JPH01167210A - Processed article of carbonaceous felt and production thereof - Google Patents

Processed article of carbonaceous felt and production thereof

Info

Publication number
JPH01167210A
JPH01167210A JP62328653A JP32865387A JPH01167210A JP H01167210 A JPH01167210 A JP H01167210A JP 62328653 A JP62328653 A JP 62328653A JP 32865387 A JP32865387 A JP 32865387A JP H01167210 A JPH01167210 A JP H01167210A
Authority
JP
Japan
Prior art keywords
felt
gas
carbonaceous
pyrolytic carbon
carbonaceous felt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62328653A
Other languages
Japanese (ja)
Other versions
JP2591967B2 (en
Inventor
Toshiji Hiraoka
利治 平岡
Soukan Miki
相煥 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP62328653A priority Critical patent/JP2591967B2/en
Publication of JPH01167210A publication Critical patent/JPH01167210A/en
Application granted granted Critical
Publication of JP2591967B2 publication Critical patent/JP2591967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To provide the title processed article having excellent heat-insulation effect, high mechanical strength and free from fluffs, by forming a thermally decomposed carbon film on a surface of a gas-permeable carbonaceous felt and/or impregnating the carbon film in the felt. CONSTITUTION:Air in a vessel is substituted with N2 gas by supplying N2 gas through a gas-feeding pipe 8. The pressure in the vessel is reduced or the vessel is evacuated through a gas-exhaustion pipe 1 to keep the atmosphere in the vessel in a non-oxidizing state. An electric potential is slowly imposed to an induction coil 5 to heat a susceptor 6 and a carbonaceous felt 4 is heated by the radiant heat of the susceptor while controlling the temperature of the felt to a prescribed level. When the felt is graphitized to an extent, a halogen gas is supplied through the feeding pipe 8. The temperature is slowly raised or lowered after the completion of the surification process and the system is controlled to a prescribed temperature. A thermally decomposed carbon film is formed on the surface of a substrate by thermally decomposing a hydrocarbon gas such as C3H8 or a hydrocarbon compound or the thermally decomposed carbon is impregnated in the felt.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属の焼入れ、焼鈍、ろう付は等の金属熱処理
、粉末金属の焼結、金属の蒸着、セラミックス原料の精
製や焼結等、減圧下又は不活性ガス雰囲気下に於いて高
温処理を行う際に主に断熱材として使用される炭素質フ
ェルト加工品、半導体製造用単結晶引上げ装置、化学又
は物理蒸着装置、プラズマ処理装置等に於いて主に断熱
材として用いられる炭素質フェルト加工品、並びにその
製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to metal heat treatment such as hardening, annealing, and brazing of metals, sintering of powder metals, vapor deposition of metals, refining and sintering of ceramic raw materials, etc. For carbonaceous felt processed products mainly used as heat insulators when performing high-temperature processing under reduced pressure or in an inert gas atmosphere, single crystal pulling equipment for semiconductor manufacturing, chemical or physical vapor deposition equipment, plasma processing equipment, etc. The present invention relates to a carbonaceous felt product mainly used as a heat insulating material, and a method for manufacturing the same.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

従来、真空炉のような高温で使用する炉の断熱材として
は古くは耐火レンガが、最近はセラミック系、鉱サイ系
、ロックウール系の発泡体や繊維束フェルト等が用いら
れている。
Traditionally, refractory bricks have been used as insulation materials for furnaces used at high temperatures, such as vacuum furnaces, but recently ceramic, rhinoceros, and rock wool foams, fiber bundle felt, and the like have been used.

このような無機繊維材料は軽量で可撓性があり、形状、
品質共に殆ど均一なものとして提供されるため、炉内に
装着する容易さと確実な断熱性が得られ、また嵩高で熱
容量が小さく昇温や冷却の時間も短縮されること等価れ
た特性があるが、反面これ等を金属の焼入れ、焼鈍、ろ
う付は等の金属処理、粉末金属の焼結、金属の蒸着、セ
ラミックス原料の精製や焼結等、減圧下又は不活性ガス
雰囲気下に於ける高温処理を行う際に使用する断熱材、
半導体製造用単結晶引上げ装置、化学又は物理蒸着装置
、プラズマ処理装置等の用途分野へ適用する場合のいく
つかの欠点が指摘されている。
Such inorganic fiber materials are lightweight, flexible, shape,
Since they are provided with almost uniform quality, they are easy to install in the furnace and provide reliable insulation, and they also have the same characteristics as being bulky, having a small heat capacity, and shortening heating and cooling times. However, on the other hand, these can be used for metal processing such as quenching, annealing, and brazing of metals, sintering of powder metals, vapor deposition of metals, refining and sintering of ceramic raw materials, etc. under reduced pressure or an inert gas atmosphere. Insulating materials used when performing high-temperature processing,
Several drawbacks have been pointed out when applied to application fields such as single crystal pulling equipment for semiconductor manufacturing, chemical or physical vapor deposition equipment, and plasma processing equipment.

欠点として先ず耐熱性の欠点が挙げられる。即ち、これ
等無機繊維系フェルトを用いた場合の耐熱性は通常10
 Q O’C程度であり、特に優れたものでも1500
°Cが限界であった。
The first drawback is heat resistance. That is, the heat resistance when using these inorganic fiber felts is usually 10
Q O'C level, even the best one is 1500
°C was the limit.

このような無機繊維系の欠点を補うために炭素系のフェ
ルト、或いは膨張黒鉛粉を圧縮、成形、適当な外被物に
て被覆した形式の断熱材が提案された。このような炭素
系材料を用いた場合には、耐熱性は約3000°Cと極
めて高く、且つ嵩高な形で成型出来るので、高い断熱性
も付与出来る。
In order to compensate for these drawbacks of inorganic fiber-based materials, heat insulating materials have been proposed in which carbon-based felt or expanded graphite powder is compressed, molded, and covered with a suitable outer covering. When such a carbon-based material is used, it has extremely high heat resistance of about 3000°C and can be molded into a bulky shape, so it can also provide high heat insulation properties.

例えば実開昭51−15767号に開示されている膨張
黒鉛を用いたもの、例えば実開昭50〜39571号公
報に示される炭素質フェルトと炭素繊維からなる組み合
わせ断熱材、特公昭5o−35930号公報に示される
炭素フェルトをフェノール樹脂で固定したもの、或いは
実公昭58〜29129号公報に示されている様に炭素
質フェルトと気密性を持つ黒鉛シートとを、炭素質結合
体を用いて接合して積層構造となしたもの等が提案され
ている。
For example, the one using expanded graphite disclosed in Japanese Utility Model Application Publication No. 51-15767, the combination heat insulating material made of carbonaceous felt and carbon fiber disclosed in Japanese Utility Model Application Publication No. 50-39571, and the one disclosed in Japanese Patent Publication No. 50-35930. Carbon felt is fixed with phenolic resin as shown in the publication, or carbonaceous felt and airtight graphite sheet are bonded using a carbonaceous bonding body as shown in Publication of Utility Model Publication No. 58-29129. A laminated structure has been proposed.

これ等炭素質フェルトを断熱主体として用いた材料は耐
熱性、断熱性共に優れたものであるが、上記した各用途
の如く特に高度に且つ厳密に管理された厳しい反応及び
操作条件下で使用するにはいまなお次に示す様ないくつ
かの欠点が指摘されている。
These materials that use carbonaceous felt as the main insulation material have excellent heat resistance and insulation properties, but they must be used under highly and strictly controlled harsh reaction and operating conditions as in the above-mentioned applications. Several shortcomings are still being pointed out, as shown below.

第1の欠点はこれ等断熱材は不純物レベルが高く、高温
下での反応雰囲気下にて使用中に、断熱材から発生する
不純物が、製品を汚染し、品質の劣化、歩留りの低下等
を招く要因となることである。
The first drawback is that these insulation materials have a high impurity level, and when used in a reaction atmosphere at high temperatures, the impurities generated from the insulation materials can contaminate the product, resulting in quality deterioration and yield reduction. This is a contributing factor.

