermal insulating material with a surface layer comprising a carbon fiber non-woven sheet in which carbon fibers are entangled and a carbonaceous matrix covering the carbon fiber surface of the carbon fiber non-woven sheet.
- an expanded-graphite sheet and a carbon fiber sheet protective layer are laminated
- the expanded graphite sheet acts to prevent the permeation of gas into the inside of the molded heat insulating material.
- the carbon fiber sheet protective layer reacts with the oxidizing gas prior to the expanded graphite sheet when the oxidizing gas is generated, early deterioration of the expanded graphite sheet is prevented.
- the gas permeation preventing effect by the expanded graphite sheet can be obtained for a long time. That is, the surface layer composed of the expanded graphite sheet and the carbon fiber sheet protective layer acts to prevent the permeation of the gas into the molded heat insulating material for a long time.
- a commercially available carbon fiber-based molded heat insulating material can be used, and for example, the felt-based molded heat insulating material described above or a short fiber-based molded heat insulating material can be used.
- an expanded graphite sheet can use a commercially available thing.
- a carbon fiber nonwoven fabric sheet a commercially available thing can be used, for example, a carbon fiber sheet, carbon fiber paper, and carbon fiber felt can be used.
- the carbonaceous matrix covers the surface of the carbon fiber and bonds the carbon fiber sheet protective layer and the expanded graphite sheet.
- the matrix is not particularly limited as long as it is carbonaceous, but is more preferably a carbonized product of a thermosetting resin.
- the expanded graphite sheet may be laminated in contact with the carbon fiber-based molded heat insulating material, and a layer for improving adhesion may be interposed between the two.
- a carbonized product obtained by carbonizing an adhesive resin such as a thermosetting resin be present in the vicinity of the interface between the two.
- an expanded graphite sheet is one layer.
- the carbon fiber sheet protective layer is in direct contact with the expanded graphite sheet.
- the carbon fiber sheet protective layer may have a configuration in which two or more sheets are laminated in order to obtain a desired thickness.
- the carbon fiber sheet protective layer preferably has a bulk density of 0.1 to 0.5 g / cm 3 and a thickness of 0.3 to 3 mm.
- the bulk density of the carbon fiber sheet protective layer is preferably 0.1 to 0.5 g / cm 3 , more preferably 0.2 to 0.4 g / cm 3 , and 0. More preferably, it is 2 to 0.3 g / cm 3 .
- the thickness of the carbon fiber sheet protective layer is preferably 0.3 to 3 mm, more preferably 0.4 to 2.0 mm, and 0.5 to 1.5 mm. More preferable.
- the carbon fiber which comprises a carbon fiber sheet protective layer is isotropic pitch based carbon fiber.
- An isotropic pitch carbon fiber is preferable because it is soft and hard to damage the expanded graphite sheet and has good adhesion to the expanded graphite sheet.
- the 1st this invention concerning the manufacturing method of the forming heat insulating material for solving the above-mentioned subject is constituted as follows.
- a resin-impregnated carbon fiber nonwoven fabric sheet preparing step of impregnating a carbon fiber nonwoven fabric sheet with a thermosetting resin before thermosetting, and the expanded graphite sheet surface of a carbon fiber-based molded heat insulating material having an expanded graphite sheet attached to the surface,
- Surface-layer-formed heat insulation having a binding step of binding to a sheet surface, and a carbonization step of heat-treating the bound laminate in an inert gas atmosphere to carbonize the thermosetting resin Material manufacturing method.
- molding heat insulating material for solving the said subject is comprised as follows.
- a carbon fiber structure in which carbon fibers are entangled is impregnated with a thermosetting resin before thermosetting to form a prepreg, and a resin-impregnated carbon in which a carbon fiber nonwoven fabric sheet is impregnated with a thermosetting resin before thermosetting.
- the difference between the above two manufacturing methods is that, when laminating the resin-impregnated carbon fiber non-woven fabric sheet, is the molded heat insulating material part already carbonized (first manufacturing method of the present invention) or not carbonized (second example) Of the present invention).
- first manufacturing method of the present invention is the molded heat insulating material part already carbonized (first manufacturing method of the present invention) or not carbonized (second example) Of the present invention).
- second example carbonized
- the carbon fiber structure in which the carbon fibers are entangled may be either of a felt type or a short fiber type.
- FIG. 1 is a cross-sectional micrograph of the vicinity of the surface of the surface layer-formed formed heat insulating material according to the present invention.
- FIG. 2 is a photomicrograph showing the state of the surface of the expanded graphite sheet after the durability test 2 of the molded thermal insulator with a surface layer according to Comparative Example 1.
- the surface layer-provided formed heat insulating material according to the present invention comprises a carbon fiber-based formed heat insulating material, an expanded graphite sheet laminated on the carbon fiber-based formed heat insulation material, and a carbon fiber sheet protective layer laminated in contact with the expanded graphite sheet.
- the carbon fiber sheet protective layer has a carbon fiber non-woven sheet in which carbon fibers are entangled and a matrix made of a carbonaceous material covering the carbon fiber surface of the carbon fiber non-woven sheet.
- the surface layer-provided molded heat insulating material according to the present invention has a structure in which a surface layer consisting of an expanded graphite sheet and a carbon fiber sheet protective layer is provided on a carbon fiber based molded heat insulating material,
- the carbon fiber sheet protective layer is the outermost layer.
- the expanded graphite sheet acts to prevent the permeation of gas into the inside of the molded heat insulating material.
- the carbon fiber sheet protective layer reacts with the oxidizing gas prior to the expanded graphite sheet when the oxidizing gas is generated, early wear of the expanded graphite sheet is prevented.
- the gas permeation preventing effect by the expanded graphite sheet can be obtained for a long time. That is, the surface layer of the two-layered structure of the expanded graphite sheet and the carbon fiber sheet protective layer acts to prevent the permeation of the gas into the inside of the molded heat insulating material for a long time.
- a layer may be provided between the carbon fiber-based molded heat insulating material and the expanded graphite sheet to enhance the adhesiveness between the two.
- This layer can be formed, for example, by carbonizing a carbon fiber non-woven sheet impregnated with a thermosetting resin.
- the adhesive layer may not be provided if both can be firmly adhered without the adhesive layer.
- the carbon fiber forming the carbon fiber-based molded heat insulating material, the adhesive layer, the carbon fiber sheet protective layer and the like is not particularly limited, and, for example, anisotropic or isotropic pitch-based material derived from coal or petroleum
- the carbon fibers of polyacrylonitrile (PAN), rayon, phenol, cellulose and the like can be used singly or in combination.
- isotropic pitch carbon fibers are preferable because they are soft and hard to damage the graphite sheet and have good adhesion to the graphite sheet.
- the carbon fiber-based molded heat insulating material is not particularly limited, and a commercially available one can be appropriately used. For example, a laminate of a plurality of carbon fiber sheets having a thickness of about 3 to 15 mm can be used. Also, the length and width are not particularly limited. In addition, as the microscopic structure of carbon fibers, it is preferable to use one in which carbon fibers oriented in random directions intersect in a complex manner.
- the expanded graphite sheet is not particularly limited, and commercially available ones can be appropriately used.
- the carbon fiber non-woven sheet constituting the carbon fiber sheet protective layer is not particularly limited, and for example, one having a thickness of about 0.3 to 3 mm can be used. Also, the length and width are not particularly limited. Moreover, as a microscopic structure of the carbon fiber non-woven fabric sheet, it is preferable to use one in which carbon fibers oriented in a random direction in the most dimensional direction or in the plane direction intersect in a complicated manner.
- these materials may be cut after manufacturing the formed heat insulating material with a surface layer using a long or long material, or may be cut in advance into the size of the formed heat insulating material with a surface layer.
- the matrix covers the entire surface of the carbon fiber or a part of the surface of the carbon fiber, or is present so as to fill in the spaces between the carbon fibers.
- the carbon matrix may be carbonaceous, and the compound from which it is derived is not particularly limited. Especially, it is preferable that it is a carbonization thing of the resin material which can be impregnated to a carbon fiber nonwoven fabric sheet.
- thermosetting resins to be impregnated into the adhesive layer and the carbon fiber non-woven sheet be the same material.
- thermosetting resins such as phenol resin, furan resin, polyimide resin, epoxy resin and the like are preferable.
- phenol resin furan resin
- polyimide resin epoxy resin
- the expanded graphite sheet and the carbon fiber non-woven sheet can be easily and firmly bonded by heat curing.
- thermosetting resin may be contained as it is in the carbon fiber non-woven sheet or may be diluted with a solvent and contained.
- solvent alcohols such as methyl alcohol and ethyl alcohol can be used.
- the bulk density of the molded heat insulating material is preferably in the 0.10 ⁇ 0.30g / cm 3, more preferably 0.12 ⁇ 0.20g / cm 3, 0.13 ⁇ 0.16g It is further more preferable that it is / cm ⁇ 3 >.
- the thickness of the molded heat insulating material may be appropriately set in accordance with the desired heat insulating performance and the like.
- the bulk density of the expanded graphite sheet is preferably in the 0.5 ⁇ 1.5g / cm 3, more preferably 0.6 ⁇ 1.3g / cm 3, 0.8 ⁇ 1.1g It is further more preferable that it is / cm ⁇ 3 >.
- the thickness of the expanded graphite sheet is preferably 0.1 to 1.5 mm, more preferably 0.2 to 1.0 mm, and still more preferably 0.3 to 0.5 mm.
- thermosetting resin may be used as it is, may be used after being dissolved in an alcohol solvent such as methanol or ethanol, or may be further configured to contain carbonaceous particles or short fibers.
- the shape of the formed heat insulating material is not particularly limited, and may be, for example, a rectangular solid or a cylindrical shape.
- Step of making resin impregnated carbon fiber non-woven sheet A commercially available carbon fiber non-woven sheet can be used. A carbon fiber non-woven sheet is impregnated with a thermosetting resin solution by coating or spraying to form a resin-impregnated carbon fiber non-woven sheet.
- the resin-impregnated carbon fiber non-woven fabric sheet is laminated on the expanded graphite sheet of the molded heat insulating material to which the expanded graphite sheet is adhered, to form a laminate. Two or more resin-impregnated carbon fiber non-woven sheets may be laminated.
- the laminate is heated to a temperature above the curing temperature of the thermosetting resin while being pressurized using a press to a desired thickness, and held for a predetermined time (for example, 1 to 10 hours) to laminate the laminate. Bond the body.
- Carbonization step The bonded laminate is heated in an inert atmosphere at 1000 to 2500 ° C. for a predetermined time (eg, 1 to 20 hours) to carbonize the thermosetting resin to obtain a shaped heat insulating material with a surface layer. .
- a predetermined time eg, 1 to 20 hours
- the resin-impregnated carbon fiber nonwoven fabric sheet laminated on the expanded graphite sheet becomes a carbon fiber sheet protective layer.
- this layer becomes an adhesive layer by carbonization.
- the second manufacturing method is different from the first manufacturing method in that a non-carbonized material is used as the molded heat insulating material.
- a non-carbonized material is used as the molded heat insulating material.
- thermosetting resin A carbon fiber structure in which carbon fibers are entangled is impregnated with a thermosetting resin before thermosetting, to form a prepreg.
- a carbon fiber structure a felt type thing and a short fiber type thing can be used.
- carbon fibers are randomly entangled three-dimensionally is used.
- the thermosetting resin may be the same as that impregnated into the carbon fiber non-woven sheet, and may be impregnated in a solvent.
- Step of making resin impregnated carbon fiber non-woven sheet In the same manner as in the first production method, a carbon fiber non-woven sheet is impregnated with a thermosetting resin before thermosetting, to prepare a resin-impregnated carbon fiber non-woven sheet.
- thermosetting resin may be interposed between the prepreg and the expanded graphite sheet, or an adhesive solution such as a thermosetting resin may be expanded graphite. It may be applied to the sheet surface and / or the shaped insulation surface.
- thermosetting resin when a sufficient amount of thermosetting resin is present at the interface with the expanded graphite sheet during pressing in the binding step, such means may not be taken.
- the carbon fiber paper impregnated with the thermosetting resin the same one as the resin-impregnated carbon fiber nonwoven fabric sheet can be used.
- the binding step and the carbonization step are performed in the same manner as the first manufacturing method.
- the prepreg becomes a carbon fiber-based molded heat insulating material
- the resin-impregnated carbon fiber non-woven sheet becomes a carbon fiber sheet protective layer.
