JP7198215B2 - Molded heat insulating material with surface layer and method for manufacturing the same - Google Patents

Molded heat insulating material with surface layer and method for manufacturing the same Download PDF

Info

Publication number
JP7198215B2
JP7198215B2 JP2019551119A JP2019551119A JP7198215B2 JP 7198215 B2 JP7198215 B2 JP 7198215B2 JP 2019551119 A JP2019551119 A JP 2019551119A JP 2019551119 A JP2019551119 A JP 2019551119A JP 7198215 B2 JP7198215 B2 JP 7198215B2
Authority
JP
Japan
Prior art keywords
carbon fiber
sheet
expanded graphite
heat insulating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019551119A
Other languages
Japanese (ja)
Other versions
JPWO2019087846A1 (en
Inventor
敬一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Chemicals Co Ltd
Original Assignee
Osaka Gas Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co Ltd filed Critical Osaka Gas Chemicals Co Ltd
Publication of JPWO2019087846A1 publication Critical patent/JPWO2019087846A1/en
Application granted granted Critical
Publication of JP7198215B2 publication Critical patent/JP7198215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials

Description

本発明は炭素繊維を用いた成形断熱材に関し、詳しくは耐久性を高めるための表面層が設けられた成形断熱材に関する。 TECHNICAL FIELD The present invention relates to a molded heat insulating material using carbon fiber, and more particularly to a molded heat insulating material provided with a surface layer for enhancing durability.

炭素繊維系の断熱材は、熱的安定性や断熱性能に優れ且つ軽量であることから、種々の用途で使用されている。このような断熱材には、炭素繊維を交絡してなる炭素繊維フェルトや、炭素繊維と樹脂材料の炭素化物とを含んだ炭素繊維系成形断熱材がある。炭素繊維フェルトは、可とう性に優れるという長所を有し、炭素繊維系成形断熱材は、形状安定性に優れ、微細な加工が可能であるという長所を有する。 BACKGROUND ART Carbon fiber-based heat insulating materials are used in various applications because they are excellent in thermal stability and heat insulating performance and light in weight. Such heat insulating materials include carbon fiber felt formed by entangling carbon fibers, and carbon fiber molded heat insulating materials containing carbon fibers and carbonized resin materials. Carbon fiber felt has an advantage of being excellent in flexibility, and carbon fiber-based molded heat insulating material has an advantage of being excellent in shape stability and capable of fine processing.

炭素繊維を用いた成形断熱材には、炭素繊維を交絡してなる炭素繊維フェルトに樹脂材料を含浸させ炭素化させたフェルト系の成形断熱材や、湿式法あるいは乾式法で炭素繊維ミルド(短繊維)を合成樹脂とともに成形し炭素化させたショートファイバー系の成形断熱材がある。 Molded insulation materials using carbon fibers include felt-based molded insulation materials that are carbonized by impregnating carbon fiber felt with a resin material and carbonizing carbon fiber, and carbon fiber milled (short) by a wet or dry method. There is a short fiber-based molded heat insulating material that is formed by molding and carbonizing synthetic resin.

何れの断熱材を使用するかは、使用目的や用途に応じて適宜選択される。炭素繊維系成形断熱材は、熱的安定性、断熱性能に優れ且つ形状安定性に優れることから、シリコン、サファイア、炭化ケイ素などの結晶成長炉、金属やセラミックスの焼結に用いられる熱処理炉や熱間等方圧加圧炉(HIP炉)、真空蒸着炉等の高温炉の断熱材として使用されている。 Which heat insulating material to use is appropriately selected according to the intended use and application. Carbon fiber molded heat insulating materials are excellent in thermal stability, heat insulation performance, and shape stability. It is used as a heat insulating material for high-temperature furnaces such as hot isostatic pressure furnaces (HIP furnaces) and vacuum deposition furnaces.

ところが、高温炉内では、酸素ガスなどの酸化性のガスが製造雰囲気に混入したりする。酸素ガスは活性(反応性)が高く、炭素繊維系成形断熱材と酸素ガスとが反応して炭素酸化物(一酸化炭素、二酸化炭素等)が生じる。これにより特に炭素繊維が劣化し、炭素繊維により構成される骨格構造が崩れ、当該骨格構造が多数の空間を形成することにより得られる断熱作用が低下する。また、この劣化により特に炭素繊維が粉化して炉内雰囲気中に放出されて、製品品質を低下させるというおそれもある。 However, in a high-temperature furnace, an oxidizing gas such as oxygen gas may be mixed into the manufacturing atmosphere. Oxygen gas has a high activity (reactivity), and carbon fiber-based molded heat insulating material reacts with oxygen gas to produce carbon oxides (carbon monoxide, carbon dioxide, etc.). As a result, the carbon fibers in particular deteriorate, the skeletal structure composed of the carbon fibers collapses, and the heat insulating effect obtained by the skeletal structure forming a large number of spaces decreases. In addition, this deterioration may cause the carbon fibers, in particular, to be pulverized and released into the atmosphere in the furnace, thereby degrading the product quality.

特に、炉内を常圧付近又は高圧にしたり、アルゴンガスや窒素ガスを流したりする熱処理炉やHIP炉では、気流や圧力差によって成形断熱材内部に酸化性ガスが浸透しやすく、上記問題が顕著に現れることになる。 In particular, in heat treatment furnaces and HIP furnaces in which the inside of the furnace is set to near normal pressure or high pressure, or in which argon gas or nitrogen gas is flowed, oxidizing gas easily permeates inside the formed heat insulating material due to air currents and pressure differences, and the above problems occur. will appear prominently.

この問題を解決するため、特許文献1は、膨張黒鉛を圧延して得られる膨張黒鉛シートを成形断熱材の表面に接着する技術を提案している。 In order to solve this problem, Patent Document 1 proposes a technique of adhering an expanded graphite sheet obtained by rolling expanded graphite to the surface of a molded heat insulating material.

特開2005-133032号公報JP-A-2005-133032

この技術によると、実質的にガス不浸透である膨張黒鉛シートが、成形断熱材の内部へのガスの浸透を防止し、成形断熱材の劣化を防止できるとされる。 According to this technique, the expanded graphite sheet, which is substantially gas-impermeable, is said to prevent permeation of gas into the interior of the molded insulation material, thereby preventing deterioration of the molded insulation material.

本発明者が上記特許文献1の技術を検討したところ、次のような問題点があることを知った。膨張黒鉛シートは、膨張黒鉛を圧延してシート状にしているものであり、黒鉛の層と層との間を結着させるバインダー成分は存在していない。このため、膨張黒鉛シートは、反応性ガス雰囲気下で長期間使用したり、酸化損耗が起きやすい環境で使用したりすると、表面に解離などの劣化が目立つようになるとともに、黒鉛層の剥離等が進行してガス浸透防止機能を失ってしまい、成形断熱材の長寿命化を図れなくなるという課題がある。 When the inventors of the present invention have studied the technique of Patent Document 1, they have found the following problems. The expanded graphite sheet is formed by rolling expanded graphite into a sheet, and does not contain a binder component that binds the graphite layers together. For this reason, if the expanded graphite sheet is used for a long period of time in a reactive gas atmosphere or in an environment where oxidative wear and tear is likely to occur, deterioration such as dissociation will become noticeable on the surface, and the graphite layer will peel off. However, there is a problem in that the gas permeation prevention function is lost due to the progress of the cracking, and it becomes impossible to extend the life of the molded heat insulating material.

本発明は、上記の課題を解決するためになされたものであり、断熱作用の低下や無用なコスト高を招くことなく、成形断熱材内部へのガスの浸透を長期間にわたって抑制し得た成形断熱材を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is a molding that can suppress permeation of gas into the inside of a molded heat insulating material for a long period of time without reducing the heat insulating effect or increasing unnecessary costs. The purpose is to provide thermal insulation.

