JP4338844B2 - Molded insulation and heat shield - Google Patents

Molded insulation and heat shield Download PDF

Info

Publication number
JP4338844B2
JP4338844B2 JP26889199A JP26889199A JP4338844B2 JP 4338844 B2 JP4338844 B2 JP 4338844B2 JP 26889199 A JP26889199 A JP 26889199A JP 26889199 A JP26889199 A JP 26889199A JP 4338844 B2 JP4338844 B2 JP 4338844B2
Authority
JP
Japan
Prior art keywords
carbon
felt
heat insulating
insulating material
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26889199A
Other languages
Japanese (ja)
Other versions
JP2001089238A (en
Inventor
利治 平岡
勝秀 長岡
直人 太田
泰久 荻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP26889199A priority Critical patent/JP4338844B2/en
Priority to PCT/JP2000/004118 priority patent/WO2001006169A1/en
Publication of JP2001089238A publication Critical patent/JP2001089238A/en
Application granted granted Critical
Publication of JP4338844B2 publication Critical patent/JP4338844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/04Inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • C04B2237/385Carbon or carbon composite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • C04B2237/765Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高温雰囲気炉に使用される成形断熱材に関する。
【0002】
【従来の技術】
従来より、高温雰囲気炉に使用される断熱材としては、フェルト状炭素繊維からなる成形体が知られている。
【0003】
しかしながら、フェルト状炭素繊維からなる成形体は、保形性、機械的強度が十分でなく、また、比表面積が大きいため、周囲の雰囲気と反応しやすく、例えば、半導体単結晶引き上げ炉等に使用された場合、同時に使用されている黒鉛製若しくは炭素繊維強化炭素複合材(以下、C/C材という。)からなる部材に比較すると、非常に速く炭化ケイ素化してしまい、形状を維持できなくなり一部が欠落したりする。また、断熱性も悪くなり、断熱材として十分に機能しないという問題がある。
【0004】
また、実開平4−104434号公報には、フェルト状炭素繊維からなる断熱材の表面に炭素質のシートを炭素質接合部材により機械的に接合した成形断熱材が提案されている。この成形断熱材の表面に接合した炭素質シートを剥離しないようにすることを目的として成されている。そのため、表面の炭素質シートは、炭素質接合部材で機械的に接合されているため剥離せず、保形性に関しては、フェルト状炭素繊維のみからなる断熱材に比較すると優れた成形断熱材となっている。しかしながら、炭素質シート自体が機械的強度が低いため、成形断熱材全体での機械的強度を改善するまでには至っていなかった。また、フェルト状炭素繊維が剥き出しになっている成形断熱材は使用中に発塵し、炉内を汚染する。雰囲気(例えばSiOガス)の存在下で使用するとそれが一層助長される。そのため、断熱特性が変わるという問題を有していた。
【0005】
【発明が解決しようとする課題】
そこで、本発明は、前記事情に鑑みてなされたものであり、長期間にわたり優れた断熱性を発揮するとともに、保形性に優れ、機械的強度に優れた高温雰囲気炉に使用される断熱材を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記課題を解決するため、本発明者らは、鋭意研究を重ね、フェルト状炭素繊維と膨張黒鉛シートを積層し、この積層体をC/C材で挟み込むサンドウィッチ構造、場合によっては積層体をC/C材で全て覆う構造とすることで、機械的強度に優れ、炉内汚染が少なく、且つ耐久性に優れ、長期間にわたり優れた断熱材とすることができることを見出し、本発明を完成した。
【0007】
すなわち、本発明の成形断熱材は、フェルト状炭素繊維と膨張黒鉛シートとが交互に積層され、C/C材によってフェルト状炭素繊維が圧縮された状態で挟持されていることを特徴とする。また、フェルト状炭素繊維と膨張黒鉛シートとが交互に積層され、C/C材によってフェルト状炭素繊維が圧縮された状態で挟持されるとともに、残りの面がC/C材で覆われていることを特徴とする。また、前記炭素繊維強化炭素複合材が径の異なる2個の円筒であり、前記2個の円筒間に、前記フェルト状炭素繊維と前記膨張黒鉛シートとが径方向に交互に積層され、前記炭素繊維強化炭素複合材によって挟持されていることが好ましい。また、その場合、その上下の面がC/C材で覆われていることが好ましい。前記フェルト状炭素繊維と膨張黒鉛シートとからなる積層体のかさ密度が0.1〜0.3g/cmであることが好ましい。また、フェルト状炭素繊維と膨張黒鉛シートの割合がフェルト状炭素繊維厚さ3〜10mmに対し、膨張黒鉛シートが1層であることが好ましい。また、不純物含有量が10ppm以下であることが好ましい。また、本発明の成形断熱材は、フェルト状炭素繊維と膨張黒鉛シートとが交互に積層され、炭素繊維強化炭素複合材によって挟持されており、表面に熱分解炭素が被覆されている。また、本発明の成形断熱材は、フェルト状炭素繊維と膨張黒鉛シートとが交互に積層され、炭素繊維強化炭素複合材によって挟持されており、表面にガラス状炭素が被覆されている。さらに、本発明のヒートシールドは、上述の成形断熱材を用いていることが好ましい。
【0008】