- a graphite structure such as carbon fiber or matrix may develop, but in the present invention, all carbonaceous materials have a structure comprising amorphous carbon, It means a structure composed of graphitic carbon and a structure including all the structures in which both are mixed.
- Example 1 A molded heat insulating material (having no surface layer) is a felt-based molded heat insulating material made of commercially available pitch-based carbon fiber (DON-1000-R made by Osaka Gas Chemical Co., Ltd. Shape: thickness 30 mm, width 1 m, length 1 A 0.5 m flat plate, bulk density: 0.13 g / cm 3 ) was used.
- carbon paper consisting of commercially available pitch-based carbon fiber (Donacarbo Paper S-255AH made by Osaka Gas Chemicals, thickness 2.4 mm, width 1 m, length 1.5 m, basis weight: 75 g / m 2 ) 70 parts by weight of resin was uniformly impregnated to prepare a carbon fiber non-woven sheet impregnated with a thermosetting resin.
- pitch-based carbon fiber Donacarbo Paper S-255AH made by Osaka Gas Chemicals, thickness 2.4 mm, width 1 m, length 1.5 m, basis weight: 75 g / m 2
- thermosetting resin-impregnated carbon fiber non-woven fabric sheet is placed on the molded heat insulating material, and an expansive graphite sheet (Perman foil PF-38 shape: 0.38 mm thick) of the same width and length is placed thereon. Furthermore, one sheet of the thermosetting resin-impregnated carbon fiber non-woven fabric sheet was placed on the expanded graphite sheet to form a laminate. After that, the laminate was held for 30 minutes at a surface pressure of 0.05 MPa and a heating temperature of 200 ° C. for 30 minutes using a heat compression press, and the thermosetting resin was thermally cured to adhere the laminate.
- an expansive graphite sheet Perman foil PF-38 shape: 0.38 mm thick
- the laminate after heat curing is placed in a heat treatment furnace, and heat treatment is carried out under inert atmosphere and maintained at 2000 ° C. for 5 hours to carbonize the thermosetting resin, and the surface comprising an expanded graphite sheet and a carbon fiber sheet protective layer A molded insulation provided with layers was obtained.
- the bulk density of the carbon fiber sheet protective layer was 0.24 g / cm 3 and the thickness was 0.6 mm.
- thermosetting resin-impregnated carbon fiber non-woven fabric sheet was not laminated on the expanded graphite sheet.
- FIG. 2 is a photomicrograph showing the state of the surface of the expanded graphite sheet after the durability test 2 of the molded thermal insulator with a surface layer according to Comparative Example 1. In Comparative Example 1, as shown in FIG. 2, deterioration such as dissociation was observed in the expanded graphite sheet.
- the consumption rate (mass reduction ratio of the molded heat insulating material with the surface layer) after 6 hours from the start of the test is 18.8%, and No exfoliation was seen.
- the wear rate after 6 hours from the start of the test was 26.3%, and peeling of the expanded graphite sheet was observed at this time.
- the present invention is a simple method of providing the surface layer of the two-layer structure of the expanded graphite sheet and the carbon fiber sheet protective layer, and the surface which can suppress deterioration of the molded heat insulator by gas for a long time It can be seen that a layered molded insulation can be realized.
- FIG. 1 shows a cross-sectional micrograph of the vicinity of the surface layer of the molded heat insulating material with surface layer according to the first embodiment.
- an adhesive sheet 3 having gaps between carbon fibers smaller than the molded heat insulator 4, an expanded graphite sheet 2 having a dense structure, and an adhesive sheet 3
- a carbon fiber sheet protective layer 1 substantially the same as the above is laminated in order.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Thermal Insulation (AREA)
- Ceramic Products (AREA)
Abstract
The present invention provides, at a low cost, a long-life molded heat insulation material in which a surface layer is formed and which can prevent the deterioration of heat insulation performance due to gas. This molded heat insulation material with a surface layer includes: a carbon fiber-based molded heat insulation material; an expanded graphite sheet laminated on the carbon fiber-based molded heat insulation material; and a carbon fiber sheet protective layer laminated in contact with the expanded graphite sheet, wherein the carbon fiber sheet protective layer has: a carbon fiber non-woven fabric sheet in which carbon fibers are entangled; and a carbonaceous matrix covering the carbon fiber surface of the carbon fiber non-woven fabric sheet.
Description
本発明は炭素繊維を用いた成形断熱材に関し、詳しくは耐久性を高めるための表面層が設けられた成形断熱材に関する。
The present invention relates to a molded heat insulating material using carbon fiber, and more particularly to a molded heat insulating material provided with a surface layer for enhancing durability.
炭素繊維系の断熱材は、熱的安定性や断熱性能に優れ且つ軽量であることから、種々の用途で使用されている。このような断熱材には、炭素繊維を交絡してなる炭素繊維フェルトや、炭素繊維と樹脂材料の炭素化物とを含んだ炭素繊維系成形断熱材がある。炭素繊維フェルトは、可とう性に優れるという長所を有し、炭素繊維系成形断熱材は、形状安定性に優れ、微細な加工が可能であるという長所を有する。
BACKGROUND OF THE INVENTION Carbon fiber thermal insulation materials are used in various applications because they are excellent in thermal stability and thermal insulation performance and are lightweight. Such heat insulating materials include carbon fiber felts formed by entanglement of carbon fibers, and carbon fiber-based molded heat insulating materials containing carbon fibers and a carbonized product of a resin material. The carbon fiber felt has an advantage of being excellent in flexibility, and the carbon fiber based molded heat insulating material has an advantage of being excellent in shape stability and capable of being finely processed.
炭素繊維を用いた成形断熱材には、炭素繊維を交絡してなる炭素繊維フェルトに樹脂材料を含浸させ炭素化させたフェルト系の成形断熱材や、湿式法あるいは乾式法で炭素繊維ミルド(短繊維)を合成樹脂とともに成形し炭素化させたショートファイバー系の成形断熱材がある。
A molded heat insulating material using carbon fibers includes a felt type molded heat insulating material in which a resin material is impregnated with carbon fiber felt in which carbon fibers are entangled and carbonized, or a carbon fiber milled by a wet method or a dry method (short There is a short fiber type molded heat insulating material obtained by molding and carbonizing a fiber) with a synthetic resin.
何れの断熱材を使用するかは、使用目的や用途に応じて適宜選択される。炭素繊維系成形断熱材は、熱的安定性、断熱性能に優れ且つ形状安定性に優れることから、シリコン、サファイア、炭化ケイ素などの結晶成長炉、金属やセラミックスの焼結に用いられる熱処理炉や熱間等方圧加圧炉(HIP炉)、真空蒸着炉等の高温炉の断熱材として使用されている。
Which heat insulating material is used is appropriately selected according to the purpose of use and application. A carbon fiber-based molded heat insulating material is excellent in thermal stability, heat insulating performance, and shape stability, so a crystal growth furnace such as silicon, sapphire, silicon carbide, etc., a heat treatment furnace used for sintering metals and ceramics, It is used as a heat insulating material for high temperature furnaces such as hot isostatic pressure furnaces (HIP furnaces) and vacuum deposition furnaces.
ところが、高温炉内では、酸素ガスなどの酸化性のガスが製造雰囲気に混入したりする。酸素ガスは活性(反応性)が高く、炭素繊維系成形断熱材と酸素ガスとが反応して炭素酸化物(一酸化炭素、二酸化炭素等)が生じる。これにより特に炭素繊維が劣化し、炭素繊維により構成される骨格構造が崩れ、当該骨格構造が多数の空間を形成することにより得られる断熱作用が低下する。また、この劣化により特に炭素繊維が粉化して炉内雰囲気中に放出されて、製品品質を低下させるというおそれもある。
However, in the high temperature furnace, an oxidizing gas such as oxygen gas is mixed into the production atmosphere. Oxygen gas is highly active (reactive), and the carbon fiber-based heat insulating material reacts with oxygen gas to produce carbon oxides (carbon monoxide, carbon dioxide, etc.). As a result, the carbon fiber is particularly deteriorated, the skeletal structure constituted by the carbon fiber is broken, and the heat insulating effect obtained by the skeletal structure forming a large number of spaces is lowered. Further, due to this deterioration, in particular, carbon fibers are pulverized and released into the atmosphere in the furnace, which may lower the product quality.
特に、炉内を常圧付近又は高圧にしたり、アルゴンガスや窒素ガスを流したりする熱処理炉やHIP炉では、気流や圧力差によって成形断熱材内部に酸化性ガスが浸透しやすく、上記問題が顕著に現れることになる。
In particular, in heat treatment furnaces or HIP furnaces in which the inside of the furnace is near normal pressure or high pressure, or argon gas or nitrogen gas flows, oxidizing gas is likely to penetrate inside the molded heat insulating material due to air flow or pressure difference. It will be noticeable.
この問題を解決するため、特許文献1は、膨張黒鉛を圧延して得られる膨張黒鉛シートを成形断熱材の表面に接着する技術を提案している。
In order to solve this problem, Patent Document 1 proposes a technique for bonding an expanded graphite sheet obtained by rolling expanded graphite to the surface of a shaped heat insulating material.
この技術によると、実質的にガス不浸透である膨張黒鉛シートが、成形断熱材の内部へのガスの浸透を防止し、成形断熱材の劣化を防止できるとされる。
According to this technique, it is said that the substantially graphite-impregnated expanded graphite sheet can prevent the penetration of gas into the interior of the shaped heat insulating material and can prevent the deterioration of the shaped heat insulating material.
本発明者が上記特許文献1の技術を検討したところ、次のような問題点があることを知った。膨張黒鉛シートは、膨張黒鉛を圧延してシート状にしているものであり、黒鉛の層と層との間を結着させるバインダー成分は存在していない。このため、膨張黒鉛シートは、反応性ガス雰囲気下で長期間使用したり、酸化損耗が起きやすい環境で使用したりすると、表面に解離などの劣化が目立つようになるとともに、黒鉛層の剥離等が進行してガス浸透防止機能を失ってしまい、成形断熱材の長寿命化を図れなくなるという課題がある。
The inventors of the present invention examined the technology of Patent Document 1 and found that there were the following problems. The expanded graphite sheet is formed by rolling the expanded graphite into a sheet, and there is no binder component for binding between the graphite layers. For this reason, when the expanded graphite sheet is used in a reactive gas atmosphere for a long time or used in an environment susceptible to oxidation wear, deterioration such as dissociation becomes noticeable on the surface, and exfoliation of the graphite layer, etc. There is a problem that the gas permeation preventing function is lost and the life of the molded heat insulating material can not be extended.
本発明は、上記の課題を解決するためになされたものであり、断熱作用の低下や無用なコスト高を招くことなく、成形断熱材内部へのガスの浸透を長期間にわたって抑制し得た成形断熱材を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and it has been possible to suppress the permeation of gas into the inside of the molded heat insulating material over a long period of time without causing the decrease of the heat insulating effect and the unnecessary cost increase. Intended to provide thermal insulation.
上記課題を解決するための成形断熱材に係る本発明は、次のように構成されている。
炭素繊維系成形断熱材と、前記炭素繊維系成形断熱材に積層された膨張黒鉛シートと、前記膨張黒鉛シートに接して積層された炭素繊維シート保護層と、を備え、前記炭素繊維シート保護層は、炭素繊維を交絡させた炭素繊維不織布シートと炭素繊維不織布シートの炭素繊維表面を被覆する炭素質からなるマトリックスと、を有する表面層付き成形断熱材。 The present invention concerning a molded heat insulating material for solving the above-mentioned subject is constituted as follows.
A carbon fiber based molded heat insulating material, an expanded graphite sheet laminated on the carbon fiber based molded heat insulating material, and a carbon fiber sheet protective layer laminated in contact with the expanded graphite sheet, the carbon fiber sheet protective layer A molded thermal insulating material with a surface layer comprising a carbon fiber non-woven sheet in which carbon fibers are entangled and a carbonaceous matrix covering the carbon fiber surface of the carbon fiber non-woven sheet.
炭素繊維系成形断熱材と、前記炭素繊維系成形断熱材に積層された膨張黒鉛シートと、前記膨張黒鉛シートに接して積層された炭素繊維シート保護層と、を備え、前記炭素繊維シート保護層は、炭素繊維を交絡させた炭素繊維不織布シートと炭素繊維不織布シートの炭素繊維表面を被覆する炭素質からなるマトリックスと、を有する表面層付き成形断熱材。 The present invention concerning a molded heat insulating material for solving the above-mentioned subject is constituted as follows.