=5− 第2の欠点はこのような多孔質断熱材が減圧又は高真空
下で使用される場合、装置内圧を昇降させる度に断熱材
内部のガスの逃散や流入が排気速度に追従出来ず、断熱
材が膨張したり収縮したりして、これが繰り返され、遂
には断熱材の破損を惹越し内部の炭素質フェルトを構成
する繊維等の破損片たとえば毛羽等が装置内に流出し、
炭素の微粉で製品が汚染される等の二次的欠点が生ずる
。また最近断熱材表面にフェノール樹脂等の樹脂コーテ
ィングを施して、これを炭化処理した炭素質多孔性断熱
材も開発されているが、この場合でもやはり長期間の使
用による劣化により表面のコーティングが欠落、飛散し
、十分な効果を発揮していない。
=5- The second drawback is that when such a porous insulation material is used under reduced pressure or high vacuum, the escape and inflow of gas inside the insulation material cannot follow the pumping speed every time the internal pressure of the device is raised or lowered. The insulation material expands and contracts, and this process is repeated until the insulation material is damaged and broken pieces of fibers, etc. that make up the carbonaceous felt inside, such as fuzz, flow out into the equipment.
Secondary drawbacks arise, such as contamination of the product with carbon fines. In addition, carbonaceous porous insulation materials have recently been developed in which the surface of the insulation material is coated with a resin such as phenolic resin and then carbonized, but even in this case, the surface coating is still missing due to deterioration due to long-term use. , and are not fully effective.

第3の欠点は炭素質フェルトを装置内に装着するために
は多くの支持体を必要とし、しかも装填すべき装置内で
現物合わせてボルト孔の穿孔等を行う必要があり、この
加工作業のため炭素質フェルトの破損飛散した小片たと
えば毛羽等が装置内の各所に沈積し、被処理物を炭素で
汚染せしめる6一 原因ともなっている。
The third drawback is that many supports are required to install the carbonaceous felt into the equipment, and it is also necessary to drill bolt holes for the actual material in the equipment to be loaded. As a result, broken and scattered pieces of the carbonaceous felt, such as fuzz, etc., are deposited in various places within the apparatus, causing the object to be treated to be contaminated with carbon.

またこれ等炭素質断熱材の製造方法についても従来の方
法ではいくつかの難点が指摘されている。従来の製造方
法としては通常以下のように行われていた。
In addition, several difficulties have been pointed out in conventional methods for producing carbonaceous heat insulating materials. The conventional manufacturing method was usually performed as follows.

即ち、先ず炭素質(場合により一部樹脂分を含む場合あ
り)製品またはその半製品を焼成炉内に於いて800〜
1000°Cに加熱しバインダー等に含まれる易揮発成
分を分散、蒸散させて焼成し炭化を進める工程(工程A
)。
That is, first, a carbonaceous product (sometimes containing a portion of resin) or a semi-finished product thereof is placed in a firing furnace at a temperature of 800~
The process of heating to 1000°C to disperse and evaporate easily volatile components contained in the binder, etc., followed by firing and carbonization (Process A)
).

次に焼成体を取り出し、黒鉛化炉、例えばアチェソン炉
、カスドナー式炉、又は誘導加熱炉等にて約3000°
Cに加熱して黒鉛化する工程(工程B)。
Next, the fired body is taken out and heated to approximately 3000° in a graphitization furnace, such as an Acheson furnace, a Kasdonner furnace, or an induction heating furnace.
A step of graphitizing by heating to C (step B).

更に、このようにして得られた黒鉛化材料を、別の反応
器中でハロゲンを含むガス雰囲気中で加熱し、含まれて
いる不純成分を蒸気圧の高い物質に変化せしめて母材か
ら揮散させ、高純度化を行う工程(工程C)。
Furthermore, the graphitized material obtained in this way is heated in a gas atmosphere containing halogen in a separate reactor to convert the impurity components contained therein into substances with high vapor pressure and volatilize them from the base material. and high purification (step C).

このような従来の方式、即ち炭化、黒鉛化、高純度化方
法の欠点としてはまず第1に焼成から黒鉛化、更に高純
度化の各工程毎に炉から炉へと製品を移動させなければ
ならず、このため運搬の手間と、材料の破損が伴うこと
、第2にその都度、夫々の炉について昇降温をしなけれ
ばならず、熱エネルギー的に、また昇降温の時間待ち等
、装置の稼働効率の点で大きな難点を生ずることである
The drawback of such conventional methods, namely carbonization, graphitization, and high purity methods, is that the product must be moved from furnace to furnace for each step from calcination to graphitization and further to high purity. This requires transportation and damage to the materials.Secondly, each furnace must be heated and cooled each time, which requires energy and equipment costs such as waiting for the temperature to rise and fall. This poses a major problem in terms of operating efficiency.

また、最近では若干進んだ方法として焼成(工程A)は
別の炉で行ったあと、黒鉛化(工程B)と高純度化(工
程C)とをアチェソン炉を用い常圧で一連して行う方法
が開発された。しかしこの方法では次のような欠点があ
る。即ち先ず第1に敷地面積が大きいこと、第2に電力
効率が低いこと、第3に炉の構造上の制約からハロゲン
ガスと炭素材との接触が悪いうえ、常圧下で高純度化を
行う関係から、ハロゲン化された不純物の脱着が悪く、
操作時間が長くかかり、ハロゲン消費量も多いことであ
った。
In addition, recently, as a slightly more advanced method, firing (Step A) is performed in a separate furnace, and then graphitization (Step B) and purification (Step C) are performed in series at normal pressure using an Acheson furnace. A method was developed. However, this method has the following drawbacks. First of all, the site area is large, secondly, the power efficiency is low, and thirdly, due to the structural limitations of the furnace, contact between the halogen gas and carbon material is poor, and high purity is required under normal pressure. Due to the relationship, desorption of halogenated impurities is poor,
The operation time was long and the amount of halogen consumed was large.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決しようとする問題点は、従来のこの種炭素
質フェルト加工品またはこれから成る断熱材並びにその
製造方法の上記欠点を解消することであり、更に詳しく
は断熱効果に優れ且つ機械的強度が大きくしかも成形性
並びに取扱い性にも優れた毛羽の発生しない、高品質で
低コストの炭素質フェルト加工品並びにその製造方法を
提供しようとすることである。
The problem to be solved by the present invention is to eliminate the above-mentioned drawbacks of conventional carbonaceous felt processed products or heat insulating materials made from the same, and methods for manufacturing the same. An object of the present invention is to provide a high-quality, low-cost carbonaceous felt processed product that is large in size, has excellent moldability and handleability, and does not generate fuzz, and a method for producing the same.

〔問題を解決するための手段〕[Means to solve the problem]

この問題点は(i)炭素質フェルトの表面に熱分解炭素
被膜を形成せしめるか、または(及び)該フェルトの内
部に該熱分解炭素を含浸せしめること、及び(ii)炭
素質フェルトを一つの装置で黒鉛化、必要に応じ高純度
化、及び熱分解炭素生成処理を行う製造方法を採用する
ことによって解決される。
This problem is solved by (i) forming a pyrolytic carbon film on the surface of the carbonaceous felt or (and) impregnating the inside of the felt with the pyrolytic carbon; and (ii) forming a carbonaceous felt into one layer. This problem can be solved by adopting a manufacturing method in which the equipment performs graphitization, high purity if necessary, and pyrolysis carbon generation treatment.

