JPH03248838A - Heat insulation material - Google Patents

Heat insulation material

Info

Publication number
JPH03248838A
JPH03248838A JP2049017A JP4901790A JPH03248838A JP H03248838 A JPH03248838 A JP H03248838A JP 2049017 A JP2049017 A JP 2049017A JP 4901790 A JP4901790 A JP 4901790A JP H03248838 A JPH03248838 A JP H03248838A
Authority
JP
Japan
Prior art keywords
layer
carbon fiber
fiber felt
molded
graphitized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2049017A
Other languages
Japanese (ja)
Inventor
Hirobumi Kutoku
久徳 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2049017A priority Critical patent/JPH03248838A/en
Publication of JPH03248838A publication Critical patent/JPH03248838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To constitute the title material so that fracture is rare, deterioration in dimensional accuracy can be corrected and the same is superior in elasticity, adhesion, shape retention and heat insulation properties, by a method wherein a molded layer obtained by joining carbon fibers to each other by carburized or graphitized thermosetting resin or pitch and a carbon fiber felt layer are laminated. CONSTITUTION:A molded layer 1 is formed by a method wherein a fiber or a carbon fiber felt which can be made into carbon fiber is impregnated with graphitizable thermosetting resin, compression-molded and graphitized. A carbon fiber felt layer 2 is obtained by a method wherein felt is manufactured by performing mixed spinning, for example, of a phenolic resin fiber contracting by firing with the carbon fiber, the phenolic resin fiber is contracted at the time of the firing and carburized or graphitized. A carbonaceous binder layer 3 laminating and integrating the molded layer 1 and carbon fiber felt layer 2 is formed by a method wherein carburizable or graphitizable pitch or the thermosetting resin is applied to the surface of the carbon fiber felt layer 2 and the surface of the minute molded layer 1 and carburization and graphitization are performed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、高温域での断熱性に優れた断熱材に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a heat insulating material with excellent heat insulation properties in a high temperature range.

[従来の技術と発明が解決しようとする課題]セラミッ
クス焼成炉、真空蒸着炉、半導体単結晶成長炉等の高温
炉用断熱材として、炭素繊維フェルトが広く使用されて
いる。この炭素繊維フェルトにおいて、炭素繊維フェル
トの嵩密度が大きくなるにつれて、高温域での断熱性能
はよくなる。
[Prior Art and Problems to be Solved by the Invention] Carbon fiber felt is widely used as a heat insulating material for high-temperature furnaces such as ceramic firing furnaces, vacuum evaporation furnaces, and semiconductor single crystal growth furnaces. In this carbon fiber felt, as the bulk density of the carbon fiber felt increases, the heat insulation performance in a high temperature range improves.

しかしながら、炭素繊維フェルト単体は嵩密度が0.0
7g/cn?程度と小さく、形状保持性も劣る。
However, the bulk density of carbon fiber felt alone is 0.0.
7g/cn? It is very small and its shape retention is poor.

従って、高温域での断熱性、形状保持性を高めるために
は、炭素繊維フェルトを圧縮して嵩密度を大きくする必
要がある。
Therefore, in order to improve heat insulation and shape retention in high temperature ranges, it is necessary to compress carbon fiber felt to increase bulk density.

上記の点に鑑み、特公昭5O−8598(1号公報には
、炭素繊維フェルトに炭化又は黒鉛化可能な樹脂を含浸
させ、含浸フェルトを圧縮して硬化させた後、炭化又は
黒鉛化する成形断熱材の製造方法が提案されている。
In view of the above points, Japanese Patent Publication No. 5O-8598 (No. 1) discloses that carbon fiber felt is impregnated with a resin that can be carbonized or graphitized, the impregnated felt is compressed and hardened, and then molded to be carbonized or graphitized. A method of manufacturing a heat insulating material has been proposed.

しかしながら、この方法により得られた成形断熱材は、
炭化した樹脂で一体化し、かつ硬質であるため、弾力性
及び緩衝性に乏しく、加工時や炉内への取付時に断熱材
が欠損し易い。また、断熱祠の端面を接合して炉内に装
着する際、接合端面の面合せ、および接合端面の緊密な
接合が困難であるため、接合端面間に空隙が生じ、断熱
性が低下する。さらに、樹脂含浸の後の焼成に伴い、反
りが生じ易くなり、寸法精度が低下する。
However, the molded insulation material obtained by this method is
Since it is integrated with carbonized resin and is hard, it has poor elasticity and cushioning properties, and the heat insulating material is easily damaged during processing or installation in the furnace. Further, when the end faces of the heat insulating shrine are joined and installed in the furnace, it is difficult to align the joined end faces and to tightly join the joined end faces, so a gap is created between the joined end faces, and the heat insulation properties are deteriorated. Furthermore, during firing after resin impregnation, warping is likely to occur, resulting in a decrease in dimensional accuracy.