A carbon fiber based molded heat insulating material, an expanded graphite sheet laminated on the carbon fiber based molded heat insulating material, and a carbon fiber sheet protective layer laminated in contact with the expanded graphite sheet, the carbon fiber sheet protective layer A molded thermal insulating material with a surface layer comprising a carbon fiber non-woven sheet in which carbon fibers are entangled and a carbonaceous matrix covering the carbon fiber surface of the carbon fiber non-woven sheet.
上記本発明では、炭素繊維系成形断熱材上に、膨張黒鉛シートと、炭素繊維シート保護層と、が順に積層されている。ここで、膨張黒鉛シートは、成形断熱材内部へのガスの浸透を防止するように作用する。また、炭素繊維シート保護層は、酸化性ガスが発生した場合に、膨張黒鉛シートに先んじて酸化性ガスと反応するため、膨張黒鉛シートの早期の劣化が防止される。この結果、膨張黒鉛シートによるガス浸透防止効果を長期間にわたって得ることができる。つまり、膨張黒鉛シートおよび炭素繊維シート保護層からなる表面層は、ガスの成形断熱材内部への浸透を長期間にわたって防止するように作用する。
In the said invention, an expanded-graphite sheet and a carbon fiber sheet protective layer are laminated | stacked in order on the carbon fiber type | mold heat insulation material. Here, the expanded graphite sheet acts to prevent the permeation of gas into the inside of the molded heat insulating material. In addition, since the carbon fiber sheet protective layer reacts with the oxidizing gas prior to the expanded graphite sheet when the oxidizing gas is generated, early deterioration of the expanded graphite sheet is prevented. As a result, the gas permeation preventing effect by the expanded graphite sheet can be obtained for a long time. That is, the surface layer composed of the expanded graphite sheet and the carbon fiber sheet protective layer acts to prevent the permeation of the gas into the molded heat insulating material for a long time.
ここで、炭素繊維系成形断熱材は、市販のものを使用することができ、たとえば上述したフェルト系の成形断熱材や、ショートファイバー系の成形断熱材を使用できる。また、膨張黒鉛シートは、市販のものを使用することができる。また、炭素繊維不織布シートとしては、市販のものを用いることができ、たとえば炭素繊維シート、炭素繊維ペーパーや炭素繊維フェルトを用いることができる。
Here, a commercially available carbon fiber-based molded heat insulating material can be used, and for example, the felt-based molded heat insulating material described above or a short fiber-based molded heat insulating material can be used. Moreover, an expanded graphite sheet can use a commercially available thing. Moreover, as a carbon fiber nonwoven fabric sheet, a commercially available thing can be used, for example, a carbon fiber sheet, carbon fiber paper, and carbon fiber felt can be used.
また、炭素質からなるマトリックスは、炭素繊維表面を被覆するとともに、炭素繊維シート保護層と膨張黒鉛シートとを結着する。マトリックスは炭素質であれば特に限定はされないが、熱硬化性樹脂の炭素化物であることがより好ましい。
The carbonaceous matrix covers the surface of the carbon fiber and bonds the carbon fiber sheet protective layer and the expanded graphite sheet. The matrix is not particularly limited as long as it is carbonaceous, but is more preferably a carbonized product of a thermosetting resin.
また、膨張黒鉛シートは、炭素繊維系成形断熱材に接して積層されていてもよく、両者の間に接着性を高める層が介在していてもよい。膨張黒鉛シートを成形断熱材に接して積層する場合には、熱硬化性樹脂などの接着樹脂が炭素化してなる炭素化物が、両者の界面近傍に存在している構成とすることが好ましい。また、膨張黒鉛シートを2層以上積層するとコスト高になるため、膨張黒鉛シートは1層であることが好ましい。
In addition, the expanded graphite sheet may be laminated in contact with the carbon fiber-based molded heat insulating material, and a layer for improving adhesion may be interposed between the two. When laminating an expanded graphite sheet in contact with a molded heat insulating material, it is preferable that a carbonized product obtained by carbonizing an adhesive resin such as a thermosetting resin be present in the vicinity of the interface between the two. Moreover, since it will become expensive if it laminates | stacks two or more layers of expanded graphite sheets, it is preferable that an expanded graphite sheet is one layer.
この一方、炭素繊維シート保護層は、膨張黒鉛シートに直接接している。炭素繊維シート保護層は、所望の厚みとするために2枚以上積層された構成としてもよい。
On the other hand, the carbon fiber sheet protective layer is in direct contact with the expanded graphite sheet. The carbon fiber sheet protective layer may have a configuration in which two or more sheets are laminated in order to obtain a desired thickness.
上記構成において、炭素繊維シート保護層は、かさ密度が0.1~0.5g/cm3であり、厚みが0.3~3mmであることが好ましい。
In the above configuration, the carbon fiber sheet protective layer preferably has a bulk density of 0.1 to 0.5 g / cm 3 and a thickness of 0.3 to 3 mm.
炭素繊維シート保護層のかさ密度が小さくなるに伴い、膨張黒鉛シートの保護効果が小さくなる。他方、炭素繊維シート保護層のかさ密度が大きくなるに伴い、膨張黒鉛シートとの接着が難しくなる。両者のバランスから、炭素繊維シート保護層のかさ密度は、0.1~0.5g/cm3であることが好ましく、0.2~0.4g/cm3であることがより好ましく、0.2~0.3g/cm3であることがさらに好ましい。
As the bulk density of the carbon fiber sheet protective layer decreases, the protective effect of the expanded graphite sheet decreases. On the other hand, as the bulk density of the carbon fiber sheet protective layer increases, adhesion to the expanded graphite sheet becomes difficult. From the balance of the two, the bulk density of the carbon fiber sheet protective layer is preferably 0.1 to 0.5 g / cm 3 , more preferably 0.2 to 0.4 g / cm 3 , and 0. More preferably, it is 2 to 0.3 g / cm 3 .
また、炭素繊維シート保護層の厚みが小さくなるに伴い、膨張黒鉛シートの保護効果が小さくなる。他方、炭素繊維シート保護層の厚みが大きくなると、その分コスト高になる。両者のバランスから、炭素繊維シート保護層の厚みは、0.3~3mmであることが好ましく、0.4~2.0mmであることがより好ましく、0.5~1.5mmであることがさらに好ましい。
Further, as the thickness of the carbon fiber sheet protective layer decreases, the protective effect of the expanded graphite sheet decreases. On the other hand, as the thickness of the carbon fiber sheet protective layer increases, the cost increases accordingly. From the balance of the two, the thickness of the carbon fiber sheet protective layer is preferably 0.3 to 3 mm, more preferably 0.4 to 2.0 mm, and 0.5 to 1.5 mm. More preferable.
上記構成において、炭素繊維シート保護層を構成する炭素繊維が、等方性ピッチ系炭素繊維であるであることが好ましい。
In the said structure, it is preferable that the carbon fiber which comprises a carbon fiber sheet protective layer is isotropic pitch based carbon fiber.
等方性ピッチ系炭素繊維は、柔らかく膨張黒鉛シートに損傷を与えにくいとともに、膨張黒鉛シートとの接着性が良好であるため、好ましい。
An isotropic pitch carbon fiber is preferable because it is soft and hard to damage the expanded graphite sheet and has good adhesion to the expanded graphite sheet.
上記課題を解決するための成形断熱材の製造方法に係る第1の本発明は、次のように構成されている。
炭素繊維不織布シートに熱硬化前の熱硬化性樹脂を含浸させる樹脂含浸炭素繊維不織布シート作製ステップと、膨張黒鉛シートが表面に取り付けられた炭素繊維系成形断熱材の前記膨張黒鉛シート表面に、前記炭素繊維不織布シートを少なくとも1つ積層して積層体となす積層ステップと、前記積層体を加圧しつつ前記熱硬化性樹脂の熱硬化温度以上に加熱して、前記炭素繊維不織布シートを前記膨張黒鉛シート表面に結着する結着ステップと、結着された前記積層体を不活性ガス雰囲気下で熱処理して、前記熱硬化性樹脂を炭素化させる炭素化ステップと、を有する表面層付き成形断熱材の製造方法。 The 1st this invention concerning the manufacturing method of the forming heat insulating material for solving the above-mentioned subject is constituted as follows.
A resin-impregnated carbon fiber nonwoven fabric sheet preparing step of impregnating a carbon fiber nonwoven fabric sheet with a thermosetting resin before thermosetting, and the expanded graphite sheet surface of a carbon fiber-based molded heat insulating material having an expanded graphite sheet attached to the surface, A step of laminating at least one carbon fiber non-woven sheet to form a laminate, and heating the carbon fiber non-woven sheet by heating the carbon fiber non-woven sheet above the thermosetting temperature of the thermosetting resin while pressing the laminate. Surface-layer-formed heat insulation having a binding step of binding to a sheet surface, and a carbonization step of heat-treating the bound laminate in an inert gas atmosphere to carbonize the thermosetting resin Material manufacturing method.
炭素繊維不織布シートに熱硬化前の熱硬化性樹脂を含浸させる樹脂含浸炭素繊維不織布シート作製ステップと、膨張黒鉛シートが表面に取り付けられた炭素繊維系成形断熱材の前記膨張黒鉛シート表面に、前記炭素繊維不織布シートを少なくとも1つ積層して積層体となす積層ステップと、前記積層体を加圧しつつ前記熱硬化性樹脂の熱硬化温度以上に加熱して、前記炭素繊維不織布シートを前記膨張黒鉛シート表面に結着する結着ステップと、結着された前記積層体を不活性ガス雰囲気下で熱処理して、前記熱硬化性樹脂を炭素化させる炭素化ステップと、を有する表面層付き成形断熱材の製造方法。 The 1st this invention concerning the manufacturing method of the forming heat insulating material for solving the above-mentioned subject is constituted as follows.
A resin-impregnated carbon fiber nonwoven fabric sheet preparing step of impregnating a carbon fiber nonwoven fabric sheet with a thermosetting resin before thermosetting, and the expanded graphite sheet surface of a carbon fiber-based molded heat insulating material having an expanded graphite sheet attached to the surface, A step of laminating at least one carbon fiber non-woven sheet to form a laminate, and heating the carbon fiber non-woven sheet by heating the carbon fiber non-woven sheet above the thermosetting temperature of the thermosetting resin while pressing the laminate. Surface-layer-formed heat insulation having a binding step of binding to a sheet surface, and a carbonization step of heat-treating the bound laminate in an inert gas atmosphere to carbonize the thermosetting resin Material manufacturing method.
上記課題を解決するための成形断熱材の製造方法に係る第2の本発明は、次のように構成されている。
炭素繊維が交絡された炭素繊維構造体に熱硬化前の熱硬化性樹脂を含浸させてプリプレグとなすプリプレグ作製ステップと、炭素繊維不織布シートに熱硬化前の熱硬化性樹脂を含浸させる樹脂含浸炭素繊維不織布シート作製ステップと、前記プリプレグ上に膨張黒鉛シートを積層し、さらに前記膨張黒鉛シート表面に前記樹脂含浸炭素繊維不織布シートを少なくとも1つ積層して積層体となす積層ステップと、前記積層体を加圧しつつ前記熱硬化性樹脂の熱硬化温度以上に加熱して、前記プリプレグ、前記膨張黒鉛シート、および前記炭素繊維不織布シートを結着する結着ステップと、結着された前記積層体を不活性ガス雰囲気下で熱処理して、前記熱硬化性樹脂を炭素化させる炭素化ステップと、を有する表面層付き成形断熱材の製造方法。 The 2nd this invention concerning the manufacturing method of the shaping | molding heat insulating material for solving the said subject is comprised as follows.
A carbon fiber structure in which carbon fibers are entangled is impregnated with a thermosetting resin before thermosetting to form a prepreg, and a resin-impregnated carbon in which a carbon fiber nonwoven fabric sheet is impregnated with a thermosetting resin before thermosetting. A step of preparing a non-woven fabric sheet, laminating an expanded graphite sheet on the prepreg, and laminating at least one resin-impregnated carbon fiber non-woven sheet on the expanded graphite sheet surface to form a laminate; And a bonding step of heating the prepreg, the expanded graphite sheet, and the carbon fiber non-woven sheet by heating the thermosetting resin to a temperature higher than the thermosetting temperature of the thermosetting resin while pressing the laminated body; A carbonizing step of heat-treating in an inert gas atmosphere to carbonize the thermosetting resin;
炭素繊維が交絡された炭素繊維構造体に熱硬化前の熱硬化性樹脂を含浸させてプリプレグとなすプリプレグ作製ステップと、炭素繊維不織布シートに熱硬化前の熱硬化性樹脂を含浸させる樹脂含浸炭素繊維不織布シート作製ステップと、前記プリプレグ上に膨張黒鉛シートを積層し、さらに前記膨張黒鉛シート表面に前記樹脂含浸炭素繊維不織布シートを少なくとも1つ積層して積層体となす積層ステップと、前記積層体を加圧しつつ前記熱硬化性樹脂の熱硬化温度以上に加熱して、前記プリプレグ、前記膨張黒鉛シート、および前記炭素繊維不織布シートを結着する結着ステップと、結着された前記積層体を不活性ガス雰囲気下で熱処理して、前記熱硬化性樹脂を炭素化させる炭素化ステップと、を有する表面層付き成形断熱材の製造方法。 The 2nd this invention concerning the manufacturing method of the shaping | molding heat insulating material for solving the said subject is comprised as follows.