即ち、本発明者は従来の炭素質フェルトを使用した加工
品またはこれから成る断熱材の上記難点を解決するため
に、また従来の方法では達成出来なかったより高純度の
加工品を、より経済的に製造する方法を開発するために
、従来から鋭意研究を重ねた結果、炭素水素類特に01
〜C8、最も入手し易くはC3H11等の炭化水素ガス
もしくは炭化水素化合物等を熱分解させて炭素質フェル
ト表面に熱分解炭素被膜を形成せしめるか、又は(及び
)内部に浸透せしめる時は、毛羽発生もなく、高純度で
断熱効果に優れ、成形性の良い堅牢な炭素質フェルト加
工品またはこれから成る断熱材を得ることを見出すと共
に、併せて一つの装置で黒鉛化、必要に応じ高純度化、
及び熱分解炭素被覆処理を順次、又は一部操作を並行し
て同時に行わしめることにより、物品移動の経費、手製
炭素材の破損、装置の冷却、加熱サイクルに伴うエネル
ギー損失の低減、装置稼働率の向上、高純度化に伴うハ
ロゲン消費量の節減、間接的には排気、排水処理費の節
減等を計りながら、品質的には従来の方法ではなし得な
かった超高純度化の炭素製品を得る画期的な製造方法を
開発し得ることを見出し、ここに本発明を完成するに至
ったものである。
That is, in order to solve the above-mentioned drawbacks of conventional processed products using carbonaceous felt or insulation materials made of carbonaceous felt, the present inventors have attempted to produce processed products of higher purity, which could not be achieved by conventional methods, more economically. In order to develop a manufacturing method, as a result of extensive research, we have found that carbon hydrogens, especially 01
~ C8, most easily available is C3H11, etc., by thermally decomposing a hydrocarbon gas or hydrocarbon compound to form a pyrolyzed carbon film on the surface of the carbonaceous felt, or (and) when penetrating into the inside, use fluff. It was discovered that it is possible to obtain a robust carbonaceous felt processed product or a heat insulating material made from it, which is highly pure, has excellent heat insulating effect, and has good formability, without generation, and at the same time, it can be graphitized in one device and highly purified if necessary. ,
By performing the pyrolytic carbon coating treatment sequentially or partially in parallel, the cost of moving goods, damage to hand-made carbon materials, cooling of equipment, reduction of energy loss associated with heating cycles, and equipment availability are reduced. While improving carbon quality, reducing halogen consumption due to high purity, and indirectly reducing exhaust and wastewater treatment costs, we are producing ultra-high purity carbon products that could not be achieved with conventional methods in terms of quality. The present invention has been completed based on the discovery that it is possible to develop an innovative manufacturing method to obtain the desired results.

〔発明の構成並びに作用〕[Structure and operation of the invention]

先ず本発明に係る炭素質フェルト加工品またはこれから
成る断熱材(以下単に断熱材という)の構成について説
明する。
First, the structure of the carbonaceous felt processed product or the heat insulating material (hereinafter simply referred to as the heat insulating material) made of the carbonaceous felt product according to the present invention will be explained.

本発明に係る断熱材は、通気性を有する炭素質フェルト
表面に安定な熱分解炭素被膜を形成せしめるか、又は(
及び)内部に浸透せしめたものである。
The heat insulating material according to the present invention forms a stable pyrolytic carbon film on the surface of a breathable carbonaceous felt, or (
and) penetrated into the interior.

このように本発明断熱材に於いては表面に熱分解炭素被
膜を形成せしめるか又は(及び)内部に浸透せしめるこ
とにより、炭素質フェルトと熱分解炭素との強い接着性
及び、熱分解炭素の持つ優れた耐熱衝撃性により内部の
炭素質フェルトの破損片の逃散、逸出による炉内雰囲気
の汚染並びに毛羽の発生、この飛散による被処理物との
汚染を防止することができ、惹いては被処理物中に炭素
が不純物として入ることが有効に防止できる。
In this way, in the heat insulating material of the present invention, by forming a pyrolytic carbon film on the surface or (and) infiltrating it into the inside, strong adhesion between the carbonaceous felt and pyrolytic carbon and the pyrolytic carbon Due to its excellent thermal shock resistance, it is possible to prevent broken pieces of the internal carbonaceous felt from escaping, contaminating the furnace atmosphere due to escaping, generating fuzz, and preventing contamination with the workpiece due to this scattering. It is possible to effectively prevent carbon from entering the object to be treated as an impurity.

この炭素質フェルトとしては従来から使用されて来たも
のがいずれも使用出来、より具体的には例えば有機質繊
維を出発原料とするもの、石炭や石油系タール、ピッチ
等を原料とするもの、ポリビニールアルコール、ポリア
クリロニトリル等の合成繊維を原料とするもの、リグニ
ン、再生セルローズ系物質等天然物系繊維を原料とした
もの等が代表例として挙げられる。またこれ等原料から
得られた糸状物を、フェルト状となした後、不融化、焼
成して得られる炭素繊維マ・ントも有効に使用出来る。
Any conventionally used carbonaceous felt can be used, and more specifically, for example, those made from organic fibers, those made from coal, petroleum tar, pitch, etc., and those made from polycarbonate. Representative examples include those made from synthetic fibers such as vinyl alcohol and polyacrylonitrile, and those made from natural fibers such as lignin and recycled cellulose-based substances. Furthermore, carbon fiber mats obtained by forming filaments obtained from these raw materials into a felt shape, infusible and firing them can also be effectively used.

また本発明に於いては炭素質フェルトとしてこれを黒鉛
化したものも使用できる。
Further, in the present invention, graphitized carbonaceous felt can also be used.

この炭素質フェルト表面に緻密でしかも高純度な熱分解
炭素を好ましくは5〜500μmの膜厚で形成させるか
、又は(及び)含浸部分の嵩密度を0.08〜0.5g
/cJとなるように内部に浸透させる。そしてこの際の
熱分解炭素は特に高純度で且つガス不浸透性のものであ
ることが必要である。ここで高純度とは全灰分量がlo
ppm以下であることを意味し、ガス不浸透性とは、ガ
ス透過測定機を使用してN2ガスlatmに於いてガス
透過率がI X 10−5(crfl/sec )以下
好ましくは10−’(cJ/5ec)以下であることを
意味する。この際純度が上記範囲をはずれると熱分解炭
素被膜自体の不=11− 鈍物により炉内を汚染する傾向があり、またガス透過率
が上記値よりも高くなると炭素質フェルトからの不純物
の汚染が発生する場合がある。膜厚は好ましくは5〜5
00μm特に好ましくは20〜100μm程度であり、
5μmに達しないときは毛羽の発生を防止する効果が不
充分でまた成形性も不充分で取りあつかいにくく、逆に
500μmよりも厚くなると加熱急冷の繰返しの使用に
際して剥離、脆化などが発生する傾向があり、また炭素
質フェルトが露出し被膜形成の効果が不充分となる場合
がある。また内部に熱分解炭素を浸透させる場合その浸
透部分の嵩密度は0.08〜0.5g/d好ましくは0
.15〜0.3g/c+fl程度である。0.08g/
CTIYに達しないときは炭素質フェルトの成形性及び
毛羽防止が不充分であり0.5g/c+#よりも大きく
なると熱伝導率が大きくなり断熱性が悪化することがあ
る。
Form dense and highly pure pyrolytic carbon on the surface of this carbonaceous felt, preferably with a film thickness of 5 to 500 μm, or (and) reduce the bulk density of the impregnated portion to 0.08 to 0.5 g.
/cJ. The pyrolyzed carbon used in this case must be particularly highly pure and gas-impermeable. Here, high purity means that the total ash content is lo
ppm or less, and gas impermeability means that the gas permeability is I x 10-5 (crfl/sec) or less, preferably 10-' in N2 gas latm using a gas permeation measuring device. (cJ/5ec) or less. At this time, if the purity is outside the above range, there is a tendency for the inside of the furnace to be contaminated by the impurities of the pyrolytic carbon coating itself, and if the gas permeability is higher than the above value, it will be contaminated by impurities from the carbonaceous felt. may occur. The film thickness is preferably 5-5
00 μm, particularly preferably about 20 to 100 μm,
If the thickness is less than 5 μm, the effect of preventing the generation of fuzz is insufficient, and the moldability is also insufficient, making it difficult to handle. Conversely, if the thickness exceeds 500 μm, peeling or embrittlement may occur during repeated heating and quenching. Moreover, the carbonaceous felt may be exposed and the effect of film formation may be insufficient. In addition, when pyrolytic carbon is infiltrated into the interior, the bulk density of the infiltrated part is 0.08 to 0.5 g/d, preferably 0.
.. It is about 15 to 0.3 g/c+fl. 0.08g/
When CTIY is not reached, the moldability and fuzz prevention of the carbonaceous felt are insufficient, and when it exceeds 0.5 g/c+#, the thermal conductivity increases and the heat insulation properties may deteriorate.