上記課題を解決するための成形断熱材に係る本発明は、次のように構成されている。
炭素繊維系成形断熱材と、前記炭素繊維系成形断熱材の一つの表面上に積層された1枚の膨張黒鉛シートと、前記膨張黒鉛シートに接して積層された炭素繊維シート保護層と、を備え、前記炭素繊維シート保護層は、炭素繊維を交絡させた炭素繊維不織布シートと炭素繊維不織布シートの炭素繊維表面を被覆する炭素質からなるマトリックスと、を有し、前記炭素繊維系成形断熱材の他の表面上には、膨張黒鉛シート及び炭素繊維シート保護層は配されていない、表面層付き成形断熱材。
The present invention relating to a molded heat insulating material for solving the above problems is configured as follows.
A carbon fiber-based molded heat insulating material, one expanded graphite sheet laminated on one surface of the carbon fiber-based molded heat insulating material, and a carbon fiber sheet protective layer laminated in contact with the expanded graphite sheet. The carbon fiber sheet protective layer includes a carbon fiber nonwoven fabric sheet in which carbon fibers are entangled and a matrix made of carbonaceous matter covering the carbon fiber surface of the carbon fiber nonwoven fabric sheet, and the carbon fiber molded heat insulating material molded insulation with a surface layer, wherein the expanded graphite sheet and the carbon fiber sheet protective layer are not disposed on the other surface of the molded insulation.

上記本発明では、炭素繊維系成形断熱材上に、膨張黒鉛シートと、炭素繊維シート保護層と、が順に積層されている。ここで、膨張黒鉛シートは、成形断熱材内部へのガスの浸透を防止するように作用する。また、炭素繊維シート保護層は、酸化性ガスが発生した場合に、膨張黒鉛シートに先んじて酸化性ガスと反応するため、膨張黒鉛シートの早期の劣化が防止される。この結果、膨張黒鉛シートによるガス浸透防止効果を長期間にわたって得ることができる。つまり、膨張黒鉛シートおよび炭素繊維シート保護層からなる表面層は、ガスの成形断熱材内部への浸透を長期間にわたって防止するように作用する。 In the present invention, the expanded graphite sheet and the protective layer of the carbon fiber sheet are laminated in order on the molded carbon fiber heat insulating material. Here, the expanded graphite sheet acts to prevent permeation of gas into the molded insulation. In addition, when the oxidizing gas is generated, the carbon fiber sheet protective layer reacts with the oxidizing gas before the expanded graphite sheet reacts, so early deterioration of the expanded graphite sheet is prevented. As a result, the effect of preventing gas permeation by the expanded graphite sheet can be obtained for a long period of time. That is, the surface layer consisting of the expanded graphite sheet and the carbon fiber sheet protective layer acts to prevent permeation of gas into the molded heat insulating material for a long period of time.

ここで、炭素繊維系成形断熱材は、市販のものを使用することができ、たとえば上述したフェルト系の成形断熱材や、ショートファイバー系の成形断熱材を使用できる。また、膨張黒鉛シートは、市販のものを使用することができる。また、炭素繊維不織布シートとしては、市販のものを用いることができ、たとえば炭素繊維シート、炭素繊維ペーパーや炭素繊維フェルトを用いることができる。 Here, a commercially available carbon fiber-based molded heat insulating material can be used. For example, the above-mentioned felt-based molded heat insulating material and short fiber-based molded heat insulating material can be used. Moreover, a commercially available expanded graphite sheet can be used. Moreover, as the carbon fiber nonwoven fabric sheet, a commercially available one can be used, and for example, a carbon fiber sheet, carbon fiber paper, or carbon fiber felt can be used.

また、炭素質からなるマトリックスは、炭素繊維表面を被覆するとともに、炭素繊維シート保護層と膨張黒鉛シートとを結着する。マトリックスは炭素質であれば特に限定はされないが、熱硬化性樹脂の炭素化物であることがより好ましい。 The carbonaceous matrix coats the surface of the carbon fiber and binds the protective layer of the carbon fiber sheet and the expanded graphite sheet. Although the matrix is not particularly limited as long as it is carbonaceous, it is more preferably a carbonized thermosetting resin.

また、膨張黒鉛シートは、炭素繊維系成形断熱材に接して積層されていてもよく、両者の間に接着性を高める層が介在していてもよい。膨張黒鉛シートを成形断熱材に接して積層する場合には、熱硬化性樹脂などの接着樹脂が炭素化してなる炭素化物が、両者の界面近傍に存在している構成とすることが好ましい。また、膨張黒鉛シートを2層以上積層するとコスト高になるため、膨張黒鉛シートは1層とするFurther, the expanded graphite sheet may be laminated in contact with the carbon fiber-based molded heat insulating material, and a layer for enhancing adhesion may be interposed between the two. When the expanded graphite sheet is laminated in contact with the molded heat insulating material, it is preferable that a carbonized product obtained by carbonizing an adhesive resin such as a thermosetting resin exists in the vicinity of the interface between the two. In addition, since laminating two or more expanded graphite sheets increases the cost, one expanded graphite sheet is used .

この一方、炭素繊維シート保護層は、膨張黒鉛シートに直接接している。炭素繊維シート保護層は、所望の厚みとするために2枚以上積層された構成としてもよい。 On the other hand, the carbon fiber sheet protective layer is in direct contact with the expanded graphite sheet. The carbon fiber sheet protective layer may have a structure in which two or more layers are laminated in order to obtain a desired thickness.

上記構成において、炭素繊維シート保護層は、かさ密度が0.1~0.5g/cmであり、厚みが0.3~3mmであることが好ましい。In the above structure, the carbon fiber sheet protective layer preferably has a bulk density of 0.1 to 0.5 g/cm 3 and a thickness of 0.3 to 3 mm.

炭素繊維シート保護層のかさ密度が小さくなるに伴い、膨張黒鉛シートの保護効果が小さくなる。他方、炭素繊維シート保護層のかさ密度が大きくなるに伴い、膨張黒鉛シートとの接着が難しくなる。両者のバランスから、炭素繊維シート保護層のかさ密度は、0.1~0.5g/cmであることが好ましく、0.2~0.4g/cmであることがより好ましく、0.2~0.3g/cmであることがさらに好ましい。As the bulk density of the carbon fiber sheet protective layer becomes smaller, the protective effect of the expanded graphite sheet becomes smaller. On the other hand, as the bulk density of the carbon fiber sheet protective layer increases, it becomes difficult to adhere to the expanded graphite sheet. From the balance between the two, the bulk density of the carbon fiber sheet protective layer is preferably 0.1-0.5 g/cm 3 , more preferably 0.2-0.4 g/cm 3 , and 0.2-0.4 g/cm 3 . More preferably, it is 2 to 0.3 g/cm 3 .

また、炭素繊維シート保護層の厚みが小さくなるに伴い、膨張黒鉛シートの保護効果が小さくなる。他方、炭素繊維シート保護層の厚みが大きくなると、その分コスト高になる。両者のバランスから、炭素繊維シート保護層の厚みは、0.3~3mmであることが好ましく、0.4~2.0mmであることがより好ましく、0.5~1.5mmであることがさらに好ましい。 Moreover, as the thickness of the protective layer of the carbon fiber sheet becomes smaller, the protective effect of the expanded graphite sheet becomes smaller. On the other hand, when the thickness of the protective layer of the carbon fiber sheet increases, the cost increases accordingly. From the balance between the two, the thickness of the carbon fiber sheet protective layer is preferably 0.3 to 3 mm, more preferably 0.4 to 2.0 mm, and more preferably 0.5 to 1.5 mm. More preferred.

上記構成において、炭素繊維シート保護層を構成する炭素繊維が、等方性ピッチ系炭素繊維であるであることが好ましい。 In the above structure, it is preferable that the carbon fibers forming the protective layer of the carbon fiber sheet are isotropic pitch-based carbon fibers.

等方性ピッチ系炭素繊維は、柔らかく膨張黒鉛シートに損傷を与えにくいとともに、膨張黒鉛シートとの接着性が良好であるため、好ましい。 Isotropic pitch-based carbon fibers are preferable because they are soft and less likely to damage the expanded graphite sheet and have good adhesion to the expanded graphite sheet.