A carbon fiber structure in which carbon fibers are entangled is impregnated with a thermosetting resin before thermosetting to form a prepreg, and a resin-impregnated carbon in which a carbon fiber nonwoven fabric sheet is impregnated with a thermosetting resin before thermosetting. A step of preparing a non-woven fabric sheet, laminating an expanded graphite sheet on the prepreg, and laminating at least one resin-impregnated carbon fiber non-woven sheet on the expanded graphite sheet surface to form a laminate; And a bonding step of heating the prepreg, the expanded graphite sheet, and the carbon fiber non-woven sheet by heating the thermosetting resin to a temperature higher than the thermosetting temperature of the thermosetting resin while pressing the laminated body; A carbonizing step of heat-treating in an inert gas atmosphere to carbonize the thermosetting resin;
上記2つの製造方法の相違点は、樹脂含浸炭素繊維不織布シートを積層する際に、成形断熱材部分がすでに炭素化しているか(第1の本発明製造方法)、炭素化していないのか(第2の本発明製造方法)という点である。これらのいずれかを採用することにより、簡便で低コストな手法で、本発明に係る表面層付き成形断熱材を製造することができる。炭素繊維が交絡された炭素繊維構造体は、フェルト系、ショートファイバー系のいずれでもよい。
The difference between the above two manufacturing methods is that, when laminating the resin-impregnated carbon fiber non-woven fabric sheet, is the molded heat insulating material part already carbonized (first manufacturing method of the present invention) or not carbonized (second example) Of the present invention). By adopting any of these, it is possible to manufacture the molded heat insulating material with a surface layer according to the present invention by a simple and low-cost method. The carbon fiber structure in which the carbon fibers are entangled may be either of a felt type or a short fiber type.
以上に説明したように、本発明によると、低コストでもってガスの浸透を抑制し得た長寿命な表面層付き炭素繊維系成形断熱材を実現することができる。
As described above, according to the present invention, it is possible to realize a long-life surface layer-attached carbon fiber-based molded heat insulating material which can suppress gas permeation at low cost.
(実施の形態)
本発明に係る表面層付き成形断熱材は、炭素繊維系成形断熱材と、炭素繊維系成形断熱材に積層された膨張黒鉛シートと、膨張黒鉛シートに接して積層された炭素繊維シート保護層と、を備えている。ここで、炭素繊維シート保護層は、炭素繊維を交絡させた炭素繊維不織布シートと炭素繊維不織布シートの炭素繊維表面を被覆する炭素質からなるマトリックスと、を有している。つまり、本発明に係る表面層付き成形断熱材は、炭素繊維系成形断熱材の上に、膨張黒鉛シートと炭素繊維シート保護層とからなる表面層が設けられている構成であり、このうちの炭素繊維シート保護層が最表層となる。 Embodiment
The surface layer-provided formed heat insulating material according to the present invention comprises a carbon fiber-based formed heat insulating material, an expanded graphite sheet laminated on the carbon fiber-based formed heat insulation material, and a carbon fiber sheet protective layer laminated in contact with the expanded graphite sheet. And. Here, the carbon fiber sheet protective layer has a carbon fiber non-woven sheet in which carbon fibers are entangled and a matrix made of a carbonaceous material covering the carbon fiber surface of the carbon fiber non-woven sheet. That is, the surface layer-provided molded heat insulating material according to the present invention has a structure in which a surface layer consisting of an expanded graphite sheet and a carbon fiber sheet protective layer is provided on a carbon fiber based molded heat insulating material, The carbon fiber sheet protective layer is the outermost layer.
本発明に係る表面層付き成形断熱材は、炭素繊維系成形断熱材と、炭素繊維系成形断熱材に積層された膨張黒鉛シートと、膨張黒鉛シートに接して積層された炭素繊維シート保護層と、を備えている。ここで、炭素繊維シート保護層は、炭素繊維を交絡させた炭素繊維不織布シートと炭素繊維不織布シートの炭素繊維表面を被覆する炭素質からなるマトリックスと、を有している。つまり、本発明に係る表面層付き成形断熱材は、炭素繊維系成形断熱材の上に、膨張黒鉛シートと炭素繊維シート保護層とからなる表面層が設けられている構成であり、このうちの炭素繊維シート保護層が最表層となる。 Embodiment
The surface layer-provided formed heat insulating material according to the present invention comprises a carbon fiber-based formed heat insulating material, an expanded graphite sheet laminated on the carbon fiber-based formed heat insulation material, and a carbon fiber sheet protective layer laminated in contact with the expanded graphite sheet. And. Here, the carbon fiber sheet protective layer has a carbon fiber non-woven sheet in which carbon fibers are entangled and a matrix made of a carbonaceous material covering the carbon fiber surface of the carbon fiber non-woven sheet. That is, the surface layer-provided molded heat insulating material according to the present invention has a structure in which a surface layer consisting of an expanded graphite sheet and a carbon fiber sheet protective layer is provided on a carbon fiber based molded heat insulating material, The carbon fiber sheet protective layer is the outermost layer.
上記構成では、膨張黒鉛シートが成形断熱材内部へのガスの浸透を防止するように作用する。また、炭素繊維シート保護層は、酸化性ガスが発生した場合に、膨張黒鉛シートに先んじて酸化性ガスと反応するため、膨張黒鉛シートの早期の損耗が防止される。この結果、膨張黒鉛シートによるガス浸透防止効果を長期間にわたって得ることができる。すなわち、膨張黒鉛シートと炭素繊維シート保護層との二層構造の表面層は、ガスの成形断熱材内部への浸透を長期間にわたって防止するように作用する。
In the above configuration, the expanded graphite sheet acts to prevent the permeation of gas into the inside of the molded heat insulating material. In addition, since the carbon fiber sheet protective layer reacts with the oxidizing gas prior to the expanded graphite sheet when the oxidizing gas is generated, early wear of the expanded graphite sheet is prevented. As a result, the gas permeation preventing effect by the expanded graphite sheet can be obtained for a long time. That is, the surface layer of the two-layered structure of the expanded graphite sheet and the carbon fiber sheet protective layer acts to prevent the permeation of the gas into the inside of the molded heat insulating material for a long time.
ここで、炭素繊維系成形断熱材と膨張黒鉛シートとの間に、両者の接着性を高める層(接着層)が設けられていてもよい。この層は、たとえば、熱硬化性樹脂が含浸された炭素繊維不織布シートを炭素化してなるものとすることができる。接着層なしでも両者を強固に接着できる場合には、接着層は設けなくてもよい。
Here, a layer (adhesion layer) may be provided between the carbon fiber-based molded heat insulating material and the expanded graphite sheet to enhance the adhesiveness between the two. This layer can be formed, for example, by carbonizing a carbon fiber non-woven sheet impregnated with a thermosetting resin. The adhesive layer may not be provided if both can be firmly adhered without the adhesive layer.
ここで、炭素繊維系成形断熱材、接着層、炭素繊維シート保護層などを構成する炭素繊維としては、特に限定されることはなく、例えば石炭又は石油由来の異方性又は等方性ピッチ系、ポリアクリロニトリル(PAN)系、レーヨン系、フェノール系、セルロース系等の炭素繊維を、単一種又は複数種混合して用いることができる。中でも、等方性ピッチ系炭素繊維が、柔らかく黒鉛シートに損傷を与えにくく、黒鉛シートとの接着性が良好であるため、好ましい。
Here, the carbon fiber forming the carbon fiber-based molded heat insulating material, the adhesive layer, the carbon fiber sheet protective layer and the like is not particularly limited, and, for example, anisotropic or isotropic pitch-based material derived from coal or petroleum The carbon fibers of polyacrylonitrile (PAN), rayon, phenol, cellulose and the like can be used singly or in combination. Among them, isotropic pitch carbon fibers are preferable because they are soft and hard to damage the graphite sheet and have good adhesion to the graphite sheet.
いずれの炭素繊維も、その微視的な構造としては特に限定されず、形状(巻縮型、直線型、直径、長さ等)が同一のもののみを用いてもよく、また異なる構造のものが混合されていてもよい。ただし、炭素繊維の種類やその微視的構造は、製造される表面層付き成形断熱材の物性に影響を与えるので、用途に応じて適宜選択するのがよい。
No particular limitation is imposed on the microscopic structure of any carbon fiber, and only carbon fibers having the same shape (crimped type, linear type, diameter, length, etc.) may be used, or those having different structures May be mixed. However, since the type of carbon fiber and the microscopic structure thereof affect the physical properties of the surface layer-formed molded heat insulating material to be produced, it may be suitably selected according to the application.
炭素繊維系成形断熱材としては、特に限定されることはなく、市販のものを適宜使用できる。例えば、厚みが3~15mm程度の炭素繊維シートが複数積層されたものを用いることができる。また、長さや幅は特に限定されることはない。また、炭素繊維の微視的構造としては、ランダムな方向に配向した炭素繊維が複雑に交わっているものを用いることが好ましい。
The carbon fiber-based molded heat insulating material is not particularly limited, and a commercially available one can be appropriately used. For example, a laminate of a plurality of carbon fiber sheets having a thickness of about 3 to 15 mm can be used. Also, the length and width are not particularly limited. In addition, as the microscopic structure of carbon fibers, it is preferable to use one in which carbon fibers oriented in random directions intersect in a complex manner.
膨張黒鉛シートとしては、特に限定されることはなく、市販のものを適宜使用できる。
The expanded graphite sheet is not particularly limited, and commercially available ones can be appropriately used.
炭素繊維シート保護層を構成する炭素繊維不織布シートとしては、特に限定されることはなく、例えば厚みが0.3~3mm程度のものを用いることができる。また、長さや幅は特に限定されることはない。また、炭素繊維不織布シートの微視的構造としては、最次元的に、あるいは面方向にランダムな方向に配向した炭素繊維が複雑に交わっているものを用いることが好ましい。
The carbon fiber non-woven sheet constituting the carbon fiber sheet protective layer is not particularly limited, and for example, one having a thickness of about 0.3 to 3 mm can be used. Also, the length and width are not particularly limited. Moreover, as a microscopic structure of the carbon fiber non-woven fabric sheet, it is preferable to use one in which carbon fibers oriented in a random direction in the most dimensional direction or in the plane direction intersect in a complicated manner.
また、これらの材料は、長尺や長幅なものを用いて表面層付き成形断熱材を作製後に切断等してもよく、表面層付き成形断熱材のサイズにあらかじめ切断してもよい。
In addition, these materials may be cut after manufacturing the formed heat insulating material with a surface layer using a long or long material, or may be cut in advance into the size of the formed heat insulating material with a surface layer.
マトリックスは、炭素繊維の表面全部、あるいは、炭素繊維の表面の一部を被覆し、あるいは炭素繊維相互間を埋めるように存在しているものである。また、炭素マトリックスは炭素質であればよく、その由来となる化合物は特に限定されることはない。なかでも、炭素繊維不織布シートに含浸可能な樹脂材料の炭素化物であることが好ましい。炭素繊維系成形断熱材と膨張黒鉛シートとの間に接着層を設ける場合には、接着層、炭素繊維不織布シートに含浸させる熱硬化性樹脂が同一の材料であることが好ましい。このような樹脂材料としては、フェノール樹脂、フラン樹脂、ポリイミド樹脂、エポキシ樹脂等の熱硬化性樹脂が好ましい。熱硬化性樹脂を用いると、膨張黒鉛シートと炭素繊維不織布シートとを熱硬化により簡便かつ強固に結着させることができる。
The matrix covers the entire surface of the carbon fiber or a part of the surface of the carbon fiber, or is present so as to fill in the spaces between the carbon fibers. In addition, the carbon matrix may be carbonaceous, and the compound from which it is derived is not particularly limited. Especially, it is preferable that it is a carbonization thing of the resin material which can be impregnated to a carbon fiber nonwoven fabric sheet. When an adhesive layer is provided between the carbon fiber-based molded heat insulating material and the expanded graphite sheet, it is preferable that thermosetting resins to be impregnated into the adhesive layer and the carbon fiber non-woven sheet be the same material. As such a resin material, thermosetting resins such as phenol resin, furan resin, polyimide resin, epoxy resin and the like are preferable. When a thermosetting resin is used, the expanded graphite sheet and the carbon fiber non-woven sheet can be easily and firmly bonded by heat curing.