本発明に於いて熱分解炭素被膜を形成し、または含浸せ
しめる方法自体は例えば「炭素材料入門」 (炭素材料
学会・昭和47年11月発行)等の文献に記されている
通り、別の分野では良く知られたことであり、その−船
釣実施態様を記すと、炭素発生材料、例えば炭素数1〜
8とくに炭素数3〜4の直鎖状又は及び環状の炭化水素
ガスもしくは炭化水素化合物を熱分解させ、基材上に熱
分解炭素を浸透、析出させ、表面に被膜を形成せしめた
ものである。これに対して濃度調節用として炭化水素1
 (容量)部に対して水素ガスを1.5部乃至20部(
容量)とくに好ましくは4乃至10部混合し、全圧を3
00 Torr、好ましくは50TOrr以下の条件で
操作することが望ましい。
In the present invention, the method itself for forming or impregnating a pyrolytic carbon film is a separate field, as described in the literature such as "Introduction to Carbon Materials" (Carbon Materials Society, published in November 1972). This is a well-known fact, and to describe the embodiment of boat fishing, carbon-generating materials, e.g.
8 In particular, it is a product in which linear or cyclic hydrocarbon gases or hydrocarbon compounds having 3 to 4 carbon atoms are thermally decomposed, and pyrolyzed carbon is permeated and deposited on the base material to form a film on the surface. . On the other hand, for concentration adjustment, hydrocarbon 1
1.5 to 20 parts (by volume) of hydrogen gas (
Volume) Particularly preferably, 4 to 10 parts are mixed, and the total pressure is 3.
It is desirable to operate under conditions of 00 Torr or less, preferably 50 Torr or less.

このような操作を行った場合、炭化水素が基材表面付近
で、脱水素、熱分解、重合などによって、巨大炭素化合
物を形成し、これが基材上に沈積、析出し、さらに脱水
素反応が進み、強固で不浸透性の熱分解炭素被膜層が形
成され、あるいは浸透して含浸されるのである。但し、
0□、N20の共存は悪影響があるので避けることが好
ましい。
When such operations are performed, hydrocarbons form giant carbon compounds near the substrate surface through dehydrogenation, thermal decomposition, polymerization, etc., which are deposited and precipitated on the substrate, and further dehydrogenation reactions occur. As the process progresses, a strong, impermeable pyrolytic carbon coating layer is formed or penetrated and impregnated. however,
Since the coexistence of 0□ and N20 has an adverse effect, it is preferable to avoid it.

析出の温度範囲は800°C以下、2500°C位まで
の広い範囲である。
The temperature range for precipitation is wide ranging from 800°C or less to about 2500°C.

尚本発明に於いて上記熱分解炭素被膜を形成又は(及び
)浸透させる条件自体は何等重要ではなく、上記所定の
要件を有する熱分解炭素被膜が形成されるか、又は(及
び)内部に浸透されるかぎり何等その形成条件は限定さ
れるものではなく、各種の形成方法がいずれも有効に適
用出来るが、その一つの態様を例示すると下記の通りで
ある。
In the present invention, the conditions for forming and/or penetrating the pyrolytic carbon film are not important at all, but only if a pyrolytic carbon film meeting the above predetermined requirements is formed or (and) penetrates into the interior. The forming conditions are not limited as long as they are carried out, and various forming methods can be effectively applied, and one embodiment thereof is as follows.

熱分解炭素処理に於いて炭素質フェルト表面に被膜を形
成させる場合は被覆温度は約1700°C〜2500 
’C1内部に浸透させる場合は約1000°C〜130
0°Cである事が好ましい。
When forming a film on the surface of carbonaceous felt in pyrolytic carbon treatment, the coating temperature is approximately 1700°C to 2500°C.
'When infiltrating into the inside of C1, the temperature is approximately 1000°C ~ 130°C.
Preferably, the temperature is 0°C.

この理由は下記に示す通りである。The reason for this is as shown below.

本発明に於いて上記熱分解炭素被膜は等方的に形成させ
ても良いがその黒鉛結晶基底面即ち炭素6角網面を基材
表面に選択的に平行に配向(即ち異方的に)させること
が好ましい。本来炭素質フェルトは、断熱効果に優れて
いるが、更に熱分解炭素被膜を平行に配向させることに
より更に断熱性が向上する。この特定の配向性を有せし
める為には、熱分解炭素被膜の形成時の温度を調整する
ことにより容易に達成出来、1000〜1300°C又
は1700〜2500°Cに温度を設定して熱分解炭素
を生成せしめることにより効果的に上記所定の配向性を
有する被膜が形成出来る。この点を明らかにするための
本発明者の研究によると次のことが明らかになった。即
ち、熱分解炭素被膜についてX線回折図を撮り、その(
002)回折線の強度をもって選択的配向度の目安とす
ると第1表の様になる。
In the present invention, the pyrolytic carbon coating may be formed isotropically, but the graphite crystal basal plane, that is, the hexagonal carbon plane, may be selectively oriented parallel to the substrate surface (i.e., anisotropically). It is preferable to let Carbonaceous felt originally has an excellent heat insulating effect, but the heat insulating property can be further improved by orienting the pyrolytic carbon film in parallel. This specific orientation can be easily achieved by adjusting the temperature during the formation of the pyrolytic carbon film. By generating carbon, a film having the above-mentioned predetermined orientation can be effectively formed. The inventor's research to clarify this point revealed the following. That is, an X-ray diffraction pattern is taken for the pyrolytic carbon film, and its (
002) When the intensity of the diffraction line is used as a measure of the degree of selective orientation, the results are as shown in Table 1.

第1表の結果から生成温度1400〜1600°Cでは
X線回折強度が弱く、異方性の小さい熱分解炭素被膜が
形成されるのに対し1000〜13oo’c及び170
0〜2500°Cでは回折強度が強く異方性の大きい熱
分解炭素被膜が選択的に配向していることが判明する。
The results in Table 1 show that at the formation temperature of 1400 to 1600°C, the X-ray diffraction intensity is weak and a pyrolytic carbon film with small anisotropy is formed, whereas at 1000 to 13oo'c and 170
It is found that the pyrolytic carbon film, which has a strong diffraction intensity and large anisotropy, is selectively oriented at 0 to 2500°C.

従って本発明では断熱効果を向上させる点に於いて上記
温度範囲が好ましい。
Therefore, in the present invention, the above temperature range is preferable in terms of improving the heat insulation effect.

=17− 本発明に於いて使用される炭素質フェルトは高純度化さ
れていることが好ましい。この際の高純度化とは、無機
質不純物の含有量少ないことを意味し、通常全体の不純
物の量が10ppm以下が好ましい。
=17- The carbonaceous felt used in the present invention is preferably highly purified. In this case, high purification means that the content of inorganic impurities is small, and it is usually preferable that the total amount of impurities is 10 ppm or less.