上記課題を解決するための成形断熱材の製造方法に係る第1の本発明は、次のように構成されている。
炭素繊維不織布シートに熱硬化前の熱硬化性樹脂を含浸させる樹脂含浸炭素繊維不織布シート作製ステップと、1枚の膨張黒鉛シートが一つの表面に取り付けられ、他の表面には膨張黒鉛シートが取り付けられていない炭素繊維系成形断熱材の前記膨張黒鉛シート表面上のみに、前記炭素繊維不織布シートを少なくとも1つ積層して積層体となす積層ステップと、前記積層体を加圧しつつ前記熱硬化性樹脂の熱硬化温度以上に加熱して、前記炭素繊維不織布シートを前記膨張黒鉛シート表面に結着する結着ステップと、結着された前記積層体を不活性ガス雰囲気下で熱処理して、前記熱硬化性樹脂を炭素化させる炭素化ステップと、を有する表面層付き成形断熱材の製造方法。
A first aspect of the present invention relating to a method for manufacturing a molded heat insulating material for solving the above problems is constructed as follows.
A resin-impregnated carbon fiber nonwoven fabric sheet manufacturing step of impregnating a carbon fiber nonwoven fabric sheet with a thermosetting resin before thermosetting, and one expanded graphite sheet is attached to one surface and an expanded graphite sheet is attached to the other surface. a lamination step of laminating at least one carbon fiber nonwoven fabric sheet only on the surface of the expanded graphite sheet of the carbon fiber-based molded heat insulating material that has not been laminated to form a laminate; A binding step of heating to a resin thermosetting temperature or higher to bind the carbon fiber nonwoven fabric sheet to the surface of the expanded graphite sheet; and a carbonization step of carbonizing a thermosetting resin.

上記課題を解決するための成形断熱材の製造方法に係る第2の本発明は、次のように構成されている。
炭素繊維が交絡された炭素繊維構造体に熱硬化前の熱硬化性樹脂を含浸させてプリプレグとなすプリプレグ作製ステップと、炭素繊維不織布シートに熱硬化前の熱硬化性樹脂を含浸させる樹脂含浸炭素繊維不織布シート作製ステップと、前記プリプレグの一つの表面のみ1枚の膨張黒鉛シートを積層し、さらに前記膨張黒鉛シート表面上のみに前記樹脂含浸炭素繊維不織布シートを少なくとも1つ積層して積層体となす積層ステップと、前記積層体を加圧しつつ前記熱硬化性樹脂の熱硬化温度以上に加熱して、前記プリプレグ、前記膨張黒鉛シート、および前記炭素繊維不織布シートを結着する結着ステップと、結着された前記積層体を不活性ガス雰囲気下で熱処理して、前記熱硬化性樹脂を炭素化させる炭素化ステップと、を有する表面層付き成形断熱材の製造方法。
A second aspect of the present invention relating to a method for manufacturing a molded heat insulating material for solving the above problems is constructed as follows.
A prepreg manufacturing step of impregnating a carbon fiber structure in which carbon fibers are entangled with a thermosetting resin before thermosetting to form a prepreg, and a resin-impregnated carbon impregnating a carbon fiber nonwoven fabric sheet with the thermosetting resin before thermosetting. a step of preparing a fiber nonwoven fabric sheet, laminating one expanded graphite sheet only on one surface of the prepreg, and further laminating and laminating at least one resin-impregnated carbon fiber nonwoven fabric sheet only on the surface of the expanded graphite sheet. A step of laminating to form a body, and a step of bonding the prepreg, the expanded graphite sheet, and the carbon fiber nonwoven fabric sheet by heating the laminate to a thermosetting temperature of the thermosetting resin or higher while pressing the laminate. and a carbonization step of heat-treating the bonded laminate in an inert gas atmosphere to carbonize the thermosetting resin.

上記2つの製造方法の相違点は、樹脂含浸炭素繊維不織布シートを積層する際に、成形断熱材部分がすでに炭素化しているか(第1の本発明製造方法)、炭素化していないのか(第2の本発明製造方法)という点である。これらのいずれかを採用することにより、簡便で低コストな手法で、本発明に係る表面層付き成形断熱材を製造することができる。炭素繊維が交絡された炭素繊維構造体は、フェルト系、ショートファイバー系のいずれでもよい。 The difference between the above two manufacturing methods is that when laminating the resin-impregnated carbon fiber nonwoven fabric sheets, the molded heat insulating material portion is already carbonized (first manufacturing method of the present invention) or not carbonized (second manufacturing method). of the present invention). By adopting any one of these, it is possible to manufacture the molded heat insulating material with a surface layer according to the present invention by a simple and low-cost method. A carbon fiber structure in which carbon fibers are entangled may be either a felt type or a short fiber type.

以上に説明したように、本発明によると、低コストでもってガスの浸透を抑制し得た長寿命な表面層付き炭素繊維系成形断熱材を実現することができる。 As described above, according to the present invention, it is possible to realize a long-life carbon fiber-based molded heat insulating material with a surface layer that can suppress permeation of gas at low cost.

図1は、本発明に係る表面層付き成形断熱材の表面近傍の断面顕微鏡写真である。FIG. 1 is a cross-sectional micrograph of the vicinity of the surface of a molded heat insulating material with a surface layer according to the present invention.

図2は、比較例1に係る表面層付き成形断熱材の耐久性試験2後の膨張黒鉛シート表面の状態を示す顕微鏡写真である。FIG. 2 is a micrograph showing the state of the surface of the expanded graphite sheet after durability test 2 of the molded heat insulating material with a surface layer according to Comparative Example 1. FIG.

(実施の形態)
本発明に係る表面層付き成形断熱材は、炭素繊維系成形断熱材と、炭素繊維系成形断熱材に積層された膨張黒鉛シートと、膨張黒鉛シートに接して積層された炭素繊維シート保護層と、を備えている。ここで、炭素繊維シート保護層は、炭素繊維を交絡させた炭素繊維不織布シートと炭素繊維不織布シートの炭素繊維表面を被覆する炭素質からなるマトリックスと、を有している。つまり、本発明に係る表面層付き成形断熱材は、炭素繊維系成形断熱材の上に、膨張黒鉛シートと炭素繊維シート保護層とからなる表面層が設けられている構成であり、このうちの炭素繊維シート保護層が最表層となる。
(Embodiment)
The molded heat insulating material with a surface layer according to the present invention comprises a carbon fiber molded heat insulating material, an expanded graphite sheet laminated on the carbon fiber molded heat insulating material, and a carbon fiber sheet protective layer laminated in contact with the expanded graphite sheet. , is equipped with Here, the carbon fiber sheet protective layer has a carbon fiber non-woven fabric sheet in which carbon fibers are entangled and a matrix made of carbonaceous matter covering the carbon fiber surface of the carbon fiber non-woven fabric sheet. That is, the molded heat insulating material with a surface layer according to the present invention has a structure in which a surface layer composed of an expanded graphite sheet and a carbon fiber sheet protective layer is provided on a carbon fiber type molded heat insulating material. The carbon fiber sheet protective layer is the outermost layer.

上記構成では、膨張黒鉛シートが成形断熱材内部へのガスの浸透を防止するように作用する。また、炭素繊維シート保護層は、酸化性ガスが発生した場合に、膨張黒鉛シートに先んじて酸化性ガスと反応するため、膨張黒鉛シートの早期の損耗が防止される。この結果、膨張黒鉛シートによるガス浸透防止効果を長期間にわたって得ることができる。すなわち、膨張黒鉛シートと炭素繊維シート保護層との二層構造の表面層は、ガスの成形断熱材内部への浸透を長期間にわたって防止するように作用する。 In the above configuration, the expanded graphite sheet acts to prevent permeation of gas into the molded heat insulating material. Further, when the oxidizing gas is generated, the protective layer of the carbon fiber sheet reacts with the oxidizing gas before the expanded graphite sheet reacts, so early wear of the expanded graphite sheet is prevented. As a result, the effect of preventing gas permeation by the expanded graphite sheet can be obtained for a long period of time. That is, the two-layered surface layer of the expanded graphite sheet and the carbon fiber sheet protective layer acts to prevent permeation of gas into the molded heat insulating material for a long period of time.

ここで、炭素繊維系成形断熱材と膨張黒鉛シートとの間に、両者の接着性を高める層(接着層)が設けられていてもよい。この層は、たとえば、熱硬化性樹脂が含浸された炭素繊維不織布シートを炭素化してなるものとすることができる。接着層なしでも両者を強固に接着できる場合には、接着層は設けなくてもよい。 Here, a layer (adhesive layer) may be provided between the carbon fiber-based molded heat insulating material and the expanded graphite sheet to enhance the adhesion between the two. This layer can be made, for example, by carbonizing a carbon fiber nonwoven fabric sheet impregnated with a thermosetting resin. If the two can be firmly adhered even without an adhesive layer, the adhesive layer may not be provided.