ここで、熱硬化性樹脂は1種のみを用いてもよく、2種以上を混合して用いてもよい。また、熱硬化性樹脂は、そのまま炭素繊維不織布シートに含ませてもよく、溶剤で希釈して含ませてもよい。溶剤としては、メチルアルコール、エチルアルコール等のアルコールを用いることができる。
Here, only one type of thermosetting resin may be used, or two or more types may be mixed and used. The thermosetting resin may be contained as it is in the carbon fiber non-woven sheet or may be diluted with a solvent and contained. As the solvent, alcohols such as methyl alcohol and ethyl alcohol can be used.
また、成形断熱材のかさ密度は、0.10~0.30g/cm3とすることが好ましく、0.12~0.20g/cm3であることがより好ましく、0.13~0.16g/cm3であることがさらに好ましい。成形断熱材の厚みは、目的とする断熱性能などに応じて適宜設定すればよい。
The bulk density of the molded heat insulating material is preferably in the 0.10 ~ 0.30g / cm 3, more preferably 0.12 ~ 0.20g / cm 3, 0.13 ~ 0.16g It is further more preferable that it is / cm < 3 >. The thickness of the molded heat insulating material may be appropriately set in accordance with the desired heat insulating performance and the like.
また、膨張黒鉛シートのかさ密度は、0.5~1.5g/cm3とすることが好ましく、0.6~1.3g/cm3であることがより好ましく、0.8~1.1g/cm3であることがさらに好ましい。また、膨張黒鉛シートの厚みは、0.1~1.5mmであることが好ましく、0.2~1.0mmであることがより好ましく、0.3~0.5mmであることがさらに好ましい。
The bulk density of the expanded graphite sheet is preferably in the 0.5 ~ 1.5g / cm 3, more preferably 0.6 ~ 1.3g / cm 3, 0.8 ~ 1.1g It is further more preferable that it is / cm < 3 >. The thickness of the expanded graphite sheet is preferably 0.1 to 1.5 mm, more preferably 0.2 to 1.0 mm, and still more preferably 0.3 to 0.5 mm.
次に、成形断熱材の製造方法について説明する。
Next, a method of manufacturing a molded heat insulating material will be described.
(第1の製造方法)
(膨張黒鉛シートが貼りつけられた成形断熱材の準備)
市販の黒鉛シートが接着された成形断熱材を使用することができる。また、熱硬化性樹脂などを用いて、成形断熱材に膨張黒鉛シートを貼りつけ、その後熱硬化、炭素化を行って両者を接着してもよい。このとき、成形断熱材と膨張黒鉛シートとの間に、熱硬化性樹脂を含浸させた炭素繊維ペーパーなどを介在させたり、熱硬化性樹脂などの接着剤液を膨張黒鉛シート表面および/または成形断熱材表面に塗布したりして、両者の密着性を高める構成としてもよい。熱硬化や炭素化は、公知の手法を採用できる。熱硬化性樹脂は、そのまま用いてもよく、メタノール、エタノールなどのアルコール溶媒に溶解させて用いてもよく、炭素質の粒子や短繊維がさらに含まれている構成としてもよい。 (First manufacturing method)
(Preparation of a molded insulation with an expanded graphite sheet attached)
It is possible to use a molded heat insulating material to which a commercially available graphite sheet is adhered. Alternatively, the expanded graphite sheet may be attached to the molded heat insulating material using a thermosetting resin or the like, and then the thermosetting and carbonization may be performed to bond the two together. At this time, carbon fiber paper or the like impregnated with a thermosetting resin may be interposed between the molded heat insulating material and the expanded graphite sheet, or an adhesive liquid such as a thermosetting resin may be formed on the surface of the expanded graphite sheet and / or formed. It may be applied to the surface of the heat insulating material to improve the adhesion between the two. A well-known method can be employ | adopted for thermosetting and carbonization. The thermosetting resin may be used as it is, may be used after being dissolved in an alcohol solvent such as methanol or ethanol, or may be further configured to contain carbonaceous particles or short fibers.
(膨張黒鉛シートが貼りつけられた成形断熱材の準備)
市販の黒鉛シートが接着された成形断熱材を使用することができる。また、熱硬化性樹脂などを用いて、成形断熱材に膨張黒鉛シートを貼りつけ、その後熱硬化、炭素化を行って両者を接着してもよい。このとき、成形断熱材と膨張黒鉛シートとの間に、熱硬化性樹脂を含浸させた炭素繊維ペーパーなどを介在させたり、熱硬化性樹脂などの接着剤液を膨張黒鉛シート表面および/または成形断熱材表面に塗布したりして、両者の密着性を高める構成としてもよい。熱硬化や炭素化は、公知の手法を採用できる。熱硬化性樹脂は、そのまま用いてもよく、メタノール、エタノールなどのアルコール溶媒に溶解させて用いてもよく、炭素質の粒子や短繊維がさらに含まれている構成としてもよい。 (First manufacturing method)
(Preparation of a molded insulation with an expanded graphite sheet attached)
It is possible to use a molded heat insulating material to which a commercially available graphite sheet is adhered. Alternatively, the expanded graphite sheet may be attached to the molded heat insulating material using a thermosetting resin or the like, and then the thermosetting and carbonization may be performed to bond the two together. At this time, carbon fiber paper or the like impregnated with a thermosetting resin may be interposed between the molded heat insulating material and the expanded graphite sheet, or an adhesive liquid such as a thermosetting resin may be formed on the surface of the expanded graphite sheet and / or formed. It may be applied to the surface of the heat insulating material to improve the adhesion between the two. A well-known method can be employ | adopted for thermosetting and carbonization. The thermosetting resin may be used as it is, may be used after being dissolved in an alcohol solvent such as methanol or ethanol, or may be further configured to contain carbonaceous particles or short fibers.
ここで、成形断熱材の形状は特に限定されるものではなく、たとえば直方体や円筒状などであればよい。
Here, the shape of the formed heat insulating material is not particularly limited, and may be, for example, a rectangular solid or a cylindrical shape.
(樹脂含浸炭素繊維不織布シート作製ステップ)
炭素繊維不織布シートは、市販のものを用いることができる。炭素繊維不織布シートに、熱硬化性樹脂溶液を塗布やスプレーにより含浸させて、樹脂含浸炭素繊維不織布シートとなす。 (Step of making resin impregnated carbon fiber non-woven sheet)
A commercially available carbon fiber non-woven sheet can be used. A carbon fiber non-woven sheet is impregnated with a thermosetting resin solution by coating or spraying to form a resin-impregnated carbon fiber non-woven sheet.
炭素繊維不織布シートは、市販のものを用いることができる。炭素繊維不織布シートに、熱硬化性樹脂溶液を塗布やスプレーにより含浸させて、樹脂含浸炭素繊維不織布シートとなす。 (Step of making resin impregnated carbon fiber non-woven sheet)
A commercially available carbon fiber non-woven sheet can be used. A carbon fiber non-woven sheet is impregnated with a thermosetting resin solution by coating or spraying to form a resin-impregnated carbon fiber non-woven sheet.
(積層ステップ)
膨張黒鉛シートが接着された成形断熱材の膨張黒鉛シート上に接して、樹脂含浸炭素繊維不織布シートを積層して積層体となす。樹脂含浸炭素繊維不織布シートは、2枚以上積層してもよい。 (Lamination step)
The resin-impregnated carbon fiber non-woven fabric sheet is laminated on the expanded graphite sheet of the molded heat insulating material to which the expanded graphite sheet is adhered, to form a laminate. Two or more resin-impregnated carbon fiber non-woven sheets may be laminated.
膨張黒鉛シートが接着された成形断熱材の膨張黒鉛シート上に接して、樹脂含浸炭素繊維不織布シートを積層して積層体となす。樹脂含浸炭素繊維不織布シートは、2枚以上積層してもよい。 (Lamination step)
The resin-impregnated carbon fiber non-woven fabric sheet is laminated on the expanded graphite sheet of the molded heat insulating material to which the expanded graphite sheet is adhered, to form a laminate. Two or more resin-impregnated carbon fiber non-woven sheets may be laminated.
(結着ステップ)
上記積層体を目的の厚みとなるようにプレス機を用いて加圧しつつ、熱硬化性樹脂の硬化温度以上の温度に加熱し、所定の時間(例えば、1~10時間)保持して、積層体を結着する。 (Attachment step)
The laminate is heated to a temperature above the curing temperature of the thermosetting resin while being pressurized using a press to a desired thickness, and held for a predetermined time (for example, 1 to 10 hours) to laminate the laminate. Bond the body.
上記積層体を目的の厚みとなるようにプレス機を用いて加圧しつつ、熱硬化性樹脂の硬化温度以上の温度に加熱し、所定の時間(例えば、1~10時間)保持して、積層体を結着する。 (Attachment step)
The laminate is heated to a temperature above the curing temperature of the thermosetting resin while being pressurized using a press to a desired thickness, and held for a predetermined time (for example, 1 to 10 hours) to laminate the laminate. Bond the body.
(炭素化ステップ)
結着された積層体を、不活性雰囲気で1000~2500℃で所定の時間(例えば、1~20時間)加熱し、熱硬化性樹脂を炭素化させて、表面層付きの成形断熱材を得る。この炭素化によって、膨張黒鉛シート上に積層された樹脂含浸炭素繊維不織布シートは、炭素繊維シート保護層となる。また、膨張黒鉛シートと成形断熱材との間に樹脂含浸炭素繊維不織布シートを配置した場合、この層は炭素化によって接着層となる。 (Carbonization step)
The bonded laminate is heated in an inert atmosphere at 1000 to 2500 ° C. for a predetermined time (eg, 1 to 20 hours) to carbonize the thermosetting resin to obtain a shaped heat insulating material with a surface layer. . By this carbonization, the resin-impregnated carbon fiber nonwoven fabric sheet laminated on the expanded graphite sheet becomes a carbon fiber sheet protective layer. Moreover, when a resin-impregnated carbon fiber non-woven fabric sheet is disposed between the expanded graphite sheet and the molded heat insulating material, this layer becomes an adhesive layer by carbonization.
結着された積層体を、不活性雰囲気で1000~2500℃で所定の時間(例えば、1~20時間)加熱し、熱硬化性樹脂を炭素化させて、表面層付きの成形断熱材を得る。この炭素化によって、膨張黒鉛シート上に積層された樹脂含浸炭素繊維不織布シートは、炭素繊維シート保護層となる。また、膨張黒鉛シートと成形断熱材との間に樹脂含浸炭素繊維不織布シートを配置した場合、この層は炭素化によって接着層となる。 (Carbonization step)
The bonded laminate is heated in an inert atmosphere at 1000 to 2500 ° C. for a predetermined time (eg, 1 to 20 hours) to carbonize the thermosetting resin to obtain a shaped heat insulating material with a surface layer. . By this carbonization, the resin-impregnated carbon fiber nonwoven fabric sheet laminated on the expanded graphite sheet becomes a carbon fiber sheet protective layer. Moreover, when a resin-impregnated carbon fiber non-woven fabric sheet is disposed between the expanded graphite sheet and the molded heat insulating material, this layer becomes an adhesive layer by carbonization.
(第2の製造方法)
第2の製造方法では、成形断熱材として炭素化されていないものを用いる点で上記第1の製造方法と異なっている。ここで、樹脂含浸炭素繊維不織布シート作製ステップ、結着ステップ、炭素化ステップは、上記第1の製造方法と同様であるため、これらについての詳細な説明は省略する。 (Second manufacturing method)
The second manufacturing method is different from the first manufacturing method in that a non-carbonized material is used as the molded heat insulating material. Here, since the resin-impregnated carbon fiber non-woven fabric sheet preparation step, the binding step, and the carbonization step are the same as those in the first manufacturing method, detailed description thereof will be omitted.