これら、フェルト状炭素繊維と膨張黒鉛シートを交互に複数層積層して積層体として、この積層体をC/C材で挟み込んだサンドウィッチ構造にすることで、フェルト状炭素繊維の断熱材としての特徴、膨張黒鉛シートの持つガス不透過性や、熱遮蔽性、C/C材の機械強度等の各材料の機能を併せ持った材料とすることができる。また、2個の径の異なるC/C材の円筒の間に該積層体を挟み込むことで、前記フェルト状炭素繊維を圧縮した状態で容易に保つことができる。すなわち、機械的強度にすぐれ、断熱特性が長期にわたり維持できる成形断熱材とすることができる。さらには、C/C材で挟持されていない残りの面を覆うことで、これら積層体からの発塵を完全に防止することができる。ここで、残りの面とは、例えば、積層体が中空の円筒形状の場合は、その上下の面をいう。また、積層体が直方体の場合は、積層方向に対して平行な面をいう。
【0009】
ここで、本発明で使用されるC/C材は、一般的な製法で製作されたものでよく、例えば、予め、所定の形状のプリプレグを製作し、このプリプレグを積層後、熱圧成形し成形体としたもの、若しくは、フィラメントワインディング法によって製作し、成形体としたものである。これらは、所望の断熱材の形状に合わせ、適宜その製作法を選択して製作することができる。このC/C材を構成する炭素繊維としては、PAN系、ピッチ系等が例示できる。
【0010】
また、フェルト状炭素繊維は、一般的な方法で製作されたものでよく、フェルト状炭素繊維のみからなるもの、或いは、フェルト状炭素繊維に樹脂等が含浸され、炭化、黒鉛化されたものであってもよい。このフェルト状炭素繊維を構成する炭素繊維としては、例えば、ポリアクリロニトリル、レーヨン、セルロース系繊維の高分子系繊維、ピッチ系繊維を素材とする炭素繊維が例示でき、これらのうち、1若しくは2以上が使用される。さらに、本発明におけるフェルト状炭素繊維は、密度が0.05〜0.15g/cm3 、好ましくは0.07〜0.12g/cm3 であるものがよい。このような密度範囲とすることで、後述する、径の異なるC/C材の間で圧縮させて積層することが可能となる。そして、圧縮の程度を調整して、積層する枚数を調整することで、断熱特性を調整することが可能となる。
【0011】
また、膨張黒鉛シートは、特に制限されず、優れたガス不浸透性を有するもの、例えば、室温における窒素ガスのガス透過率が1×10-4cm2 /s以下、好ましくは5×10-5cm2 /s以下であるものが好ましい。このようなガス不浸透性に優れた膨張黒鉛シートを使用して、前記フェルト状炭素繊維と積層体を形成することで、断熱材内部でのガスの対流を防止する事ができるとともに、幅射熱を遮蔽することができる。
【0012】
そして、フェルト状炭素繊維と膨張黒鉛シートを積層する際は、フェルト状炭素繊維を圧縮した状態で、膨張黒鉛シートと積層することで、これらからなる積層体のかさ密度を0.1〜0.3g/cm3 、好ましくは0.15〜0.25g/cm3 に調整することができる。密度調整することで、断熱特性を調整することができる。
【0013】
また、フェルト状炭素繊維と膨張黒鉛シートの割合がフェルト状炭素繊維厚さ3〜10mmに対し、膨張黒鉛シートを1層挿入することで、断熱特性を調整することができる。
【0014】
また、2000℃以上の高温で、ハロゲンガス雰囲気下で処理を行い、不純物含有量が灰分量で10ppm以下であることが好ましい。ここでいう灰分量は、試料20gを正確に測定し、白金製のルツボ(容積50cc)に装填し、酸素気流中(2〜3l/min)で、950℃の温度で、保持し、灰化した後、デシケータ中で自然冷却後、残った灰分量を測定したものをいう。
【0015】
本発明における成形断熱材は、以上のように構成されており、各種高温雰囲気炉、特に、半導体単結晶引き上げ炉や、光ファイバ製造用熱処理炉等に好適に使用することができる。特に、半導体単結晶引き上げ炉(以下、CZ炉という。)においては、従来、CZ炉構成部材であるインナーシールド、ロアーリング、アッパーリング、ヒートシールド等は、断熱材と別々に設けられているが、本発明の成形断熱材を使用することで、これら両者を併せた特性を発現させることができ、炉内の有効処理範囲を拡大することが可能となる。
【0016】
以下、図面を参照しつつ、本発明における成形断熱材をCZ炉のヒートシールドとして使用する場合について詳細に説明する。
【0017】
【発明の実施の形態】
図1は、本発明の成形断熱材をCZ炉のヒートシールドとして使用する場合の一実施例を示す概略図である。本発明におけるヒートシールド1は、膨張黒鉛シート12とフェルト状炭素繊維13とからなる積層体14とを、外周側及び内周側から挟持するC/C材11とで構成されている。
【0018】
C/C材11a,11bは、一般的なC/C材の製作法によればよく、炭素繊維クロスプリプレグを硬化して成形体とする。若しくは、フィラメントワインディング法により円筒状に成形する等して、径の異なる円筒状のC/C材からなる成形体を製作し、内周側となる径の小さいC/C材11aと、外周側となる径の大きいC/C材11bを準備する。これら成形体は、焼成して、炭化させ、黒鉛化させた状態であっても、プリプレグ及びフィラメントワインディング等による成形の際に使用した樹脂が硬化した段階の状態であってもよい。
【0019】
これらC/C材11a,11bは、厚みを0.5〜10.0mm、好ましくは1.0〜2.0mmとしておくことが好ましい。これによって、保形性を向上させるとともに、機械的強度の高い断熱材とすることができる。
【0020】
次に、内周側となる径の小さいC/C材11aの表面に膨張黒鉛シート12と、フェルト状炭素繊維13の順に交互に同心円上に積層していく。そして、最外層、すなわち、外周側のC/C材11bと接する層には、膨張黒鉛シート12となるように積層することが好ましい。なお、内周側C/C材11aの表面に、先ずフェルト状炭素繊維13を、次いで膨張黒鉛シート12の順に交互に積層し、外周のC/C材11bにフェルト状炭素繊維13が接するようになっていてもよい。しかしながら、内外周のC/C材11a,11bに膨張黒鉛シート12が接するように積層すると、フェルト状炭素繊維13がガスと直接接するのを防げるので好ましい。
【0021】
ここで、使用する膨張黒鉛シート12は可撓性を有し、ガス透過率が1×10-4cm2 /s以下、好ましくは5×10-5cm2 /s以下であることが好ましい。このようなガス透過率とすることで、断熱材内部のガスの対流を防止する事ができる。
【0022】
フェルト状炭素繊維13は、密度が0.05〜0.15g/cm3 、好ましくは0.07〜0.12g/cm3 であるものが好ましい。これによって、圧縮率を調整することができるからである。
【0023】
フェルト状炭素繊維13と膨張黒鉛シート12との積層体14をC/C材11aとともに、プラスチック製のバッグに入れ、外部より、真空ポンプ等を利用してバッグ内の空気を抜き、バッグ内の圧力を調節すること所定の厚さに整える。
【0024】
そして、真空状態のバッグ内の積層体14に、外周側のC/C材11bを被せ、真空バッグを取り除く。真空を解くと、積層体14中のフェルト状炭素繊維13が膨張する。これによって、積層体14中のフェルト状炭素繊維13は、圧縮された状態で、C/C材11a、11bによって、挟持された状態となる。