ここで、炭素繊維系成形断熱材、接着層、炭素繊維シート保護層などを構成する炭素繊維としては、特に限定されることはなく、例えば石炭又は石油由来の異方性又は等方性ピッチ系、ポリアクリロニトリル(PAN)系、レーヨン系、フェノール系、セルロース系等の炭素繊維を、単一種又は複数種混合して用いることができる。中でも、等方性ピッチ系炭素繊維が、柔らかく黒鉛シートに損傷を与えにくく、黒鉛シートとの接着性が良好であるため、好ましい。 Here, the carbon fiber constituting the carbon fiber molded heat insulating material, the adhesive layer, the carbon fiber sheet protective layer, etc. is not particularly limited, and for example, an anisotropic or isotropic pitch derived from coal or petroleum , polyacrylonitrile (PAN)-based, rayon-based, phenol-based, and cellulose-based carbon fibers can be used singly or in combination. Among them, isotropic pitch-based carbon fiber is preferable because it is soft and hardly damages the graphite sheet, and has good adhesion to the graphite sheet.

いずれの炭素繊維も、その微視的な構造としては特に限定されず、形状(巻縮型、直線型、直径、長さ等)が同一のもののみを用いてもよく、また異なる構造のものが混合されていてもよい。ただし、炭素繊維の種類やその微視的構造は、製造される表面層付き成形断熱材の物性に影響を与えるので、用途に応じて適宜選択するのがよい。 The microscopic structure of any carbon fiber is not particularly limited, and only those having the same shape (crimped type, straight type, diameter, length, etc.) may be used, or those having different structures may be used. may be mixed. However, since the type of carbon fiber and its microscopic structure affect the physical properties of the molded heat insulating material with a surface layer to be manufactured, they should be appropriately selected according to the application.

炭素繊維系成形断熱材としては、特に限定されることはなく、市販のものを適宜使用できる。例えば、厚みが3~15mm程度の炭素繊維シートが複数積層されたものを用いることができる。また、長さや幅は特に限定されることはない。また、炭素繊維の微視的構造としては、ランダムな方向に配向した炭素繊維が複雑に交わっているものを用いることが好ましい。 The carbon fiber-based molded heat insulating material is not particularly limited, and a commercially available one can be used as appropriate. For example, a laminate of a plurality of carbon fiber sheets having a thickness of about 3 to 15 mm can be used. Also, the length and width are not particularly limited. As for the microscopic structure of the carbon fiber, it is preferable to use a carbon fiber in which randomly oriented carbon fibers intersect intricately.

膨張黒鉛シートとしては、特に限定されることはなく、市販のものを適宜使用できる。 The expanded graphite sheet is not particularly limited, and commercially available ones can be used as appropriate.

炭素繊維シート保護層を構成する炭素繊維不織布シートとしては、特に限定されることはなく、例えば厚みが0.3~3mm程度のものを用いることができる。また、長さや幅は特に限定されることはない。また、炭素繊維不織布シートの微視的構造としては、最次元的に、あるいは面方向にランダムな方向に配向した炭素繊維が複雑に交わっているものを用いることが好ましい。 The carbon fiber nonwoven fabric sheet constituting the carbon fiber sheet protective layer is not particularly limited, and for example, a sheet having a thickness of about 0.3 to 3 mm can be used. Also, the length and width are not particularly limited. Moreover, as the microscopic structure of the carbon fiber nonwoven fabric sheet, it is preferable to use one in which carbon fibers oriented in the most dimensional or random directions in the plane direction intersect in a complex manner.

また、これらの材料は、長尺や長幅なものを用いて表面層付き成形断熱材を作製後に切断等してもよく、表面層付き成形断熱材のサイズにあらかじめ切断してもよい。 Further, these materials may be cut or the like after the surface layer-attached molded heat insulating material is produced using a long or wide one, or they may be cut in advance to the size of the surface layer-attached molded heat insulating material.

マトリックスは、炭素繊維の表面全部、あるいは、炭素繊維の表面の一部を被覆し、あるいは炭素繊維相互間を埋めるように存在しているものである。また、炭素マトリックスは炭素質であればよく、その由来となる化合物は特に限定されることはない。なかでも、炭素繊維不織布シートに含浸可能な樹脂材料の炭素化物であることが好ましい。炭素繊維系成形断熱材と膨張黒鉛シートとの間に接着層を設ける場合には、接着層、炭素繊維不織布シートに含浸させる熱硬化性樹脂が同一の材料であることが好ましい。このような樹脂材料としては、フェノール樹脂、フラン樹脂、ポリイミド樹脂、エポキシ樹脂等の熱硬化性樹脂が好ましい。熱硬化性樹脂を用いると、膨張黒鉛シートと炭素繊維不織布シートとを熱硬化により簡便かつ強固に結着させることができる。 The matrix exists so as to cover the entire surface of the carbon fiber, a part of the surface of the carbon fiber, or to fill the space between the carbon fibers. Moreover, the carbon matrix may be carbonaceous, and the compound from which it is derived is not particularly limited. Among them, a carbonized resin material that can be impregnated into the carbon fiber nonwoven fabric sheet is preferable. When an adhesive layer is provided between the carbon fiber molded heat insulating material and the expanded graphite sheet, the adhesive layer and the thermosetting resin impregnated into the carbon fiber nonwoven fabric sheet are preferably made of the same material. Thermosetting resins such as phenol resins, furan resins, polyimide resins, and epoxy resins are preferable as such resin materials. When a thermosetting resin is used, the expanded graphite sheet and the carbon fiber nonwoven fabric sheet can be easily and strongly bonded by thermosetting.

ここで、熱硬化性樹脂は1種のみを用いてもよく、2種以上を混合して用いてもよい。また、熱硬化性樹脂は、そのまま炭素繊維不織布シートに含ませてもよく、溶剤で希釈して含ませてもよい。溶剤としては、メチルアルコール、エチルアルコール等のアルコールを用いることができる。 Here, the thermosetting resin may be used alone or in combination of two or more. The thermosetting resin may be contained in the carbon fiber nonwoven fabric sheet as it is, or may be diluted with a solvent and then contained. Alcohols such as methyl alcohol and ethyl alcohol can be used as the solvent.

また、成形断熱材のかさ密度は、0.10~0.30g/cmとすることが好ましく、0.12~0.20g/cmであることがより好ましく、0.13~0.16g/cmであることがさらに好ましい。成形断熱材の厚みは、目的とする断熱性能などに応じて適宜設定すればよい。Also, the bulk density of the molded heat insulating material is preferably 0.10 to 0.30 g/cm 3 , more preferably 0.12 to 0.20 g/cm 3 , and more preferably 0.13 to 0.16 g. /cm 3 is more preferred. The thickness of the molded heat insulating material may be appropriately set according to the desired heat insulating performance.

また、膨張黒鉛シートのかさ密度は、0.5~1.5g/cmとすることが好ましく、0.6~1.3g/cmであることがより好ましく、0.8~1.1g/cmであることがさらに好ましい。また、膨張黒鉛シートの厚みは、0.1~1.5mmであることが好ましく、0.2~1.0mmであることがより好ましく、0.3~0.5mmであることがさらに好ましい。Also, the bulk density of the expanded graphite sheet is preferably 0.5 to 1.5 g/cm 3 , more preferably 0.6 to 1.3 g/cm 3 , and more preferably 0.8 to 1.1 g. /cm 3 is more preferred. The thickness of the expanded graphite sheet is preferably 0.1 to 1.5 mm, more preferably 0.2 to 1.0 mm, even more preferably 0.3 to 0.5 mm.

次に、成形断熱材の製造方法について説明する。 Next, a method for manufacturing the molded heat insulating material will be described.