第2の製造方法では、成形断熱材として炭素化されていないものを用いる点で上記第1の製造方法と異なっている。ここで、樹脂含浸炭素繊維不織布シート作製ステップ、結着ステップ、炭素化ステップは、上記第1の製造方法と同様であるため、これらについての詳細な説明は省略する。 (Second manufacturing method)
The second manufacturing method is different from the first manufacturing method in that a non-carbonized material is used as the molded heat insulating material. Here, since the resin-impregnated carbon fiber non-woven fabric sheet preparation step, the binding step, and the carbonization step are the same as those in the first manufacturing method, detailed description thereof will be omitted.
(プリプレグ作製ステップ)
炭素繊維が交絡された炭素繊維構造体に熱硬化前の熱硬化性樹脂を含浸させてプリプレグとなす。炭素繊維構造体としては、フェルト系のものやショートファイバー系のものを用いることができる。好ましくは炭素繊維が三次元的にランダムに交絡されたものを用いる。熱硬化性樹脂は、炭素繊維不織布シートに含浸させるものと同様でよく、溶媒に溶解した状態で含浸させてもよい。 (Prepreg production step)
A carbon fiber structure in which carbon fibers are entangled is impregnated with a thermosetting resin before thermosetting, to form a prepreg. As a carbon fiber structure, a felt type thing and a short fiber type thing can be used. Preferably, one in which carbon fibers are randomly entangled three-dimensionally is used. The thermosetting resin may be the same as that impregnated into the carbon fiber non-woven sheet, and may be impregnated in a solvent.
炭素繊維が交絡された炭素繊維構造体に熱硬化前の熱硬化性樹脂を含浸させてプリプレグとなす。炭素繊維構造体としては、フェルト系のものやショートファイバー系のものを用いることができる。好ましくは炭素繊維が三次元的にランダムに交絡されたものを用いる。熱硬化性樹脂は、炭素繊維不織布シートに含浸させるものと同様でよく、溶媒に溶解した状態で含浸させてもよい。 (Prepreg production step)
A carbon fiber structure in which carbon fibers are entangled is impregnated with a thermosetting resin before thermosetting, to form a prepreg. As a carbon fiber structure, a felt type thing and a short fiber type thing can be used. Preferably, one in which carbon fibers are randomly entangled three-dimensionally is used. The thermosetting resin may be the same as that impregnated into the carbon fiber non-woven sheet, and may be impregnated in a solvent.
(樹脂含浸炭素繊維不織布シート作製ステップ)
上記第1の製造方法と同様にして、炭素繊維不織布シートに熱硬化前の熱硬化性樹脂を含浸させて樹脂含浸炭素繊維不織布シート作製する。 (Step of making resin impregnated carbon fiber non-woven sheet)
In the same manner as in the first production method, a carbon fiber non-woven sheet is impregnated with a thermosetting resin before thermosetting, to prepare a resin-impregnated carbon fiber non-woven sheet.
上記第1の製造方法と同様にして、炭素繊維不織布シートに熱硬化前の熱硬化性樹脂を含浸させて樹脂含浸炭素繊維不織布シート作製する。 (Step of making resin impregnated carbon fiber non-woven sheet)
In the same manner as in the first production method, a carbon fiber non-woven sheet is impregnated with a thermosetting resin before thermosetting, to prepare a resin-impregnated carbon fiber non-woven sheet.
(積層ステップ)
プリプレグ上に膨張黒鉛シートを積層し、さらに膨張黒鉛シート表面に樹脂含浸炭素繊維不織布シートを少なくとも1つ積層して積層体となす。このとき、所望とする断熱性能を得るために、プリプレグを2以上積層する構成としてもよい。 (Lamination step)
An expanded graphite sheet is laminated on a prepreg, and at least one resin-impregnated carbon fiber non-woven sheet is laminated on the surface of the expanded graphite sheet to form a laminate. At this time, in order to obtain the desired heat insulation performance, two or more prepregs may be laminated.
プリプレグ上に膨張黒鉛シートを積層し、さらに膨張黒鉛シート表面に樹脂含浸炭素繊維不織布シートを少なくとも1つ積層して積層体となす。このとき、所望とする断熱性能を得るために、プリプレグを2以上積層する構成としてもよい。 (Lamination step)
An expanded graphite sheet is laminated on a prepreg, and at least one resin-impregnated carbon fiber non-woven sheet is laminated on the surface of the expanded graphite sheet to form a laminate. At this time, in order to obtain the desired heat insulation performance, two or more prepregs may be laminated.
また、上記第1の製造方法と同様に、熱硬化性樹脂を含浸させた炭素繊維ペーパーを、プリプレグと膨張黒鉛シートとの間に介在させたり、熱硬化性樹脂などの接着剤液を膨張黒鉛シート表面および/または成形断熱材表面に塗布したりしてもよい。また、結着ステップで加圧している際に、十分な量の熱硬化性樹脂が膨張黒鉛シートとの界面に存在する場合には、このような手段を講じなくともよい。さらに、熱硬化性樹脂を含浸させた炭素繊維ペーパーとしては、上記樹脂含浸炭素繊維不織布シートと同一のものを用いることもできる。
Further, as in the first production method, carbon fiber paper impregnated with a thermosetting resin may be interposed between the prepreg and the expanded graphite sheet, or an adhesive solution such as a thermosetting resin may be expanded graphite. It may be applied to the sheet surface and / or the shaped insulation surface. In addition, when a sufficient amount of thermosetting resin is present at the interface with the expanded graphite sheet during pressing in the binding step, such means may not be taken. Furthermore, as the carbon fiber paper impregnated with the thermosetting resin, the same one as the resin-impregnated carbon fiber nonwoven fabric sheet can be used.
この後、上記第1の製造方法と同様にして、結着ステップおよび炭素化ステップを行う。この炭素化によって、プリプレグは炭素繊維系成形断熱材となり、樹脂含浸炭素繊維不織布シートは炭素繊維シート保護層となる。
Thereafter, the binding step and the carbonization step are performed in the same manner as the first manufacturing method. By this carbonization, the prepreg becomes a carbon fiber-based molded heat insulating material, and the resin-impregnated carbon fiber non-woven sheet becomes a carbon fiber sheet protective layer.
ここで、特に2000℃以上の温度で熱処理する場合、炭素繊維やマトリックスなどの黒鉛構造が発展する場合もあるが、本発明においては、全ての炭素質材料は、非晶質炭素からなる構造、黒鉛質炭素からなる構造、両者が混在した構造全てを含むものを意味する。
Here, particularly when heat treatment is performed at a temperature of 2000 ° C. or higher, a graphite structure such as carbon fiber or matrix may develop, but in the present invention, all carbonaceous materials have a structure comprising amorphous carbon, It means a structure composed of graphitic carbon and a structure including all the structures in which both are mixed.
実施例に基づいて、本発明をさらに詳細に説明する。
The invention will be described in more detail on the basis of examples.
(実施例1)
成形断熱材(表面層が設けられていないもの)としては、市販のピッチ系炭素繊維からなるフェルト系成形断熱材(大阪ガスケミカル製DON-1000-R 形状:厚み30mm、幅1m、長さ1.5mの平板、かさ密度:0.13g/cm3)を用いた。 Example 1
A molded heat insulating material (having no surface layer) is a felt-based molded heat insulating material made of commercially available pitch-based carbon fiber (DON-1000-R made by Osaka Gas Chemical Co., Ltd. Shape: thickness 30 mm, width 1 m, length 1 A 0.5 m flat plate, bulk density: 0.13 g / cm 3 ) was used.
成形断熱材(表面層が設けられていないもの)としては、市販のピッチ系炭素繊維からなるフェルト系成形断熱材(大阪ガスケミカル製DON-1000-R 形状:厚み30mm、幅1m、長さ1.5mの平板、かさ密度:0.13g/cm3)を用いた。 Example 1
A molded heat insulating material (having no surface layer) is a felt-based molded heat insulating material made of commercially available pitch-based carbon fiber (DON-1000-R made by Osaka Gas Chemical Co., Ltd. Shape: thickness 30 mm, width 1 m, length 1 A 0.5 m flat plate, bulk density: 0.13 g / cm 3 ) was used.
市販のピッチ系炭素繊維からなるカーボンペーパー(大阪ガスケミカル製ドナカーボペーパー S-255AH 厚み2.4mm、幅1m、長さ1.5m、目付:75g/m2)30重量部に、レゾール系フェノール樹脂70重量部を均一含浸させ熱硬化性樹脂が含浸された炭素繊維不織布シートを作製した。
30 parts by weight of carbon paper consisting of commercially available pitch-based carbon fiber (Donacarbo Paper S-255AH made by Osaka Gas Chemicals, thickness 2.4 mm, width 1 m, length 1.5 m, basis weight: 75 g / m 2 ) 70 parts by weight of resin was uniformly impregnated to prepare a carbon fiber non-woven sheet impregnated with a thermosetting resin.
上記成形断熱材に、上記熱硬化性樹脂含浸炭素繊維不織布シートを乗せ、その上に同じ幅及び長さの膨張黒鉛シート(東洋炭素製 パーマフォイルPF-38 形状:厚み0.38mm)を乗せ、さらに膨張黒鉛シートの上に上記熱硬化性樹脂含浸炭素繊維不織布シートを1枚乗せて、積層体となした。この後、当該積層体を、加熱圧縮プレスを用いて、面圧0.05MPa、加熱温度200℃で30分間保持し、熱硬化性樹脂を熱硬化させて、当該積層体を接着した。
The thermosetting resin-impregnated carbon fiber non-woven fabric sheet is placed on the molded heat insulating material, and an expansive graphite sheet (Perman foil PF-38 shape: 0.38 mm thick) of the same width and length is placed thereon. Furthermore, one sheet of the thermosetting resin-impregnated carbon fiber non-woven fabric sheet was placed on the expanded graphite sheet to form a laminate. After that, the laminate was held for 30 minutes at a surface pressure of 0.05 MPa and a heating temperature of 200 ° C. for 30 minutes using a heat compression press, and the thermosetting resin was thermally cured to adhere the laminate.
熱硬化後の積層体を熱処理炉に入れ、不活性雰囲気下、2000℃で5時間保持する熱処理を行って、熱硬化性樹脂を炭素化し、膨張黒鉛シートと炭素繊維シート保護層とからなる表面層が設けられた成形断熱材を得た。このとき、炭素繊維シート保護層のかさ密度が0.24g/cm3であり、厚みが0.6mmであった。
The laminate after heat curing is placed in a heat treatment furnace, and heat treatment is carried out under inert atmosphere and maintained at 2000 ° C. for 5 hours to carbonize the thermosetting resin, and the surface comprising an expanded graphite sheet and a carbon fiber sheet protective layer A molded insulation provided with layers was obtained. At this time, the bulk density of the carbon fiber sheet protective layer was 0.24 g / cm 3 and the thickness was 0.6 mm.
(比較例1)
膨張黒鉛シート上に熱硬化性樹脂含浸炭素繊維不織布シートを積層しなかったこと以外は、実施例1と同様な方法で黒鉛シートが接着された成形断熱材を得た。 (Comparative example 1)
A molded heat insulating material having a graphite sheet adhered thereto was obtained in the same manner as in Example 1, except that the thermosetting resin-impregnated carbon fiber non-woven fabric sheet was not laminated on the expanded graphite sheet.
膨張黒鉛シート上に熱硬化性樹脂含浸炭素繊維不織布シートを積層しなかったこと以外は、実施例1と同様な方法で黒鉛シートが接着された成形断熱材を得た。 (Comparative example 1)
A molded heat insulating material having a graphite sheet adhered thereto was obtained in the same manner as in Example 1, except that the thermosetting resin-impregnated carbon fiber non-woven fabric sheet was not laminated on the expanded graphite sheet.
上記実施例1及び比較例1に係る表面層付き成形断熱材について、以下の条件で耐久性、剥離性を測定した。
The durability and the releasability of the molded heat insulating material with surface layer according to Example 1 and Comparative Example 1 were measured under the following conditions.
(耐久性試験1)
上記実施例1及び比較例1に係る表面層付き成形断熱材を、50mm×50mm×30mmの直方体に切り出し、温度700℃、空気流量2L/minに設定された空気雰囲気の電気炉に保持し、表面層の剥離状態を観察した。この結果、実施例1にかかる成形断熱材は試験開始から3時間後に表面層の消耗が見られたものの、この時点で膨張黒鉛シートには剥離は見られなかった。他方、比較例1にかかる成形断熱材は、試験開始から3時間後に膨張黒鉛シートの剥離が見られた。 (Durability test 1)
The heat insulating material with a surface layer according to Example 1 and Comparative Example 1 is cut out into a 50 mm × 50 mm × 30 mm rectangular solid, and held in an electric furnace with an air atmosphere set at a temperature of 700 ° C. and an air flow rate of 2 L / min. The peeling state of the surface layer was observed. As a result, although the consumption of the surface layer was observed 3 hours after the start of the test, the exfoliated graphite sheet of Example 1 was not peeled at this point in time. On the other hand, in the molded heat insulating material according to Comparative Example 1, peeling of the expanded graphite sheet was observed 3 hours after the start of the test.