【0025】
この状態で、使用することが可能であるが、内部の積層体14に樹脂を浸透させることが好ましい。これによって、C/C材11a,11bと、膨張黒鉛シート12と、フェルト状炭素繊維13との相互間の結合を強くすることができる。さらに、場合によっては上下の端面に、C/C材11を被せる。これで、フェルト状炭素繊維13が露出せず、フェルト状炭素繊維13と膨張黒鉛シート12からなる積層体を完全にC/C材で被覆することができ、使用中の発塵を抑制することができる。なお、ここで使用するC/C材11は、内外周に使用しているC/C材11a,11bと同様に厚み0.5〜10mmであるものが好ましい。
【0026】
積層体14に樹脂を浸透させた後に、150〜200℃で熱処理し、樹脂を硬化させる。次いで、800〜1000℃で熱処理し、樹脂を炭化させる。次に、この成形体をハロゲンガス雰囲気の大気圧下で1800〜2200℃で黒鉛化処理及び高純度化処理を行う。ここで、ハロゲンガスとは、ハロゲンまたはその化合物のガスのことであり、例えば塩素や塩素化合物、フッ素、フッ素化合物を用いることができると共に、塩素とフッ素とを同一分子内に含む化合物(モノクロロトリフルオルメタン、トリクロロモノフルオルメタン、ジクロルフルオルエタン、トリクロロモノフルオルエタン等)を用いることができる。そして、これらハロゲン系ガスとの反応により成形体中に含まれる不純物、特に金属不純物がハロゲン化物として蒸発および揮散され、除去される。これによって、不純物含有量を灰分量で10ppm以下とすることができ、高純度が要求されるCZ炉のヒートシールドや断熱材等として使用することができる。
【0027】
次に、熱分解炭素をCVD法で、含浸・被覆することが好ましい。ここでいうCVD法は、熱分解炭素を表面の開気孔より内部にまで浸透析出させる所謂CVI法を包含する方法であって、炭化水素類、例えば、炭素数1〜8、特に炭素数3のプロパンやメタンガス等の炭化水素ガスもしくは炭化水素化合物を用い、炭化水素濃度3〜30%好ましくは5〜15%とし、全圧を100Torr以下好ましくは50Torr以下の操作をする。このような操作を行った場合、炭化水素が基材表面付近で脱水素、熱分解、重合などによって巨大炭素化合物を形成し、これが基材上に沈積、析出し、更に脱水素反応が進み緻密な熱分解炭素層が形成され、あるいは浸透して含浸される。析出の温度範囲は一般に800〜2500℃までの広い範囲であるが、熱分解炭素をできるだけ多く含浸するためには1300℃以下の比較的低温領域で処理することが好ましい。また析出時間を50時間以上、さらには100時間以上とすることで内部にまで熱分解炭素を形成させることができる。さらに析出時間を50時間以上、さらには100時間以上とすることによって、内部の隅々にまで熱分解炭素を形成することが可能となり、内部からのガスの発生の抑制に寄与する。また含浸の程度を高めるために、等温法、温度勾配法、圧力勾配法等が使用でき、時間の短縮及び緻密化を可能にするパルス法を使用してもよい。
【0028】
また、前述の熱分解炭素の代わりにガラス状炭素を被覆することもできる。ガラス状炭素は、フェノール樹脂等の熱硬化性樹脂に浸すか、若しくは刷毛塗り等の任意の方法で表面に塗布する。そして、窒素雰囲気中で硬化、焼成して樹脂を炭素化する。その結果、表面全面をガラス状炭素で被覆することができる。
【0029】
なお、本発明の成形断熱材は、円筒状に限定されるものではなく、膨張黒鉛シートとフェルト状炭素繊維が交互に積層してなる積層体をC/C材によって挟み込んだサンドウィッチ構造であれば、板状の成形体であってもよい。そして、C/C材で挟持されていない残りの面をC/C材で覆い、フェルト状炭素繊維が表面に露出しないようにすることが好ましい。これによって、フェルト状炭素繊維を構成する炭素繊維が炉内に飛散することを抑制することができる。
【0030】
【実施例】
以下、実施例により、本発明をより具体的に説明する。
【0031】
(実施例1)
かさ密度0.08g/cm3 のフェルト状炭素繊維と、ガス透過率が5×10-5cm2 /sの膨張黒鉛シートとを、フェノール樹脂を含浸させたフェルト状炭素繊維の層が8層となるように交互に積層し、積層体のかさ密度が0.2g/cm3 となるように積層体を熱圧プレス成形により42mmに圧縮した。積層体の断面のフェルト状炭素繊維と膨張黒鉛シートの割合は、フェルト5.1mmに対し黒鉛シート1層であった。この積層体をさらに上下より厚さ1.2mm、フェノール樹脂を含浸させたC/C材で挟み込み、サンドウィッチ構造とし、熱圧プレス成形し、200×200mm、厚さ42.4mmの板状の成形体を得た。この成形体を焼成し、樹脂等を炭化した後、ハロゲンガス雰囲気、温度2000℃の条件で黒鉛化と同時に高純度化処理を行い、不純物含有量を灰分量で10ppm以下の高純度成形断熱材を得た。
【0032】
(実施例2)
積層体中のフェルト状炭素繊維の層を8層とし、この積層体を圧縮して、かさ密度を0.15g/cm3 とした以外、実施例1と同様の方法で200×200mm、厚さ56mmの板状の成形断熱材を得た。なお、積層体の断面のフェルト状炭素繊維と膨張黒鉛シートの割合は、フェルト6.8mmに対し黒鉛シート1層であった。さらに、実施例1同様の高純度化処理を行い高純度成形断熱材を得た。
【0033】
(実施例3)
積層体中のフェルト状炭素繊維の層を8層とし、この積層体を圧縮して、かさ密度を0.3g/cm3 とし、実施例1と同様の方法で200×200mm、厚さ28mmの板状の成形断熱材とし、さらに、端面をC/C材で覆った。なお、積層体の断面のフェルト状炭素繊維と膨張黒鉛シートの割合は、フェルト3.3mmに対し黒鉛シート1層であった。さらに、実施例1同様の高純度化処理を行い高純度成形断熱材を得た。
【0034】
(実施例4)
実施例1で得られた高純度成形断熱材を、CVD法により膜厚20μmの熱分解炭素被覆を行い断熱材とした。
【0035】
(比較例1)
かさ密度0.08g/cm3 のフェルト状炭素繊維のみを実施例1と同質同形状のC/C材で、実施例1と同様の方法で、挟み込み、200×200mm、厚さ40mmの板状の成形断熱材を得た。
【0036】
実施例1乃至3及び比較例1の成形断熱材を、それぞれ室温から1600℃までの範囲において、連続的に熱伝導率を測定した。熱伝導率の測定は、真空中で所定温度にさらされた断熱材の最外層と、反対側の最外層との温度を測定し、熱伝導率を算出した。また、SiOガスと反応させて電子顕微鏡で観察し、その反応の度合いを積層方向にX線で線分析を行い評価した。また、発塵の程度は振とう機に5分間かけて篩分けし、発生する塵の量を測定した。
【0037】
熱伝導率の測定結果を図2にまとめて示す。
【0038】
また、表1にSiOガスとの反応の程度及び発塵の程度の結果をまとめて示す。
【0039】
【表1】