(第1の製造方法)
(膨張黒鉛シートが貼りつけられた成形断熱材の準備)
市販の黒鉛シートが接着された成形断熱材を使用することができる。また、熱硬化性樹脂などを用いて、成形断熱材に膨張黒鉛シートを貼りつけ、その後熱硬化、炭素化を行って両者を接着してもよい。このとき、成形断熱材と膨張黒鉛シートとの間に、熱硬化性樹脂を含浸させた炭素繊維ペーパーなどを介在させたり、熱硬化性樹脂などの接着剤液を膨張黒鉛シート表面および/または成形断熱材表面に塗布したりして、両者の密着性を高める構成としてもよい。熱硬化や炭素化は、公知の手法を採用できる。熱硬化性樹脂は、そのまま用いてもよく、メタノール、エタノールなどのアルコール溶媒に溶解させて用いてもよく、炭素質の粒子や短繊維がさらに含まれている構成としてもよい。
(First manufacturing method)
(Preparation of molded insulation with expanded graphite sheet attached)
Molded insulation with commercially available graphite sheets bonded thereto can be used. Alternatively, an expanded graphite sheet may be attached to a molded heat insulating material using a thermosetting resin or the like, and then heat-cured and carbonized to bond the two together. At this time, carbon fiber paper or the like impregnated with a thermosetting resin is interposed between the molded heat insulating material and the expanded graphite sheet, or an adhesive liquid such as a thermosetting resin is applied to the surface of the expanded graphite sheet and/or the molded sheet. It may be applied to the surface of the heat insulating material to enhance the adhesion between the two. A well-known method can be adopted for heat curing and carbonization. The thermosetting resin may be used as it is, or may be dissolved in an alcoholic solvent such as methanol or ethanol, and may further contain carbonaceous particles or short fibers.

ここで、成形断熱材の形状は特に限定されるものではなく、たとえば直方体や円筒状などであればよい。 Here, the shape of the molded heat insulating material is not particularly limited, and may be, for example, rectangular parallelepiped or cylindrical.

(樹脂含浸炭素繊維不織布シート作製ステップ)
炭素繊維不織布シートは、市販のものを用いることができる。炭素繊維不織布シートに、熱硬化性樹脂溶液を塗布やスプレーにより含浸させて、樹脂含浸炭素繊維不織布シートとなす。
(Resin-impregnated carbon fiber non-woven fabric sheet preparation step)
A commercially available carbon fiber nonwoven fabric sheet can be used. A carbon fiber nonwoven fabric sheet is impregnated with a thermosetting resin solution by coating or spraying to form a resin-impregnated carbon fiber nonwoven fabric sheet.

(積層ステップ)
膨張黒鉛シートが接着された成形断熱材の膨張黒鉛シート上に接して、樹脂含浸炭素繊維不織布シートを積層して積層体となす。樹脂含浸炭素繊維不織布シートは、2枚以上積層してもよい。
(Lamination step)
A resin-impregnated carbon fiber nonwoven fabric sheet is laminated on the expanded graphite sheet of the molded heat insulating material to which the expanded graphite sheet is adhered to form a laminate. Two or more resin-impregnated carbon fiber nonwoven fabric sheets may be laminated.

(結着ステップ)
上記積層体を目的の厚みとなるようにプレス機を用いて加圧しつつ、熱硬化性樹脂の硬化温度以上の温度に加熱し、所定の時間(例えば、1~10時間)保持して、積層体を結着する。
(binding step)
While pressurizing the laminate to a desired thickness using a press, it is heated to a temperature equal to or higher than the curing temperature of the thermosetting resin, held for a predetermined time (for example, 1 to 10 hours), and laminated. bind the body.

(炭素化ステップ)
結着された積層体を、不活性雰囲気で1000~2500℃で所定の時間(例えば、1~20時間)加熱し、熱硬化性樹脂を炭素化させて、表面層付きの成形断熱材を得る。この炭素化によって、膨張黒鉛シート上に積層された樹脂含浸炭素繊維不織布シートは、炭素繊維シート保護層となる。また、膨張黒鉛シートと成形断熱材との間に樹脂含浸炭素繊維不織布シートを配置した場合、この層は炭素化によって接着層となる。
(Carbonization step)
The bonded laminate is heated at 1000 to 2500° C. for a predetermined time (for example, 1 to 20 hours) in an inert atmosphere to carbonize the thermosetting resin to obtain a molded heat insulating material with a surface layer. . By this carbonization, the resin-impregnated carbon fiber nonwoven fabric sheet laminated on the expanded graphite sheet becomes a carbon fiber sheet protective layer. Also, when a resin-impregnated carbon fiber nonwoven fabric sheet is placed between the expanded graphite sheet and the molded heat insulating material, this layer becomes an adhesive layer through carbonization.

(第2の製造方法)
第2の製造方法では、成形断熱材として炭素化されていないものを用いる点で上記第1の製造方法と異なっている。ここで、樹脂含浸炭素繊維不織布シート作製ステップ、結着ステップ、炭素化ステップは、上記第1の製造方法と同様であるため、これらについての詳細な説明は省略する。
(Second manufacturing method)
The second manufacturing method differs from the first manufacturing method in that non-carbonized molded heat insulating material is used. Here, the resin-impregnated carbon fiber nonwoven fabric sheet preparation step, the binding step, and the carbonization step are the same as those in the first manufacturing method, and therefore detailed descriptions thereof will be omitted.

(プリプレグ作製ステップ)
炭素繊維が交絡された炭素繊維構造体に熱硬化前の熱硬化性樹脂を含浸させてプリプレグとなす。炭素繊維構造体としては、フェルト系のものやショートファイバー系のものを用いることができる。好ましくは炭素繊維が三次元的にランダムに交絡されたものを用いる。熱硬化性樹脂は、炭素繊維不織布シートに含浸させるものと同様でよく、溶媒に溶解した状態で含浸させてもよい。
(Prepreg manufacturing step)
A carbon fiber structure in which carbon fibers are entangled is impregnated with a thermosetting resin before thermosetting to form a prepreg. As the carbon fiber structure, a felt-based one or a short fiber-based one can be used. Preferably, carbon fibers are three-dimensionally randomly entangled. The thermosetting resin may be the same as that with which the carbon fiber nonwoven fabric sheet is impregnated, and may be impregnated in a state of being dissolved in a solvent.

(樹脂含浸炭素繊維不織布シート作製ステップ)
上記第1の製造方法と同様にして、炭素繊維不織布シートに熱硬化前の熱硬化性樹脂を含浸させて樹脂含浸炭素繊維不織布シート作製する。
(Resin-impregnated carbon fiber non-woven fabric sheet preparation step)
A resin-impregnated carbon fiber nonwoven fabric sheet is produced by impregnating a carbon fiber nonwoven fabric sheet with a thermosetting resin before thermosetting in the same manner as in the first manufacturing method.

(積層ステップ)
プリプレグ上に膨張黒鉛シートを積層し、さらに膨張黒鉛シート表面に樹脂含浸炭素繊維不織布シートを少なくとも1つ積層して積層体となす。このとき、所望とする断熱性能を得るために、プリプレグを2以上積層する構成としてもよい。
(Lamination step)
An expanded graphite sheet is laminated on the prepreg, and at least one resin-impregnated carbon fiber nonwoven fabric sheet is laminated on the surface of the expanded graphite sheet to form a laminate. At this time, two or more prepregs may be laminated in order to obtain desired heat insulation performance.

また、上記第1の製造方法と同様に、熱硬化性樹脂を含浸させた炭素繊維ペーパーを、プリプレグと膨張黒鉛シートとの間に介在させたり、熱硬化性樹脂などの接着剤液を膨張黒鉛シート表面および/または成形断熱材表面に塗布したりしてもよい。また、結着ステップで加圧している際に、十分な量の熱硬化性樹脂が膨張黒鉛シートとの界面に存在する場合には、このような手段を講じなくともよい。さらに、熱硬化性樹脂を含浸させた炭素繊維ペーパーとしては、上記樹脂含浸炭素繊維不織布シートと同一のものを用いることもできる。 In addition, as in the first manufacturing method, carbon fiber paper impregnated with a thermosetting resin may be interposed between the prepreg and the expanded graphite sheet, or an adhesive liquid such as a thermosetting resin may be added to the expanded graphite. It may be applied to the surface of the sheet and/or the surface of the molded insulation. Further, when a sufficient amount of thermosetting resin is present at the interface with the expanded graphite sheet during pressing in the binding step, such measures need not be taken. Furthermore, as the carbon fiber paper impregnated with the thermosetting resin, the same material as the resin-impregnated carbon fiber nonwoven fabric sheet can be used.