この際の高純度化方法は、フェルトを減圧、高温下にて
、ハロゲン含有ガスに接触せしめ、不純物として含まれ
る金属類を、より蒸気圧の高いハロゲン化物に変えて除
去する手段(例えば特願昭6l−224131)を例示
出来るが、これに限定されるものではない。また、この
際使用されるハロゲン含有ガスとしては塩素又はフッ素
、並びにそれ等の化合物のガスなどハロゲン含有ガスを
例示出来、具体的には2フフ化エタン、フッ素ガス等が
挙げられる。
The high purification method in this case is to bring the felt into contact with a halogen-containing gas under reduced pressure and high temperature, and remove the metals contained as impurities by converting them into halides with higher vapor pressure (for example, in a patent application 6l-224131), but is not limited thereto. Examples of the halogen-containing gas used at this time include chlorine, fluorine, and gases of compounds thereof, and specific examples include ethane difluoride, fluorine gas, and the like.

この炭素質フェルトの高純度化は出来るだけ内部まで高
純度化することが好ましく、このため熱分解炭素処理を
施す前に予め行うのが効果的である。即ちフェルト内部
まで高純度化を進めるためには、ハロゲン化合物が内部
まで進入し、且っハロゲン化され気化した不純物がフェ
ル1〜外部にまで排除されなければ効果は少ない。この
ためには工程の順序としては、通気性を有する炭素質フ
ェルトを予め高純度化した後に熱分解炭素処理を施すこ
とがよい。
It is preferable to purify the carbonaceous felt as high as possible to the inside, and for this reason, it is effective to carry out the purification in advance before performing the pyrolytic carbon treatment. That is, in order to achieve high purity inside the felt, the effect will be small unless the halogen compound penetrates into the inside and the halogenated and vaporized impurities are not removed from the felt 1 to the outside. For this purpose, it is preferable to perform the pyrolytic carbon treatment after the breathable carbonaceous felt is highly purified in advance.

また高純度化をより迅速に確実に進めるために、反応容
器内の圧力を変動させて高くしたり低くしたりすること
が好ましい場合がある。特にフェルトの通気性が大きい
場合効果が大きい。
Further, in order to more quickly and reliably achieve high purification, it may be preferable to vary the pressure within the reaction vessel to increase or decrease it. This is especially effective when the felt has high air permeability.

一般に高純度化は反応系内を減圧条件、例えば100 
Torr以下に全圧を保ちつつ炭素質フェルトを150
0〜2000°Cに保ち、前記のハロゲン化合物を流通
せしめる。必要に応じて反応系内の圧力を上下させる。
Generally, for high purification, the inside of the reaction system is kept under reduced pressure conditions, for example, 100
150°C of carbonaceous felt while maintaining the total pressure below Torr.
The temperature is maintained at 0 to 2000°C, and the halogen compound is allowed to flow through it. Increase or decrease the pressure within the reaction system as necessary.

今、第2表に、2000°Cにて5分間保って高純度化
した炭素フェルトの不純物量測定値を、また参考値とし
てかかる高純度化しない原料フェルトの不純物量を示す
Now, Table 2 shows the measured amount of impurities in the carbon felt that was highly purified by keeping it at 2000° C. for 5 minutes, and also shows the amount of impurities in the raw material felt that was not purified as a reference value.

但し、この第2表では、プロパンを原料ガスとする熱分
解炭素と石炭系タールを原料とするフェルトを組み合わ
せた例であり、その高純度化条件、使用したフェルト等
の詳細は下記の通りである。
However, Table 2 shows an example of a combination of pyrolytic carbon using propane as a raw material gas and felt using coal-based tar as a raw material.The details of the high purity conditions, felt used, etc. are as follows. be.

高純度化条件:温 度: 1800°C真空度:20T
Orr ガ ス=2フッ化エタン 使用したフェルトの物性:ピッチ系フェルトカサ密度 
0.07g /c+f1 面この第2表では上記のものを使用しているが、他の炭
化水素ガス及び、他の産地の黒鉛、石油系原料等のフェ
ルトを用いた場合、不純物の種類が異なることがあるが
、何れの場合も本発明方法によって不純物量を10pp
m以下に容易に下げることが出来るものである。
High purification conditions: Temperature: 1800°C Vacuum degree: 20T
Physical properties of felt using Orr gas = difluoroethane: Pitch-based felt bulk density
0.07g/c+f1 surface In Table 2, the above is used, but if other hydrocarbon gases, graphite from other production areas, petroleum-based raw materials, etc. are used, the types of impurities will be different. However, in any case, the amount of impurities can be reduced to 10 pp by the method of the present invention.
It can be easily lowered to below m.

尚高純度化処理のための高温焼成により内部の炭素質フ
ェルト層が黒鉛化され強化される副次的な好結果ももた
らされる。
Furthermore, high-temperature firing for high-purity treatment also brings about the secondary advantage that the internal carbonaceous felt layer is graphitized and strengthened.

第2表 次に本発明に係る断熱材の製造方法について説明する。Table 2 Next, a method for manufacturing a heat insulating material according to the present invention will be explained.

本発明の断熱材を製造する方法としては基本的には、炭
素質フェルトを黒鉛化、高純度化し、次いで該炭素質フ
ェルト表面に熱分解炭素被膜を形成せしめるか又は(及
び)内部に浸透せしめる各工程を共に減圧または高真空
下で高周波加熱手段を用いて行う方法であり、その望ま
しい一具体例は第1図に示す装置を用いる方法である。
The method for manufacturing the heat insulating material of the present invention basically involves graphitizing carbonaceous felt to make it highly purified, and then forming a pyrolytic carbon film on the surface of the carbonaceous felt or (and) infiltrating the inside of the carbonaceous felt. This is a method in which each step is performed under reduced pressure or high vacuum using high-frequency heating means, and one preferred example thereof is a method using the apparatus shown in FIG.

この装置を用いて更に黒鉛化と高純度化工程とを順次、
又は少なくとも一部並行して行っても良い。この装置を
用いる方法につき更に詳しく説明すると以下の通りであ
る。
Using this equipment, further graphitization and high purification steps are carried out sequentially.
Alternatively, at least some of the steps may be performed in parallel. A more detailed explanation of the method of using this device is as follows.

先ずガス供給管(8)からN2ガスを送気して、容器内
部の空気をN2ガスで置換したのち、ガス排出管(1)
から減圧、又は真空に引き、雰囲気を非酸化性とする。
First, N2 gas is supplied from the gas supply pipe (8) to replace the air inside the container with N2 gas, and then the gas discharge pipe (1)
Reduce the pressure or create a vacuum to make the atmosphere non-oxidizing.

次に誘導コイル(5)に徐々に電圧を印加してサセプタ
ー(6)を加熱しその輻射熱により被加熱炭素質フェル
ト(4)を1500〜3000″Cに調節しなから加熱
して黒鉛化がある程度進んだ段階でガス供給管(8)か
らハロゲンガス、例えば2フツ化エタンを(流量は容器
内に充填する被加熱炭素材の量により増減されるが、例
えば1〜7NTP/kg程度で)3〜8時間程度供給す
る。
Next, a voltage is gradually applied to the induction coil (5) to heat the susceptor (6), and the carbonaceous felt (4) to be heated is heated to a temperature of 1500 to 3000"C and graphitized by the radiant heat. At a certain stage, a halogen gas, such as ethane difluoride, is supplied from the gas supply pipe (8) (the flow rate is increased or decreased depending on the amount of carbon material to be heated filled in the container, but for example, about 1 to 7 NTP/kg). Supply for about 3 to 8 hours.

容器内は加熱を始めた時点から100 Torr以下好
ましくは1〜50Torr程度に保つ。
The inside of the container is maintained at 100 Torr or less, preferably about 1 to 50 Torr, from the time heating is started.

高純度化操作が完了した時点で徐々に昇温及び降温し約
1000〜1300°C又は1700〜2500°Cに
調節しC3HI1等の炭化水素ガスもしくは炭化水素化
合物等を熱分解させながら基材表面に熱分解炭素の被膜
を形成せしめるか又は(及び)内部に浸透せしめる。
When the high purification operation is completed, the temperature is gradually raised and lowered to about 1000 to 1300°C or 1700 to 2500°C, and the surface of the substrate is heated while thermally decomposing hydrocarbon gases such as C3HI1 or hydrocarbon compounds. A coating of pyrolytic carbon is formed on and/or infiltrated into the pyrolytic carbon.