従って、本発明の目的は、欠損することが少なく=J法
精度の低下を是iFできると共に、弾力性、接合端面の
密着性、形状保持性及び断熱性に優れた断熱材を提供す
ることにある。
Therefore, an object of the present invention is to provide a heat insulating material that is less likely to be damaged, which means that the J method accuracy can be avoided, and that has excellent elasticity, adhesion of the joint end surface, shape retention, and heat insulation properties. be.

[発明の構成コ 本発明は、炭化又は黒鉛化した熱硬化性樹脂又はピッチ
により炭素繊維が結合した成形層と、炭素繊維フェルト
層とか積層されている断熱材を提供する。
[Structure of the Invention] The present invention provides a heat insulating material in which a molded layer in which carbon fibers are bonded by carbonized or graphitized thermosetting resin or pitch, and a carbon fiber felt layer are laminated.

本明細書における用語の定義は次の通りである。Definitions of terms used in this specification are as follows.

炭素繊維とは炭化又は黒鉛化された繊維を意味する。Carbon fiber means carbonized or graphitized fiber.

耐炎化処理とは、ピッチ系繊維以外の繊維を、例えば、
酸素存在下、200〜450℃程度の温度で加熱して表
面に耐熱層を形成し、焼成時の溶融を防止する処理を意
味する。不融化処理とは、ピッチ系繊維を、例えば、酸
素存在下、200〜450℃程度の温度で加熱して表面
に耐熱層を形成し、焼成時の溶融を防止する処理を意味
する。
Flame-retardant treatment refers to the treatment of fibers other than pitch-based fibers, such as
This refers to a treatment in which a heat-resistant layer is formed on the surface by heating at a temperature of about 200 to 450°C in the presence of oxygen to prevent melting during firing. The infusible treatment refers to a treatment in which pitch-based fibers are heated, for example, at a temperature of about 200 to 450° C. in the presence of oxygen to form a heat-resistant layer on the surface to prevent melting during firing.

炭化とは、前記高分子系繊維やピッチなどを、例えば、
450〜1500℃程度の温度で焼成処理することを意
味する。黒鉛化とは、例えば1500〜3000℃程度
の温度で焼成処理することを意味し、黒鉛の結晶構造を
有していないときても黒鉛化の概念に含める。
Carbonization means that the polymer fibers, pitch, etc. are
It means firing at a temperature of about 450 to 1500°C. Graphitization means firing treatment at a temperature of, for example, about 1500 to 3000°C, and is included in the concept of graphitization even when it does not have the crystal structure of graphite.

第1図は本発明の断熱材の一例を示す概略断面斜視図で
あり、この例では平板状の断熱材が示されている。
FIG. 1 is a schematic cross-sectional perspective view showing an example of the heat insulating material of the present invention, and this example shows a flat heat insulating material.

断熱材は、炭素繊維が炭化又は黒鉛化した熱硬化性樹脂
又はピッチにより結合した成形層(1)と、−り記樹脂
などを含まない炭素繊維フェルト層(2)とが炭素質結
合剤層(3)により積層されている。上記成形層(1)
は、炭素繊維化可能な繊維又は炭素繊維フェルトに炭化
又は黒鉛化可能な熱硬化性樹脂又はピッチを含浸し、圧
縮成形して炭化又は黒鉛化することにより形成できる。
The heat insulating material consists of a molded layer (1) in which carbon fibers are bonded by a thermosetting resin or pitch made of carbonized or graphitized carbon fibers, and a carbon fiber felt layer (2) that does not contain any resin, etc. as a carbonaceous binder layer. (3) are laminated. The above molding layer (1)
can be formed by impregnating a carbon fiber or carbon fiber felt with a thermosetting resin or pitch that can be carbonized or graphitized, compression molding, and carbonizing or graphitizing.