この後、上記第1の製造方法と同様にして、結着ステップおよび炭素化ステップを行う。この炭素化によって、プリプレグは炭素繊維系成形断熱材となり、樹脂含浸炭素繊維不織布シートは炭素繊維シート保護層となる。 Thereafter, the binding step and the carbonization step are performed in the same manner as in the first manufacturing method. By this carbonization, the prepreg becomes a carbon fiber-based molded heat insulating material, and the resin-impregnated carbon fiber nonwoven fabric sheet becomes a carbon fiber sheet protective layer.

ここで、特に2000℃以上の温度で熱処理する場合、炭素繊維やマトリックスなどの黒鉛構造が発展する場合もあるが、本発明においては、全ての炭素質材料は、非晶質炭素からなる構造、黒鉛質炭素からなる構造、両者が混在した構造全てを含むものを意味する。 Here, especially when heat treatment is performed at a temperature of 2000 ° C. or higher, a graphite structure such as carbon fiber or matrix may develop. It means a structure made of graphitic carbon and a structure in which both are mixed.

実施例に基づいて、本発明をさらに詳細に説明する。 The present invention will be described in more detail based on examples.

(実施例1)
成形断熱材(表面層が設けられていないもの)としては、市販のピッチ系炭素繊維からなるフェルト系成形断熱材(大阪ガスケミカル製DON-1000-R 形状:厚み30mm、幅1m、長さ1.5mの平板、かさ密度:0.13g/cm)を用いた。
(Example 1)
As a molded heat insulating material (not provided with a surface layer), a felt-based molded heat insulating material made of commercially available pitch-based carbon fiber (DON-1000-R manufactured by Osaka Gas Chemicals, shape: thickness 30 mm, width 1 m, length 1 A 0.5 m flat plate, bulk density: 0.13 g/cm 3 ) was used.

市販のピッチ系炭素繊維からなるカーボンペーパー(大阪ガスケミカル製ドナカーボペーパー S-255AH 厚み2.4mm、幅1m、長さ1.5m、目付:75g/m2)30重量部に、レゾール系フェノール樹脂70重量部を均一含浸させ熱硬化性樹脂が含浸された炭素繊維不織布シートを作製した。30 parts by weight of commercially available carbon paper made of pitch-based carbon fiber (Dona Carbo Paper S-255AH manufactured by Osaka Gas Chemicals, thickness: 2.4 mm, width: 1 m, length: 1.5 m, basis weight: 75 g/m 2 ), resol-based phenol A carbon fiber nonwoven fabric sheet impregnated with a thermosetting resin was prepared by uniformly impregnating 70 parts by weight of the resin.

上記成形断熱材に、上記熱硬化性樹脂含浸炭素繊維不織布シートを乗せ、その上に同じ幅及び長さの膨張黒鉛シート(東洋炭素製 パーマフォイルPF-38 形状:厚み0.38mm)を乗せ、さらに膨張黒鉛シートの上に上記熱硬化性樹脂含浸炭素繊維不織布シートを1枚乗せて、積層体となした。この後、当該積層体を、加熱圧縮プレスを用いて、面圧0.05MPa、加熱温度200℃で30分間保持し、熱硬化性樹脂を熱硬化させて、当該積層体を接着した。 The thermosetting resin-impregnated carbon fiber nonwoven fabric sheet is placed on the molded heat insulating material, and an expanded graphite sheet of the same width and length (Toyo Tanso Co., Ltd. Permafoil PF-38 shape: thickness 0.38 mm) is placed on it, Further, one sheet of the thermosetting resin-impregnated carbon fiber nonwoven fabric sheet was placed on the expanded graphite sheet to form a laminate. Thereafter, the laminate was held at a surface pressure of 0.05 MPa and a heating temperature of 200° C. for 30 minutes using a hot compression press to thermally cure the thermosetting resin and bond the laminate.

熱硬化後の積層体を熱処理炉に入れ、不活性雰囲気下、2000℃で5時間保持する熱処理を行って、熱硬化性樹脂を炭素化し、膨張黒鉛シートと炭素繊維シート保護層とからなる表面層が設けられた成形断熱材を得た。このとき、炭素繊維シート保護層のかさ密度が0.24g/cmであり、厚みが0.6mmであった。The laminated body after thermosetting is placed in a heat treatment furnace, and heat treatment is performed in an inert atmosphere at 2000 ° C. for 5 hours to carbonize the thermosetting resin, and the surface composed of the expanded graphite sheet and the carbon fiber sheet protective layer. A layered molded insulation was obtained. At this time, the carbon fiber sheet protective layer had a bulk density of 0.24 g/cm 3 and a thickness of 0.6 mm.

(比較例1)
膨張黒鉛シート上に熱硬化性樹脂含浸炭素繊維不織布シートを積層しなかったこと以外は、実施例1と同様な方法で黒鉛シートが接着された成形断熱材を得た。
(Comparative example 1)
A molded heat insulating material having a graphite sheet adhered thereto was obtained in the same manner as in Example 1, except that the carbon fiber nonwoven fabric sheet impregnated with a thermosetting resin was not laminated on the expanded graphite sheet.

上記実施例1及び比較例1に係る表面層付き成形断熱材について、以下の条件で耐久性、剥離性を測定した。 The molded heat insulating materials with a surface layer according to Example 1 and Comparative Example 1 were measured for durability and peelability under the following conditions.

(耐久性試験1)
上記実施例1及び比較例1に係る表面層付き成形断熱材を、50mm×50mm×30mmの直方体に切り出し、温度700℃、空気流量2L/minに設定された空気雰囲気の電気炉に保持し、表面層の剥離状態を観察した。この結果、実施例1にかかる成形断熱材は試験開始から3時間後に表面層の消耗が見られたものの、この時点で膨張黒鉛シートには剥離は見られなかった。他方、比較例1にかかる成形断熱材は、試験開始から3時間後に膨張黒鉛シートの剥離が見られた。
(Durability test 1)
The molded heat insulating materials with the surface layer according to Example 1 and Comparative Example 1 were cut into rectangular parallelepipeds of 50 mm × 50 mm × 30 mm, held in an electric furnace with an air atmosphere set to a temperature of 700 ° C. and an air flow rate of 2 L / min, The peeling state of the surface layer was observed. As a result, although the surface layer of the molded heat insulating material according to Example 1 was worn three hours after the start of the test, no exfoliation was observed in the expanded graphite sheet at this point. On the other hand, in the molded heat insulating material according to Comparative Example 1, exfoliation of the expanded graphite sheet was observed 3 hours after the start of the test.

(耐久性試験2)
上記実施例1及び比較例1に係る表面層付き成形断熱材を、50mm×50mm×30mmの直方体に切り出し、温度700℃、空気流量2L/minに設定された空気雰囲気の電気炉に4時間保持した。試験後の断熱材の表面を走査型電子顕微鏡で観察したところ、実施例1では、炭素繊維保護層の劣化は見られたものの膨張黒鉛シートの劣化が殆ど確認されなかった。図2は、比較例1に係る表面層付き成形断熱材の耐久性試験2後の膨張黒鉛シート表面の状態を示す顕微鏡写真である。比較例1では、図2に示すように、膨張黒鉛シートに解離などの劣化が見られた。
(Durability test 2)
The molded heat insulating materials with the surface layer according to Example 1 and Comparative Example 1 were cut into rectangular parallelepipeds of 50 mm × 50 mm × 30 mm, and held for 4 hours in an electric furnace with an air atmosphere set to a temperature of 700 ° C. and an air flow rate of 2 L / min. did. When the surface of the heat insulating material after the test was observed with a scanning electron microscope, deterioration of the carbon fiber protective layer was observed in Example 1, but deterioration of the expanded graphite sheet was hardly confirmed. FIG. 2 is a micrograph showing the state of the surface of the expanded graphite sheet after durability test 2 of the molded heat insulating material with a surface layer according to Comparative Example 1. FIG. In Comparative Example 1, as shown in FIG. 2, deterioration such as dissociation was observed in the expanded graphite sheet.