上記実施例1及び比較例1に係る表面層付き成形断熱材を、50mm×50mm×30mmの直方体に切り出し、温度700℃、空気流量2L/minに設定された空気雰囲気の電気炉に保持し、表面層の剥離状態を観察した。この結果、実施例1にかかる成形断熱材は試験開始から3時間後に表面層の消耗が見られたものの、この時点で膨張黒鉛シートには剥離は見られなかった。他方、比較例1にかかる成形断熱材は、試験開始から3時間後に膨張黒鉛シートの剥離が見られた。 (Durability test 1)
The heat insulating material with a surface layer according to Example 1 and Comparative Example 1 is cut out into a 50 mm × 50 mm × 30 mm rectangular solid, and held in an electric furnace with an air atmosphere set at a temperature of 700 ° C. and an air flow rate of 2 L / min. The peeling state of the surface layer was observed. As a result, although the consumption of the surface layer was observed 3 hours after the start of the test, the exfoliated graphite sheet of Example 1 was not peeled at this point in time. On the other hand, in the molded heat insulating material according to Comparative Example 1, peeling of the expanded graphite sheet was observed 3 hours after the start of the test.
(耐久性試験2)
上記実施例1及び比較例1に係る表面層付き成形断熱材を、50mm×50mm×30mmの直方体に切り出し、温度700℃、空気流量2L/minに設定された空気雰囲気の電気炉に4時間保持した。試験後の断熱材の表面を走査型電子顕微鏡で観察したところ、実施例1では、炭素繊維保護層の劣化は見られたものの膨張黒鉛シートの劣化が殆ど確認されなかった。図2は、比較例1に係る表面層付き成形断熱材の耐久性試験2後の膨張黒鉛シート表面の状態を示す顕微鏡写真である。比較例1では、図2に示すように、膨張黒鉛シートに解離などの劣化が見られた。 (Durability test 2)
The heat insulating material with a surface layer according to Example 1 and Comparative Example 1 is cut out into a 50 mm × 50 mm × 30 mm rectangular solid, and held for 4 hours in an electric furnace of air atmosphere set at a temperature of 700 ° C. and an air flow rate of 2 L / min. did. When the surface of the heat insulating material after the test was observed with a scanning electron microscope, in Example 1, deterioration of the carbon fiber protective layer was observed, but deterioration of the expanded graphite sheet was hardly confirmed. FIG. 2 is a photomicrograph showing the state of the surface of the expanded graphite sheet after thedurability test 2 of the molded thermal insulator with a surface layer according to Comparative Example 1. In Comparative Example 1, as shown in FIG. 2, deterioration such as dissociation was observed in the expanded graphite sheet.
上記実施例1及び比較例1に係る表面層付き成形断熱材を、50mm×50mm×30mmの直方体に切り出し、温度700℃、空気流量2L/minに設定された空気雰囲気の電気炉に4時間保持した。試験後の断熱材の表面を走査型電子顕微鏡で観察したところ、実施例1では、炭素繊維保護層の劣化は見られたものの膨張黒鉛シートの劣化が殆ど確認されなかった。図2は、比較例1に係る表面層付き成形断熱材の耐久性試験2後の膨張黒鉛シート表面の状態を示す顕微鏡写真である。比較例1では、図2に示すように、膨張黒鉛シートに解離などの劣化が見られた。 (Durability test 2)
The heat insulating material with a surface layer according to Example 1 and Comparative Example 1 is cut out into a 50 mm × 50 mm × 30 mm rectangular solid, and held for 4 hours in an electric furnace of air atmosphere set at a temperature of 700 ° C. and an air flow rate of 2 L / min. did. When the surface of the heat insulating material after the test was observed with a scanning electron microscope, in Example 1, deterioration of the carbon fiber protective layer was observed, but deterioration of the expanded graphite sheet was hardly confirmed. FIG. 2 is a photomicrograph showing the state of the surface of the expanded graphite sheet after the
(耐久性試験3)
上記実施例1及び比較例1に係る表面層付き成形断熱材を、50mm×50mm×30mmの直方体に切り出し、温度700℃、空気流量2L/minに設定された空気雰囲気の電気炉に保持した。このとき、表面層の剥離状態を観察するとともに、酸化消耗による表面層付き成形断熱材の質量変化を測定した。この際、表面層のみ空気が触れるように治具にて表面層以外(膨張黒鉛シートと炭素繊維シート保護層以外)を保護した。この結果、実施例1にかかる成形断熱材は、試験開始から6時間後の消耗率(表面層付きの成形断熱材の質量減少率)が18.8%であり、この時点で膨張黒鉛シートの剥離は見られなかった。他方、比較例1にかかる成形断熱材は、試験開始から6時間後の消耗率が26.3%であり、この時点で膨張黒鉛シートの剥離が見られた。 (Durability test 3)
The heat insulating material with a surface layer according to Example 1 and Comparative Example 1 was cut into a 50 mm × 50 mm × 30 mm rectangular solid, and held in an electric furnace with an air atmosphere set at a temperature of 700 ° C. and an air flow rate of 2 L / min. At this time, the peeling state of the surface layer was observed, and the mass change of the surface-layer-formed heat insulating material due to the oxidation consumption was measured. Under the present circumstances, except a surface layer (other than an expanded-graphite sheet and a carbon fiber sheet protective layer) was protected with the jig | tool so that air could contact only a surface layer. As a result, in the molded heat insulating material according to Example 1, the consumption rate (mass reduction ratio of the molded heat insulating material with the surface layer) after 6 hours from the start of the test is 18.8%, and No exfoliation was seen. On the other hand, in the molded heat insulating material according to Comparative Example 1, the wear rate after 6 hours from the start of the test was 26.3%, and peeling of the expanded graphite sheet was observed at this time.
上記実施例1及び比較例1に係る表面層付き成形断熱材を、50mm×50mm×30mmの直方体に切り出し、温度700℃、空気流量2L/minに設定された空気雰囲気の電気炉に保持した。このとき、表面層の剥離状態を観察するとともに、酸化消耗による表面層付き成形断熱材の質量変化を測定した。この際、表面層のみ空気が触れるように治具にて表面層以外(膨張黒鉛シートと炭素繊維シート保護層以外)を保護した。この結果、実施例1にかかる成形断熱材は、試験開始から6時間後の消耗率(表面層付きの成形断熱材の質量減少率)が18.8%であり、この時点で膨張黒鉛シートの剥離は見られなかった。他方、比較例1にかかる成形断熱材は、試験開始から6時間後の消耗率が26.3%であり、この時点で膨張黒鉛シートの剥離が見られた。 (Durability test 3)
The heat insulating material with a surface layer according to Example 1 and Comparative Example 1 was cut into a 50 mm × 50 mm × 30 mm rectangular solid, and held in an electric furnace with an air atmosphere set at a temperature of 700 ° C. and an air flow rate of 2 L / min. At this time, the peeling state of the surface layer was observed, and the mass change of the surface-layer-formed heat insulating material due to the oxidation consumption was measured. Under the present circumstances, except a surface layer (other than an expanded-graphite sheet and a carbon fiber sheet protective layer) was protected with the jig | tool so that air could contact only a surface layer. As a result, in the molded heat insulating material according to Example 1, the consumption rate (mass reduction ratio of the molded heat insulating material with the surface layer) after 6 hours from the start of the test is 18.8%, and No exfoliation was seen. On the other hand, in the molded heat insulating material according to Comparative Example 1, the wear rate after 6 hours from the start of the test was 26.3%, and peeling of the expanded graphite sheet was observed at this time.
(剥離試験)
上記実施例1にかかる成形断熱材を4cm×4cm×3cmの直方体に切り出し、試験片とした。2液性接着剤を用いて、この試験片の積層方向(厚さ方向)上下面に剥離試験治具を接着し、エー・アンド・デイ製テンシロン万能材料試験機(RTC-1210)を用いて、クロスヘッドスピード1mm/minで厚さ方向に引っ張った。この結果、成形断熱材部分の破壊が膨張黒鉛シートや炭素繊維シート保護層の破壊や剥離よりも先に起こった。このことから、炭素繊維シート保護層と黒鉛シートとの接着強度は成形断熱材部分よりも高く、十分なものであることが確認された。 (Peeling test)
The molded heat insulating material according to Example 1 was cut into a 4 cm × 4 cm × 3 cm rectangular parallelepiped and used as a test piece. A peeling test jig is bonded to the upper and lower surfaces in the stacking direction (thickness direction) of this test piece using a two-component adhesive, and using an A & D Tensilon universal material tester (RTC-1210). , The cross head speed was pulled in the thickness direction at 1 mm / min. As a result, breakage of the molded heat insulating material part occurred earlier than breakage or peeling of the expanded graphite sheet or the carbon fiber sheet protective layer. From this, it was confirmed that the adhesive strength between the carbon fiber sheet protective layer and the graphite sheet is higher than that of the molded heat insulating material portion and is sufficient.
上記実施例1にかかる成形断熱材を4cm×4cm×3cmの直方体に切り出し、試験片とした。2液性接着剤を用いて、この試験片の積層方向(厚さ方向)上下面に剥離試験治具を接着し、エー・アンド・デイ製テンシロン万能材料試験機(RTC-1210)を用いて、クロスヘッドスピード1mm/minで厚さ方向に引っ張った。この結果、成形断熱材部分の破壊が膨張黒鉛シートや炭素繊維シート保護層の破壊や剥離よりも先に起こった。このことから、炭素繊維シート保護層と黒鉛シートとの接着強度は成形断熱材部分よりも高く、十分なものであることが確認された。 (Peeling test)
The molded heat insulating material according to Example 1 was cut into a 4 cm × 4 cm × 3 cm rectangular parallelepiped and used as a test piece. A peeling test jig is bonded to the upper and lower surfaces in the stacking direction (thickness direction) of this test piece using a two-component adhesive, and using an A & D Tensilon universal material tester (RTC-1210). , The cross head speed was pulled in the thickness direction at 1 mm / min. As a result, breakage of the molded heat insulating material part occurred earlier than breakage or peeling of the expanded graphite sheet or the carbon fiber sheet protective layer. From this, it was confirmed that the adhesive strength between the carbon fiber sheet protective layer and the graphite sheet is higher than that of the molded heat insulating material portion and is sufficient.
以上のことから、本発明によると、膨張黒鉛シートおよび炭素繊維シート保護層の2層構造の表面層を設けるという簡便な手法で、成形断熱材のガスによる劣化を長期間に抑制し得た表面層付き成形断熱材を実現できることが分かる。
From the above, according to the present invention, it is a simple method of providing the surface layer of the two-layer structure of the expanded graphite sheet and the carbon fiber sheet protective layer, and the surface which can suppress deterioration of the molded heat insulator by gas for a long time It can be seen that a layered molded insulation can be realized.
図1に、実施例1に係る表面層付き成形断熱材の表面層近傍の断面顕微鏡写真を示す。この写真からわかるように、炭素繊維間の空隙が多い成形断熱材4上に、炭素繊維間の空隙が成形断熱材4よりも少ない接着シート3、緻密な構造の膨張黒鉛シート2、接着シート3とほぼ同様の炭素繊維シート保護層1、が順に積層されていることが分かる。
FIG. 1 shows a cross-sectional micrograph of the vicinity of the surface layer of the molded heat insulating material with surface layer according to the first embodiment. As can be seen from this photograph, on the molded heat insulating material 4 having many gaps between carbon fibers, there is an adhesive sheet 3 having gaps between carbon fibers smaller than the molded heat insulator 4, an expanded graphite sheet 2 having a dense structure, and an adhesive sheet 3 It can be seen that a carbon fiber sheet protective layer 1 substantially the same as the above is laminated in order.
なお、上記実施例では、本発明にかかる第1の製造方法を採用したが、第2の製造方法を採用しても同様の効果が得られる。
Although the first manufacturing method according to the present invention is adopted in the above embodiment, the same effect can be obtained by adopting the second manufacturing method.