なお、熱硬化性樹脂を含浸する場合には、上記成形層(
1)は、圧縮成形時に、加熱して熱硬化性樹脂を硬化す
るのが好ましい。また、成形層(1)は、炭素繊維化可
能な繊維又は炭素繊維と、炭化又は黒鉛化可能な熱硬化
性樹脂又はピッチとを含む懸濁液を、吸引成形型を用い
て吸引し、成形型の表面に上記各成分を堆積させる吸引
成形法や、抄紙法により成形した後、成形体を炭化又は
黒鉛化することによっても形成できる。
In addition, when impregnating a thermosetting resin, the above molding layer (
In 1), it is preferable to heat and harden the thermosetting resin during compression molding. The molding layer (1) is formed by sucking a suspension containing fibers that can be made into carbon fibers or carbon fibers, and a thermosetting resin or pitch that can be carbonized or graphitized using a suction mold. It can also be formed by a suction molding method in which the above components are deposited on the surface of a mold, or by carbonizing or graphitizing the molded product after molding by a paper making method.

炭素繊維化可能な繊維及び炭素繊維としては、例えば、
ポリアクリロニトリル、レーヨン、セルロース、フェノ
ール樹脂などの高分子、石油系ピッチ、石炭系ピッチな
どのピッチを累月とする繊維が例示され、一種又は二種
以上使用される。これらの繊維は、例えば、繊維径5〜
30μm程度の適宜の繊維径を有するものが使用できる
Examples of fibers and carbon fibers that can be made into carbon fibers include:
Examples include fibers made of polymers such as polyacrylonitrile, rayon, cellulose, and phenol resin, and pitches such as petroleum pitch and coal pitch, and one or more of them may be used. These fibers, for example, have a fiber diameter of 5 to
Those having an appropriate fiber diameter of about 30 μm can be used.

炭素繊維フェルト層(2)のフェルトは、慣用の方法、
すなわちカーデイング1−程とニードルパンチ工程とを
経ることにより作製できる。
The felt of the carbon fiber felt layer (2) is made by a conventional method,
That is, it can be produced by passing through a carding step and a needle punching step.

フ ェルト えば、フェノール樹脂、フラン樹脂、尿素樹脂、メラミ
ン樹脂、不飽和ポリエステル、ビニルエステル樹脂、ジ
アリルフタレート樹脂、エポキシ樹脂、熱硬化性ポリイ
ミド、熱硬化性アクリル樹脂などが例示される。これら
の樹脂の中で、接着性に優れ、残炭率が大きなフェノー
ル樹脂、フラン樹脂等が好ましい。これらの樹脂は一種
又は二種以上使用できる。
Examples of felt include phenol resin, furan resin, urea resin, melamine resin, unsaturated polyester, vinyl ester resin, diallyl phthalate resin, epoxy resin, thermosetting polyimide, thermosetting acrylic resin, and the like. Among these resins, phenol resins, furan resins, and the like, which have excellent adhesive properties and a large residual carbon content, are preferred. These resins can be used alone or in combination of two or more.

上記樹脂の含有量は、形状保持性を損わない範囲で設定
でき、例えば、5〜75重量%、好ましくは10〜50
mm%程度である。
The content of the resin can be set within a range that does not impair shape retention, for example, 5 to 75% by weight, preferably 10 to 50% by weight.
It is about mm%.

前記成形層(1)及び炭素繊維フェルト層(2)の嵩密
度は、適用される炉の温度などにより適宜設定でき、同
−又は異なっていてもよい。炭素繊維フェルト層(2)
の嵩密度は一般に小さいので、高温域での断熱性を高め
るためには、成形層(1)の嵩密度が炭素繊維フェルト
層(2)の嵩密度よりも大きいのが好ましい。また成形
断熱材は、成形層(1)を炉の高温側に位置するように
取付けるのが好ましい。成形層(1)の嵩密度は、通常
、O11〜0.5g/瞥、特に0.1〜0.3g/cm
程度であるのが好ましい。
The bulk densities of the molded layer (1) and the carbon fiber felt layer (2) can be appropriately set depending on the temperature of the furnace to which they are applied, and may be the same or different. Carbon fiber felt layer (2)
Since the bulk density of the carbon fiber felt layer (2) is generally small, in order to improve the heat insulation properties in a high temperature range, it is preferable that the bulk density of the molded layer (1) is larger than that of the carbon fiber felt layer (2). Moreover, it is preferable to install the molded heat insulating material so that the molded layer (1) is located on the high temperature side of the furnace. The bulk density of the molding layer (1) is usually O11 to 0.5 g/cm, particularly 0.1 to 0.3 g/cm.
It is preferable that the amount is within a certain range.