(耐久性試験3)
上記実施例1及び比較例1に係る表面層付き成形断熱材を、50mm×50mm×30mmの直方体に切り出し、温度700℃、空気流量2L/minに設定された空気雰囲気の電気炉に保持した。このとき、表面層の剥離状態を観察するとともに、酸化消耗による表面層付き成形断熱材の質量変化を測定した。この際、表面層のみ空気が触れるように治具にて表面層以外(膨張黒鉛シートと炭素繊維シート保護層以外)を保護した。この結果、実施例1にかかる成形断熱材は、試験開始から6時間後の消耗率(表面層付きの成形断熱材の質量減少率)が18.8%であり、この時点で膨張黒鉛シートの剥離は見られなかった。他方、比較例1にかかる成形断熱材は、試験開始から6時間後の消耗率が26.3%であり、この時点で膨張黒鉛シートの剥離が見られた。
(Durability test 3)
The molded heat insulating materials with the surface layer according to Example 1 and Comparative Example 1 were cut into rectangular parallelepipeds of 50 mm×50 mm×30 mm and held in an air atmosphere electric furnace set at a temperature of 700° C. and an air flow rate of 2 L/min. At this time, the peeling state of the surface layer was observed, and the change in mass of the formed heat insulating material with the surface layer due to oxidation consumption was measured. At this time, the parts other than the surface layer (other than the expanded graphite sheet and the protective layer of the carbon fiber sheet) were protected with a jig so that only the surface layer was exposed to air. As a result, the molded heat insulating material according to Example 1 had a consumption rate (mass reduction rate of the molded heat insulating material with a surface layer) of 18.8% after 6 hours from the start of the test. No delamination was observed. On the other hand, the molded heat insulating material according to Comparative Example 1 had a consumption rate of 26.3% after 6 hours from the start of the test, and peeling of the expanded graphite sheet was observed at this point.

(剥離試験)
上記実施例1にかかる成形断熱材を4cm×4cm×3cmの直方体に切り出し、試験片とした。2液性接着剤を用いて、この試験片の積層方向(厚さ方向)上下面に剥離試験治具を接着し、エー・アンド・デイ製テンシロン万能材料試験機(RTC-1210)を用いて、クロスヘッドスピード1mm/minで厚さ方向に引っ張った。この結果、成形断熱材部分の破壊が膨張黒鉛シートや炭素繊維シート保護層の破壊や剥離よりも先に起こった。このことから、炭素繊維シート保護層と黒鉛シートとの接着強度は成形断熱材部分よりも高く、十分なものであることが確認された。
(Peeling test)
A rectangular parallelepiped of 4 cm×4 cm×3 cm was cut out from the molded heat insulating material according to Example 1 to obtain a test piece. Using a two-liquid adhesive, a peel test jig is attached to the upper and lower surfaces of the test piece in the stacking direction (thickness direction), and a tensilon universal material tester (RTC-1210) manufactured by A&D Co., Ltd. is used. , and pulled in the thickness direction at a crosshead speed of 1 mm/min. As a result, the breakage of the molded heat insulating material occurred before the breakage and peeling of the expanded graphite sheet and carbon fiber sheet protective layer. From this, it was confirmed that the adhesive strength between the carbon fiber sheet protective layer and the graphite sheet was higher than that of the molded heat insulating material portion and was sufficient.

以上のことから、本発明によると、膨張黒鉛シートおよび炭素繊維シート保護層の2層構造の表面層を設けるという簡便な手法で、成形断熱材のガスによる劣化を長期間に抑制し得た表面層付き成形断熱材を実現できることが分かる。 From the above, according to the present invention, a surface layer that can suppress deterioration of a molded heat insulating material due to gas for a long period of time by a simple method of providing a surface layer with a two-layer structure of an expanded graphite sheet and a carbon fiber sheet protective layer. It can be seen that layered molded insulation can be achieved.

図1に、実施例1に係る表面層付き成形断熱材の表面層近傍の断面顕微鏡写真を示す。この写真からわかるように、炭素繊維間の空隙が多い成形断熱材4上に、炭素繊維間の空隙が成形断熱材4よりも少ない接着シート3、緻密な構造の膨張黒鉛シート2、接着シート3とほぼ同様の炭素繊維シート保護層1、が順に積層されていることが分かる。 FIG. 1 shows a cross-sectional photomicrograph of the vicinity of the surface layer of the molded heat insulating material with the surface layer according to Example 1. As shown in FIG. As can be seen from this photograph, on the formed heat insulating material 4 having many gaps between carbon fibers, an adhesive sheet 3 having fewer gaps between carbon fibers than the formed heat insulating material 4, an expanded graphite sheet 2 having a dense structure, and an adhesive sheet 3 are formed. It can be seen that the carbon fiber sheet protective layer 1, which is almost the same as , is laminated in order.

なお、上記実施例では、本発明にかかる第1の製造方法を採用したが、第2の製造方法を採用しても同様の効果が得られる。 Although the first manufacturing method according to the present invention is used in the above embodiment, the same effect can be obtained by adopting the second manufacturing method.

上記で説明したように、本発明によると、大幅なコスト上昇を伴うことなく、ガスによる断熱性能の低下を抑制し得た長寿命な表面層付き成形断熱材を実現できるので、その産業上の利用可能性は大きい。 As described above, according to the present invention, it is possible to realize a molded heat insulating material with a long life surface layer that can suppress the deterioration of the heat insulating performance due to gas without a significant increase in cost. Availability is great.

1 炭素繊維シート保護層
2 膨張黒鉛シート
3 接着シート
4 成形断熱材
1 Carbon fiber sheet protective layer 2 Expanded graphite sheet 3 Adhesive sheet 4 Molded heat insulating material

Claims (5)

