JP2001057182A - Electrochemical device and manufacture thereof - Google Patents

Electrochemical device and manufacture thereof

Info

Publication number
JP2001057182A
JP2001057182A JP11233785A JP23378599A JP2001057182A JP 2001057182 A JP2001057182 A JP 2001057182A JP 11233785 A JP11233785 A JP 11233785A JP 23378599 A JP23378599 A JP 23378599A JP 2001057182 A JP2001057182 A JP 2001057182A
Authority
JP
Japan
Prior art keywords
layer
metal
lead
electrochemical device
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11233785A
Other languages
Japanese (ja)
Other versions
JP4021592B2 (en
Inventor
Shin Nagayama
森 長山
Takeru Suzuki
長 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP23378599A priority Critical patent/JP4021592B2/en
Publication of JP2001057182A publication Critical patent/JP2001057182A/en
Application granted granted Critical
Publication of JP4021592B2 publication Critical patent/JP4021592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To improve cycle life and storage stability at high temperatures, by interposing an adhesive layer between a metal and a resin, which is sealed to the jacket bag of a laminated film having a metal layer and a resin layer and is laminated directly by a lead-through terminal for the outside, and a polyolefin resin layer to coat the layer between the lead-through terminal of a sealing part and the jacket bag. SOLUTION: In this electrochemical device 1, an electrochemical element is sealed by first and second sealing parts which are thermally bonded to the jacket bag of a laminated film 30, having a metal layer and a thermally adhesive resin layer. Lead-through terminals 13, 14, running outside through the second sealing part of the electrochemical element, directly laminate an adhesive layer 41 between the metal and the resin. The read-through terminals 13, 14 causes interpose an intermediate layer 40 comprising a polyolefin resin layer 42 for coating the adhesive layer 41 to interpose between the metal and the resin between the lead-through terminal and the jacket bags. Thereby, the electrochemical device sealed is given sufficient adherence between the jacket bag and the lead-through terminal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリマーリチウム
2次電池、電気2重層キャパシタ等の電気化学デバイス
及びその製造方法に関し、特に、導出端子のシール部に
おける密封性が向上した電気化学デバイス及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical device such as a polymer lithium secondary battery and an electric double layer capacitor, and a method of manufacturing the same. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】近年、リチウム2次電池と称される負極
活物質に炭素材料、酸化すず、酸化ケイ素等を用いた2
次電池が各種エレクトロニクス製品、電気自動車に使用
または検討されている。これらのリチウム2次電池は、
液体の溶媒に電解質塩を溶解させたいわゆる電解液を用
いている。電解液を用いた電池は、内部抵抗が低いとい
う長所があるが、反面、液漏れがしやすい、発火する危
険性があるという問題点がある。このような問題点に対
し溶媒を含まない電解質すなわち固体電解質の研究が長
年行われてきた。例えば、高分子、電解質塩及び溶媒か
らなるゲル状の高分子固体電解質が近年脚光を浴びてい
る。
2. Description of the Related Art In recent years, carbon materials, tin oxide, silicon oxide and the like have been used as negative electrode active materials called lithium secondary batteries.
Secondary batteries are used or considered for various electronic products and electric vehicles. These lithium secondary batteries are
A so-called electrolyte solution in which an electrolyte salt is dissolved in a liquid solvent is used. Batteries using an electrolytic solution have the advantage of low internal resistance, but, on the other hand, have the problem of liability to leak and ignition. To solve such problems, studies on electrolytes containing no solvent, that is, solid electrolytes, have been made for many years. For example, a gel polymer solid electrolyte composed of a polymer, an electrolyte salt, and a solvent has recently been spotlighted.

【0003】このようなゲル状の高分子固体電解質は、
導電率が液体のそれに近く、10-3S・cm-1台の値を
示すものもある。
[0003] Such a gel-like polymer solid electrolyte is
In some cases, the conductivity is close to that of a liquid and shows a value on the order of 10 −3 S · cm −1 .

【0004】高分子固体電解質を用いた電池は、液体の
電解質を用いていないため液漏れがしにくい。従って、
液体の電解液を用いた従来の電池のように金属製容器と
その問にある高分子製のパッキンで機械的にかしめる必
要はない。高分子固体電解質を用いた電池は高分子フィ
ルムと金属箔とからなるラミネートフィルムを外装袋
(容器)とする程度で液漏れは防止できる。
A battery using a solid polymer electrolyte does not leak easily because it does not use a liquid electrolyte. Therefore,
Unlike a conventional battery using a liquid electrolyte, it is not necessary to mechanically caulk with a metal container and a polymer packing in question. In a battery using a polymer solid electrolyte, liquid leakage can be prevented only by using a laminated film composed of a polymer film and a metal foil as an outer bag (container).

【0005】しかしながら、電池内部から外部へと導出
している導出端子(金属箔)とラミネートフィルムの最
内面の高分子フィルム(熱接着性樹脂層)との密着性が
不足し、電池のシール性が十分でなく、電池のサイクル
寿命の点で問題となっていた。
However, the adhesion between the lead terminal (metal foil) extending from the inside of the battery to the outside and the polymer film (thermally adhesive resin layer) on the innermost surface of the laminate film is insufficient, and the sealing property of the battery is poor. However, this is not sufficient, and this has been a problem in terms of the cycle life of the battery.

【0006】上記の欠点を改良するために、特開平10
−289698号公報では、金属層の両面に熱融着性の
樹脂層が固着されてなるラミネートシートで構成された
外装袋に、正負両極と電解質とを含む発電要素が収納さ
れた薄型密閉電池において、前記正負両極には金属から
なる集電タブがそれぞれ設けられ、前記それぞれの集電
タブは外装袋の集電タブ導出部から電池外に導出され、
かつ前記集電タブ導出部は、集電タブと外装袋内面との
問に熱融着性の変性樹脂層を介在させて熱融着すること
により封口されていることを特徴とする薄型密閉電池が
開示されている。
In order to improve the above-mentioned drawbacks, Japanese Patent Application Laid-Open
Japanese Patent No. 289698 discloses a thin sealed battery in which a power generation element containing both positive and negative electrodes and an electrolyte is housed in an outer bag made of a laminate sheet in which a heat-fusible resin layer is fixed to both surfaces of a metal layer. A current collecting tab made of metal is provided on each of the positive and negative electrodes, and each of the current collecting tabs is led out of the battery from a current collecting tab lead-out portion of the outer bag,
And the current collection tab lead-out portion is sealed by heat sealing with a heat-fusible modified resin layer interposed between the current collection tab and the inner surface of the outer package. Is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記の熱融着
性の変性樹脂層でもまだシール性が十分ではないという
欠点を有していた。この原因を分析したところ、変性樹
脂層がリチウム塩含有有機電解液に非常に弱いというこ
とが判明したが、注液時に端子シール部にまったく電解
液が触れないように電池を作成することは非常に困難で
あった。
However, the above-mentioned modified resin layer having a heat-sealing property has a disadvantage that the sealing property is still insufficient. Analysis of the cause revealed that the denatured resin layer was very weak to the lithium salt-containing organic electrolyte.However, it was very difficult to make a battery so that the electrolyte did not touch the terminal seal during injection. Was difficult.

【0008】本発明の目的は、リチウム塩を含む有機電
解液を含浸した高分子固体電解質を用いた電気化学素子
を、外装袋(容器)内に外装袋の熱接着性樹脂層の相互
を導出端子を挟んで熱接着し、封入した電気化学デバイ
スでは、外装袋と導出端子の密着性が不十分であり、電
池のサイクル寿命、高温保存特性が良好でないという問
題を解決できる電気化学デバイス及びその製造方法を提
供することである。
An object of the present invention is to provide an electrochemical device using a polymer solid electrolyte impregnated with an organic electrolytic solution containing a lithium salt, and to derive a heat-adhesive resin layer of an outer bag into an outer bag (container). An electrochemical device that is thermally bonded with terminals in between and encapsulates the battery can solve the problem that the adhesion between the outer bag and the lead-out terminal is insufficient, and the cycle life and high-temperature storage characteristics of the battery are not good. It is to provide a manufacturing method.