Figure 0004338844
【0040】
図2より、実施例1乃至4の成形断熱材は、低温における熱伝導率が0.07〜0.09W/(m・K)であり、その熱伝導率の上昇曲線が比較例の成形断熱材に比べ滑らかとなった。すなわち、低温では伝熱しやすく、高温では逆に伝熱しにくいという断熱特性が優れていることを示すものである。
【0041】
【発明の効果】
フェルト状炭素繊維と膨張黒鉛シートを交互に積層した積層体をC/C材で挟み込んだサンドウィッチ構造とし、積層体の密度及びフェルト状炭素繊維と膨張黒鉛シートの積層割合を調整することで、断熱特性を調整することが可能となる。さらに、フェルト状炭素繊維が表面に露出しないようにC/C材で覆うようにすることで、フェルト状炭素繊維からの発塵を抑制することができる。また、表面が機械的強度の高いC/C材であるため、取り扱いが非常に容易であり、周囲の雰囲気ガスとの反応を抑制することが可能となり、長寿命で、保形性に優れ、断熱特性に優れた成形断熱材とすることができる。
【図面の簡単な説明】
【図1】本発明における成形断熱材の一実施形態例を示す概略図である。
【図2】実施例における成形断熱材の室温から1600℃における熱伝導率の測定結果を示す図である。
【符号の説明】
11 C/C材
11a,11b C/C材
12 膨張黒鉛シート
13 フェルト状炭素繊維
14 積層体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molded heat insulating material used in a high temperature atmosphere furnace.
[0002]
[Prior art]
Conventionally, a molded body made of felt-like carbon fiber is known as a heat insulating material used in a high-temperature atmosphere furnace.
[0003]
However, a molded body made of felt-like carbon fibers has insufficient shape retention and mechanical strength, and has a large specific surface area, so it easily reacts with the surrounding atmosphere, and is used, for example, in a semiconductor single crystal pulling furnace. When compared with a member made of graphite or a carbon fiber reinforced carbon composite material (hereinafter referred to as C / C material) that is used at the same time, silicon carbide is formed very quickly and the shape cannot be maintained. Some parts are missing. Moreover, there is a problem that the heat insulating property is also deteriorated and the heat insulating material does not function sufficiently.
[0004]
Japanese Utility Model Laid-Open No. 4-104434 proposes a molded heat insulating material in which a carbonaceous sheet is mechanically bonded to the surface of a heat insulating material made of felt-like carbon fiber by a carbonaceous bonding member. The purpose is to prevent peeling of the carbonaceous sheet bonded to the surface of the molded heat insulating material. Therefore, the carbonaceous sheet on the surface does not peel off because it is mechanically joined with the carbonaceous joining member, and the shape retention is superior to the heat insulating material consisting only of felt-like carbon fibers and the molded heat insulating material. It has become. However, since the mechanical strength of the carbonaceous sheet itself is low, the mechanical strength of the entire molded heat insulating material has not been improved. Moreover, the molded heat insulating material from which the felt-like carbon fiber is exposed generates dust during use and contaminates the inside of the furnace. It is further encouraged when used in the presence of an atmosphere (eg, SiO gas). Therefore, there has been a problem that the heat insulating properties are changed.
[0005]
[Problems to be solved by the invention]
Therefore, the present invention has been made in view of the above circumstances, and exhibits heat insulation over a long period of time, has excellent shape retention, and is used for a high-temperature atmosphere furnace excellent in mechanical strength. The purpose is to provide.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted intensive research, laminated a felt-like carbon fiber and an expanded graphite sheet, and sandwiched this laminated body with a C / C material. As a result of having a structure that is entirely covered with / C material, it has been found that the mechanical strength is excellent, the furnace contamination is small, the durability is excellent, and the heat insulating material can be excellent over a long period of time, and the present invention has been completed. .
[0007]
That is, the molded heat insulating material of the present invention is characterized in that felt-like carbon fibers and expanded graphite sheets are alternately laminated, and the felt-like carbon fibers are sandwiched in a compressed state by a C / C material. Further, the felt-like carbon fibers and the expanded graphite sheet are alternately laminated, and the felt-like carbon fibers are sandwiched in a compressed state by the C / C material, and the remaining surface is covered with the C / C material. It is characterized by that. Further, the carbon fiber reinforced carbon composite material is two cylinders having different diameters, and the felt-like carbon fibers and the expanded graphite sheet are alternately laminated in the radial direction between the two cylinders. It is preferably sandwiched between fiber reinforced carbon composite materials. In that case, the upper and lower surfaces are preferably covered with a C / C material. The bulk density of the laminate composed of the felt-like carbon fiber and the expanded graphite sheet is preferably 0.1 to 0.3 g / cm 3 . The ratio of the felt-like carbon fiber and the expanded graphite sheet is preferably one layer for the felt-like carbon fiber thickness of 3 to 10 mm. Moreover, it is preferable that impurity content is 10 ppm or less. In the molded heat insulating material of the present invention, felt-like carbon fibers and expanded graphite sheets are alternately laminated and sandwiched between carbon fiber reinforced carbon composites, and the surface is covered with pyrolytic carbon. In the molded heat insulating material of the present invention, felt-like carbon fibers and expanded graphite sheets are alternately laminated and sandwiched between carbon fiber-reinforced carbon composites, and the surface is covered with glassy carbon. Furthermore, the heat shield of the present invention preferably uses the above-described molded heat insulating material.
[0008]
These felt carbon fibers and expanded graphite sheets are alternately laminated to form a laminate, and this laminate is sandwiched between C / C materials to form a sandwich structure. Further, the expanded graphite sheet can be made of a material having functions of each material such as gas impermeability, heat shielding property, and mechanical strength of the C / C material. Moreover, the felt-like carbon fiber can be easily maintained in a compressed state by sandwiching the laminate between two C / C cylinders having different diameters. That is, it can be set as the shaping | molding heat insulating material which is excellent in mechanical strength and can maintain a heat insulation characteristic over a long period of time. Furthermore, dust generation from these laminates can be completely prevented by covering the remaining surface that is not sandwiched between the C / C materials. Here, the remaining surfaces refer to the upper and lower surfaces, for example, when the laminate has a hollow cylindrical shape. Moreover, when a laminated body is a rectangular parallelepiped, the surface parallel to a lamination direction is said.
[0009]
Here, the C / C material used in the present invention may be manufactured by a general manufacturing method. For example, a prepreg having a predetermined shape is manufactured in advance, and this prepreg is laminated and then hot-pressed. A molded body or a molded body manufactured by a filament winding method. These can be manufactured by appropriately selecting the manufacturing method according to the shape of a desired heat insulating material. Examples of the carbon fiber constituting the C / C material include PAN and pitch systems.
[0010]
Further, the felt-like carbon fiber may be produced by a general method, and is made of only the felt-like carbon fiber, or the felt-like carbon fiber is impregnated with a resin or the like, carbonized and graphitized. There may be. Examples of the carbon fibers constituting the felt-like carbon fibers include polyacrylonitrile, rayon, polymer fibers of cellulosic fibers, and carbon fibers made of pitch fibers. Among these, one or two or more carbon fibers can be exemplified. Is used. Furthermore, the felt-like carbon fiber in the present invention has a density of 0.05 to 0.15 g / cm 3 , preferably 0.07 to 0.12 g / cm 3 . By setting it as such a density range, it becomes possible to compress and laminate between C / C materials having different diameters, which will be described later. And it becomes possible to adjust a heat insulation characteristic by adjusting the degree of compression and adjusting the number of sheets to laminate.