装置を冷却する工程の途中、約1500〜2000°C
に於いて容器内圧力を10−”〜10−’Torrに強
減圧し、冷却することにより高原子価不純物を除去する
と共に、アウトガスの少ない高純度断熱材を得ることが
出来る。
Approximately 1500-2000°C during the process of cooling the device
By strongly reducing the pressure inside the container to 10-'' to 10-' Torr and cooling it, high-valent impurities can be removed and a high-purity heat insulating material with little outgassing can be obtained.

通電を停止、容器内にN2ガスを充填、置換しながら常
圧、常温に戻す。
Turn off the electricity, fill the container with N2 gas, and return to normal pressure and temperature while replacing the gas.

上記方法は黒鉛化と高純度化を一つの炉で行う方法を示
しているが、本発明に於いては高純度化だけを上記の方
法で行ってもよいことは勿論である。
Although the above method shows a method in which both graphitization and high purity are carried out in one furnace, it goes without saying that in the present invention, only high purity may be carried out by the above method.

尚不純物除去部ち高純度化操作於いて、本発明にかかる
真空式高周波加熱炉は甚だ好都合である。即ち、被加熱
炭素質フェルトを減圧または高真空下でハロゲンと接触
させると、その消費量が非常に少量ですむ利点が先ず挙
げられる。減圧または高真空下ではハロゲンガスが膨張
して用いられるため利用効率が高く、またフェルトとの
接触も良いので、本発明者の実験的研究によると、通電
床式炉の場合の10 ff1NTP/kgに比べ第1図
の装置を使用する場合は311TP/kgとハロゲン含
有ガスの消費量を173に節減させることが出来る。
In the impurity removal section and high purification operation, the vacuum high frequency heating furnace according to the present invention is extremely convenient. That is, when the carbonaceous felt to be heated is brought into contact with halogen under reduced pressure or high vacuum, the first advantage is that the amount of halogen consumed is extremely small. Under reduced pressure or high vacuum, the halogen gas expands and is used, resulting in high utilization efficiency and good contact with felt.According to the inventor's experimental research, 10 ff1NTP/kg in the case of an electrified bed furnace. Compared to this, when the apparatus shown in FIG. 1 is used, the consumption of halogen-containing gas can be reduced to 311 TP/kg and 173 TP/kg.

第2の利点としては、ハロゲン又は(及び)水素化され
たフェルト中の不純物が、減圧下であるため、外部に揮
発、離脱し易くなるため、少量のハロゲンガスの使用に
も拘らずより速く、より高い純度のものが得られること
にある。
The second advantage is that halogen or (and) hydrogenated impurities in the felt are easily volatilized and released to the outside due to the reduced pressure, so it is faster despite using a small amount of halogen gas. , it is possible to obtain products of higher purity.

本発明に於いて高純度化又はこれと黒鉛化を実施する際
の容器内の圧力は100Torr以下の範囲内に保つこ
とが望ましい。容器内の圧力は、ハロゲン化物、塩素化
又は(及び)弗素化された不純物、又は置換時の残存N
2ガス等の種々の化合物の蒸気圧(分圧)の総和(全圧
)として圧力計に示されるが、これが100Torrよ
り高い場合は減圧効果が低くなり、従って高純度化に要
する時間は長くなり純度低下の効果もさほど大きくはな
らない。本発明の炭素質フェルト加工品は極めて優れた
断熱性を有し、断熱材として極めて好適なものである。
In the present invention, it is desirable to keep the pressure inside the container within a range of 100 Torr or less when high purification or graphitization is carried out. The pressure inside the vessel is due to the presence of halides, chlorinated and/or fluorinated impurities, or residual N during substitution.
It is shown on a pressure gauge as the sum (total pressure) of the vapor pressures (partial pressures) of various compounds such as two gases, but if this is higher than 100 Torr, the pressure reduction effect will be low, and therefore the time required for high purity will be longer. The effect of lowering purity is also not so large. The carbonaceous felt processed product of the present invention has extremely excellent heat insulating properties and is extremely suitable as a heat insulating material.

本発明実施の一つの応用的例として、高純度操作中、反
応容器内の圧力を変動させて高くしたり低くしたりする
場合には、フェルトの深層部へのハロゲンガスの拡散、
置換及び深層部からのハロゲン化生成物の離脱、置換が
完全となる場合があり、より効果的である。
As an example of the application of the present invention, when the pressure inside the reaction vessel is varied to increase or decrease during high-purity operation, diffusion of halogen gas into the deep layer of the felt,
Replacement, removal of the halogenated product from the deep layer, and replacement may be complete, which is more effective.

実施例 以下に実施例を示して本発明を具体的に説明する。Example EXAMPLES The present invention will be specifically described below with reference to Examples.

実施例1 第1図に示す高周波誘導電気加熱炉内で断熱材を作製し
た。尚、炭素質フェルトとして、石炭系ピッチから得ら
れた市販炭素品マット(嵩密度0゜06g /c+fl
)を使用した。これを5枚積層して下記に示すように熱
分解炭素を表面に析出させることにより50X50X 
t20mm(厚さ20mm)の積層平板を得た。
Example 1 A heat insulating material was produced in a high frequency induction electric heating furnace shown in FIG. In addition, as the carbonaceous felt, commercially available carbon mat obtained from coal-based pitch (bulk density 0°06g/c+fl
)It was used. By stacking 5 sheets of this and depositing pyrolytic carbon on the surface as shown below, 50X50X
A laminated flat plate with a thickness of 20 mm (t20 mm) was obtained.

先ず上記炭素品マットを治具で固定せしめて誘導加熱炉
内に載置し、黒鉛化、高純度化、熱分解炭素被覆処理を
順次行った。黒鉛化、高純度化の条件は約40Torr
の減圧下、約2000″Cに昇温を行い5〜8時間加熱
を続けた。
First, the carbon mat was fixed with a jig and placed in an induction heating furnace, and graphitized, purified, and coated with pyrolytic carbon in this order. The conditions for graphitization and high purity are approximately 40 Torr.
The temperature was raised to about 2000''C under reduced pressure of 2000 ℃, and heating was continued for 5 to 8 hours.

上記の如くして黒鉛化及び高純度化が完結した状態から
引続いて更に約1ooo〜1300″Cに降温し、C3
H8流量35 ffi/min 、 C3He /H2
〜0.2  (体積比20%)にて炭素質フェルト表面
に熱分解炭素を形成させるか又は(及び)内部に浸透さ
せた。被膜の厚さは沈積時間を変えて第3表に示す膜厚
に調整した。次いでこの状態から降温、圧力を常圧に戻
したのち、放冷した。これ等について急熱急冷試験を行
った。即ち5分間で1300°Cに昇温角、熱した断熱
材を水中に投して急冷し熱分解炭素被覆の剥離状況を調
べた。試料数はそれぞれ5個である。この結果を第3表
に示す。
From the state where graphitization and high purification have been completed as described above, the temperature is further lowered to about 100~1300''C, and C3
H8 flow rate 35 ffi/min, C3He/H2
0.2 (volume ratio 20%), pyrolytic carbon was formed on the surface of the carbonaceous felt or (and) infiltrated into the inside. The thickness of the coating was adjusted to the thickness shown in Table 3 by varying the deposition time. Next, the temperature was lowered from this state, the pressure was returned to normal pressure, and then the mixture was allowed to cool. Rapid heating and cooling tests were conducted on these. That is, the heating angle was increased to 1300° C. for 5 minutes, and the heated heat insulating material was thrown into water to be rapidly cooled, and the peeling state of the pyrolytic carbon coating was examined. The number of samples is 5 each. The results are shown in Table 3.