上記で説明したように、本発明によると、大幅なコスト上昇を伴うことなく、ガスによる断熱性能の低下を抑制し得た長寿命な表面層付き成形断熱材を実現できるので、その産業上の利用可能性は大きい。
As described above, according to the present invention, it is possible to realize a long-life molded insulating material with a surface layer which can suppress a decrease in the heat insulating performance due to gas without a significant increase in cost, so that the industry Availability is great.
1 炭素繊維シート保護層
2 膨張黒鉛シート
3 接着シート
4 成形断熱材 1 carbon fiber sheetprotective layer 2 expanded graphite sheet 3 adhesive sheet 4 molded heat insulating material
2 膨張黒鉛シート
3 接着シート
4 成形断熱材 1 carbon fiber sheet
Claims (5)
- 炭素繊維系成形断熱材と、
前記炭素繊維系成形断熱材に積層された膨張黒鉛シートと、
前記膨張黒鉛シートに接して積層された炭素繊維シート保護層と、を備え、
前記炭素繊維シート保護層は、炭素繊維を交絡させた炭素繊維不織布シートと炭素繊維不織布シートの炭素繊維表面を被覆する炭素質からなるマトリックスと、を有する、
表面層付き成形断熱材。 Carbon fiber-based molded insulation,
An expanded graphite sheet laminated on the carbon fiber-based molded heat insulating material;
And a carbon fiber sheet protective layer laminated in contact with the expanded graphite sheet,
The carbon fiber sheet protective layer has a carbon fiber non-woven sheet in which carbon fibers are entangled, and a carbonaceous matrix which covers the carbon fiber surface of the carbon fiber non-woven sheet.
Molded insulation with surface layer. - 前記炭素繊維シート保護層は、かさ密度が0.1~0.5g/cm3であり、厚みが0.3~3mmである、
ことを特徴とする請求項1に記載の表面層付き成形断熱材。 The carbon fiber sheet protective layer has a bulk density of 0.1 to 0.5 g / cm 3 and a thickness of 0.3 to 3 mm.
The molded heat insulating material with a surface layer according to claim 1, - 前記炭素繊維シート保護層を構成する炭素繊維が、等方性ピッチ系炭素繊維である、
ことを特徴とする請求項1又は2に記載の表面層付き成形断熱材。 The carbon fibers constituting the carbon fiber sheet protective layer are isotropic pitch carbon fibers,
The molded heat insulating material with a surface layer according to claim 1 or 2 characterized by the above. - 炭素繊維不織布シートに熱硬化前の熱硬化性樹脂を含浸させる樹脂含浸炭素繊維不織布シート作製ステップと、
膨張黒鉛シートが表面に取り付けられた炭素繊維系成形断熱材の前記膨張黒鉛シート表面に、前記炭素繊維不織布シートを少なくとも1つ積層して積層体となす積層ステップと、
前記積層体を加圧しつつ前記熱硬化性樹脂の熱硬化温度以上に加熱して、前記炭素繊維不織布シートを前記膨張黒鉛シート表面に結着する結着ステップと、
結着された前記積層体を不活性ガス雰囲気下で熱処理して、前記熱硬化性樹脂を炭素化させる炭素化ステップと、
を有する表面層付き成形断熱材の製造方法。 A resin-impregnated carbon fiber nonwoven fabric sheet producing step of impregnating the carbon fiber nonwoven fabric sheet with a thermosetting resin before thermosetting.
A laminating step of laminating at least one carbon fiber non-woven fabric sheet on the surface of the expanded graphite sheet of a carbon fiber-based molded heat insulating material having an expanded graphite sheet attached to the surface, thereby forming a laminated body;
A bonding step of heating the carbon fiber non-woven sheet to the surface of the expanded graphite sheet by heating the laminated body to a temperature higher than the thermosetting temperature of the thermosetting resin while pressing the laminated body;
A carbonization step of carbonizing the thermosetting resin by heat treating the bonded laminate in an inert gas atmosphere;
The manufacturing method of the molded heat insulating material with a surface layer which has. - 炭素繊維が交絡された炭素繊維構造体に熱硬化前の熱硬化性樹脂を含浸させてプリプレグとなすプリプレグ作製ステップと、
炭素繊維不織布シートに熱硬化前の熱硬化性樹脂を含浸させる樹脂含浸炭素繊維不織布シート作製ステップと、
前記プリプレグ上に膨張黒鉛シートを積層し、さらに前記膨張黒鉛シート表面に前記樹脂含浸炭素繊維不織布シートを少なくとも1つ積層して積層体となす積層ステップと、
前記積層体を加圧しつつ前記熱硬化性樹脂の熱硬化温度以上に加熱して、前記プリプレグ、前記膨張黒鉛シート、および前記炭素繊維不織布シートを結着する結着ステップと、
結着された前記積層体を不活性ガス雰囲気下で熱処理して、前記熱硬化性樹脂を炭素化させる炭素化ステップと、
を有する表面層付き成形断熱材の製造方法。 A prepreg producing step of impregnating a carbon fiber structure in which carbon fibers are entangled with a thermosetting resin before thermosetting, to form a prepreg;
A resin-impregnated carbon fiber nonwoven fabric sheet producing step of impregnating the carbon fiber nonwoven fabric sheet with a thermosetting resin before thermosetting.
Laminating an expanded graphite sheet on the prepreg, and laminating at least one resin-impregnated carbon fiber nonwoven fabric sheet on the surface of the expanded graphite sheet to form a laminate;
A bonding step of heating the laminate, while being pressurized, to a temperature equal to or higher than the thermosetting temperature of the thermosetting resin to bond the prepreg, the expanded graphite sheet, and the carbon fiber non-woven sheet;
A carbonization step of carbonizing the thermosetting resin by heat treating the bonded laminate in an inert gas atmosphere;
The manufacturing method of the molded heat insulating material with a surface layer which has.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019551119A JP7198215B2 (en) | 2017-10-30 | 2018-10-22 | Molded heat insulating material with surface layer and method for manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017209613 | 2017-10-30 | ||
JP2017-209613 | 2017-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019087846A1 true WO2019087846A1 (en) | 2019-05-09 |
Family
ID=66333056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/039191 WO2019087846A1 (en) | 2017-10-30 | 2018-10-22 | Molded heat insulation material with surface layer and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7198215B2 (en) |
WO (1) | WO2019087846A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111118472A (en) * | 2020-01-07 | 2020-05-08 | 山东理工大学 | Preparation method of silicon carbide film continuous carbon fiber plate |
JP2021091565A (en) * | 2019-12-09 | 2021-06-17 | イビデン株式会社 | Composite and method for producing the same |
WO2022013447A1 (en) * | 2020-07-16 | 2022-01-20 | Sgl Carbon Se | Composite material |
CN114956848A (en) * | 2022-04-29 | 2022-08-30 | 吉林联科特种石墨材料有限公司 | Preparation method of integrated cylindrical heat-insulating material with graphite efficient barrier layer |
JP2022143303A (en) * | 2021-03-17 | 2022-10-03 | 大阪ガスケミカル株式会社 | Molded heat insulating material with surface layer and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06190962A (en) * | 1992-12-24 | 1994-07-12 | Mitsubishi Kasei Corp | Molded heat insulating material |
JP2000327441A (en) * | 1999-05-26 | 2000-11-28 | Kureha Chem Ind Co Ltd | Composite carbonaceous thermal insulant and its production |
JP2001089238A (en) * | 1999-07-19 | 2001-04-03 | Toyo Tanso Kk | Molded thermlly insulating material and heat shield |
JP2012184135A (en) * | 2011-03-04 | 2012-09-27 | Osaka Gas Chem Kk | Molded heat-insulating material, and method for producing the same |
JP2017172790A (en) * | 2016-03-18 | 2017-09-28 | 大阪ガスケミカル株式会社 | Molding heat insulation material with surface layer and its process of manufacture |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014211221A (en) | 2013-04-22 | 2014-11-13 | 大日本印刷株式会社 | Heat insulation member |
JP2015174807A (en) | 2014-03-17 | 2015-10-05 | 大阪ガスケミカル株式会社 | Carbon fiber-based heat insulation material, and manufacturing method of the same |
-
2018
- 2018-10-22 JP JP2019551119A patent/JP7198215B2/en active Active
- 2018-10-22 WO PCT/JP2018/039191 patent/WO2019087846A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06190962A (en) * | 1992-12-24 | 1994-07-12 | Mitsubishi Kasei Corp | Molded heat insulating material |
JP2000327441A (en) * | 1999-05-26 | 2000-11-28 | Kureha Chem Ind Co Ltd | Composite carbonaceous thermal insulant and its production |
JP2001089238A (en) * | 1999-07-19 | 2001-04-03 | Toyo Tanso Kk | Molded thermlly insulating material and heat shield |
JP2012184135A (en) * | 2011-03-04 | 2012-09-27 | Osaka Gas Chem Kk | Molded heat-insulating material, and method for producing the same |
JP2017172790A (en) * | 2016-03-18 | 2017-09-28 | 大阪ガスケミカル株式会社 | Molding heat insulation material with surface layer and its process of manufacture |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021091565A (en) * | 2019-12-09 | 2021-06-17 | イビデン株式会社 | Composite and method for producing the same |
CN111118472A (en) * | 2020-01-07 | 2020-05-08 | 山东理工大学 | Preparation method of silicon carbide film continuous carbon fiber plate |
WO2022013447A1 (en) * | 2020-07-16 | 2022-01-20 | Sgl Carbon Se | Composite material |
JP2022143303A (en) * | 2021-03-17 | 2022-10-03 | 大阪ガスケミカル株式会社 | Molded heat insulating material with surface layer and manufacturing method thereof |
JP7174094B2 (en) | 2021-03-17 | 2022-11-17 | 大阪ガスケミカル株式会社 | Molded heat insulating material with surface layer and method for manufacturing the same |
CN114956848A (en) * | 2022-04-29 | 2022-08-30 | 吉林联科特种石墨材料有限公司 | Preparation method of integrated cylindrical heat-insulating material with graphite efficient barrier layer |
CN114956848B (en) * | 2022-04-29 | 2023-07-25 | 吉林联科特种石墨材料有限公司 | Preparation method of integrated cylindrical heat insulation material with graphite efficient barrier layer |
Also Published As
Publication number | Publication date |
---|---|
JP7198215B2 (en) | 2022-12-28 |
JPWO2019087846A1 (en) | 2021-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019087846A1 (en) | Molded heat insulation material with surface layer and method for manufacturing same | |
JP5205671B2 (en) | Heat resistant composite material | |
US7001544B2 (en) | Method for manufacturing carbon-carbon composites | |
JP2015174807A (en) | Carbon fiber-based heat insulation material, and manufacturing method of the same | |
JP4361636B2 (en) | Composite carbonaceous heat insulating material and method for producing the same | |
WO2011118757A1 (en) | Carbon/carbon composite material and method of manufacture for same | |
JP6764317B2 (en) | Molded insulation with surface layer and its manufacturing method | |
JP6742855B2 (en) | Molded heat insulating material and manufacturing method thereof | |
WO2006033373A1 (en) | Composite carbon material, brake material comprising composite carbon material, and method for producing composite carbon material | |
US20180045260A1 (en) | System and Method for Ceramic Doping of Carbon Fiber Composite Structures | |
CN114457504A (en) | C/C-SiC prefabricated part, C/C-SiC composite material, and preparation method and application thereof | |
JPWO2011090151A1 (en) | Carbon fiber laminated molded body and method for producing the same | |
JPH02227244A (en) | Molding insulated material | |
JP5690789B2 (en) | Surface-treated molded heat insulating material and method for producing the same | |
JP5671375B2 (en) | Molded heat insulating material and manufacturing method thereof | |
JP6344972B2 (en) | Cylindrical heat insulating material and manufacturing method thereof | |
JP7174094B2 (en) | Molded heat insulating material with surface layer and method for manufacturing the same | |
JP2019043099A (en) | Carbon fiber sheet laminate and manufacturing method therefor | |
JPH10291869A (en) | Carbon heat insulating material and its production | |
JP2007012440A (en) | Porous carbon material for fuel cell, thermal conductive member made of carbon fiber reinforced plastic, and manufacturing method of these | |
JP2009280437A (en) | Method for producing porous carbon sheet | |
JP2009073715A (en) | Method for producing carbon-fibered heat insulating material | |
JP2022138515A (en) | Carbon fiber-based heat insulation material and method of manufacturing the same | |
JPH06190962A (en) | Molded heat insulating material | |
CN114773077B (en) | Composite silicon carbide fiber hard felt and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18873539 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019551119 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18873539 Country of ref document: EP Kind code of ref document: A1 |