[0011]
The expanded graphite sheet is not particularly limited, and has an excellent gas impermeability, for example, the nitrogen gas permeability at room temperature is 1 × 10 −4 cm 2 / s or less, preferably 5 × 10 −. What is 5 cm < 2 > / s or less is preferable. By using such an expanded graphite sheet excellent in gas impermeability and forming a laminate with the felt-like carbon fiber, it is possible to prevent gas convection inside the heat insulating material and Heat can be shielded.
[0012]
And when laminating a felt-like carbon fiber and an expanded graphite sheet, it laminates with an expanded graphite sheet in the state which compressed the felt-like carbon fiber, The bulk density of the laminated body which consists of these is 0.1-0. 3 g / cm 3, preferably can be adjusted to 0.15~0.25g / cm 3. By adjusting the density, the heat insulating properties can be adjusted.
[0013]
Moreover, heat insulation characteristic can be adjusted by inserting one layer of an expanded graphite sheet with respect to the felt-like carbon fiber thickness 3-10 mm in the ratio of a felt-like carbon fiber and an expanded graphite sheet.
[0014]
Moreover, it is preferable that the treatment is performed at a high temperature of 2000 ° C. or higher in a halogen gas atmosphere, and the impurity content is 10 ppm or less in terms of ash content. As for the amount of ash here, 20 g of a sample is accurately measured, loaded into a platinum crucible (volume 50 cc), kept at a temperature of 950 ° C. in an oxygen stream (2 to 3 l / min), and ashed. After the natural cooling in a desiccator, the amount of remaining ash is measured.
[0015]
The molded heat insulating material in the present invention is configured as described above, and can be suitably used for various high-temperature atmosphere furnaces, in particular, a semiconductor single crystal pulling furnace, a heat treatment furnace for manufacturing optical fibers, and the like. In particular, in a semiconductor single crystal pulling furnace (hereinafter referred to as a CZ furnace), conventionally, an inner shield, a lower ring, an upper ring, a heat shield, etc., which are constituent members of a CZ furnace, are provided separately from a heat insulating material. By using the molded heat insulating material of the present invention, it is possible to develop the combined characteristics of both, and to expand the effective treatment range in the furnace.
[0016]
Hereinafter, the case where the molded heat insulating material according to the present invention is used as a heat shield of a CZ furnace will be described in detail with reference to the drawings.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic view showing an embodiment in which the molded heat insulating material of the present invention is used as a heat shield for a CZ furnace. The heat shield 1 in the present invention is composed of a C / C material 11 that sandwiches a laminate 14 composed of an expanded graphite sheet 12 and felt-like carbon fibers 13 from the outer peripheral side and the inner peripheral side.
[0018]
The C / C materials 11a and 11b may be formed by a general C / C material manufacturing method, and a carbon fiber cloth prepreg is cured to form a molded body. Alternatively, a molded body made of cylindrical C / C materials having different diameters is manufactured by forming into a cylindrical shape by a filament winding method, and the C / C material 11a having a small diameter on the inner peripheral side and the outer peripheral side. A C / C material 11b having a large diameter is prepared. These molded bodies may be in a state of being baked, carbonized and graphitized, or in a stage where a resin used in molding by prepreg, filament winding or the like is cured.
[0019]
These C / C materials 11a and 11b have a thickness of 0.5 to 10.0 mm, preferably 1.0 to 2.0 mm. Thereby, while improving shape retention property, it can be set as the heat insulating material with high mechanical strength.
[0020]
Next, the expanded graphite sheet 12 and the felt-like carbon fiber 13 are alternately laminated on the surface of the C / C material 11a having a small diameter on the inner peripheral side in order on a concentric circle. And it is preferable to laminate | stack so that it may become the expanded graphite sheet 12 in the outermost layer, ie, the layer which contact | connects the C / C material 11b of the outer peripheral side. The felt-like carbon fibers 13 are first laminated alternately on the surface of the inner peripheral C / C material 11a in the order of the expanded graphite sheet 12, and the felt-like carbon fibers 13 are in contact with the outer C / C material 11b. It may be. However, it is preferable to laminate the expanded graphite sheet 12 in contact with the inner and outer peripheral C / C materials 11a and 11b because the felt-like carbon fibers 13 can be prevented from coming into direct contact with the gas.
[0021]
Here, the expanded graphite sheet 12 to be used has flexibility and a gas permeability of 1 × 10 −4 cm 2 / s or less, preferably 5 × 10 −5 cm 2 / s or less. By setting it as such a gas permeability, the convection of the gas inside a heat insulating material can be prevented.
[0022]
The felt-like carbon fiber 13 has a density of 0.05 to 0.15 g / cm 3 , preferably 0.07 to 0.12 g / cm 3 . This is because the compression rate can be adjusted.
[0023]
The laminated body 14 of the felt-like carbon fiber 13 and the expanded graphite sheet 12 is put in a plastic bag together with the C / C material 11a, and the air in the bag is vented from the outside using a vacuum pump or the like. Adjust the pressure to the desired thickness.
[0024]
And the laminated body 14 in the bag of a vacuum state is covered with the C / C material 11b of the outer peripheral side, and a vacuum bag is removed. When the vacuum is released, the felt-like carbon fibers 13 in the laminate 14 expand. As a result, the felt-like carbon fibers 13 in the laminated body 14 are compressed and held between the C / C materials 11a and 11b.
[0025]
Although it can be used in this state, it is preferable that the resin is infiltrated into the laminated body 14 inside. Thereby, the coupling | bonding between the C / C materials 11a and 11b, the expanded graphite sheet 12, and the felt-like carbon fiber 13 can be strengthened. Furthermore, the C / C material 11 may be put on the upper and lower end faces depending on circumstances. Thus, the felt-like carbon fiber 13 is not exposed, and the laminate composed of the felt-like carbon fiber 13 and the expanded graphite sheet 12 can be completely covered with the C / C material, thereby suppressing dust generation during use. Can do. The C / C material 11 used here is preferably one having a thickness of 0.5 to 10 mm, similar to the C / C materials 11a and 11b used for the inner and outer circumferences.
[0026]
After the resin is infiltrated into the laminate 14, heat treatment is performed at 150 to 200 ° C. to cure the resin. Next, heat treatment is performed at 800 to 1000 ° C. to carbonize the resin. Next, this molded body is graphitized and purified at 1800-2200 ° C. under atmospheric pressure in a halogen gas atmosphere. Here, the halogen gas is a gas of halogen or a compound thereof. For example, chlorine, a chlorine compound, fluorine, or a fluorine compound can be used, and a compound (monochlorotrifluoroacetate) containing chlorine and fluorine in the same molecule. (Lumethane, trichloromonofluoromethane, dichlorofluoroethane, trichloromonofluoroethane, etc.) can be used. Then, impurities, particularly metal impurities, contained in the molded body are evaporated and volatilized as halides and removed by reaction with these halogen-based gases. Thereby, impurity content can be made into 10 ppm or less by ash content, and it can be used as a heat shield, a heat insulating material, etc. of a CZ furnace where high purity is required.
[0027]