炭素繊維系成形断熱材と、
前記炭素繊維系成形断熱材の一つの表面上に積層された1枚の膨張黒鉛シートと、
前記膨張黒鉛シートに接して積層された炭素繊維シート保護層と、を備え、
前記炭素繊維シート保護層は、炭素繊維を交絡させた炭素繊維不織布シートと炭素繊維不織布シートの炭素繊維表面を被覆する炭素質からなるマトリックスと、を有し、
前記炭素繊維系成形断熱材の他の表面上には、膨張黒鉛シート及び炭素繊維シート保護層は配されていない、
表面層付き成形断熱材。
a carbon fiber-based molded insulation;
an expanded graphite sheet laminated on one surface of the carbon fiber-based molded insulation;
a carbon fiber sheet protective layer laminated in contact with the expanded graphite sheet,
The carbon fiber sheet protective layer includes a carbon fiber nonwoven fabric sheet in which carbon fibers are entangled and a matrix made of carbonaceous material covering the carbon fiber surface of the carbon fiber nonwoven fabric sheet ,
The expanded graphite sheet and the carbon fiber sheet protective layer are not arranged on the other surface of the carbon fiber-based molded heat insulating material,
Molded insulation with surface layer.
前記炭素繊維シート保護層は、かさ密度が0.1~0.5g/cmであり、厚みが0.3~3mmである、
ことを特徴とする請求項1に記載の表面層付き成形断熱材。
The carbon fiber sheet protective layer has a bulk density of 0.1 to 0.5 g/cm 3 and a thickness of 0.3 to 3 mm.
The molded heat insulating material with a surface layer according to claim 1, characterized in that:
前記炭素繊維シート保護層を構成する炭素繊維が、等方性ピッチ系炭素繊維である、
ことを特徴とする請求項1又は2に記載の表面層付き成形断熱材。
The carbon fibers constituting the carbon fiber sheet protective layer are isotropic pitch-based carbon fibers,
The molded heat insulating material with a surface layer according to claim 1 or 2, characterized in that:
炭素繊維不織布シートに熱硬化前の熱硬化性樹脂を含浸させる樹脂含浸炭素繊維不織布シート作製ステップと、
1枚の膨張黒鉛シートが一つの表面に取り付けられ、他の表面には膨張黒鉛シートが取り付けられていない炭素繊維系成形断熱材の前記膨張黒鉛シート表面上のみに、前記炭素繊維不織布シートを少なくとも1つ積層して積層体となす積層ステップと、
前記積層体を加圧しつつ前記熱硬化性樹脂の熱硬化温度以上に加熱して、前記炭素繊維不織布シートを前記膨張黒鉛シート表面に結着する結着ステップと、
結着された前記積層体を不活性ガス雰囲気下で熱処理して、前記熱硬化性樹脂を炭素化させる炭素化ステップと、
を有する表面層付き成形断熱材の製造方法。
A resin-impregnated carbon fiber nonwoven fabric sheet manufacturing step of impregnating the carbon fiber nonwoven fabric sheet with a thermosetting resin before thermosetting;
At least the carbon fiber nonwoven fabric sheet is placed only on the surface of the expanded graphite sheet of the carbon fiber-based molded heat insulating material having one expanded graphite sheet attached to one surface and no expanded graphite sheet attached to the other surface. a lamination step of laminating one to form a laminate;
a bonding step of heating the laminate to a temperature equal to or higher than the thermosetting temperature of the thermosetting resin while pressurizing the laminate to bond the carbon fiber nonwoven fabric sheet to the surface of the expanded graphite sheet;
a carbonization step of heat-treating the bound laminate in an inert gas atmosphere to carbonize the thermosetting resin;
A method of manufacturing a molded insulation with a surface layer comprising:
炭素繊維が交絡された炭素繊維構造体に熱硬化前の熱硬化性樹脂を含浸させてプリプレグとなすプリプレグ作製ステップと、
炭素繊維不織布シートに熱硬化前の熱硬化性樹脂を含浸させる樹脂含浸炭素繊維不織布シート作製ステップと、
前記プリプレグの一つの表面のみ1枚の膨張黒鉛シートを積層し、さらに前記膨張黒鉛シート表面上のみに前記樹脂含浸炭素繊維不織布シートを少なくとも1つ積層して積層体となす積層ステップと、
前記積層体を加圧しつつ前記熱硬化性樹脂の熱硬化温度以上に加熱して、前記プリプレグ、前記膨張黒鉛シート、および前記炭素繊維不織布シートを結着する結着ステップと、
結着された前記積層体を不活性ガス雰囲気下で熱処理して、前記熱硬化性樹脂を炭素化させる炭素化ステップと、
を有する表面層付き成形断熱材の製造方法。
A prepreg manufacturing step of impregnating a carbon fiber structure in which carbon fibers are entangled with a thermosetting resin before thermosetting to form a prepreg;
A resin-impregnated carbon fiber nonwoven fabric sheet manufacturing step of impregnating the carbon fiber nonwoven fabric sheet with a thermosetting resin before thermosetting;
a lamination step of laminating one expanded graphite sheet only on one surface of the prepreg, and further laminating at least one resin-impregnated carbon fiber nonwoven fabric sheet only on the surface of the expanded graphite sheet to form a laminate;
a bonding step of heating the laminate to a temperature equal to or higher than the thermosetting temperature of the thermosetting resin while pressurizing the laminate to bond the prepreg, the expanded graphite sheet, and the carbon fiber nonwoven fabric sheet;
a carbonization step of heat-treating the bound laminate in an inert gas atmosphere to carbonize the thermosetting resin;
A method of manufacturing a molded insulation with a surface layer comprising:
JP2019551119A 2017-10-30 2018-10-22 Molded heat insulating material with surface layer and method for manufacturing the same Active JP7198215B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017209613 2017-10-30
JP2017209613 2017-10-30
PCT/JP2018/039191 WO2019087846A1 (en) 2017-10-30 2018-10-22 Molded heat insulation material with surface layer and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2019087846A1 JPWO2019087846A1 (en) 2021-01-28
JP7198215B2 true JP7198215B2 (en) 2022-12-28

Family

ID=66333056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019551119A Active JP7198215B2 (en) 2017-10-30 2018-10-22 Molded heat insulating material with surface layer and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP7198215B2 (en)
WO (1) WO2019087846A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111118472B (en) * 2020-01-07 2021-10-08 山东理工大学 Preparation method of silicon carbide film continuous carbon fiber plate
DE102020208931A1 (en) * 2020-07-16 2022-01-20 Sgl Carbon Se composite material
JP7174094B2 (en) * 2021-03-17 2022-11-17 大阪ガスケミカル株式会社 Molded heat insulating material with surface layer and method for manufacturing the same
CN114956848B (en) * 2022-04-29 2023-07-25 吉林联科特种石墨材料有限公司 Preparation method of integrated cylindrical heat insulation material with graphite efficient barrier layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327441A (en) 1999-05-26 2000-11-28 Kureha Chem Ind Co Ltd Composite carbonaceous thermal insulant and its production
JP2001089238A (en) 1999-07-19 2001-04-03 Toyo Tanso Kk Molded thermlly insulating material and heat shield
JP2012184135A (en) 2011-03-04 2012-09-27 Osaka Gas Chem Kk Molded heat-insulating material, and method for producing the same
JP2014211221A (en) 2013-04-22 2014-11-13 大日本印刷株式会社 Heat insulation member
JP2015174807A (en) 2014-03-17 2015-10-05 大阪ガスケミカル株式会社 Carbon fiber-based heat insulation material, and manufacturing method of the same
JP2017172790A (en) 2016-03-18 2017-09-28 大阪ガスケミカル株式会社 Molding heat insulation material with surface layer and its process of manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190962A (en) * 1992-12-24 1994-07-12 Mitsubishi Kasei Corp Molded heat insulating material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327441A (en) 1999-05-26 2000-11-28 Kureha Chem Ind Co Ltd Composite carbonaceous thermal insulant and its production
JP2001089238A (en) 1999-07-19 2001-04-03 Toyo Tanso Kk Molded thermlly insulating material and heat shield
JP2012184135A (en) 2011-03-04 2012-09-27 Osaka Gas Chem Kk Molded heat-insulating material, and method for producing the same
JP2014211221A (en) 2013-04-22 2014-11-13 大日本印刷株式会社 Heat insulation member
JP2015174807A (en) 2014-03-17 2015-10-05 大阪ガスケミカル株式会社 Carbon fiber-based heat insulation material, and manufacturing method of the same
JP2017172790A (en) 2016-03-18 2017-09-28 大阪ガスケミカル株式会社 Molding heat insulation material with surface layer and its process of manufacture

Also Published As

Publication number Publication date
WO2019087846A1 (en) 2019-05-09
JPWO2019087846A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
JP7198215B2 (en) Molded heat insulating material with surface layer and method for manufacturing the same
JP5205671B2 (en) Heat resistant composite material
JP2015174807A (en) Carbon fiber-based heat insulation material, and manufacturing method of the same
JP4361636B2 (en) Composite carbonaceous heat insulating material and method for producing the same
WO2006033373A1 (en) Composite carbon material, brake material comprising composite carbon material, and method for producing composite carbon material
JP6742855B2 (en) Molded heat insulating material and manufacturing method thereof
JP6764317B2 (en) Molded insulation with surface layer and its manufacturing method
TW201144255A (en) A method of fabricating a friction part based on c/c composite material
US20180045260A1 (en) System and Method for Ceramic Doping of Carbon Fiber Composite Structures
CN114457504A (en) C/C-SiC prefabricated part, C/C-SiC composite material, and preparation method and application thereof
JPWO2011090151A1 (en) Carbon fiber laminated molded body and method for producing the same
EP3093113B1 (en) Process for forming carbon composite materials
JPH02227244A (en) Molding insulated material
JP5671375B2 (en) Molded heat insulating material and manufacturing method thereof
JP6864588B2 (en) Carbon fiber sheet laminate and its manufacturing method
JP7174094B2 (en) Molded heat insulating material with surface layer and method for manufacturing the same
KR20170005834A (en) Cylindrical heat insulation material and method for producing same
JPH03248838A (en) Heat insulation material
JPH10291869A (en) Carbon heat insulating material and its production
JP2013124194A (en) C/c composite laminate
JP2009280437A (en) Method for producing porous carbon sheet
JP2009073715A (en) Method for producing carbon-fibered heat insulating material
JP2022138515A (en) Carbon fiber-based heat insulation material and method of manufacturing the same
JP5560977B2 (en) Method for producing porous carbon electrode substrate
JPH0732532A (en) Carbon fiber molded heat insulating material

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221216

R150 Certificate of patent or registration of utility model

Ref document number: 7198215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150