また各被膜厚に於ける断熱材の、曲げ強度、圧縮強度、
沈積面に対して垂直方向の熱伝導度を第3表に示す。
In addition, the bending strength, compressive strength, and
Table 3 shows the thermal conductivity in the direction perpendicular to the deposition surface.

実施例2 上記実施例1に於いて上記高純度化工程を進める途中で
2フン化エタンを焼成炉中導入した。不純物は蒸気圧の
高いハロゲン化物となって反応系外に除外されたことが
明らかである。尚製品の分析値は第2表の通りである。
Example 2 In the above-mentioned Example 1, ethane difluoride was introduced into the firing furnace during the above-mentioned high purification step. It is clear that the impurities became halides with high vapor pressure and were excluded from the reaction system. The analytical values of the product are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以下説明した如く、本発明にかかる真空式高周波加熱方
式による高純度断熱材並びにその製造方法によれば、次
の様な優れた効果が発揮される。
As explained below, according to the high-purity heat insulating material and the manufacturing method thereof using the vacuum high-frequency heating method according to the present invention, the following excellent effects are exhibited.

(11C3HBガス等の炭化水素ガスもしくは炭化水素
化合物を炭素質フェルト表面に又は(及び)その内部に
熱分解せしめて成る断熱材は、炭素質フェルト本来の断
熱効果に加えて熱分解炭素の断熱効果、接着効果等も加
味され、炭素質フェルトと熱分解炭素の相乗効果により
高純度で断熱効果に優れ、しかも軽量で成形性がよく、
機械的強度が強い点で優れている。
(Insulating materials made by thermally decomposing hydrocarbon gas or hydrocarbon compounds such as 11C3HB gas on the surface of carbonaceous felt or (and) inside it have the heat insulation effect of pyrolyzed carbon in addition to the heat insulation effect inherent to carbonaceous felt. , adhesion effects, etc. are also taken into account, and due to the synergistic effect of carbonaceous felt and pyrolytic carbon, it is highly pure and has excellent heat insulation effects, and is lightweight and has good moldability.
It is superior in terms of mechanical strength.

(2)熱分解炭素により炭素質フェルト表面に又は(及
び)その内部が被覆されているので、毛羽の発生を防止
することができ、炉内が汚染されることがない。
(2) Since the surface or (and) the inside of the carbonaceous felt is coated with pyrolytic carbon, the generation of fuzz can be prevented and the inside of the furnace will not be contaminated.

(3)真空式容器内で、高純度化反応を行うので、ハロ
ゲンガスの消費量も少なく、高純度化工程の時間の短縮
化が可能となり且つより純度の高い断熱材を得ることが
できる。
(3) Since the purification reaction is carried out in a vacuum container, the amount of halogen gas consumed is small, the time required for the purification process can be shortened, and a heat insulating material with higher purity can be obtained.

(4)1つの炉で黒鉛化から高純度化工程、熱分解炭素
被覆工程を一貫して、順次又は一部並行して同時に行え
るので、途中で製品を取り出し、入れることもなく、連
続昇温して行えば良く、熱効率、装置稼働効率共に従来
法に比べ著しく向上する。
(4) Since the graphitization, high purification, and pyrolytic carbon coating processes can be performed simultaneously, sequentially or partially in parallel, in one furnace, there is no need to take out and put the product in the middle, and the temperature is raised continuously. Both thermal efficiency and equipment operating efficiency are significantly improved compared to conventional methods.

(5)また熱分解炭素被覆層形成の副次的効果としてア
ウトガスが非常に少なくなる利点が挙げられる。この事
実は発明者の一人により新しく見出されたものであるが
、この熱分解炭素被覆効果と、高純度化処理による重金
属(灰分)除去効果との相乗効果により、高温、高真空
に曝される諸装置に用いられる断熱材からの不純物混入
を極めて低レベルに抑止することができる。
(5) Also, as a side effect of forming the pyrolytic carbon coating layer, there is an advantage that outgas is extremely reduced. This fact was newly discovered by one of the inventors, but due to the synergistic effect of this pyrolytic carbon coating effect and the heavy metal (ash) removal effect of high purification treatment, It is possible to suppress contamination of impurities from heat insulating materials used in various devices to extremely low levels.

これ等は一般に減圧下、高温下に於いて使用され効果を
示すが、とくに30Torr以下、500°C以下の温
度条件において特に顕著な効果を示し、更に減圧度、温
度が高められた条件、例えばIT。
These are generally effective when used under reduced pressure and high temperatures, but they are particularly effective under conditions of temperatures below 30 Torr and below 500°C. IT.

rr以下、800°C以下での、高真空かつ高温度条件
に曝される高性能装置の断熱材料としては極めて大きな
効果を示すものである。
It is extremely effective as a heat insulating material for high performance equipment exposed to high vacuum and high temperature conditions at temperatures below 800°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる真空式・高周波加熱方式の高純
度炭素材の製造装置の一例の側断面を模式的に示したも
のである。 (1)・・・・・・ガス排出管 (2)・・・・・・保温材 (3)・・・・・・保温材 (4)・・・・・・被加熱断熱材 (5)・・・・・・高周波コイル (6)・・・・・・サセプター (7)・・・・・・断熱材受皿 (8)・・・・・・ガス供給管 (9)・・・・・・水冷ジャケット (以下) 特許出願人  東洋炭素株式会社
FIG. 1 schematically shows a side cross section of an example of a vacuum type/high frequency heating type high-purity carbon material manufacturing apparatus according to the present invention. (1) Gas exhaust pipe (2) Heat insulation material (3) Heat insulation material (4) Heat insulation material (5) ...High frequency coil (6) ...Susceptor (7) ...Insulation tray (8) ...Gas supply pipe (9) ...・Water cooling jacket (below) Patent applicant: Toyo Tanso Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)通気性をもつ炭素質フェルト表面に熱分解炭素被
膜を形成せしめるか、又は(及び)内部に浸透せしめて
成る炭素質フェルト加工品。 (2)無機質不純物が10ppm以下であることを特徴
とする第1項記載の高純度炭素質フェルト加工品。 (3)熱分解炭素被膜の膜厚が約5〜500μmである
特許請求の範囲第1または2項に記載の炭素質フェルト
加工品。 (4)熱分解炭素を内部に浸透せしめた部分の嵩密度が
0.08〜0.5g/ccである特許請求の範囲第1乃
至3項のいずれかに記載の炭素質フェルト加工品。 (5)炭素質フェルトを同一装置内で黒鉛化及び熱分解
炭素生成処理を行うことを特徴とする特許請求の範囲第
1乃至4項のいずれかに記載の炭素質フェルト加工品の
製造方法。(6)黒鉛化に先だって、あるいは(及び)
黒鉛化の後で熱分解炭素生成処理前に高純度化処理を同
一装置内で行うことを特徴とする特許請求の範囲第5項
に記載の製造方法。 (7)上記各処理を減圧または高真空下で高周波加熱手
段を用いて行うことを特徴とする特許請求の範囲第5ま
たは7項に記載の製造方法。 (8)黒鉛化と高純度化とを一部重複して平行的に行う
ことを特徴とする特許請求の範囲第6項記載の高純度炭
素質フェルト加工品の製造方法。 (9)特許請求の範囲第5〜8項のいずれかに記載の高
純度フェルト加工品の製造方法に於いて、黒鉛化及び高
純度化の少なくとも1つを100Torr以下の圧力下
で行うことを特徴とする製造方法。 (10)減圧または高真空条件下に於ける高純度化工程
に於いて、ハロゲン化反応及びハロゲン化生成物の離脱
反応を同時に行わしめることを特徴とする特許請求の範
囲第6〜9項のいずれかに記載の製造方法。 (11)特許請求の範囲第1項記載の加工品から成る断
熱材。
[Scope of Claims] (1) A processed carbonaceous felt product made by forming a pyrolytic carbon film on the surface of a breathable carbonaceous felt or (and) infiltrating the inside thereof. (2) The high-purity carbonaceous felt processed product according to item 1, wherein the inorganic impurity is 10 ppm or less. (3) The carbonaceous felt product according to claim 1 or 2, wherein the pyrolytic carbon coating has a thickness of about 5 to 500 μm. (4) The processed carbonaceous felt product according to any one of claims 1 to 3, wherein the bulk density of the portion into which pyrolytic carbon is infiltrated is 0.08 to 0.5 g/cc. (5) The method for producing a processed carbonaceous felt product according to any one of claims 1 to 4, characterized in that the carbonaceous felt is subjected to graphitization and pyrolytic carbon generation treatment in the same apparatus. (6) Prior to graphitization, or (and)
6. The manufacturing method according to claim 5, wherein a high purification treatment is performed in the same apparatus after graphitization and before the pyrolytic carbon generation treatment. (7) The manufacturing method according to claim 5 or 7, wherein each of the above treatments is performed using high-frequency heating means under reduced pressure or high vacuum. (8) A method for manufacturing a high-purity carbonaceous felt processed product according to claim 6, characterized in that graphitization and purification are carried out in parallel with some overlap. (9) In the method for manufacturing a high-purity felt product according to any one of claims 5 to 8, at least one of graphitization and high purity is performed under a pressure of 100 Torr or less. Characteristic manufacturing method. (10) The halogenation reaction and the separation reaction of the halogenated product are carried out simultaneously in the high purification step under reduced pressure or high vacuum conditions. The manufacturing method described in any of the above. (11) A heat insulating material comprising the processed product according to claim 1.
JP62328653A 1987-12-24 1987-12-24 Processed carbonaceous felt product and method for producing the same Expired - Lifetime JP2591967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62328653A JP2591967B2 (en) 1987-12-24 1987-12-24 Processed carbonaceous felt product and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62328653A JP2591967B2 (en) 1987-12-24 1987-12-24 Processed carbonaceous felt product and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01167210A true JPH01167210A (en) 1989-06-30
JP2591967B2 JP2591967B2 (en) 1997-03-19