【0009】[0009]

【課題を解決するための手段】このような目的は、下記
の本発明により解決される。 (1) 外装袋と、この外装袋内に封入される電気化学
素子とを有する電気化学デバイスであって、前記外装袋
は、金属層と熱接着性樹脂層を有するラミネートフィル
ムであり、前記電気化学デバイスは、前記外装袋の熱接
着性樹脂層相互の熱接着したシール部で封口されて密封
され、かつ前記シール部を通って外部に導出する導出端
子を有し、前記シール部の前記導出端子と前記外装袋と
の間に、前記導出端子に直接積層した金属−樹脂間接着
剤層とこの金属−樹脂間接着剤層を被覆するオレフィン
樹脂層とを有することを特徴とする電気化学デバイス。 (2) 前記電気化学デバイスは、正負両極と高分子固
体電解質を有する上記(1)の電気化学デバイス。 (3) リチウム2次電池である上記(1)または
(2)の電気化学デバイス。 (4) 電気2重層キャパシタである上記(1)または
(2)の電気化学デバイス。 (5) 金属層と熱接着性樹脂層を有するラミネートフ
ィルムである外装袋に電気化学素子を収納し、この電気
化学素子の正負両極に接続された導出端子を、前記外装
袋の熱接着性樹脂層間に挟んで熱接着によりシール部を
形成し、封口する電気化学デバイスの製造方法であっ
て、前記導出端子の前記シール部に該当する部分に前記
導出端子側から金属−樹脂間接着剤層、ポリオレフィン
樹脂層の順に積層した中間層で挟んで熱接着する導出端
子被覆工程と、前記導出端子被覆工程の終了した電気化
学デバイスの正負両極間にある高分子膜に電解液を含浸
させて高分子固体電解質を得る注液工程と、前記注液工
程後の前記電気化学素子を前記外装袋内に前記シール部
で封入する封入工程と、を有する電気化学デバイスの製
造方法。 (6) 前記導出端子被覆工程は、前記導出端子の前記
シール部に該当する部分に金属−樹脂間接着剤を塗布し
て前記金属−樹脂間接着剤層を形成し、この金属−樹脂
間接着剤層の上にポリオレフィン樹脂フィルムを熱接着
する上記(5)の電気化学デバイスの製造方法。 (7) 前記導出端子被覆工程は、前記導出端子の前記
シール部に該当する部分に、金属−樹脂間接着剤層とポ
リオレフィン樹脂層を有する融着シートを、前記金属−
樹脂間接着剤層を前記導出端子側に配置して熱接着する
上記(5)の電気化学デバイスの製造方法。
This and other objects are attained by the present invention described below. (1) An electrochemical device having an outer bag and an electrochemical element sealed in the outer bag, wherein the outer bag is a laminate film having a metal layer and a heat-adhesive resin layer. The chemical device has a lead-out terminal that is sealed and sealed by a heat-sealed seal portion between the heat-adhesive resin layers of the outer package, and leads to the outside through the seal portion, and the lead-out of the seal portion. An electrochemical device having a metal-resin adhesive layer directly laminated on the lead-out terminal and an olefin resin layer covering the metal-resin adhesive layer between the terminal and the outer bag. . (2) The electrochemical device according to (1), wherein the electrochemical device has both positive and negative electrodes and a solid polymer electrolyte. (3) The electrochemical device according to the above (1) or (2), which is a lithium secondary battery. (4) The electrochemical device according to the above (1) or (2), which is an electric double layer capacitor. (5) The electrochemical element is housed in an outer bag that is a laminate film having a metal layer and a thermoadhesive resin layer, and the lead terminals connected to the positive and negative electrodes of the electrochemical element are connected to the thermoadhesive resin of the outer bag. A method for manufacturing an electrochemical device in which a seal portion is formed by thermal bonding sandwiching between layers and sealing is performed, wherein a metal-resin adhesive layer from the lead terminal side to a portion corresponding to the seal portion of the lead terminal, A lead terminal coating step of thermally bonding with an intermediate layer laminated in the order of the polyolefin resin layer, and a polymer film between the positive and negative electrodes of the electrochemical device after the lead terminal coating step is impregnated with an electrolytic solution to form a polymer. A method for manufacturing an electrochemical device, comprising: a pouring step of obtaining a solid electrolyte; and a sealing step of sealing the electrochemical element after the pouring step into the outer bag with the seal portion. (6) The lead-out terminal covering step includes applying a metal-resin adhesive to a portion corresponding to the seal portion of the lead-out terminal to form the metal-resin adhesive layer. The method for producing an electrochemical device according to the above (5), wherein the polyolefin resin film is thermally bonded on the agent layer. (7) The lead-out terminal covering step includes: attaching a fusion-bonded sheet having a metal-resin adhesive layer and a polyolefin resin layer to a portion corresponding to the seal portion of the lead-out terminal;
The method for producing an electrochemical device according to the above (5), wherein the inter-resin adhesive layer is disposed on the lead terminal side and thermally bonded.

【0010】[0010]

【作用】本発明者は、検討を重ねた結果、金属で構成さ
れる導出端子上に塗布した変性樹脂層をポリプロピレン
(PP)層で覆ったのち、外装袋とのラミネートを行な
うことにより、シール部の電解液への耐性が飛躍的に向
上することが判明した。
As a result of repeated studies, the present inventor has found that the modified resin layer applied on the lead-out terminal made of metal is covered with a polypropylene (PP) layer, and then laminated with an outer bag to form a seal. It was found that the resistance of the part to the electrolytic solution was dramatically improved.

【0011】即ち、外装袋の内面が熱接着性樹脂層であ
りかつこの熱接着性樹脂層と導出端子との間に金属−樹
脂間接着剤層を配置すると、外装袋の内面の熱接着性樹
脂層と導出端子(アルミニウム、ニッケル等の金属)と
の密着性が向上する。しかし、このままでは電解液注液
中に、金属−樹脂間接着剤が電解液に触れ接着力が劣化
してしまうので、ポリオレフィン樹脂層を金属−樹脂間
接着剤上にあらかじめ設けておくことによって、金属−
樹脂間接着剤に電解液が接触することをさけることがで
きる。ポリオレフィン樹脂層と外装袋の熱接着性樹脂間
は、電解液が存在していても融着時の強度は落ちないの
で、シール性を保つことができる。また、シール性が良
好であれば、大気中の水分が中に進入することを食い止
めることができるので、サイクル寿命、高温保存特性の
良い電気化学デバイスを得ることができる。また、金属
−樹脂間接着剤を保護できるので、接着剤の種類をさほ
ど問わない利点がある。
That is, when the inner surface of the outer bag is a heat-adhesive resin layer and a metal-resin adhesive layer is arranged between the heat-adhesive resin layer and the lead-out terminal, the inner surface of the outer bag has a thermal adhesive property. The adhesion between the resin layer and the lead terminals (metals such as aluminum and nickel) is improved. However, since the metal-resin adhesive comes into contact with the electrolyte during the electrolyte injection and the adhesive strength is deteriorated as it is, by providing the polyolefin resin layer on the metal-resin adhesive in advance, Metal
The contact of the electrolyte with the resin-to-resin adhesive can be avoided. Since the strength at the time of fusion does not decrease between the polyolefin resin layer and the heat-adhesive resin of the outer package even if the electrolytic solution is present, the sealing property can be maintained. Further, if the sealing property is good, it is possible to prevent the moisture in the atmosphere from entering the inside, so that an electrochemical device having good cycle life and high-temperature storage characteristics can be obtained. Further, since the metal-resin adhesive can be protected, there is an advantage that the kind of the adhesive is not so limited.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態について、図
面を参照しながら説明する。図1は、本発明の電気化学
デバイスの概略の構造を示すものである。図2は、図1
(c)におけるA−A線に沿った断面図であり、導出端
子を含むシール部の断面構造を示している。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic structure of the electrochemical device of the present invention. FIG. 2 shows FIG.
FIG. 3C is a cross-sectional view taken along the line AA in FIG. 3C, showing a cross-sectional structure of a seal portion including a lead terminal.

【0013】図1(c)に示す電気化学デバイス1は、
図1(a)に示す電気化学素子10を、図1(b)に示
す第1シール部21で袋状に形成された外装袋20の中
に電気化学素子の10の導出端子13,14が外部に突
き出した状態で収納し、外装袋20の開口した端面を導
出端子13、14を挟んで熱融着で封口して第2シール
部22を形成して構成されている。電気化学デバイス1
は、電気化学素子10を外装袋20内に密封すると共
に、第2シール部22から導出端子13,14が外部に
突き出した構造を有する。
The electrochemical device 1 shown in FIG.
The lead-out terminals 13 and 14 of the electrochemical element 10 shown in FIG. 1A are placed in an outer bag 20 formed in a bag shape by the first seal portion 21 shown in FIG. It is stored in a state of protruding to the outside, and the open end surface of the outer bag 20 is sealed by heat fusion with the lead-out terminals 13 and 14 interposed therebetween to form a second seal portion 22. Electrochemical device 1
Has a structure in which the electrochemical element 10 is sealed in the outer bag 20 and the lead-out terminals 13 and 14 project from the second seal portion 22 to the outside.

【0014】電気化学素子10は、アルミニウム箔や銅
箔等の金属箔等で構成される正負両極の電極11、12
と図示しない高分子固体電解質とを含む。正負両極の電
極11、12には、図1(a)に示すようにそれぞれ導
出端子13、14が接続されている。導出端子13、1
4は、アルミニウム、銅、ニッケル、ステンレス等の金
属箔で構成される。導出端子13、14には、概念上そ
れぞれ第2シール部22で覆われる領域のシール部13
a、14aを有する。
The electrochemical element 10 has positive and negative electrodes 11, 12 made of metal foil such as aluminum foil or copper foil.
And a solid polymer electrolyte (not shown). As shown in FIG. 1A, lead terminals 13 and 14 are connected to the positive and negative electrodes 11 and 12, respectively. Outgoing terminal 13, 1
Reference numeral 4 is made of metal foil such as aluminum, copper, nickel, and stainless steel. The lead terminals 13 and 14 are conceptually provided with the seal portions 13 in the regions covered by the second seal portions 22, respectively.
a and 14a.

【0015】外装袋20は、例えばアルミニウム等の金
属層の両面に、熱接着性樹脂層としてのポリプロピレ
ン、ポリエチレン等のポリオレフィン樹脂層や耐熱性の
ポリエステル樹脂層が積層されたラミネートフィルム3
0から構成されている。外装袋20は、図1(b)に示
すように、予め2枚のラミネートフィルム30をそれら
の3辺の端面の熱接着性樹脂層相互を熱接着して第1シ
ール部21を形成し、1辺が開口した袋状に形成され
る。あるいは、一枚のラミネートフィルムを折り返して
両辺の端面を熱接着してシール部を形成して袋状として
もよい。
The outer bag 20 has a laminated film 3 in which a polyolefin resin layer such as polypropylene or polyethylene or a heat-resistant polyester resin layer as a heat-adhesive resin layer is laminated on both sides of a metal layer such as aluminum.
0. As shown in FIG. 1 (b), the outer bag 20 heat-bonds the two laminated films 30 to each other at the heat-adhesive resin layers on the three end surfaces thereof to form a first seal portion 21. It is formed in a bag shape with one side opened. Alternatively, a single laminated film may be folded back and the both end faces may be thermally bonded to form a seal portion to form a bag.

【0016】本発明の電気化学デバイス1の第2シール
部22では、図2に示すように、導出端子13、14が
外装袋20を構成するラミネートフィルム30で挟まれ
ており、導出端子13、14とラミネートフィルム30
の熱接着性樹脂層との間には、導出端子上に直接積層さ
れた金属−樹脂間接着剤層41、及びこの金属−樹脂間
接着剤層を被覆するオレフィン樹脂層42の順に積層さ
れた中間層40を有する。
In the second seal portion 22 of the electrochemical device 1 of the present invention, as shown in FIG. 2, the lead-out terminals 13 and 14 are sandwiched between the laminate films 30 constituting the outer bag 20. 14 and laminated film 30
Between the metal-resin adhesive layer 41 and the olefin resin layer 42 covering the metal-resin adhesive layer directly laminated on the lead-out terminal. It has an intermediate layer 40.

【0017】従来、このような金属箔で構成される導出
端子と外装袋を構成する熱接着性樹脂層との密着性が不
十分であった。本発明の電気化学デバイス1において
は、金属−樹脂間接着剤層41を導出端子13、14の
シール部分13a、14aを覆うように直接積層し、金
属(アルミニウム、銅、ニッケル、ステンレスなど)と
ポリオレフィンなどに対し密着性を保つものであり、ラ
ミネート袋から導出端子を引き出し、かつ密封を保つた
めには必須の材料である。
Heretofore, the adhesion between the lead terminal formed of such a metal foil and the heat-adhesive resin layer forming the outer package has been insufficient. In the electrochemical device 1 of the present invention, the metal-resin adhesive layer 41 is directly laminated so as to cover the sealing portions 13a and 14a of the lead-out terminals 13 and 14, and is connected to a metal (aluminum, copper, nickel, stainless steel, etc.). It maintains adhesion to polyolefin and the like, and is an essential material for pulling out the lead-out terminal from the laminate bag and maintaining the sealing.

【0018】金属−樹脂間接着剤層41としては、例え
ばカルボン酸等の酸変性ポリエチレン、酸変性ポリプロ
ピレン、エポキシ樹脂、変性イソシアネート等を例示で
きる。金属−樹脂間接着剤層41は、金属とポリオレフ
ィン樹脂との間に介在してこれらの密着性を良好にする
ためのものであるから、導出端子13、14のシール部
13a、14aを覆う程度の大きさで十分である。金属
−樹脂間接着剤層41の厚さは、1〜100μm程度が
好ましい。
Examples of the metal-resin adhesive layer 41 include acid-modified polyethylene such as carboxylic acid, acid-modified polypropylene, epoxy resin, and modified isocyanate. Since the metal-resin adhesive layer 41 is provided between the metal and the polyolefin resin to improve the adhesion between the metal and the polyolefin resin, the metal-resin adhesive layer 41 covers the sealing portions 13a and 14a of the lead-out terminals 13 and 14. The size of is sufficient. The thickness of the metal-resin adhesive layer 41 is preferably about 1 to 100 μm.

【0019】本発明においては、さらに、この金属−樹
脂間接着剤層41を電解液から保護するため、オレフィ
ン樹脂層42で金属−樹脂間接着剤層41を被覆する。
In the present invention, the metal-resin adhesive layer 41 is further covered with an olefin resin layer 42 in order to protect the metal-resin adhesive layer 41 from an electrolytic solution.

【0020】ポリオレフィン樹脂層42はラミネートフ
ィルム30の熱接着性樹脂層としてのポリオレフィン樹
脂層との相互の接着性に優れるため、熱接着性樹脂層と
して機能する。ポリオレフィン樹脂層42の厚さは、1
0〜200μm程度が好ましい。ポリオレフィン樹脂と
しては、ポリエチレン、ポリプロピレン、あるいはこれ
らの酸変性物を例示できる。相溶性から、ラミネートフ
ィルム30の熱接着性樹脂層がポリエチレンであるとき
は、中間層40のポリオレフィン樹脂層42もポリエチ
レン、ラミネートフィルム30の熱接着性樹脂層がポリ
プロピレンであるときは、中間層40のポリオレフィン
樹脂層42もポリプロピレンとすることが接着性の点で
好ましい。
The polyolefin resin layer 42 functions as a heat-adhesive resin layer because it has excellent mutual adhesion with the polyolefin resin layer as the heat-adhesive resin layer of the laminate film 30. The thickness of the polyolefin resin layer 42 is 1
It is preferably about 0 to 200 μm. Examples of the polyolefin resin include polyethylene, polypropylene, and acid-modified products thereof. Due to compatibility, when the heat-adhesive resin layer of the laminate film 30 is made of polyethylene, the polyolefin resin layer 42 of the intermediate layer 40 is also made of polyethylene. When the heat-adhesive resin layer of the laminate film 30 is made of polypropylene, the intermediate layer 40 is made of polyethylene. It is preferable that the polyolefin resin layer 42 is also made of polypropylene from the viewpoint of adhesiveness.

【0021】このような金属−樹脂間接着剤層/ポリオ
レフィン樹脂層で構成される中間層40で導出端子のシ
ール部13a、14aを被覆する導出端子被覆工程は、
例えば金属−樹脂間接着剤を導出端子のシール部13
a、14aの両面に塗布し、その後、ポリオレフィンフ
ィルムを金属−樹脂間接着剤層の上に熱溶着する方法を
採用することができる。あるいは、金属−樹脂間接着剤
層/ポリオレフィン樹脂層で構成される融着フィルムを
導出端子のシール部13a、14aに熱溶着する方法を
採用することができる。この導出端子被覆工程の際に、
導出端子は電解液注液前の電池または電気2重層キャパ
シタに溶接もしくは接着してあっても良いし、端子単体
であっても良い。いずれにしても、本発明の中間層40
を導出端子13、14に貼り付けるのは、電解液注液前
である必要がある。
The lead terminal covering step of covering the lead terminal seal portions 13a and 14a with the intermediate layer 40 composed of such a metal-resin adhesive layer / polyolefin resin layer is as follows.
For example, a metal-resin adhesive is applied to the terminal seal portion 13.
a, 14a, and then a polyolefin film may be thermally welded onto the metal-resin adhesive layer. Alternatively, a method in which a fusion film composed of a metal-resin adhesive layer / polyolefin resin layer is thermally welded to the sealing portions 13a and 14a of the lead-out terminals can be adopted. During this lead-out terminal coating process,
The lead-out terminal may be welded or bonded to the battery or the electric double layer capacitor before the electrolyte injection, or may be a single terminal. In any case, the intermediate layer 40 of the present invention
Must be attached to the lead-out terminals 13 and 14 before the electrolyte is injected.

【0022】なお、融着フィルムは、チューブ状でも良
い。チューブ状とした場合、シール部13a、14aの
長さに切ったチューブを導出端子に挿入し、シール部1
3a、14aに被せて熱融着する。
The fusion film may be in the form of a tube. In the case of a tubular shape, the tube cut to the length of the seal portions 13a and 14a is inserted into the lead-out terminal, and the seal portion 1
3a and 14a are heat-sealed.

【0023】導出端子被覆工程後、上記処理を行なった
導出端子を備える電池正極および電池負極と高分子膜を
有する素子を、リチウム塩含有有機電解液の中に浸ける
ことによって電解液を含浸させ、高分子膜を高分子固体
電解質化させて電気化学素子を作製する注液工程を行
う。
After the lead-out terminal coating step, the battery positive electrode and the battery negative electrode having the above-described treated lead-out terminal and the element having the polymer film are immersed in a lithium salt-containing organic electrolytic solution to be impregnated with the electrolytic solution. A liquid injection step is performed in which the polymer film is converted into a polymer solid electrolyte to produce an electrochemical device.

【0024】その後、電気化学素子を金属と樹脂とから
なるラミネート袋に挿入し、開口部をヒートシールし、
密封する封入工程によって、電気化学デバイスとする。
Thereafter, the electrochemical device is inserted into a laminate bag made of metal and resin, and the opening is heat-sealed.
An electrochemical device is obtained by a sealing process.

【0025】なお、外装袋を構成するラミネートフィル
ムとしては、ラミネートフィルムを構成する金属箔と導
出端子間の絶縁を確保するため、内層側から熱接着性樹
脂層/ポリエステル樹脂層/金属箔/ポリエステル樹脂
層の積層構造を有するラミネートフィルムを用いること
が好ましい。このようなラミネートフィルムを用いるこ
とにより、熱接着時に高融点のポリエステル樹脂層が溶
けずに残るため、導出端子と外装袋の金属箔との離間距
離を確保し、絶縁を確実にすることができる。そのた
め、ラミネートフィルムのポリエステル樹脂層の厚さ
は、5〜100μm程度とすることが好ましい。
In order to ensure insulation between the metal foil forming the laminate film and the lead-out terminal, the laminated film constituting the outer package is formed from the inner layer side with a heat-adhesive resin layer / polyester resin layer / metal foil / polyester. It is preferable to use a laminate film having a laminated structure of resin layers. By using such a laminated film, the high melting point polyester resin layer remains without melting at the time of thermal bonding, so that a separation distance between the lead terminal and the metal foil of the outer package can be ensured, and insulation can be ensured. . Therefore, the thickness of the polyester resin layer of the laminate film is preferably about 5 to 100 μm.

【0026】本発明の電気化学デバイスは、次のような
リチウム2次電池、電気2重層キャパシタとして用いる
ことができる。
The electrochemical device of the present invention can be used as a lithium secondary battery or an electric double layer capacitor as described below.

【0027】<リチウム2次電池>本発明のリチウム2
次電池の構造は特に限定されないが、通常、正極、負極
及び高分子固体電解質から構成され、積層型電池や円筒
型電池等に適用される。
<Lithium rechargeable battery> Lithium 2 of the present invention
Although the structure of the secondary battery is not particularly limited, it is generally composed of a positive electrode, a negative electrode, and a solid polymer electrolyte, and is applied to a stacked battery, a cylindrical battery, and the like.

【0028】また、高分子固体電解質と組み合わせる電
極は、リチウム2次電池の電極として公知のものの中か
ら適宜選択して使用すればよく、好ましくは電極活物質
とゲル電解質、必要により導電助剤との組成物を用い
る。
The electrode to be combined with the solid polymer electrolyte may be appropriately selected from those known as electrodes for a lithium secondary battery, and is preferably used as an electrode active material and a gel electrolyte. Is used.

【0029】負極には、炭素材料、リチウム金属、リチ
ウム合金あるいは酸化物材料のような負極活物質を用
い、正極には、リチウムイオンがインターカレート・デ
インターカレート可能な酸化物または炭素材料のような
正極活物質を用いることが好ましい。このような電極を
用いることにより、良好な特性のリチウム2次電池を得
ることができる。
For the negative electrode, a negative electrode active material such as a carbon material, lithium metal, lithium alloy or oxide material is used. For the positive electrode, an oxide or carbon material capable of intercalating / deintercalating lithium ions is used. It is preferable to use such a positive electrode active material as described above. By using such an electrode, a lithium secondary battery having excellent characteristics can be obtained.

【0030】電極活物質として用いる炭素材料は、例え
ば、メソカーボンマイクロビーズ(MCMB)、天然あ
るいは人造の黒鉛、樹脂焼成炭素材料、カーボンブラッ
ク、炭素繊維などから適宜選択すればよい。これらは粉
末として用いられる。中でも黒鉛が好ましく、その平均
粒子径は1〜30μm 、特に5〜25μm であることが
好ましい。平均粒子径が小さすぎると、充放電サイクル
寿命が短くなり、また、容量のばらつき(個体差)が大
きくなる傾向にある。平均粒子径が大きすぎると、容量
のばらつきが著しく大きくなり、平均容量が小さくなっ
てしまう。平均粒子径が大きい場合に容量のばらつきが
生じるのは、黒鉛と集電体との接触や黒鉛同士の接触に
ばらつきが生じるためと考えられる。
The carbon material used as the electrode active material may be appropriately selected from, for example, mesocarbon microbeads (MCMB), natural or artificial graphite, resin fired carbon material, carbon black, carbon fiber and the like. These are used as powders. Above all, graphite is preferred, and its average particle size is preferably 1 to 30 μm, particularly preferably 5 to 25 μm. If the average particle size is too small, the charge / discharge cycle life tends to be short and the variation in capacity (individual difference) tends to be large. If the average particle size is too large, the dispersion of the capacity becomes extremely large, and the average capacity becomes small. It is considered that the capacity variation occurs when the average particle size is large because the contact between the graphite and the current collector and the contact between the graphites vary.

【0031】リチウムイオンがインターカレート・デイ
ンターカレート可能な酸化物としては、リチウムを含む
複合酸化物が好ましく、例えば、LiCoO2、LiM
2 4、LiNiO2、LiV24などが挙げられる。
これらの酸化物の粉末の平均粒子径は1〜40μm 程度
であることが好ましい。
Lithium ion is intercalated day
Intercalatable oxides include lithium
Composite oxides are preferred, for example, LiCoOTwo, LiM
nTwoO Four, LiNiOTwo, LiVTwoOFourAnd the like.
The average particle size of these oxide powders is about 1 to 40 μm.
It is preferred that

【0032】電極には、必要により導電助剤が添加され
る。導電助剤としては、好ましくは黒鉛、カーボンブラ
ック、炭素繊維、ニッケル、アルミニウム、銅、銀等の
金属が挙げられ、特に黒鉛、カーボンブラックが好まし
い。
If necessary, a conductive additive is added to the electrode. Preferred examples of the conductive auxiliary agent include metals such as graphite, carbon black, carbon fiber, nickel, aluminum, copper, and silver. Particularly, graphite and carbon black are preferable.

【0033】電極組成は、正極では、重量比で、活物
質:導電助剤:ゲル電解質=30〜90:3〜10:1
0〜70の範囲が好ましく、負極では、重量比で、活物
質:導電助剤:ゲル電解質=30〜90:0〜10:1
0〜70の範囲が好ましい。ゲル電解質は、特に限定さ
れず、通常用いられているものを用いればよい。また、
ゲル電解質を含まない電極も好適に用いられる。この場
合、バインダとしてはフッ素樹脂、フッ素ゴム等を用い
ることができ、バインダの量は3〜30wt%程度とす
る。
The electrode composition of the positive electrode is as follows: active material: conductive auxiliary agent: gel electrolyte = 30 to 90: 3 to 10: 1 by weight.
The range of 0 to 70 is preferable. In the negative electrode, active material: conductive auxiliary agent: gel electrolyte = 30 to 90: 0 to 10: 1 by weight ratio.
A range from 0 to 70 is preferred. The gel electrolyte is not particularly limited, and a commonly used gel electrolyte may be used. Also,
An electrode containing no gel electrolyte is also preferably used. In this case, a fluorine resin, a fluorine rubber, or the like can be used as the binder, and the amount of the binder is about 3 to 30 wt%.

【0034】電極の製造は、まず、活物質と必要に応じ
て導電助剤を、ゲル電解質溶液またはバインダ溶液に分
散し、塗布液を調製する。
In the production of the electrode, first, an active material and, if necessary, a conductive auxiliary are dispersed in a gel electrolyte solution or a binder solution to prepare a coating solution.

【0035】そして、この電極塗布液を集電体に塗布す
る。塗布する手段は特に限定されず、集電体の材質や形
状などに応じて適宜決定すればよい。一般に、メタルマ
スク印刷法、静電塗装法、ディップコート法、スプレー
コート法、ロールコート法、ドクターブレード法、グラ
ビアコート法、スクリーン印刷法等が使用されている。
その後、必要に応じて、平板プレス、カレンダーロール
等により圧延処理を行う。
Then, this electrode coating solution is applied to a current collector. The means for applying is not particularly limited, and may be determined as appropriate according to the material and shape of the current collector. Generally, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method, and the like are used.
Thereafter, if necessary, a rolling treatment is performed by a flat plate press, a calender roll, or the like.

【0036】集電体は、電池の使用するデバイスの形状
やケース内への集電体の配置方法などに応じて、適宜通
常の集電体から選択すればよい。一般に、正極にはアル
ミニウム等が、負極には銅、ニッケル等が使用される。
なお、集電体は金属箔、金属メッシュなどが、通常、使
用される。金属箔よりも金属メッシュの方が電極との接
触抵抗が小さくなるが、金属箔でも十分小さな接触抵抗
が得られる。
The current collector may be appropriately selected from ordinary current collectors according to the shape of the device used by the battery and the method of arranging the current collector in the case. Generally, aluminum or the like is used for the positive electrode, and copper, nickel, or the like is used for the negative electrode.
Note that a metal foil, a metal mesh, or the like is generally used as the current collector. Although the metal mesh has lower contact resistance with the electrode than the metal foil, a sufficiently low contact resistance can be obtained even with the metal foil.

【0037】そして、溶媒を蒸発させ、電極を作製す
る。塗布厚は、50〜400μm 程度とすることが好ま
しい。
Then, the solvent is evaporated to produce an electrode. The coating thickness is preferably about 50 to 400 μm.

【0038】高分子膜は、例えば、PEO(ポリエチレ
ンオキシド))系、PAN(ポリアクリロニトリル)
系、PVDF(ポリフッ化ビニリデン)系等の高分子微
多孔膜を用いることができる。
The polymer film is, for example, PEO (polyethylene oxide), PAN (polyacrylonitrile)
And a polymer microporous membrane such as PVDF (polyvinylidene fluoride).

【0039】このような正極、高分子膜、負極をこの順
に積層し、圧着して電池素体とする。
Such a positive electrode, a polymer film, and a negative electrode are laminated in this order and pressed to form a battery body.

【0040】高分子膜に含浸させる電解液は一般に電解
質塩と溶媒よりなる。電解質塩としては、例えば、Li
BF4 、LiPF6 、LiAsF6 、LiSO3
3 、LiClO4 、LiN(SO2 CF32 等のリ
チウム塩が適用できる。
The electrolyte for impregnating the polymer membrane generally comprises an electrolyte salt and a solvent. As the electrolyte salt, for example, Li
BF 4 , LiPF 6 , LiAsF 6 , LiSO 3 C
Lithium salts such as F 3 , LiClO 4 , and LiN (SO 2 CF 3 ) 2 can be used.

【0041】電解液の溶媒としては、前述の高分子固体
電解質、電解質塩との相溶性が良好なものであれば特に
制限はされないが、リチウム電池等では高い動作電圧で
も分解の起こらない極性有機溶媒、例えば、エチレンカ
ーボネート(略称EC)、プロピレンカーボネート(略
称PC)、ブチレンカーボネート、ジメチルカーボネー
ト(略称DMC)、ジエチルカーボネート、エチルメチ
ルカーボネート等のカーボネート類、テトラヒドロフラ
ン(THF)、2−メチルテトラヒドロフラン等の環式
エーテル、1,3−ジオキソラン、4−メチルジオキソ
ラン等の環式エーテル、γ−ブチロラクトン等のラクト
ン、スルホラン等が好適に用いられる。3−メチルスル
ホラン、ジメトキシエタン、ジエトキシエタン、エトキ
シメトキシエタン、エチルジグライム等を用いてもよ
い。
The solvent of the electrolytic solution is not particularly limited as long as it has good compatibility with the above-mentioned solid polymer electrolyte and electrolyte salt, but in a lithium battery or the like, a polar organic solvent which does not decompose even at a high operating voltage. Solvents, for example, carbonates such as ethylene carbonate (abbreviation EC), propylene carbonate (abbreviation PC), butylene carbonate, dimethyl carbonate (abbreviation DMC), diethyl carbonate, ethyl methyl carbonate, etc., tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like A cyclic ether, a cyclic ether such as 1,3-dioxolan, 4-methyldioxolan, a lactone such as γ-butyrolactone, a sulfolane, and the like are preferably used. 3-Methylsulfolane, dimethoxyethane, diethoxyethane, ethoxymethoxyethane, ethyldiglyme and the like may be used.

【0042】溶媒と電解質塩とで電解液を構成すると考
えた場合の電解質塩の濃度は、好ましくは0.3〜5mo
l/lである。通常、1mol/l辺りで最も高いイオン伝導性
を示す。
When it is considered that the electrolyte is composed of the solvent and the electrolyte salt, the concentration of the electrolyte salt is preferably 0.3 to 5 mol.
l / l. Usually, it exhibits the highest ionic conductivity at around 1 mol / l.

【0043】このような電解液に微多孔性の高分子膜を
浸漬すると、高分子膜が電解液を吸収してゲル化し、高
分子固体電解質となる。
When a microporous polymer film is immersed in such an electrolytic solution, the polymer film absorbs the electrolytic solution and gels to form a solid polymer electrolyte.

【0044】高分子固体電解質の組成を共重合体/電解
液で示した場合、膜の強度、イオン伝導度の点から、電
解液の比率は40〜90wt%が好ましい。
When the composition of the solid polymer electrolyte is represented by a copolymer / electrolyte solution, the ratio of the electrolyte solution is preferably from 40 to 90% by weight in view of the strength of the membrane and the ionic conductivity.

【0045】<電気2重層キャパシタ>本発明の電気2
重層キャパシタの構造は特に限定されないが、通常、一
対の分極性電極が高分子固体電解質を介して配置されて
おり、分極性電極および高分子固体電解質の周辺部には
絶縁性ガスケットが配置されている。このような電気2
重層キャパシタはコイン型、ペーパー型、積層型等と称
されるいずれのものであってもよい。
<Electric Double Layer Capacitor> Electric 2 of the present invention
Although the structure of the multilayer capacitor is not particularly limited, usually, a pair of polarizable electrodes are arranged via a polymer solid electrolyte, and an insulating gasket is arranged around the polarizable electrode and the polymer solid electrolyte. I have. Such electricity 2
The multilayer capacitor may be any type called a coin type, a paper type, a laminated type, or the like.

【0046】分極性電極としては、活性炭、活性炭素繊
維等を導電性活物質とし、これにバインダとしてフッ素
樹脂、フッ素ゴム等を加える。そして、この混合物をシ
ート状電極に形成したものを用いることが好ましい。バ
インダの量は5〜15wt%程度とする。また、バインダ
としてゲル電解質を用いてもよい。
As the polarizable electrode, activated carbon, activated carbon fiber, or the like is used as a conductive active material, and a fluororesin, fluororubber, or the like is added as a binder. Then, it is preferable to use the mixture formed on a sheet-like electrode. The amount of the binder is about 5 to 15 wt%. Further, a gel electrolyte may be used as the binder.

【0047】分極性電極に用いられる集電体は、白金、
導電性ブチルゴム等の導電性ゴムなどであってよく、ま
たアルミニウム、ニッケル等の金属の溶射によって形成
してもよく、上記電極層の片面に金属メッシュを付設し
てもよい。
The current collector used for the polarizable electrode is platinum,
It may be a conductive rubber such as a conductive butyl rubber or the like, may be formed by spraying a metal such as aluminum or nickel, or may be provided with a metal mesh on one surface of the electrode layer.

【0048】電気2重層キャパシタには、上記のような
分極性電極と高分子固体電解質とを組み合わせる。
The electric double layer capacitor is formed by combining the above-mentioned polarizable electrode and the solid polymer electrolyte.

【0049】高分子膜は、例えば、PEO(ポリエチレ
ンオキシド))系、PAN(ポリアクリロニトリル)
系、PVDF(ポリフッ化ビニリデン)系等の高分子微
多孔膜を用いることができる。
The polymer film is made of, for example, PEO (polyethylene oxide), PAN (polyacrylonitrile)
And a polymer microporous membrane such as PVDF (polyvinylidene fluoride).

【0050】電解質塩としては、(C254 NB
4 、(C253 CH3 NBF4 、(C254 PB
4 等が挙げられる。
As the electrolyte salt, (C 2 H 5 ) 4 NB
F 4 , (C 2 H 5 ) 3 CH 3 NBF 4 , (C 2 H 5 ) 4 PB
F 4, and the like.

【0051】電解液に用いる非水溶媒は、公知の種々の
ものであってよく、電気化学的に安定な非水溶媒である
プロピレンカーボネート、エチレンカーボネート、γ−
ブチロラクトン、アセトニトリル、ジメチルホルムアミ
ド、1,2−ジメトキシエタン、スルホラン単独または
混合溶媒が好ましい。
The non-aqueous solvent used for the electrolytic solution may be various known ones, and propylene carbonate, ethylene carbonate, γ-
Butyrolactone, acetonitrile, dimethylformamide, 1,2-dimethoxyethane, sulfolane alone or a mixed solvent is preferred.

【0052】このような非水溶媒系の電解質溶液におけ
る電解質の濃度は、0.1〜3mol/lとすればよい。
The concentration of the electrolyte in such a non-aqueous solvent-based electrolyte solution may be 0.1 to 3 mol / l.

【0053】このような電解液に微多孔性の高分子膜を
浸漬すると、高分子膜が電解液を吸収してゲル化し、高
分子固体電解質となる。
When a microporous polymer film is immersed in such an electrolytic solution, the polymer film absorbs the electrolytic solution and gels to form a solid polymer electrolyte.

【0054】高分子固体電解質の組成を共重合体/電解
液で示した場合、膜の強度、イオン伝導度の点から、電
解液の比率は40〜90wt%が好ましい。
When the composition of the solid polymer electrolyte is represented by a copolymer / electrolyte solution, the ratio of the electrolyte solution is preferably from 40 to 90% by weight in view of the strength of the membrane and the ionic conductivity.

【0055】絶縁性ガスケットとしては、ポリプロピレ
ン、ブチルゴム等の絶縁体を用いればよい。
As the insulating gasket, an insulator such as polypropylene or butyl rubber may be used.

【0056】[0056]

【実施例】[実施例1] (電池の作製)端子材料として幅4mm、長さ50mm、厚
み0.1mmのアルミニウム箔及びニッケル箔を用意し
た。これに金属−樹脂間接着剤として酸変性ポリプロピ
レン(三井化学(株)のユニストールR−200)をシ
ール部位置にスプレーしたのち、縦横5mm角の厚さ80
μmのPPシートを同シール部の上下に置いてヒートプ
レスを行なったものを導出端子とした。
[Example 1] (Production of battery) Aluminum foil and nickel foil having a width of 4 mm, a length of 50 mm and a thickness of 0.1 mm were prepared as terminal materials. An acid-modified polypropylene (Unistol R-200 of Mitsui Chemicals, Inc.) was sprayed as a metal-resin adhesive onto the sealing portion, and then a 5 mm × 5 mm square 80 mm thick film was formed.
A lead terminal was obtained by placing a μm PP sheet above and below the sealing portion and performing heat pressing.

【0057】電極は、正極はLiCoO2、カーボンブ
ラック(HS−100、電気化学工業製)、PVDF
(ポリふっ化ビニリデン)からなるものをドクターブレ
ード法でアルミニウム箔に塗布し作成した。負極は、メ
ソカーボンマイクロビーズ(MCMB)、HS−10
0、PVDFからなるものをドクターブレード法で銅箔
に塗布し作成した。高分子固体電解質としてPVDF微
多孔膜を使用した。正極、負極は、横31mm、縦41mm
に切断した。セパレータは横33mm、縦43mmに切断し
た。
The electrodes were LiCoO 2 , carbon black (HS-100, manufactured by Denki Kagaku Kogyo), PVDF
(Polyvinylidene fluoride) was applied to an aluminum foil by a doctor blade method to prepare. The negative electrode is mesocarbon microbeads (MCMB), HS-10
0, made of PVDF was applied to copper foil by a doctor blade method. A microporous PVDF membrane was used as a polymer solid electrolyte. Positive and negative electrodes are 31 mm wide and 41 mm long
Cut into pieces. The separator was cut into a width of 33 mm and a length of 43 mm.

【0058】電池素体の作成は次のように行った。まず
正極とセパレータを積層し熱プレスでラミネートした。
ラミネート条件は150℃で、圧力5kgcm-2で2分
問加圧した。これに負極を積層し同様にラミネートし
た。
The production of the battery element was performed as follows. First, the positive electrode and the separator were laminated and laminated by hot pressing.
The laminating conditions were 150 ° C. and a pressure of 5 kgcm −2 for 2 minutes. A negative electrode was laminated thereon and laminated similarly.

【0059】この電池素体のアルミニウム集電体には上
記のアルミニウム導出端子、銅集電体にも同様に上記の
ニッケル導出端子を抵抗熔接した。この電池素体をEC
(エチレンカーボネート)とDMC(ジメチルカーボネ
ート)の体積比1:2の混合溶媒にLiPF6を1M溶
解させた電解液330ml中に30分間浸せきした。電解
液から電池素体を取り出したあと電極表面に付着してい
る電解液を拭き取った。この電池素体は電解液を吸収し
ゲル状態となった。PET(12μm)/アルミニウム
(20μm)/PET(12μm)/PP(80μm)
からなるラミネート袋(最内層がPP)に前記電池素体
を挿入し、開口部をヒートシールし、シート型ポリマー
リチウム2次電池を作製した。
The above aluminum lead terminal of the battery element was resistance welded to the above aluminum lead terminal, and the above copper lead terminal was also resistance welded to the copper current collector. This battery element is EC
(Ethylene carbonate) and DMC (dimethyl carbonate) were immersed for 30 minutes in 330 ml of an electrolyte obtained by dissolving 1 M of LiPF 6 in a mixed solvent of 1: 2 by volume. After taking out the battery body from the electrolyte, the electrolyte adhering to the electrode surface was wiped off. This battery element absorbed the electrolytic solution and became a gel state. PET (12 μm) / aluminum (20 μm) / PET (12 μm) / PP (80 μm)
The battery element was inserted into a laminate bag (with the innermost layer being PP) made of, and the opening was heat-sealed to produce a sheet-type polymer lithium secondary battery.

【0060】図3にサイクル数と放電容量の関係を示し
た。また、別の電池を110℃に保存したときの重量減
少率を表1に示した。表1では、5個のサンプルの重量
減少率を示している。尚、重量減少率は下式で求めた。
FIG. 3 shows the relationship between the number of cycles and the discharge capacity. Table 1 shows the weight loss ratio when another battery was stored at 110 ° C. Table 1 shows the weight loss rates of the five samples. The weight reduction rate was determined by the following equation.

【0061】重量減少率(%)=((110℃保存後の
電池重量)−(保存前の電池重量))/(電池に含有さ
れている電解液の重量)×100 表2にはこの電池を作成した際に発生した短絡品の個数
を示した。
Weight reduction rate (%) = ((battery weight after storage at 110 ° C.) − (Battery weight before storage)) / (weight of electrolyte contained in battery) × 100 The number of short-circuited products generated when the sample was prepared was shown.

【0062】[実施例2] (電池の作製)端子材料のアルミニウム箔及びニッケル
箔に酸変性ポリプロピレンをスプレーせず、酸変性ポリ
プロピレン(三井化学(株)のエニストールR−20
0)20μm/PP80μmの構造をもつシートを用意
し、これを酸変性ポリプロピレン側を下にして端子に融
着させた以外は実施例1と同様に実験を行った。
[Example 2] (Preparation of battery) Acid-modified polypropylene was not sprayed on aluminum foil and nickel foil as terminal materials, and acid-modified polypropylene (Enistor R-20 manufactured by Mitsui Chemicals, Inc.) was used.
0) An experiment was performed in the same manner as in Example 1 except that a sheet having a structure of 20 μm / 80 μm PP was prepared, and this was fused to a terminal with the acid-modified polypropylene side down.

【0063】[比較例1] (電池の作製)酸変性ポリプロピレン(三井化学(株)
のエニストールR−200)を端子にスプレーして使用
したのみでプロピレンシートを使用しなかった以外は、
実施例1と同様にシート型リチウム2次電池を作製し
た。
Comparative Example 1 (Preparation of Battery) Acid-Modified Polypropylene (Mitsui Chemicals, Inc.)
Ennistor R-200) was sprayed onto the terminals and used, but no propylene sheet was used.
A sheet-type lithium secondary battery was produced in the same manner as in Example 1.

【0064】[0064]

【表1】 [Table 1]

【0065】図3から、本発明によって電池の密閉性が
向上した結果、充放電サイクル寿命が向上したことがわ
かる。また表1の重量減少率から、従来電池内部の電解
液が大幅に蒸発していたのを改善し、本発明によって内
部電解液の漏出を防ぐ効果があることがわかる、
FIG. 3 shows that the present invention improved the hermeticity of the battery and, as a result, improved the charge / discharge cycle life. Further, from the weight reduction rates in Table 1, it can be seen that the electrolyte in the conventional battery was largely evaporated, and the present invention has the effect of preventing the leakage of the internal electrolyte.

【0066】[実施例3] (キャパシタの作製) 活物質:LiCoO2、 導電助剤:アセチレンブラック、 高分子物質:PVDF[KynarFlex 2801(エルフ・アト
ケム社製)]、(ポリフッ化ビニリデンと6フッ化プロ
ピレンとの共重合体)、 溶媒:アセトン を重量比で、活物質:導電助剤:高分子物質:溶媒=
8:1:1:15となるように混合して高分子溶液を調
製し、これをフィルム状に成形して成形体を得た。この
成形体を集電体に熱圧着し、正極とした。
Example 3 (Preparation of Capacitor) Active Material: LiCoO 2 , Conductive Aid: Acetylene Black, Polymer Material: PVDF [KynarFlex 2801 (manufactured by Elf Atochem Co.)], (Polyvinylidene fluoride and 6 F Copolymer with propylene chloride), solvent: acetone by weight ratio, active material: conductive auxiliary agent: polymer substance: solvent =
A polymer solution was prepared by mixing at a ratio of 8: 1: 1: 15 and formed into a film to obtain a molded product. This compact was thermocompression-bonded to a current collector to form a positive electrode.

【0067】また、活物質を黒鉛とし、活物質:導電助
剤:高分子物質:溶媒=8.5:0.5:1:15とし
たほかは正極の場合と同様にして、負極を作製した。
A negative electrode was fabricated in the same manner as the positive electrode except that the active material was graphite and the active material: conductive auxiliary agent: polymer substance: solvent was 8.5: 0.5: 1: 15. did.

【0068】高分子固体電解質としてPVDF微多孔膜
を使用した。
A microporous PVDF membrane was used as a polymer solid electrolyte.

【0069】次に、正極および負極を高分子固体電解質
を介して積層し、両側を導出端子を有するチタン板で挟
んだ後、電解液を含浸させ、実施例1と同様に密閉し
た。なお、電解液には、エチレンカーボネート:ジメチ
ルカーボネート=1:2(体積比)である混合溶媒にL
iPF6を1Mの濃度で溶解したものを用いた。
Next, the positive electrode and the negative electrode were laminated with a polymer solid electrolyte interposed therebetween, and sandwiched on both sides by a titanium plate having a lead-out terminal, impregnated with an electrolytic solution, and sealed as in Example 1. In the electrolyte, a mixed solvent of ethylene carbonate: dimethyl carbonate = 1: 2 (volume ratio) was mixed with L.
The iPF 6 was used at a concentration of 1M.

【0070】その他は実施例1と同様にしてキャパシタ
1を得た。また、実施例2、比較例1と同様にしてキャ
パシタ2,比較キャパシタ1を作製した。
Otherwise, the procedure of Example 1 was followed to obtain a capacitor 1. Further, capacitors 2 and comparative capacitors 1 were produced in the same manner as in Example 2 and Comparative Example 1.

【0071】得られたキャパシタ1,2および比較キャ
パシタ1をキャパシタ用の充放電操作を行った以外は実
施例1と同様にして評価した。結果を図4に示す。図4
から明らかなように、本発明によって密閉性が向上した
結果、キャパシタにおいても充放電サイクル寿命が飛躍
的に向上したことがわかる。
The obtained capacitors 1 and 2 and the comparative capacitor 1 were evaluated in the same manner as in Example 1 except that the charging and discharging operations for the capacitors were performed. FIG. 4 shows the results. FIG.
As is clear from the graph, as a result of the improvement in the hermeticity according to the present invention, the charge / discharge cycle life of the capacitor was significantly improved.

【0072】[0072]

【発明の効果】以上のように、本発明の電気化学デバイ
スによれば、サイクル寿命、高温保存特性を改善するこ
とができる。
As described above, according to the electrochemical device of the present invention, cycle life and high-temperature storage characteristics can be improved.

【0073】また、本発明の電気化学デバイスの製造方
法によれば、かかる電気化学デバイスを確実に製造する
ことができる。
Further, according to the method for manufacturing an electrochemical device of the present invention, such an electrochemical device can be reliably manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気化学デバイスの構造を示し、
(a)は電気化学素子を構成する電極及び導出端子を示
す平面図、(b)は外装袋を示す平面図、(c)は電気
化学素子を外装袋に封入して構成される電気化学デバイ
スを示す平面図である。
FIG. 1 shows the structure of the electrochemical device of the present invention,
(A) is a plan view showing electrodes and lead-out terminals constituting an electrochemical element, (b) is a plan view showing an outer bag, and (c) is an electrochemical device formed by enclosing the electrochemical element in an outer bag. FIG.

【図2】図1(c)のA−A線に沿った断面図である。FIG. 2 is a sectional view taken along line AA of FIG. 1 (c).

【図3】実施例、比較例のリチウムイオン2次電池の充
放電容量の充放電回数に対する変化を示すグラフであ
る。
FIG. 3 is a graph showing the change in the charge / discharge capacity of the lithium ion secondary batteries of Examples and Comparative Examples with respect to the number of times of charge / discharge.

【図4】実施例、比較例の電気2重層キャパシタの充放
電容量の充放電回数に対する変化を示すグラフである。
FIG. 4 is a graph showing a change in charge / discharge capacity of an electric double layer capacitor according to an example and a comparative example with respect to the number of times of charge / discharge.

【符号の説明】[Explanation of symbols]

1 電気化学デバイス 10 電気化学素子 11,12 電極 13,14 導出端子 13a、14a シール部 20 外装袋 21 第1シール部 22 第2シール部 30 ラミネートフィルム 40 中間層 41 金属−樹脂間接着剤層 42 ポリオレフィン樹脂層 DESCRIPTION OF SYMBOLS 1 Electrochemical device 10 Electrochemical element 11, 12 Electrode 13, 14 Lead-out terminal 13a, 14a Seal part 20 Outer bag 21 First seal part 22 Second seal part 30 Laminate film 40 Intermediate layer 41 Metal-resin adhesive layer 42 Polyolefin resin layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H011 AA17 CC02 CC06 CC10 DD13 EE04 FF04 GG08 HH02 5H029 AJ04 AJ05 AK03 AK06 AK07 AL06 AL12 AM00 AM02 AM03 AM04 AM05 AM07 AM16 BJ04 CJ05 CJ13 CJ22 DJ02 DJ03 DJ05 DJ09 DJ13 EJ01 EJ12 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H011 AA17 CC02 CC06 CC10 DD13 EE04 FF04 GG08 HH02 5H029 AJ04 AJ05 AK03 AK06 AK07 AL06 AL12 AM00 AM02 AM03 AM04 AM05 AM07 AM16 BJ04 CJ05 CJ13 CJ22 DJ02 DJ03 DJ05 DJ09 DJ09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 外装袋と、この外装袋内に封入される電
気化学素子とを有する電気化学デバイスであって、 前記外装袋は、金属層と熱接着性樹脂層を有するラミネ
ートフィルムであり、 前記電気化学デバイスは、前記外装袋の熱接着性樹脂層
相互の熱接着したシール部で封口されて密封され、かつ
前記シール部を通って外部に導出する導出端子を有し、 前記シール部の前記導出端子と前記外装袋との間に、前
記導出端子に直接積層した金属−樹脂間接着剤層とこの
金属−樹脂間接着剤層を被覆するオレフィン樹脂層とを
有することを特徴とする電気化学デバイス。
1. An electrochemical device having an outer bag and an electrochemical element sealed in the outer bag, wherein the outer bag is a laminate film having a metal layer and a heat-adhesive resin layer, The electrochemical device has a lead-out terminal that is sealed and sealed by a heat-sealed seal portion between the heat-adhesive resin layers of the outer bag, and is led out through the seal portion. An electrical device comprising: a metal-resin adhesive layer directly laminated on the lead terminal and an olefin resin layer covering the metal-resin adhesive layer between the lead terminal and the outer bag. Chemical device.
【請求項2】 前記電気化学デバイスは、正負両極と高
分子固体電解質を有する請求項1の電気化学デバイス。
2. The electrochemical device according to claim 1, wherein the electrochemical device has both positive and negative electrodes and a solid polymer electrolyte.
【請求項3】 リチウム2次電池である請求項1または
2の電気化学デバイス。
3. The electrochemical device according to claim 1, which is a lithium secondary battery.
【請求項4】 電気2重層キャパシタである請求項1ま
たは2の電気化学デバイス。
4. The electrochemical device according to claim 1, which is an electric double layer capacitor.
【請求項5】 金属層と熱接着性樹脂層を有するラミネ
ートフィルムである外装袋に電気化学素子を収納し、 この電気化学素子の正負両極に接続された導出端子を、
前記外装袋の熱接着性樹脂層間に挟んで熱接着によりシ
ール部を形成し、封口する電気化学デバイスの製造方法
であって、 前記導出端子の前記シール部に該当する部分に前記導出
端子側から金属−樹脂間接着剤層、ポリオレフィン樹脂
層の順に積層した中間層で挟んで熱接着する導出端子被
覆工程と、 前記導出端子被覆工程の終了した電気化学デバイスの正
負両極間にある高分子膜に電解液を含浸させて高分子固
体電解質を得る注液工程と、 前記注液工程後の前記電気化学素子を前記外装袋内に前
記シール部で封入する封入工程と、 を有する電気化学デバイスの製造方法。
5. An electrochemical device is housed in an outer bag, which is a laminate film having a metal layer and a heat-adhesive resin layer, and a lead terminal connected to both positive and negative electrodes of the electrochemical device.
A method for manufacturing an electrochemical device in which a seal portion is formed by thermal bonding between thermal adhesive resin layers of the outer package and sealed, and a portion corresponding to the seal portion of the lead terminal is provided from the lead terminal side. A lead terminal coating step of thermally bonding with an intermediate layer laminated in the order of a metal-resin adhesive layer and a polyolefin resin layer, and a polymer film between the positive and negative electrodes of the electrochemical device after the lead terminal coating step is completed. A process of injecting an electrolyte to obtain a solid polymer electrolyte; and a step of enclosing the electrochemical element after the injecting step in the outer bag with the sealing portion. Method.
【請求項6】 前記導出端子被覆工程は、前記導出端子
の前記シール部に該当する部分に金属−樹脂間接着剤を
塗布して前記金属−樹脂間接着剤層を形成し、 この金属−樹脂間接着剤層の上にポリオレフィン樹脂フ
ィルムを熱接着する請求項5の電気化学デバイスの製造
方法。
6. The metal-resin adhesive layer is formed by applying a metal-resin adhesive to a portion of the lead terminal corresponding to the seal portion, wherein the metal-resin adhesive layer is formed. The method for producing an electrochemical device according to claim 5, wherein a polyolefin resin film is thermally bonded onto the inter-adhesive layer.
【請求項7】 前記導出端子被覆工程は、前記導出端子
の前記シール部に該当する部分に、金属−樹脂間接着剤
層とポリオレフィン樹脂層を有する融着シートを、前記
金属−樹脂間接着剤層を前記導出端子側に配置して熱接
着する請求項5の電気化学デバイスの製造方法。
7. The lead-out terminal covering step includes: bonding a fusion sheet having a metal-resin adhesive layer and a polyolefin resin layer to a portion corresponding to the seal portion of the lead-out terminal; 6. The method for manufacturing an electrochemical device according to claim 5, wherein a layer is arranged on the side of the lead-out terminal and thermally bonded.
JP23378599A 1999-08-20 1999-08-20 Electrochemical devices Expired - Lifetime JP4021592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23378599A JP4021592B2 (en) 1999-08-20 1999-08-20 Electrochemical devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23378599A JP4021592B2 (en) 1999-08-20 1999-08-20 Electrochemical devices

Publications (2)

Publication Number Publication Date
JP2001057182A true JP2001057182A (en) 2001-02-27
JP4021592B2 JP4021592B2 (en) 2007-12-12

Family

ID=16960540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23378599A Expired - Lifetime JP4021592B2 (en) 1999-08-20 1999-08-20 Electrochemical devices

Country Status (1)

Country Link
JP (1) JP4021592B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007265A (en) * 2001-06-20 2003-01-10 Dainippon Printing Co Ltd Film for lead wire of battery and packaging material for battery using the same
JP2003007261A (en) * 2001-06-20 2003-01-10 Dainippon Printing Co Ltd Packaging material for battery
JP2003007269A (en) * 2001-06-20 2003-01-10 Dainippon Printing Co Ltd Film for lead wire of battery, and packaging material for battery using the same
EP1492135A1 (en) * 2002-03-19 2004-12-29 Nissan Diesel Motor Co., Ltd. Electric double-layer capacitor
JP2005183700A (en) * 2003-12-19 2005-07-07 Sii Micro Parts Ltd Sheet type electric double layer capacitor
JP2006107894A (en) * 2004-10-05 2006-04-20 Gs Yuasa Corporation:Kk Battery
KR100614353B1 (en) 2004-11-29 2006-08-21 삼성에스디아이 주식회사 Secondary battery
WO2016002930A1 (en) * 2014-07-04 2016-01-07 株式会社佐藤工務所 Method for producing polarizable electrode for electric double layer capacitors, polarizable electrode for electric double layer capacitors, and electric double layer capacitor
JP2016157836A (en) * 2015-02-25 2016-09-01 株式会社サンエイト Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same
KR20180106152A (en) * 2017-03-17 2018-10-01 에스케이이노베이션 주식회사 Tab for secondary battery of pouch type with tab film and method for applying a tab film
CN113258126A (en) * 2021-05-14 2021-08-13 梅州市量能新能源科技有限公司 Lithium battery and compensation processing method for consistency of top seal thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007261A (en) * 2001-06-20 2003-01-10 Dainippon Printing Co Ltd Packaging material for battery
JP2003007269A (en) * 2001-06-20 2003-01-10 Dainippon Printing Co Ltd Film for lead wire of battery, and packaging material for battery using the same
JP2003007265A (en) * 2001-06-20 2003-01-10 Dainippon Printing Co Ltd Film for lead wire of battery and packaging material for battery using the same
EP1492135A4 (en) * 2002-03-19 2008-12-31 Nissan Diesel Motor Co Electric double-layer capacitor
EP1492135A1 (en) * 2002-03-19 2004-12-29 Nissan Diesel Motor Co., Ltd. Electric double-layer capacitor
JP2005183700A (en) * 2003-12-19 2005-07-07 Sii Micro Parts Ltd Sheet type electric double layer capacitor
JP2006107894A (en) * 2004-10-05 2006-04-20 Gs Yuasa Corporation:Kk Battery
KR100614353B1 (en) 2004-11-29 2006-08-21 삼성에스디아이 주식회사 Secondary battery
WO2016002930A1 (en) * 2014-07-04 2016-01-07 株式会社佐藤工務所 Method for producing polarizable electrode for electric double layer capacitors, polarizable electrode for electric double layer capacitors, and electric double layer capacitor
JP2016157836A (en) * 2015-02-25 2016-09-01 株式会社サンエイト Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same
KR20180106152A (en) * 2017-03-17 2018-10-01 에스케이이노베이션 주식회사 Tab for secondary battery of pouch type with tab film and method for applying a tab film
KR102318042B1 (en) * 2017-03-17 2021-10-27 에스케이이노베이션 주식회사 Tab for secondary battery of pouch type with tab film and method for applying a tab film
CN113258126A (en) * 2021-05-14 2021-08-13 梅州市量能新能源科技有限公司 Lithium battery and compensation processing method for consistency of top seal thereof
CN113258126B (en) * 2021-05-14 2022-06-03 梅州市量能新能源科技有限公司 Lithium battery and compensation processing method for consistency of top seal thereof

Also Published As

Publication number Publication date
JP4021592B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
JP4293501B2 (en) Electrochemical devices
JP3825593B2 (en) Manufacturing method of package
JP2002298825A (en) Method of producing electrochemical device and the electrochemical device
JPH09288996A (en) Nonaqueous electrolyte battery
JP4021592B2 (en) Electrochemical devices
JP2008243672A (en) Winding electrode for secondary battery, lithium-ion secondary battery, and secondary battery pack
JP2003272595A (en) Manufacturing method for electrochemical device, manufacturing equipment, and electrochemical device
JP4138172B2 (en) Electrochemical device and manufacturing method thereof
JP2001148234A (en) Electrochemical device
JP3999534B2 (en) Electrochemical devices
JPH11260414A (en) Nonaqueous system secondary battery
JP4202549B2 (en) Electrochemical device and manufacturing method thereof
JP3869668B2 (en) Electrochemical device and manufacturing method thereof
CN115191047A (en) Collector, electricity storage element, and electricity storage module
JP4899244B2 (en) Battery pack
JP2000294286A (en) Polymer lithium secondary battery
JP2004319098A (en) Electrochemical cell and its manufacturing method
JP4821043B2 (en) Electrochemical devices
JP3601283B2 (en) Non-aqueous electrolyte battery
JPH11204088A (en) Sheet battery
JP2019145724A (en) Electrochemical cell
JP4298883B2 (en) Lithium ion secondary battery
JPH11121043A (en) Manufacture of polymer secondary battery
JP4092543B2 (en) Non-aqueous secondary battery
JP2004139749A (en) Secondary battery, outer packaging material, and laminated film

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051031

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070105

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4021592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

EXPY Cancellation because of completion of term