熱硬化性樹脂などを含まず、緩衝性、弾力性などに優れ
る炭素繊維フェルト層(2)の嵩密度は、特に制限され
ず、広い範囲、例えば、0.05〜0゜2 g / c
m程度の範囲内で設定できる。なお、嵩密度が0.1.
g/cm以上の炭素繊維フェルト層(2)は、例えば、
焼成により収縮するフェノール樹脂系繊維(例えばカイ
ノール)を炭素繊維と混紡して、フェルトを作製し、焼
成時にフェノール樹脂系繊維を収縮させ、炭化又は黒鉛
化することにより得ることができる。
The bulk density of the carbon fiber felt layer (2), which does not contain a thermosetting resin and has excellent cushioning properties, elasticity, etc., is not particularly limited, and may be within a wide range, for example, 0.05 to 0°2 g/c.
It can be set within a range of about m. Note that the bulk density is 0.1.
The carbon fiber felt layer (2) of g/cm or more is, for example,
It can be obtained by blending phenolic resin fibers that shrink upon firing (for example, kynol) with carbon fibers to produce felt, causing the phenolic resin fibers to shrink during firing, and carbonizing or graphitizing the fibers.

成形層(1)及び炭素繊維フェルト層(2)の厚みも適
用される炉の温度により適宜設定できるが、成形層(1
)の厚みは、通常1〜100 mm程度、炭素繊維フェ
ルト層(2)の厚みは、通常3〜50 mm程度が望ま
しい。
The thickness of the molding layer (1) and the carbon fiber felt layer (2) can be set appropriately depending on the temperature of the furnace to which it is applied, but the thickness of the molding layer (1)
) is usually about 1 to 100 mm, and the thickness of the carbon fiber felt layer (2) is usually about 3 to 50 mm.

成形層(1)と炭素繊維フェルト層(2)とを積層一体
化する炭素質結合剤層(3)は、炭化又は黒鉛化可能な
ピッチ又は前記熱硬化性樹脂を、成形層(1)及び炭素
繊維フェルト層(2)の少なくともいずれか一方、好ま
しくは表面が緻密な成形層(1)の表面に塗布し、炭化
又は黒鉛化することにより形成できる。ピッチ又は樹脂
は一種または二種以上使用できる。上記樹脂の中で熱硬
化性樹脂、特にフェノール樹脂が好ましい。
The carbonaceous binder layer (3), which laminates and integrates the molding layer (1) and the carbon fiber felt layer (2), combines carbonizable or graphitizable pitch or the thermosetting resin with the molding layer (1) and the carbon fiber felt layer (2). It can be formed by coating at least one of the carbon fiber felt layers (2), preferably on the surface of the molded layer (1) having a dense surface, and carbonizing or graphitizing it. One or more types of pitch or resin can be used. Among the above resins, thermosetting resins, particularly phenolic resins, are preferred.

成形層(1)と炭素繊維フェルト層(2)との接合強度
を高めるため、炭素質結合剤層(3)は、炭素質充填剤
を含むのが好ましい。この炭素質充填剤は、成形層(1
)と炭素繊維フェルト層(2)との当接部に存在する空
隙部を充填し、接合面積を大きくする。
In order to increase the bonding strength between the molding layer (1) and the carbon fiber felt layer (2), the carbonaceous binder layer (3) preferably contains a carbonaceous filler. This carbonaceous filler is used in the molding layer (1
) and the carbon fiber felt layer (2) are filled in, thereby increasing the bonding area.

炭素質充填剤は、例えば、メソカーボンマイクロピース
などの炭素質小球体、コークスプリーズ、炭化又は黒鉛
化可能な充填剤、例えば、ピッチの破砕品を不融化処理
したバルクメソフェーズカーボン、石炭などを500℃
程度の低温で乾留し、粉砕した低温か焼コークスなどで
あってもよい。
Examples of the carbonaceous filler include carbonaceous small spheres such as mesocarbon micropieces, coke pleats, fillers that can be carbonized or graphitized, such as bulk mesophase carbon obtained by infusible treatment of crushed pitch, coal, etc. ℃
It may also be low-temperature calcined coke that has been carbonized at a relatively low temperature and pulverized.

これらの炭素質充填剤の中で、メソカーボンマイクロビ
ーズが好ましい。これらの炭素質充填剤は、一種又は二
種以上混合して、炭素質結合剤(3)中に、通常5〜7
5重量%、好ましくは10〜50重量%含有する。
Among these carbonaceous fillers, mesocarbon microbeads are preferred. These carbonaceous fillers are used singly or in a mixture of two or more, and are included in the carbonaceous binder (3), usually in an amount of 5 to 7
It contains 5% by weight, preferably 10 to 50% by weight.