Next, it is preferable to impregnate and coat pyrolytic carbon by a CVD method. Here, the CVD method includes a so-called CVI method in which pyrolytic carbon is permeated and precipitated from the open pores of the surface to the inside, and includes hydrocarbons such as those having 1 to 8 carbon atoms, particularly those having 3 carbon atoms. A hydrocarbon gas such as propane or methane gas or a hydrocarbon compound is used, the hydrocarbon concentration is adjusted to 3 to 30%, preferably 5 to 15%, and the total pressure is controlled to 100 Torr or less, preferably 50 Torr or less. When such an operation is performed, the hydrocarbon forms a huge carbon compound near the surface of the substrate by dehydrogenation, thermal decomposition, polymerization, etc., which deposits and precipitates on the substrate, and the dehydrogenation reaction proceeds further and becomes dense. A pyrolytic carbon layer is formed or impregnated by infiltration. The temperature range for precipitation is generally a wide range from 800 to 2500 ° C., but in order to impregnate as much pyrolytic carbon as possible, it is preferable to treat in a relatively low temperature region of 1300 ° C. or lower. Further, by setting the deposition time to 50 hours or longer, more preferably 100 hours or longer, pyrolytic carbon can be formed even inside. Furthermore, by setting the deposition time to 50 hours or more, and further to 100 hours or more, it becomes possible to form pyrolytic carbon in every corner of the inside, contributing to suppression of gas generation from the inside. In order to increase the degree of impregnation, an isothermal method, a temperature gradient method, a pressure gradient method, or the like can be used, and a pulse method that enables shortening of time and densification may be used.
[0028]
Further, glassy carbon can be coated instead of the aforementioned pyrolytic carbon. The glassy carbon is immersed in a thermosetting resin such as a phenol resin, or is applied to the surface by any method such as brushing. Then, the resin is carbonized by curing and baking in a nitrogen atmosphere. As a result, the entire surface can be covered with glassy carbon.
[0029]
The molded heat insulating material of the present invention is not limited to a cylindrical shape, and may be a sandwich structure in which a laminate formed by alternately laminating expanded graphite sheets and felt-like carbon fibers is sandwiched between C / C materials. A plate-like molded body may be used. And it is preferable to cover the remaining surface which is not clamped by the C / C material with the C / C material so that the felt-like carbon fiber is not exposed to the surface. Thereby, it is possible to suppress the carbon fibers constituting the felt-like carbon fibers from being scattered in the furnace.
[0030]
【Example】
Hereinafter, the present invention will be described more specifically by way of examples.
[0031]
(Example 1)
Eight layers of felt-like carbon fibers impregnated with a phenol resin with felt-like carbon fibers having a bulk density of 0.08 g / cm 3 and an expanded graphite sheet having a gas permeability of 5 × 10 −5 cm 2 / s. Then, the laminate was compressed to 42 mm by hot press molding so that the bulk density of the laminate was 0.2 g / cm 3 . The ratio of the felt-like carbon fiber and the expanded graphite sheet in the cross section of the laminate was one layer of graphite sheet with respect to 5.1 mm of felt. This laminate is further sandwiched between C / C materials with a thickness of 1.2 mm and impregnated with a phenol resin from the top and bottom to form a sandwich structure, hot press molding, and a plate-shaped molding having a size of 200 × 200 mm and a thickness of 42.4 mm. Got the body. After firing this molded body and carbonizing the resin, etc., a high-purity molded heat insulating material having an impurity content of 10 ppm or less in an ash content is subjected to high-purification treatment simultaneously with graphitization under the conditions of a halogen gas atmosphere and a temperature of 2000 ° C. Got.
[0032]
(Example 2)
200 × 200 mm, thickness in the same manner as in Example 1 except that the number of layers of felt-like carbon fibers in the laminate was 8, and this laminate was compressed to a bulk density of 0.15 g / cm 3. A 56 mm plate-shaped molded heat insulating material was obtained. In addition, the ratio of the felt-like carbon fiber and the expanded graphite sheet in the cross section of the laminate was one layer of graphite sheet with respect to 6.8 mm of felt. Further, a high-purity treatment similar to Example 1 was performed to obtain a high-purity molded heat insulating material.
[0033]
(Example 3)
The layer of the felt-like carbon fiber in the laminate was made into 8 layers, and this laminate was compressed to a bulk density of 0.3 g / cm 3 , which was 200 × 200 mm and thickness 28 mm in the same manner as in Example 1. A plate-shaped molded heat insulating material was used, and the end face was covered with a C / C material. In addition, the ratio of the felt-like carbon fiber and the expanded graphite sheet in the cross section of the laminate was one graphite sheet with respect to 3.3 mm of felt. Further, a high-purity treatment similar to Example 1 was performed to obtain a high-purity molded heat insulating material.
[0034]
(Example 4)
The high-purity molded heat insulating material obtained in Example 1 was coated with pyrolytic carbon with a film thickness of 20 μm by a CVD method to obtain a heat insulating material.
[0035]
(Comparative Example 1)
Only a felt-like carbon fiber having a bulk density of 0.08 g / cm 3 is sandwiched with a C / C material having the same shape and shape as in Example 1 in the same manner as in Example 1. A molded heat insulating material was obtained.
[0036]
The thermal conductivity of each of the molded heat insulating materials of Examples 1 to 3 and Comparative Example 1 was measured continuously in the range from room temperature to 1600 ° C. The thermal conductivity was measured by measuring the temperatures of the outermost layer of the heat insulating material exposed to a predetermined temperature in vacuum and the outermost layer on the opposite side, and calculating the thermal conductivity. Moreover, it was made to react with SiO gas and observed with the electron microscope, and the degree of the reaction was evaluated by X-ray line analysis in the lamination direction. The degree of dust generation was sieved on a shaker over 5 minutes, and the amount of dust generated was measured.
[0037]
The measurement results of thermal conductivity are summarized in FIG.
[0038]
Table 1 summarizes the results of the degree of reaction with SiO gas and the degree of dust generation.
[0039]
[Table 1]
Figure 0004338844
[0040]
2, the molded heat insulating materials of Examples 1 to 4 have a thermal conductivity of 0.07 to 0.09 W / (m · K) at a low temperature, and the rising curve of the thermal conductivity is the molded heat insulating material of the comparative example. Smoother than the material. That is, it shows that the heat insulating property is excellent that it is easy to transfer heat at a low temperature and hardly transfer heat at a high temperature.
[0041]
【The invention's effect】
A sandwich structure in which felt-like carbon fibers and expanded graphite sheets are alternately laminated is sandwiched between C / C materials, and heat insulation is achieved by adjusting the density of the laminate and the lamination ratio of felt-like carbon fibers and expanded graphite sheets. The characteristics can be adjusted. Furthermore, dust generation from the felt-like carbon fiber can be suppressed by covering the felt-like carbon fiber with the C / C material so that the felt-like carbon fiber is not exposed on the surface. Moreover, since the surface is a C / C material with high mechanical strength, it is very easy to handle, it is possible to suppress the reaction with the surrounding atmosphere gas, long life, excellent shape retention, It can be set as the shaping | molding heat insulating material excellent in the heat insulation characteristic.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a molded heat insulating material according to the present invention.
FIG. 2 is a view showing a measurement result of thermal conductivity from room temperature to 1600 ° C. of a molded heat insulating material in an example.
[Explanation of symbols]
11 C / C material 11a, 11b C / C material 12 Expanded graphite sheet 13 Felt-like carbon fiber 14 Laminate