Family

ID=18212662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62328653A Expired - Lifetime JP2591967B2 (en) 1987-12-24 1987-12-24 Processed carbonaceous felt product and method for producing the same

Country Status (1)

Country Link
JP (1) JP2591967B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421509A (en) * 1990-05-16 1992-01-24 Toyo Tanso Kk Flexible expanded graphite sheet having high purity and production thereof
JP2006056752A (en) * 2004-08-20 2006-03-02 Hitachi Chem Co Ltd Vessel for annealing
JP2006306698A (en) * 2004-10-21 2006-11-09 Nippon Steel Chem Co Ltd Furnace and method for anti-oxidation treatment of graphite material
WO2008007637A1 (en) * 2006-07-14 2008-01-17 Toyo Tanso Co., Ltd. Protective sheet for crucible and crucible device using the same
US8097331B2 (en) 2006-07-31 2012-01-17 Toyo Tanso Co., Ltd. Mold release sheet
US10538691B2 (en) 2004-08-27 2020-01-21 Toyo Tanso Co., Ltd. Expanded-graphite sheet
CN115246737A (en) * 2022-08-09 2022-10-28 中钢集团南京新材料研究院有限公司 Roasting method for preparing isostatic pressing graphite product and product thereof
CN115403407A (en) * 2022-07-18 2022-11-29 株洲弗拉德科技有限公司 Preparation method of high-purity graphite felt

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946478A (en) * 1972-07-14 1974-05-04
JPS5035930A (en) * 1973-07-12 1975-04-04
JPS5113500A (en) * 1974-07-24 1976-02-02 Keiichiro Ishida Mokuzaino tamenjidosetsusakusochi
JPS54146294A (en) * 1978-05-08 1979-11-15 Showa Denko Kk Pefining method for carbon molded body
JPS5921598A (en) * 1982-07-27 1984-02-03 Matsushita Electric Ind Co Ltd Treatment for purification of carbon member
JPS61256993A (en) * 1985-05-09 1986-11-14 Toyo Tanso Kk Graphite crucible and heater for silicon single crystal pulling device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946478A (en) * 1972-07-14 1974-05-04
JPS5035930A (en) * 1973-07-12 1975-04-04
JPS5113500A (en) * 1974-07-24 1976-02-02 Keiichiro Ishida Mokuzaino tamenjidosetsusakusochi
JPS54146294A (en) * 1978-05-08 1979-11-15 Showa Denko Kk Pefining method for carbon molded body
JPS5921598A (en) * 1982-07-27 1984-02-03 Matsushita Electric Ind Co Ltd Treatment for purification of carbon member
JPS61256993A (en) * 1985-05-09 1986-11-14 Toyo Tanso Kk Graphite crucible and heater for silicon single crystal pulling device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421509A (en) * 1990-05-16 1992-01-24 Toyo Tanso Kk Flexible expanded graphite sheet having high purity and production thereof
JP2006056752A (en) * 2004-08-20 2006-03-02 Hitachi Chem Co Ltd Vessel for annealing
US10538691B2 (en) 2004-08-27 2020-01-21 Toyo Tanso Co., Ltd. Expanded-graphite sheet
JP2006306698A (en) * 2004-10-21 2006-11-09 Nippon Steel Chem Co Ltd Furnace and method for anti-oxidation treatment of graphite material
WO2008007637A1 (en) * 2006-07-14 2008-01-17 Toyo Tanso Co., Ltd. Protective sheet for crucible and crucible device using the same
US8864908B2 (en) 2006-07-14 2014-10-21 Toyo Tanso Co., Ltd. Crucible protection sheet and crucible apparatus using the crucible protection sheet
US8097331B2 (en) 2006-07-31 2012-01-17 Toyo Tanso Co., Ltd. Mold release sheet
CN115403407A (en) * 2022-07-18 2022-11-29 株洲弗拉德科技有限公司 Preparation method of high-purity graphite felt
CN115246737A (en) * 2022-08-09 2022-10-28 中钢集团南京新材料研究院有限公司 Roasting method for preparing isostatic pressing graphite product and product thereof

Also Published As

Publication number Publication date
JP2591967B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
JP5674527B2 (en) Equipment suitable for contact with hot gases
EP2093453B1 (en) CVI followed by coal tar pitch densification by VPI
US5217657A (en) Method of making carbon-carbon composites
US5114635A (en) Process for producing carbon material and carbon/carbon composites
Yukhymchuk et al. Biomorphous SiC ceramics prepared from cork oak as precursor
JP4514846B2 (en) High purity carbon fiber reinforced carbon composite material and method for producing the same
JPH01167210A (en) Processed article of carbonaceous felt and production thereof
JPH01264964A (en) Carbon fiber-reinforced composite material having excellent thermal impact resistance and its production
JPH06172030A (en) Production of carbon material
US6809304B2 (en) High efficiency, oxidation resistant radio frequency susceptor
US4241104A (en) Process for bonding carbon substrates using particles of a thermally stable solid
JP6960448B2 (en) Method for Producing Silicon Carbide Complex
JP2001089238A (en) Molded thermlly insulating material and heat shield
Marković Use of coal tar pitch in carboncarbon composites
JP2015107888A (en) Carbon fiber-reinforced carbon composite material
JP2023006364A (en) C/C COMPOSITE AND Si SINGLE CRYSTAL PULLING-UP FURNACE COMPONENT
JP2000103686A (en) Production of carbon fiber reinforced carbon composite material
JPH0848509A (en) Production of carbonaceous porous body
CN111960842A (en) Anti-electrolysis MnO2Preparation method of carbon/carbon composite material for calcium and magnesium crystallization in process
JPS63149142A (en) Multilayer molded heat insulator and manufacture thereof
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
JP2787164B2 (en) High oxidation resistant carbonaceous insulation
Vohler et al. New forms of carbon
JP2519071B2 (en) Method for producing carbon material with low outgas
RU2398738C1 (en) High-temperature carbon-graphite heat-insulating material and production method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12