さらに接合強度を高めるため、炭素質結合剤層(3)は
、上記炭素質充填剤に加えて、ミルド炭素繊維を含んで
いてもよい。このミルド炭素繊維は通常5〜25重量%
程度含有させることができる。
In order to further increase the bonding strength, the carbonaceous binder layer (3) may contain milled carbon fibers in addition to the above-mentioned carbonaceous filler. This milled carbon fiber is usually 5 to 25% by weight.
It can be contained to some extent.

このような断熱材において、成形層(1)は、炭化又は
黒鉛化した樹脂やピッチにより炭素繊維が一体化してい
るので、硬質で嵩密度が大きく断熱性に優れる。従って
、成形層(1)は断熱材に形状保持性、優れた断熱性を
付与する。一方、炭素繊維フェルト層(2)は、弾力性
及び緩衝性に優れ、成形層(1)の欠損を防止でき、焼
成に伴って生じた反りなどの寸法精度の低下を是正する
。また、炭素繊維フェルト層(2)により接合端面の密
着性を確保でき、断熱性をさらに高める。
In such a heat insulating material, the molded layer (1) has carbon fibers integrated with carbonized or graphitized resin or pitch, so it is hard, has a large bulk density, and has excellent heat insulation properties. Therefore, the molded layer (1) provides shape retention and excellent heat insulation properties to the heat insulating material. On the other hand, the carbon fiber felt layer (2) has excellent elasticity and cushioning properties, can prevent damage to the molded layer (1), and corrects deterioration in dimensional accuracy such as warping caused by firing. In addition, the carbon fiber felt layer (2) ensures adhesion between the joint end faces and further improves heat insulation.

第2図は本発明の他の例を示す概略断面斜視図である。FIG. 2 is a schematic cross-sectional perspective view showing another example of the present invention.

この例では、前記と同様に、成形層(11)と炭素繊維
フェルト層(12)とが炭素質結合剤層(13)で積層
された断熱材において、成形層(11)の表面に炭素質
シート(14)が炭素質結合剤層(13)で積層されて
いる。上記炭素質シート(14)としては、炭化又は黒
鉛化可能なシートを不活性ガス又は真空中で焼成した炭
素シート、好ましくは黒鉛シートなどが例示される。上
記炭素質シート(14)は、適宜の厚みを有していても
よいが、通常0.1〜1 mm程度、好ましくは0 、
 2〜0 、 75 mm程度である。黒鉛シートは、
例えば、黒鉛を硫酸などの強酸で処理して膨脂させ、圧
延押出し等の方法でフレキシブルなシート状としたもの
であり、一般に0.5〜1.6g/cut程度の密度を
有する。
In this example, in a heat insulating material in which a molded layer (11) and a carbon fiber felt layer (12) are laminated with a carbonaceous binder layer (13), the surface of the molded layer (11) is A sheet (14) is laminated with a carbonaceous binder layer (13). Examples of the carbonaceous sheet (14) include a carbon sheet obtained by firing a carbonizable or graphitizable sheet in an inert gas or vacuum, preferably a graphite sheet. The carbonaceous sheet (14) may have an appropriate thickness, but is usually about 0.1 to 1 mm, preferably about 0.1 to 1 mm,
It is about 2 to 0.75 mm. Graphite sheet is
For example, graphite is treated with a strong acid such as sulfuric acid to make it fat-swelled and made into a flexible sheet form by a method such as rolling extrusion, and generally has a density of about 0.5 to 1.6 g/cut.

炭素質シート(14)は、気密性に優れるので、この炭
素質シー) (14)を断熱材に積層する場合には、防
粉性、耐風性、耐久性及び形状保持性をさらに高めるこ
とができる。
Since the carbonaceous sheet (14) has excellent airtightness, when laminating this carbonaceous sheet (14) on a heat insulating material, it is possible to further improve powder resistance, wind resistance, durability, and shape retention. can.

なお、前記炭素質シート(14)は、炭素質結合剤層(
■3)により、使用時に高温側となる成形層(11)及
び/又は炭素繊維フェルト層(12)の表面に積層すれ
ばよく、炭素繊維フェルト層(12)の表面に積0 層してもよいが、成形層(11)の表面に炭素質結合剤
層(13)で積層するのが好ましい。また炭素質結合剤
層(13)は、前記と同様に、少なくとも炭素質充填剤
を含むのが好ましい。
Note that the carbonaceous sheet (14) has a carbonaceous binder layer (
According to ■3), it is only necessary to laminate it on the surface of the molding layer (11) and/or the carbon fiber felt layer (12) which will be on the high temperature side during use, and even if it is not laminate on the surface of the carbon fiber felt layer (12). However, it is preferable to laminate a carbonaceous binder layer (13) on the surface of the molding layer (11). Further, the carbonaceous binder layer (13) preferably contains at least a carbonaceous filler, as described above.

なお、断熱材は、平板状に限らず、湾曲板状や中空筒状
であってもよい。第3図は本発明のさらに他の例を示す
概略断面斜視図である。この例では、炭素質結合剤層(
23)により、中空円筒状の成形層(21)の外面に炭
素繊維フェルト層(22)を積層している。炭素繊維フ
ェルト層(22)を外面に積層した断熱材は、装着時に
成形層(21)が炉壁と直接接触するのを防11−する
ので、断熱材が欠損することがなく、炭素繊維フェルト
層(22)が炉壁と緊密に密着する。
Note that the heat insulating material is not limited to a flat plate shape, but may be a curved plate shape or a hollow cylindrical shape. FIG. 3 is a schematic cross-sectional perspective view showing still another example of the present invention. In this example, the carbonaceous binder layer (
23), a carbon fiber felt layer (22) is laminated on the outer surface of the hollow cylindrical molded layer (21). The heat insulating material laminated with the carbon fiber felt layer (22) on the outer surface prevents the molded layer (21) from coming into direct contact with the furnace wall when installed, so the heat insulating material will not be damaged and the carbon fiber felt layer (22) will not be damaged. The layer (22) is in close contact with the furnace wall.

炭素繊維フェルト層は、成形層の両面に炭素質結合剤層
を介して積層し7てもよい。また複数の成形層と複数の
炭素繊維フェルト層とを、炭素質結合剤層により、交互
に積層してもよい。この場合、成形層や炭素繊維フェル
ト層の嵩密度は異なっていてもよい。
The carbon fiber felt layer may be laminated on both sides of the molded layer via a carbonaceous binder layer. Further, a plurality of molded layers and a plurality of carbon fiber felt layers may be alternately laminated using a carbonaceous binder layer. In this case, the molded layer and the carbon fiber felt layer may have different bulk densities.

] 1 さらに、接合端面の密着性をさらに高めるため、成形層
の端面に、炭素繊維フェルト層を積層してもよい。
] 1 Furthermore, in order to further improve the adhesion of the joint end surfaces, a carbon fiber felt layer may be laminated on the end surfaces of the molded layer.

[発明の効果] 本発明の断熱材によれば、成形層と炭素繊維フェルト層
とが積層されているので、欠損することが少なく、χj
法精度の低下を是正できると共に、弾力性、接合端面の
密着性、形状保持性及び断熱性に優れている。
[Effects of the Invention] According to the heat insulating material of the present invention, since the molded layer and the carbon fiber felt layer are laminated, there is less chipping and χj
In addition to being able to correct the decrease in process accuracy, it also has excellent elasticity, adhesion of the joint end surfaces, shape retention, and heat insulation.

[実施例] 以下に、実施例に基づいて本発明をより詳細に説明する
[Examples] The present invention will be described in more detail below based on Examples.

実施例 ピッチ系炭素繊維(■ドナツク製、商品名ドナカーボ5
221)からなる厚み10mmの炭素繊維フェルト(嵩
密度0.05g/瞥)100重量部に対して、レゾール
型フェノール樹脂(群栄化学■製、商品名レジトップP
L3820A)の約60重量%メタノール溶液を120
重量部含浸し、風乾することにより、溶媒含有量60重
量%の含2 浸炭素繊維フェルトを作製し7た。この含浸フェルトを
積層して加熱及び圧縮し、フェノール樹脂を硬化し、厚
み22mm、嵩密度0.16g/cnfの成形体を得た
Example: Pitch-based carbon fiber (trade name: Dona Carbo 5, manufactured by Donatsuku Co., Ltd.)
221) with a thickness of 10 mm (bulk density 0.05 g/metal), resol type phenolic resin (manufactured by Gunei Kagaku ■, trade name: Regitop P)
About 60% by weight methanol solution of L3820A)
A bi-impregnated carbon fiber felt with a solvent content of 60% by weight was prepared by impregnating the carbon fiber felt with the same amount by weight and air drying. This impregnated felt was laminated and heated and compressed to harden the phenol resin to obtain a molded article having a thickness of 22 mm and a bulk density of 0.16 g/cnf.

上記成形体の一方の面に上記フェノール樹脂溶液を塗布
し、かつピッチ系炭素繊維(■ドナツク製、商品名ドナ
カーボ5221)からなる厚み]Ommの炭素繊維フェ
ルト(嵩密度0.05g/cnf)を積層し、再度、圧
縮加熱してフェノール樹脂を硬化した。
The phenolic resin solution was applied to one side of the molded body, and a carbon fiber felt (bulk density 0.05 g/cnf) of 0 mm in thickness made of pitch-based carbon fiber (trade name: Dona Carbo 5221, manufactured by Donatsu) was applied. They were laminated and compressed and heated again to harden the phenol resin.

次いで、積層体を、窒素ガス雰囲気中で、2000℃に
昇温し、焼成し、黒鉛化処理した。
Next, the laminate was heated to 2000° C. in a nitrogen gas atmosphere, fired, and graphitized.

得られた断熱材は、厚み30 mm %嵩密度0. 1
3 g / aaであり、形状保持性を有し、しかも一
方の面の炭素繊維フェルト層は、弾力性に富むものであ
った。
The obtained insulation material has a thickness of 30 mm and a bulk density of 0. 1
3 g/aa and had shape retention properties, and the carbon fiber felt layer on one side was highly elastic.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の断熱材の一例を示す概略断面斜視図、 第2図は本発明の他の例を示す概略断面斜視図、3 第3図は本発明のさらに他の例を示す概略断面斜視図で
ある。 (1)(11)(21)・・・成形層、(2) (12
) (22)・・・炭素繊維フェルト層、(3) (1
3) (23)・・・炭素質結合剤層、(14)・・・
炭素質シート
Fig. 1 is a schematic cross-sectional perspective view showing an example of the heat insulating material of the present invention, Fig. 2 is a schematic cross-sectional perspective view showing another example of the present invention, 3 Fig. 3 is a schematic cross-sectional view showing yet another example of the present invention. It is a cross-sectional perspective view. (1) (11) (21)...Molding layer, (2) (12
) (22)...carbon fiber felt layer, (3) (1
3) (23)...carbonaceous binder layer, (14)...
carbonaceous sheet

Claims (4)

【特許請求の範囲】[Claims] 1.炭化又は黒鉛化した熱硬化性樹脂又はピッチにより
炭素繊維が結合した成形層と、炭素繊維フェルト層とが
積層されていることを特徴とする断熱材。
1. A heat insulating material characterized in that a molded layer in which carbon fibers are bonded by carbonized or graphitized thermosetting resin or pitch and a carbon fiber felt layer are laminated.
2.成形層と、炭素繊維フェルト層とが、少なくとも炭
素質充填剤を含む炭素質結合剤で積層されている請求項
1記載の断熱材。
2. The heat insulating material according to claim 1, wherein the molded layer and the carbon fiber felt layer are laminated with a carbonaceous binder containing at least a carbonaceous filler.
3.成形層の表面に、炭素質シートが炭素質結合剤で積
層されている請求項1又は請求項2記載の断熱材。
3. The heat insulating material according to claim 1 or 2, wherein a carbonaceous sheet is laminated with a carbonaceous binder on the surface of the molded layer.
4.炭素繊維フェルト層よりも成形層の嵩密度が大きい
請求項1記載の断熱材。
4. The heat insulating material according to claim 1, wherein the molded layer has a larger bulk density than the carbon fiber felt layer.
JP2049017A 1990-02-27 1990-02-27 Heat insulation material Pending JPH03248838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2049017A JPH03248838A (en) 1990-02-27 1990-02-27 Heat insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2049017A JPH03248838A (en) 1990-02-27 1990-02-27 Heat insulation material

Publications (1)

Publication Number Publication Date
JPH03248838A true JPH03248838A (en) 1991-11-06

Family

ID=12819364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2049017A Pending JPH03248838A (en) 1990-02-27 1990-02-27 Heat insulation material

Country Status (1)

Country Link
JP (1) JPH03248838A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141526A (en) * 1998-11-13 2000-05-23 Nippon Carbon Co Ltd Carbon fiber-forming heat insulation material
WO2000073243A1 (en) * 1999-05-26 2000-12-07 Kureha Kagaku Kogyo K. K. Composite carbonaceous heat insulator
WO2008023777A1 (en) 2006-08-22 2008-02-28 Kureha Corporation Laminated molded article containing carbon fiber and method for production thereof
JP2008196552A (en) * 2007-02-09 2008-08-28 Nippon Carbon Co Ltd Carbon fiber heat insulating material and its manufacturing method
JP2009209507A (en) * 2008-02-06 2009-09-17 Teijin Ltd Pitch-based carbon fiber felt and heat insulating material containing carbon fiber
DE102009048422A1 (en) * 2009-10-06 2011-04-07 Sgl Carbon Se Composite of carbon fiber soft felt and carbon fiber hard felt
JP2014211221A (en) * 2013-04-22 2014-11-13 大日本印刷株式会社 Heat insulation member
JP2015040232A (en) * 2013-08-20 2015-03-02 王子キノクロス株式会社 Method for producing molded heat insulating material, and heat insulating material
JP2016097654A (en) * 2014-11-26 2016-05-30 積水化学工業株式会社 Fiber base material, resin sheet, method for producing fiber base material and method for producing resin sheet

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141526A (en) * 1998-11-13 2000-05-23 Nippon Carbon Co Ltd Carbon fiber-forming heat insulation material
WO2000073243A1 (en) * 1999-05-26 2000-12-07 Kureha Kagaku Kogyo K. K. Composite carbonaceous heat insulator
JP4889741B2 (en) * 2006-08-22 2012-03-07 株式会社クレハ Carbon fiber-containing laminated molded body and method for producing the same
WO2008023777A1 (en) 2006-08-22 2008-02-28 Kureha Corporation Laminated molded article containing carbon fiber and method for production thereof
US8962500B2 (en) 2006-08-22 2015-02-24 Kureha Corporation Molded article containing stacked carbon fiber and method for producing same
JP2008196552A (en) * 2007-02-09 2008-08-28 Nippon Carbon Co Ltd Carbon fiber heat insulating material and its manufacturing method
JP2009209507A (en) * 2008-02-06 2009-09-17 Teijin Ltd Pitch-based carbon fiber felt and heat insulating material containing carbon fiber
WO2011042246A1 (en) * 2009-10-06 2011-04-14 Sgl Carbon Se Composite material comprising soft carbon fiber felt and hard carbon fiber felt
CN102575400A (en) * 2009-10-06 2012-07-11 西格里碳素欧洲公司 Composite material comprising soft carbon fiber felt and hard carbon fiber felt
DE102009048422A1 (en) * 2009-10-06 2011-04-07 Sgl Carbon Se Composite of carbon fiber soft felt and carbon fiber hard felt
JP2014211221A (en) * 2013-04-22 2014-11-13 大日本印刷株式会社 Heat insulation member
JP2015040232A (en) * 2013-08-20 2015-03-02 王子キノクロス株式会社 Method for producing molded heat insulating material, and heat insulating material
JP2016097654A (en) * 2014-11-26 2016-05-30 積水化学工業株式会社 Fiber base material, resin sheet, method for producing fiber base material and method for producing resin sheet

Similar Documents

Publication Publication Date Title
US20120219778A1 (en) Composite material containing soft carbon fiber felt and hard carbon fiber felt
KR101472850B1 (en) High-temperature-resistant composite
US5648027A (en) Porous carbonaceous material and a method for producing the same
JP4361636B2 (en) Composite carbonaceous heat insulating material and method for producing the same
JPH03248838A (en) Heat insulation material
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
JPH03121398A (en) Heat insulating material
JP2607670B2 (en) Molded insulation
WO2020059819A1 (en) Carbon-fiber-molded heat insulator and manufacturing method thereof
JP6864588B2 (en) Carbon fiber sheet laminate and its manufacturing method
WO2001006169A1 (en) Formed heat insulating material and heat shield
JP2000141526A (en) Carbon fiber-forming heat insulation material
JP2007012440A (en) Porous carbon material for fuel cell, thermal conductive member made of carbon fiber reinforced plastic, and manufacturing method of these
JPH05325984A (en) Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell
JPH03277538A (en) Heat insulating material
JP2928278B2 (en) Preliminary surface protection board, surface protection board for furnace wall insulation, and furnace wall insulation using them
JP3029534B2 (en) Insulation for high temperature furnace
JPH04284363A (en) Manufacture of carbon plate
JPH06190962A (en) Molded heat insulating material
JP2594952B2 (en) Molded heat insulating material and its manufacturing method
JP2603138B2 (en) Method for manufacturing carbonaceous composite member for fuel cell
JPH03254933A (en) Heat insulating material
JPH01255170A (en) Manufacture of carbon composite member for fuel battery
JPH0314665A (en) High density felt made of carbon fiber and its production
JP3574831B2 (en) Porous carbon material for phosphoric acid type fuel cell and method for producing the same