Claims (10)

フェルト状炭素繊維と膨張黒鉛シートとが交互に積層され、炭素繊維強化炭素複合材によって前記フェルト状炭素繊維が圧縮された状態で挟持されている成形断熱材。A molded heat insulating material in which felt-like carbon fibers and expanded graphite sheets are alternately laminated, and the felt-like carbon fibers are compressed by a carbon fiber-reinforced carbon composite material. フェルト状炭素繊維と膨張黒鉛シートとが交互に積層され、炭素繊維強化炭素複合材によって前記フェルト状炭素繊維が圧縮された状態で挟持されるとともに、残りの面が炭素繊維強化炭素複合材に覆われている成形断熱材。Felt-like carbon fibers and expanded graphite sheets are alternately laminated, and the felt-like carbon fibers are compressed and compressed by the carbon fiber-reinforced carbon composite, and the remaining surface is covered with the carbon fiber-reinforced carbon composite. Molded insulation material. 前記炭素繊維強化炭素複合材が径の異なる2個の円筒であり、前記2個の円筒間に、前記フェルト状炭素繊維と前記膨張黒鉛シートとが径方向に交互に積層され、前記炭素繊維強化炭素複合材によって挟持されている請求項1記載の成形断熱材。  The carbon fiber reinforced carbon composite material is two cylinders having different diameters, and the felt-like carbon fibers and the expanded graphite sheet are alternately laminated in the radial direction between the two cylinders, and the carbon fiber reinforced The molded heat insulating material according to claim 1, which is sandwiched between carbon composite materials. 前記炭素繊維強化炭素複合材が径の異なる2個の円筒であり、前記2個の円筒間に、前記フェルト状炭素繊維と前記膨張黒鉛シートとが径方向に交互に積層され、前記炭素繊維強化炭素複合材によって挟持されるとともに、上下面が炭素繊維強化炭素複合材に覆われている請求項2記載の成形断熱材。  The carbon fiber reinforced carbon composite material is two cylinders having different diameters, and the felt-like carbon fibers and the expanded graphite sheet are alternately laminated in the radial direction between the two cylinders, and the carbon fiber reinforced The molded heat insulating material according to claim 2, wherein the molded heat insulating material is sandwiched between carbon composite materials and the upper and lower surfaces are covered with a carbon fiber reinforced carbon composite material. 前記フェルト状炭素繊維と膨張黒鉛シートからなる積層体のかさ密度が0.1〜0.3g/cmである請求項1乃至4いずれか1項に記載の成形断熱材。The molded heat insulating material according to any one of claims 1 to 4 , wherein a bulk density of the laminate composed of the felt-like carbon fibers and the expanded graphite sheet is 0.1 to 0.3 g / cm 3 . フェルト状炭素繊維と膨張黒鉛シートの割合が、フェルト状炭素繊維厚さ3〜10mmに対し、膨張黒鉛シートが1層である請求項1乃至5いずれか1項に記載の成形断熱材。The molded heat insulating material according to any one of claims 1 to 5 , wherein the ratio of the felt-like carbon fiber and the expanded graphite sheet is one layer of the expanded graphite sheet with respect to the felt-like carbon fiber thickness of 3 to 10 mm. 不純物含有量が10ppm以下である請求項1乃至6いずれか1項に記載の成形断熱材。The molded heat insulating material according to any one of claims 1 to 6 , wherein the impurity content is 10 ppm or less. フェルト状炭素繊維と膨張黒鉛シートとが交互に積層され、炭素繊維強化炭素複合材によって挟持されており、熱分解炭素の被覆をしてなる成形断熱材。A molded heat insulating material in which felt-like carbon fibers and expanded graphite sheets are alternately laminated, sandwiched between carbon fiber reinforced carbon composites, and covered with pyrolytic carbon. フェルト状炭素繊維と膨張黒鉛シートとが交互に積層され、炭素繊維強化炭素複合材によって挟持されており、ガラス状炭素の被覆をしてなる成形断熱材。A molded heat insulating material in which felt-like carbon fibers and expanded graphite sheets are alternately laminated and sandwiched between carbon fiber-reinforced carbon composites and covered with glassy carbon. 請求項1乃至9いずれか1項に記載の成形断熱材を用いたヒートシールド。Heat shield with molded heat insulating material according to any one of claims 1 to 9.
JP26889199A 1999-07-19 1999-09-22 Molded insulation and heat shield Expired - Fee Related JP4338844B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26889199A JP4338844B2 (en) 1999-07-19 1999-09-22 Molded insulation and heat shield
PCT/JP2000/004118 WO2001006169A1 (en) 1999-07-19 2000-06-22 Formed heat insulating material and heat shield

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-205017 1999-07-19
JP20501799 1999-07-19
JP26889199A JP4338844B2 (en) 1999-07-19 1999-09-22 Molded insulation and heat shield

Publications (2)

Publication Number Publication Date
JP2001089238A JP2001089238A (en) 2001-04-03
JP4338844B2 true JP4338844B2 (en) 2009-10-07

Family

ID=26514797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26889199A Expired - Fee Related JP4338844B2 (en) 1999-07-19 1999-09-22 Molded insulation and heat shield

Country Status (2)

Country Link
JP (1) JP4338844B2 (en)
WO (1) WO2001006169A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266061A (en) * 2007-04-18 2008-11-06 Toyo Tanso Kk Expansible graphite sheet, protection method for carbonaceous crucible using the same, and single crystal pulling system
WO2011106580A2 (en) * 2010-02-26 2011-09-01 Morgan Advanced Materials And Technology Inc. Carbon-based containment system
DE102012201650A1 (en) * 2012-02-03 2013-08-08 Sgl Carbon Se Heat shield with outer fiber winding
DE102016219214A1 (en) * 2016-10-04 2018-04-05 Schunk Kohlenstofftechnik Gmbh Method for producing a component and component
WO2019087846A1 (en) * 2017-10-30 2019-05-09 大阪ガスケミカル株式会社 Molded heat insulation material with surface layer and method for manufacturing same
KR102094925B1 (en) * 2018-05-03 2020-03-30 에스케이씨 주식회사 Multilayer graphite sheet having excellent electromagnetic shielding property and thermal conductivity, and preparation method thereof
DE102018217237A1 (en) * 2018-10-09 2020-04-09 Sgl Carbon Se Hollow cylindrical carbon fiber structure
DE102020208931A1 (en) * 2020-07-16 2022-01-20 Sgl Carbon Se composite material
JP7008155B1 (en) * 2021-07-29 2022-01-25 株式会社ノリタケカンパニーリミテド heating furnace
CN117957111A (en) * 2021-09-06 2024-04-30 积水化学工业株式会社 Laminate body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3028571B2 (en) * 1990-08-28 2000-04-04 大日本インキ化学工業株式会社 Manufacturing method of carbon fiber insulation
JPH0732532A (en) * 1993-07-19 1995-02-03 Mitsubishi Chem Corp Carbon fiber molded heat insulating material

Also Published As

Publication number Publication date
WO2001006169A1 (en) 2001-01-25
JP2001089238A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP4361636B2 (en) Composite carbonaceous heat insulating material and method for producing the same
JP4338844B2 (en) Molded insulation and heat shield
US20180045260A1 (en) System and Method for Ceramic Doping of Carbon Fiber Composite Structures
JP4514846B2 (en) High purity carbon fiber reinforced carbon composite material and method for producing the same
JPH0543364A (en) Oxidation-resistant corbon fiber-reinforced carbon composite material and its production
JP2001519319A (en) High thermal conductivity carbon / carbon honeycomb structure
JP3749268B2 (en) C / C composite oxidation resistant coating layer
WO2023008392A1 (en) Thermal insulation material and method for producing thermal insulation material
JP2591967B2 (en) Processed carbonaceous felt product and method for producing the same
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
KR102191680B1 (en) Fabrication Method of Carbon Composite Using melt infiltration method
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPS63149142A (en) Multilayer molded heat insulator and manufacture thereof
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP2001289226A (en) Screw made of carbon fiber reinforced carbon composite material
JP3461424B2 (en) Method for producing oxidation resistant C / C composite
JPH05306180A (en) Production of carbon fiber reinforced carbon-inorganic compound composite material
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
CN114773077B (en) Composite silicon carbide fiber hard felt and preparation method and application thereof
KR810001940B1 (en) Multi layer insulating material for heating furnace
JPH0826859A (en) Oxidation-resistant c/c composite material and method for producing the same
JP4152580B2 (en) Method for manufacturing and repairing C / C crucible for pulling Si single crystal
JPH08169786A (en) Production of oxidation resistant carbon fiber reinforced carbon composite material
JPH03252362A (en) Carbon-fiber reinforced carbon composite material having oxidation resistance and production thereof
KR20150046453A (en) Method for manufacturing SiCf/SiC composites and SiCf/SiC composites using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees