JP2001053260A - Solid-state image pickup element and manufacture thereof - Google Patents
Solid-state image pickup element and manufacture thereofInfo
- Publication number
- JP2001053260A JP2001053260A JP11222692A JP22269299A JP2001053260A JP 2001053260 A JP2001053260 A JP 2001053260A JP 11222692 A JP11222692 A JP 11222692A JP 22269299 A JP22269299 A JP 22269299A JP 2001053260 A JP2001053260 A JP 2001053260A
- Authority
- JP
- Japan
- Prior art keywords
- region
- type semiconductor
- conductivity type
- gate
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 239000004065 semiconductor Substances 0.000 claims abstract description 281
- 238000003860 storage Methods 0.000 claims abstract description 70
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 238000003384 imaging method Methods 0.000 claims description 54
- 238000002955 isolation Methods 0.000 claims description 45
- 238000009825 accumulation Methods 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 5
- 230000035945 sensitivity Effects 0.000 abstract description 16
- 239000012535 impurity Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000005468 ion implantation Methods 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 206010047571 Visual impairment Diseases 0.000 description 3
- QEZGRWSAUJTDEZ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(piperidine-1-carbonyl)pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)C(=O)N1CCCCC1 QEZGRWSAUJTDEZ-UHFFFAOYSA-N 0.000 description 2
- 108091006146 Channels Proteins 0.000 description 2
- 241000519995 Stachys sylvatica Species 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 101100325793 Arabidopsis thaliana BCA2 gene Proteins 0.000 description 1
- 102100033040 Carbonic anhydrase 12 Human genes 0.000 description 1
- 101000867855 Homo sapiens Carbonic anhydrase 12 Proteins 0.000 description 1
- 108010075750 P-Type Calcium Channels Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000746 body region Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1463—Pixel isolation structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固体撮像素子、特
にMOS型の固体撮像素子及びその製造方法に関する。[0001] 1. Field of the Invention [0002] The present invention relates to a solid-state image pickup device, particularly to a MOS type solid-state image pickup device and a method of manufacturing the same.
【0002】[0002]
【従来の技術】固体撮像素子として、各単位画素がフォ
トダイオードによるセンサ部とスイッチング素子を有し
て構成され、光電変換によりセンサ部に蓄積された信号
電荷を読み出して、これを電圧又は電流に変換して出力
する、いわゆるMOS型の固体撮像素子が知られてい
る。このMOS型の固体撮像素子は、例えば画素の選択
を行うスイッチング素子や、信号電荷を読み出すスイッ
チング素子等に、MOSトランジスタが用いられてい
る。また、水平走査回路、垂直走査回路等の周辺回路に
MOSトランジスタが用いられ、スイッチング素子と一
連の構成で製造を行うことができる利点を有している。2. Description of the Related Art As a solid-state image pickup device, each unit pixel is constituted by having a sensor unit composed of a photodiode and a switching element, and reads out signal charges accumulated in the sensor unit by photoelectric conversion and converts the signal charges into a voltage or a current. 2. Description of the Related Art A so-called MOS type solid-state imaging device that converts and outputs a signal is known. In the MOS solid-state imaging device, for example, a MOS transistor is used as a switching element for selecting a pixel, a switching element for reading a signal charge, and the like. In addition, MOS transistors are used in peripheral circuits such as a horizontal scanning circuit and a vertical scanning circuit, and there is an advantage that manufacturing can be performed using a series of configurations with a switching element.
【0003】従来、センサ部にpn接合のフォトダイオ
ードを用いたMOS型の固体撮像素子においては、その
各画素が選択酸化による素子分離層、いわゆるLOCO
S(local oxidation of sill
icon)層によりXYマトリックス状に画素分離され
て形成される。Conventionally, in a MOS type solid-state imaging device using a pn junction photodiode in a sensor section, each pixel has an element isolation layer formed by selective oxidation, a so-called LOCO.
S (local oxidation of sill)
(icon) layer to separate pixels in an XY matrix.
【0004】図12は、従来のMOS型の固体撮像素子
の画素を構成するセンサ部及びスイッチング素子として
の読み出し用トランジスタの断面構造を示す。この固体
撮像素子1は、例えばn型のシリコン半導体基板2にp
型の半導体ウエル領域3を形成した後、選択酸化による
素子分離層(LOCOS層)4を形成し、素子分離層4
下にp型のチャネルストップ領域5を形成し、次いで、
素子分離層4で囲まれた画素領域にゲート絶縁膜6を介
して例えば多結晶シリコンによるゲート電極7を形成
し、さらにゲート電極7を挟んでp型半導体ウエル領域
3の一方の領域にn型半導体領域8を形成してフォトダ
イオードによるセンサ部9を形成し、他方の領域に読み
出しトランジスタのn型のソース・ドレイン領域10を
形成して構成される。FIG. 12 shows a cross-sectional structure of a sensor section constituting a pixel of a conventional MOS type solid-state imaging device and a readout transistor as a switching element. This solid-state imaging device 1 has, for example, a p-type silicon semiconductor substrate 2
After the formation of the semiconductor well region 3 of the type, an element isolation layer (LOCOS layer) 4 is formed by selective oxidation.
A p-type channel stop region 5 is formed below,
A gate electrode 7 made of, for example, polycrystalline silicon is formed in a pixel region surrounded by the element isolation layer 4 with a gate insulating film 6 interposed therebetween, and an n-type is formed in one of the p-type semiconductor well regions 3 with the gate electrode 7 interposed therebetween. A semiconductor region 8 is formed to form a sensor section 9 by a photodiode, and an n-type source / drain region 10 of a read transistor is formed in the other region.
【0005】[0005]
【発明が解決しようとする課題】ところで、上述の従来
のMOS型の固体撮像素子1において、そのセンサ部
(フォトダイオード)9を構成するn型半導体領域8
は、読み出し用トランジスタのソース・ドレイン領域1
0と同じに濃度の高いp型半導体ウエル領域3内にn型
不純物イオンを打ち返して形成されるため、濃い濃度で
形成せねばならなかった。Incidentally, in the above-mentioned conventional MOS type solid-state image pickup device 1, the n-type semiconductor region 8 constituting the sensor section (photodiode) 9 is provided.
Is the source / drain region 1 of the read transistor
Since the n-type impurity ions are formed by bombarding the p-type semiconductor well region 3 having a concentration as high as 0, it must be formed at a high concentration.
【0006】このため、次のような問題点を有してい
た。(i)完全空乏化させることが難しく、センサ部の
信号電荷(電子)を低い電圧で完全転送することができ
ない。(ii)センサ部9のn型半導体領域8の濃度のば
らつきが大きく、製造マージンがとれない。(iii )ま
た、センサ部9のn型半導体領域8を浅くしか作れない
ため、赤色光の感度が低い。For this reason, the following problems have been encountered. (I) Complete depletion is difficult, and signal charges (electrons) in the sensor unit cannot be completely transferred at a low voltage. (Ii) The concentration of the n-type semiconductor region 8 in the sensor section 9 varies greatly, and a manufacturing margin cannot be obtained. (Iii) Since the n-type semiconductor region 8 of the sensor section 9 can be made only shallow, the sensitivity to red light is low.
【0007】本発明は、上述の点に鑑み、感度の向上、
低い電圧での完全転送、製造のし易さ等を図った固体撮
像素子及びその製造方法を提供するものである。[0007] In view of the above, the present invention provides an improvement in sensitivity,
An object of the present invention is to provide a solid-state imaging device which achieves complete transfer at a low voltage, easiness of manufacture, and the like, and a method of manufacturing the same.
【0008】[0008]
【課題を解決するための手段】本発明に係る固体撮像素
子は、所定深さ位置の第1の第1導電型半導体ウエル領
域と素子分離層下の第2の第1導電型半導体ウエル領域
とにて囲まれた第2導電型半導体領域に、読み出し用ト
ランジスタのゲートを挟んでセンサ部の第2導電型の電
荷蓄積領域と、読み出し用トランジスタの第2導電型の
ソース・ドレイン領域とを形成し、上記電荷蓄積領域、
ゲート下及びソース・ドレイン領域と、上記第2導電型
半導体領域との間に第1導電型半導体領域を形成して構
成する。According to the present invention, there is provided a solid-state imaging device comprising: a first first conductivity type semiconductor well region at a predetermined depth position; and a second first conductivity type semiconductor well region below a device isolation layer. A second conductivity type charge accumulation region of the sensor unit and a second conductivity type source / drain region of the readout transistor are formed in the second conductivity type semiconductor region surrounded by. And the charge storage region,
A first conductivity type semiconductor region is formed below the gate and between the source / drain region and the second conductivity type semiconductor region.
【0009】本発明に係る固体撮像素子は、所定深さ位
置の第1の第1導電型半導体ウエル領域と素子分離層下
の第2の第1導電型半導体ウエル領域とにて囲まれた第
2導電型半導体領域に、読み出し用トランジスタのゲー
トを挟んでセンサ部の第2導電型の電荷蓄積領域と、読
み出し用トランジスタの第2導電型のソース・ドレイン
領域とを形成し、ソース・ドレイン領域下に第1導電型
半導体領域を形成して構成する。[0009] The solid-state imaging device according to the present invention includes a first semiconductor well region surrounded by a first first conductivity type semiconductor well region at a predetermined depth and a second first conductivity type semiconductor well region below an element isolation layer. A second conductivity type charge accumulation region of the sensor unit and a second conductivity type source / drain region of the readout transistor are formed in the two conductivity type semiconductor region with the gate of the readout transistor interposed therebetween. A first conductive type semiconductor region is formed below and configured.
【0010】本発明に係る固体撮像素子は、所定深さ位
置の第1の第1導電型半導体ウエル領域と素子分離層下
の第2の第1導電型半導体ウエル領域とにて囲まれた第
2導電型半導体領域に、読み出し用トランジスタのゲー
トを挟んでセンサ部の第2導電型の電荷蓄積領域と、読
み出し用トランジスタの第2導電型のソース・ドレイン
領域とを形成し、ゲート下に第1導電型半導体領域を形
成して構成する。[0010] The solid-state imaging device according to the present invention includes a first semiconductor well region surrounded by a first semiconductor well region at a predetermined depth and a second semiconductor well region below an element isolation layer. A second conductivity type charge accumulation region of the sensor unit and a second conductivity type source / drain region of the read transistor are formed in the two conductivity type semiconductor region with the gate of the readout transistor interposed therebetween. It is formed by forming a one conductivity type semiconductor region.
【0011】本発明に係る固体撮像素子によれば、光電
変換された一方の電荷は、センサ部の電荷蓄積領域に蓄
積される。第1の第1導電型半導体ウエル領域と素子分
離層との間に第2の第1導電型半導体ウエル領域が形成
され、センサ部において電荷蓄積領域及び第2導電型半
導体領域からなる、いわゆる第2導電型領域が形成され
るので、この第2導電型領域と第1の第1導電型半導体
ウエル領域との間で形成されるpn接合の位置が深くな
り、空乏層の広がり深さが大きくなってセンサ部におけ
る光電変換効率が増加し、赤色光の感度が上がる。According to the solid state imaging device of the present invention, one of the photoelectrically converted charges is accumulated in the charge accumulation region of the sensor unit. A second first conductivity type semiconductor well region is formed between the first first conductivity type semiconductor well region and the element isolation layer, and the sensor portion includes a charge accumulation region and a second conductivity type semiconductor region. Since the two-conductivity-type region is formed, the position of the pn junction formed between the second-conductivity-type region and the first first-conductivity-type semiconductor well region is deepened, and the spreading depth of the depletion layer is large. As a result, the photoelectric conversion efficiency in the sensor unit increases, and the sensitivity of red light increases.
【0012】そして、第1及び第2の第1導電型半導体
ウエル領域にて囲まれた第2導電型半導体領域に、ゲー
トを挟んで電荷蓄積領域及びソース・ドレイン領域を形
成することにより、光がセンサ部、ソース・ドレイン領
域下、ゲート下のどこに入射されても、第1の第1導電
型半導体ウエル領域の上の第2導電型半導体領域内で光
電変換されれば、その一方の電荷はセンサ部の電荷蓄積
領域に集められ、感度の向上が図れる。第2導電型半導
体領域内にセンサ部の電荷蓄積領域を形成するので、電
荷蓄積領域の不純物濃度を薄くすることが可能となり、
完全空乏化し易く、低い電圧でセンサ部の信号電荷を完
全転送することが可能となる。[0012] By forming a charge storage region and a source / drain region with a gate interposed therebetween in a second conductivity type semiconductor region surrounded by the first and second first conductivity type semiconductor well regions, light is emitted. No matter where the light is incident on the sensor portion, under the source / drain region, or under the gate, if one of the charges is photoelectrically converted in the second conductivity type semiconductor region above the first first conductivity type semiconductor well region, Are collected in the charge accumulation region of the sensor unit, and the sensitivity can be improved. Since the charge accumulation region of the sensor portion is formed in the second conductivity type semiconductor region, the impurity concentration of the charge accumulation region can be reduced,
It is easy to completely deplete, and it is possible to completely transfer the signal charge of the sensor unit at a low voltage.
【0013】電荷蓄積領域、ゲート下及びソース・ドレ
イン領域と第2導電型半導体領域間に第1導電型半導体
領域を形成した構成では、この第1導電型半導体領域に
よってゲートが閉じられている状態での電荷蓄積領域と
ソース・ドレイン領域間のリーク電流が阻止され、読み
出し用トランジスタとしての動作が確保できる。この第
1導電型半導体領域は、空乏化できる程度の不純物濃度
に設定することで、第1導電型半導体領域の下の第2導
電型半導体領域で光電変換された電荷を電荷蓄積領域に
集めることが可能となる。In a configuration in which the first conductivity type semiconductor region is formed under the charge storage region, under the gate, and between the source / drain region and the second conductivity type semiconductor region, the state in which the gate is closed by the first conductivity type semiconductor region is provided. , Leakage current between the charge storage region and the source / drain region is prevented, and the operation as a read transistor can be ensured. The first conductivity type semiconductor region is set to an impurity concentration that can be depleted, so that the charge photoelectrically converted in the second conductivity type semiconductor region below the first conductivity type semiconductor region is collected in the charge accumulation region. Becomes possible.
【0014】ソース・ドレイン領域下に第1導電型半導
体領域を形成した構成では、センサ部の電荷蓄積領域下
及びゲート下には第1導電型半導体領域が設けられてい
ない分、第2導電型半導体領域の面積が増し、より感度
の向上が図れる。In the configuration in which the first conductivity type semiconductor region is formed below the source / drain regions, the second conductivity type semiconductor region is not provided below the charge storage region and the gate of the sensor unit, and thus the second conductivity type semiconductor region is not provided. The area of the semiconductor region is increased, and the sensitivity can be further improved.
【0015】また、ソース・ドレイン領域下の第1導電
型半導体領域によって、ゲートが閉じられた状態での電
荷蓄積領域とソース・ドレイン間のリーク電流が阻止さ
れ、読み出し用トランジスタとしての動作が確保でき
る。この場合の第1導電型半導体領域の不純物濃度は、
センサ部の空乏化に関係なく設定できる。In addition, the first conductivity type semiconductor region below the source / drain region prevents a leak current between the charge accumulation region and the source / drain in a state where the gate is closed, and secures the operation as a read transistor. it can. In this case, the impurity concentration of the first conductivity type semiconductor region is:
It can be set regardless of the depletion of the sensor section.
【0016】ゲート下に第1導電型半導体領域を形成し
た構成では、この第1導電型半導体領域によって、ゲー
トが閉じられているとき、ゲート絶縁膜界面とセンサ部
の電荷蓄積領域が分離されるので、ゲート絶縁膜界面で
発生する電荷がセンサ部の電荷蓄積領域に入らず、ソー
ス・ドレイン領域側に流入し、暗電流の低減が図れる。In the configuration in which the first conductivity type semiconductor region is formed under the gate, when the gate is closed, the first conductivity type semiconductor region separates the interface between the gate insulating film and the charge accumulation region of the sensor section. Therefore, the charge generated at the gate insulating film interface does not enter the charge accumulation region of the sensor portion but flows into the source / drain region side, and the dark current can be reduced.
【0017】ゲート下の第1導電型半導体領域により、
電荷蓄積領域からソース・ドレイン領域へ電荷が流出し
にくく、電荷蓄積領域の飽和電位が低くなり、飽和電荷
数が大きくなる。また、ゲート下の第1導電型半導体領
域により、電荷蓄積領域とソース・ドレイン領域が分離
されるので、ゲート長を短くでき、微細化が可能にな
る。With the first conductivity type semiconductor region under the gate,
It is difficult for the charge to flow out of the charge storage region to the source / drain region, the saturation potential of the charge storage region decreases, and the number of saturated charges increases. In addition, the charge accumulation region and the source / drain region are separated by the first conductivity type semiconductor region below the gate, so that the gate length can be shortened and miniaturization becomes possible.
【0018】本発明に係る固体撮像素子の製造方法は、
第2導電型の半導体基板に絶縁層による素子分離層を形
成した後、半導体基体内の所定深さ位置の第1の第1導
電型半導体ウエル領域と、素子分離層下の第1の第1導
電型半導体ウエル領域に達する第2の第1導電型半導体
ウエル領域と、第1及び第2の第1導電型半導体ウエル
領域に囲まれた第2導電型半導体領域内の所定深さ位置
の第1導電型半導体領域とを形成し、次いで、ゲート電
極を挟んで上記第1導電型半導体領域に達する第2導電
型のソース・ドレイン領域とセンサ部の第2導電型の電
荷蓄積領域を形成する。A method for manufacturing a solid-state imaging device according to the present invention comprises:
After forming an element isolation layer of an insulating layer on a semiconductor substrate of the second conductivity type, the first first conductivity type semiconductor well region at a predetermined depth position in the semiconductor substrate and the first first semiconductor well region below the element isolation layer are formed. A second first conductivity type semiconductor well region reaching the conductivity type semiconductor well region; and a second first conductivity type semiconductor well region at a predetermined depth in the second conductivity type semiconductor region surrounded by the first and second first conductivity type semiconductor well regions. A first conductivity type semiconductor region is formed, and then a second conductivity type source / drain region reaching the first conductivity type semiconductor region across the gate electrode and a second conductivity type charge storage region of the sensor portion are formed. .
【0019】本発明に係る固体撮像素子の製造方法は、
第2導電型の半導体基板に絶縁層による素子分離層を形
成した後、半導体基板内の所定深さ位置の第1の第1導
電型半導体ウエル領域と、素子分離層下の第1の第1導
電型半導体ウエル領域に達する第2の第1導電型半導体
ウエル領域と、第1及び第2の第1導電型半導体ウエル
領域に囲まれた第2導電型半導体領域の表面全面に第1
導電型半導体領域とを形成し、次いで、ゲート電極を挟
んで一方の領域に第2導電型のソース・ドレイン領域及
びソース・ドレイン領域下の第1導電型半導体領域を形
成し、他方の領域にセンサ部の第2導電型の電荷蓄積領
域を形成する。The method for manufacturing a solid-state imaging device according to the present invention comprises:
After forming an element isolation layer of an insulating layer on a semiconductor substrate of the second conductivity type, a first well of the first conductivity type semiconductor at a predetermined depth position in the semiconductor substrate and a first first region below the element isolation layer are formed. A first first conductive type semiconductor well region reaching the conductive type semiconductor well region, and a first conductive type semiconductor well region surrounded by the first and second first conductive type semiconductor well regions.
Forming a conductive type semiconductor region, and then forming a second conductive type source / drain region and a first conductive type semiconductor region below the source / drain region in one region with the gate electrode interposed therebetween, and forming the second conductive type semiconductor region in the other region. A charge accumulation region of the second conductivity type of the sensor unit is formed.
【0020】本発明に係る固体撮像素子の製造方法によ
れば、画素を構成する各領域を自己整合的に形成でき
る。According to the method of manufacturing a solid-state imaging device according to the present invention, each region constituting a pixel can be formed in a self-aligned manner.
【0021】[0021]
【発明の実施の形態】本発明に係る固体撮像素子は、p
n接合型のセンサ部と少なくとも読み出し用トランジス
タを有する画素が配列されてなる固体撮像素子であっ
て、所定深さ位置の第1の第1導電型半導体ウエル領域
と素子分離層下の第2の第1導電型半導体ウエル領域と
にて囲まれた第2導電型半導体領域の表面側に、読み出
し用トランジスタのゲートを挟んでセンサ部を構成する
第2導電型の電荷蓄積領域と、読み出し用トランジスタ
の第2導電型のソース・ドレイン領域、ゲート下及び電
荷蓄積領域と、上記第2導電型半導体領域との間に第1
導電型半導体領域が形成された構成とする。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A solid-state imaging device according to the present invention has p
A solid-state imaging device in which an n-junction sensor portion and pixels having at least a readout transistor are arranged, wherein a first first conductivity type semiconductor well region at a predetermined depth position and a second under a device isolation layer are provided. A second-conductivity-type charge storage region constituting a sensor section with a gate of the read-out transistor interposed therebetween, on the surface side of the second-conductivity-type semiconductor region surrounded by the first-conductivity-type semiconductor well region; A first conductive type source / drain region, a gate lower region, and a charge storage region; and a first conductive type semiconductor region between the second conductive type semiconductor region and the second conductive type semiconductor region.
The structure is such that a conductive semiconductor region is formed.
【0022】本発明に係る固体撮像素子は、pn接合型
のセンサ部と少なくとも読み出し用トランジスタを有す
る画素が配列されてなる固体撮像素子であって、所定深
さ位置の第1の第1導電型半導体ウエル領域と、素子分
離層下の第2の第1導電型半導体ウエル領域とにて囲ま
れた第2導電型半導体領域の表面側に、読み出し用トラ
ンジスタのゲートを挟んでセンサ部を構成する第2導電
型の電荷蓄積領域と、読み出し用トランジスタの第2導
電型のソース・ドレイン領域とが形成され、ソース・ド
レイン領域下に第1導電型半導体領域が形成された構成
とする。A solid-state image pickup device according to the present invention is a solid-state image pickup device in which a pn-junction sensor section and pixels having at least a readout transistor are arranged, wherein the first first conductivity type at a predetermined depth position is provided. A sensor section is formed on the surface side of the second conductivity type semiconductor region surrounded by the semiconductor well region and the second first conductivity type semiconductor well region below the element isolation layer with the gate of the read transistor interposed therebetween. A charge accumulation region of the second conductivity type and a source / drain region of the second conductivity type of the read transistor are formed, and a semiconductor region of the first conductivity type is formed below the source / drain region.
【0023】本発明に係る固体撮像素子は、pn接合型
のセンサ部と少なくとも読み出し用トランジスタを有す
る画素が配列されてなる固体撮像素子であって、所定深
さ位置の第1の第1導電型半導体ウエル領域と、素子分
離層下の第2の第1導電型半導体ウエル領域とにて囲ま
れた第2導電型半導体領域の表面側に、読み出し用トラ
ンジスタのゲートを挟んでセンサ部を構成する第2導電
型の電荷蓄積領域と、読み出し用トランジスタの第2導
電型のソース・ドレイン領域とが形成され、ゲート下に
第1導電型半導体領域が形成された構成とする。この固
体撮像素子において、読み出し用トランジスタのソース
・ドレイン領域下に第1導電型半導体領域を形成するこ
とができる。The solid-state image pickup device according to the present invention is a solid-state image pickup device in which a pn junction type sensor section and pixels having at least a readout transistor are arranged, wherein the first first conductivity type at a predetermined depth position is provided. A sensor section is formed on the surface side of the second conductivity type semiconductor region surrounded by the semiconductor well region and the second first conductivity type semiconductor well region below the element isolation layer with the gate of the read transistor interposed therebetween. A charge accumulation region of the second conductivity type and a source / drain region of the second conductivity type of the reading transistor are formed, and a semiconductor region of the first conductivity type is formed below the gate. In this solid-state imaging device, the first conductivity type semiconductor region can be formed below the source / drain region of the readout transistor.
【0024】上記各固体撮像素子において、第2導電型
の電荷蓄積領域の表面に第1導電型半導体領域を形成す
ることができる。In each of the solid-state imaging devices described above, the first conductivity type semiconductor region can be formed on the surface of the second conductivity type charge storage region.
【0025】本発明に係る固体撮像素子の製造方法は、
第2導電型の半導体基板の表面に絶縁層による素子分離
層を形成する工程と、半導体基板内の所定深さ位置に第
1の第1導電型半導体ウエル領域を形成し、素子分離層
下に第1の第1導電型半導体ウエル領域に達するよう
に、第2の第1導電型半導体ウエル領域を形成し、第1
及び第2の第1導電型半導体ウエル領域にて囲まれた第
2導電型半導体領域内の所定深さ位置に第1導電型半導
体領域を形成する工程と、ゲート電極を挟んで第1導電
型半導体領域に達するように、第2導電型のソース・ド
レイン領域とセンサ部を構成する第2導電型の電荷蓄積
領域を形成する工程を有する。A method for manufacturing a solid-state imaging device according to the present invention
Forming a device isolation layer of an insulating layer on the surface of the second conductivity type semiconductor substrate; forming a first first conductivity type semiconductor well region at a predetermined depth position in the semiconductor substrate; Forming a second first conductivity type semiconductor well region so as to reach the first first conductivity type semiconductor well region;
Forming a first conductivity type semiconductor region at a predetermined depth position in the second conductivity type semiconductor region surrounded by the second first conductivity type semiconductor well region; Forming a second conductivity type source / drain region and a second conductivity type charge accumulation region constituting a sensor portion so as to reach the semiconductor region;
【0026】本発明に係る固体撮像素子の製造方法は、
第2導電型の半導体基板の表面に絶縁層による素子分離
層を形成する工程と、半導体基板内の所定深さ位置に第
1の第1導電型半導体ウエル領域を形成し、素子分離層
下に該第1の第1導電型半導体ウエル領域に達するよう
に、第2の第1導電型半導体ウエル領域を形成し、第1
及び第2の第1導電型半導体ウエル領域にて囲まれた第
2導電型半導体領域の表面全面に第1導電型半導体領域
を形成する工程と、ゲート電極を挟んで一方の領域に第
2導電型のソース・ドレイン領域及び該ソース・ドレイ
ン領域下の第1導電型半導体領域を形成すると共に、他
方の領域にセンサ部を構成する第2導電型の電荷蓄積領
域を形成する工程を有する。A method for manufacturing a solid-state image pickup device according to the present invention comprises:
Forming a device isolation layer of an insulating layer on the surface of the second conductivity type semiconductor substrate; forming a first first conductivity type semiconductor well region at a predetermined depth position in the semiconductor substrate; Forming a second first conductivity type semiconductor well region so as to reach the first first conductivity type semiconductor well region;
Forming a first conductivity type semiconductor region over the entire surface of the second conductivity type semiconductor region surrounded by the second first conductivity type semiconductor well region; Forming a source / drain region of the first type and a semiconductor region of the first conductivity type below the source / drain region, and forming a charge storage region of the second conductivity type constituting the sensor section in the other region.
【0027】図1は、本発明の実施の形態に係る例えば
MOS型の固体撮像装置の一例の構成を示す。FIG. 1 shows a configuration of an example of a MOS solid-state imaging device according to an embodiment of the present invention.
【0028】この固体撮像装置20は、光電変換を行う
フォトダイオード(即ちpn接合型のセンサ部)21と
画素を選択する垂直選択用スイッチ素子(例えばMOS
トランジスタ)23と読み出し用スイッチ素子(例えば
MOSトランジスタ)22とによって構成された単位画
素24がマトリックス状に複数配列されて成る撮像領域
と、各行毎に垂直選択用スイッチ素子23の制御電極
(いわゆるゲート電極)が共通に接続された垂直選択線
25に垂直走査パルスφV〔φV1 ,‥‥φVm,‥‥
φVm+k ,‥‥〕を出力する垂直走査回路26と、各列
毎に読み出し用スイッチ素子22の主電極が共通に接続
された垂直信号線27と、各列毎に垂直選択用スイッチ
素子23の主電極に接続された読み出しパルス線28
と、垂直信号線27と水平信号線29に主電極が接続さ
れた水平スイッチ素子(例えばMOSトランジスタ)3
0と、水平スイッチ素子30の制御電極(いわゆるゲー
ト電極)と読み出しパルス線28に接続された水平走査
回路31と、水平信号線29に接続されたアンプ32に
より構成される。The solid-state imaging device 20 includes a photodiode (that is, a pn junction type sensor unit) 21 for performing photoelectric conversion and a vertical selection switch element (for example, a MOS) for selecting a pixel.
Transistor) 23 and readout switch element (for example, MOS transistor) 22, an imaging area in which a plurality of unit pixels 24 are arranged in a matrix, and control electrodes (so-called gates) of vertical select switch element 23 for each row. vertical scanning pulse .phi.V [.phi.V 1 to the vertical selection line 25 electrodes) are commonly connected, ‥‥ φV m, ‥‥
φV m + k , ‥‥], a vertical signal line 27 to which the main electrode of the readout switch element 22 is commonly connected for each column, and a vertical selection switch element for each column. Read pulse line 28 connected to the main electrode 23
And a horizontal switch element (for example, a MOS transistor) 3 having a main electrode connected to the vertical signal line 27 and the horizontal signal line 29.
0, a control electrode (so-called gate electrode) of the horizontal switch element 30, a horizontal scanning circuit 31 connected to the read pulse line 28, and an amplifier 32 connected to the horizontal signal line 29.
【0029】各単位画素24では、読み出し用スイッチ
素子22の一方の主電極がフォトダイオード21に接続
され、その他方の主電極が垂直信号線27に接続され
る。また、垂直選択用スイッチ素子23の一方の主電極
が読み出し用スイッチ素子22の制御電極(いわゆるゲ
ート電極)に接続され、その他方の主電極が読み出しパ
ルス線28に接続され、その制御電極(いわゆるゲート
電極)が垂直選択線25に接続される。In each unit pixel 24, one main electrode of the readout switch element 22 is connected to the photodiode 21, and the other main electrode is connected to the vertical signal line 27. Further, one main electrode of the vertical selection switch element 23 is connected to a control electrode (so-called gate electrode) of the read switch element 22, and the other main electrode is connected to the read pulse line 28 and its control electrode (so-called control electrode). (Gate electrode) is connected to the vertical selection line 25.
【0030】水平走査回路31から各水平スイッチ素子
30の制御電極(いわゆるゲート電極)に水平走査パル
スφH〔φH1 ,‥‥φHn ,φHn+1 ,‥‥〕が供給
されると共に、各読み出しパルス線28に水平読み出し
パルスφHR 〔φHR 1 ,‥‥φHR n ,φHR n+1 ,
‥‥〕が供給される。The horizontal scanning pulse .phi.H to the control electrode (so-called gate electrode) of each horizontal switch element 30 from the horizontal scanning circuit 31 [φH 1, ‥‥ φH n, φH n + 1, ‥‥ ] with is supplied, the horizontal readout pulse .phi.H R [.phi.H R 1 to the read pulse line 28, ‥‥ φH R n, φH R n + 1,
‥‥] is supplied.
【0031】この固体撮像装置20の基本動作は次のよ
うになる。垂直走査回路26からの垂直走査パルスφV
m と、水平走査回路31からの読み出しパルスφHR n
を受けた垂直選択用スイッチ素子23が、それらのパル
スφVm ,φHR n の積のパルスを作り、この積のパル
スで読み出し用スイッチ素子22の制御電極を制御し
て、フォトダイオード21で光電変換された信号電荷を
垂直信号線27に読み出す。この信号電荷は、水平映像
期間中に、水平走査回路31からの水平走査パルスφH
n により制御された水平スイッチ素子30を通して水平
信号線29に出て、これに接続されたアンプ32により
信号電圧に変換されて出力される。The basic operation of the solid-state imaging device 20 is as follows. The vertical scanning pulse φV from the vertical scanning circuit 26
m and the read pulse φH R n from the horizontal scanning circuit 31
The vertical selection switch element 23 which receives the, the pulses .phi.V m, making the pulse of the product of .phi.H R n, by controlling the control electrode of the read switching element 22 by the pulse of this product, photoelectric photodiode 21 The converted signal charge is read out to the vertical signal line 27. This signal charge is supplied to the horizontal scanning pulse φH from the horizontal scanning circuit 31 during the horizontal video period.
The signal is output to a horizontal signal line 29 through a horizontal switch element 30 controlled by n, and is converted into a signal voltage by an amplifier 32 connected thereto and output.
【0032】尚、単位画素24の構成としては、上例に
限らず、例えば図2、図3、その他等の種々の構成を採
り得る。図2では、単位画素24が、フォトダイオード
21と之に接続された読み出し用MOSトランジスタ2
2で構成され、読み出し用MOSトランジスタ22の他
方の主電極が垂直信号線27に接続されると共に、その
ゲート電極が垂直選択線25に接続される。The configuration of the unit pixel 24 is not limited to the above example, and various configurations such as those shown in FIGS. In FIG. 2, the unit pixel 24 includes the photodiode 21 and the readout MOS transistor 2 connected to the photodiode 21.
The other main electrode of the read MOS transistor 22 is connected to the vertical signal line 27, and its gate electrode is connected to the vertical selection line 25.
【0033】図3では、単位画素24が、フォトダイオ
ード21と、読み出し用MOSトランジスタ35と、F
D(フローティングディフージョン)アンプMOSトラ
ンジスタ36と、FDリセットMOSトランジスタ37
と、垂直選択用MOSトランジスタ38で構成される。
そして、読み出し用MOSトランジスタ35の一方の主
電極がフォトダイオード21に接続されると共に他方の
主電極がFDリセットMOSトランジスタ37の一方の
主電極に接続され、FDリセットMOSトランジスタ3
7の他方の主電極と垂直選択用MOSトランジスタ38
の一方の主電極間にFDアンプMOSトランジスタ36
が接続され、FDアンプMOSトランジスタ36のゲー
ト電極が、読み出し用MOSトランジスタ35とFDリ
セットMOSトランジスタ37の接続中点であるFD
(フローティングディフージョン)部に接続される。読
み出し用MOSトランジスタ35のゲート電極は垂直読
み出し線41に接続され、FDリセットMOSトランジ
スタ37の他方の主電極が電源VDDに接続されると共
にそのゲート電極が水平リセット線42に接続され、垂
直選択用MOSトランジスタ38の他方の主電極が垂直
信号線43に接続され、そのゲート電極が垂直選択線4
4に接続される。In FIG. 3, the unit pixel 24 includes the photodiode 21, the read MOS transistor 35, and the F
D (floating diffusion) amplifier MOS transistor 36 and FD reset MOS transistor 37
And a vertical selection MOS transistor 38.
Then, one main electrode of the read MOS transistor 35 is connected to the photodiode 21 and the other main electrode is connected to one main electrode of the FD reset MOS transistor 37.
7 and the vertical selection MOS transistor 38
FD amplifier MOS transistor 36 between one main electrode of
Is connected, and the gate electrode of the FD amplifier MOS transistor 36 is connected to the FD which is the connection point between the read MOS transistor 35 and the FD reset MOS transistor 37.
(Floating diffusion) section. The gate electrode of the read MOS transistor 35 is connected to the vertical read line 41, the other main electrode of the FD reset MOS transistor 37 is connected to the power supply VDD, and the gate electrode is connected to the horizontal reset line 42, for vertical selection. The other main electrode of MOS transistor 38 is connected to vertical signal line 43, and its gate electrode is connected to vertical selection line 4.
4 is connected.
【0034】図4は、図1の固体撮像素子20における
画素24、特にそのセンサ部21及び読み出し用MOS
トランジスタ22を含む領域部の一実施の形態を示す。
本実施の形態に係る画素241は、第2導電型、例えば
n型のシリコン半導体基板51内の所定深さ位置に第1
導電型の例えばp型の第1の半導体ウエル領域52が形
成され、半導体基板51の表面に画素分離のための選択
酸化による素子分離層(いわゆるLOCOS層)53が
形成され、この素子分離層53下に第1のp型半導体ウ
エル領域52に達する第2のp型半導体ウエル領域54
が形成される。n型半導体基板51の濃度は、例えば1
014〜1016cm-3程度、第1のp型半導体ウエル領域
52の濃度は、例えば1016〜1018cm-3程度、第2
のp型半導体ウエル領域54の濃度は、例えば1016〜
1018cm-3程度とすることができる。FIG. 4 shows a pixel 24 in the solid-state imaging device 20 of FIG.
One embodiment of a region including a transistor 22 is shown.
The pixel 241 according to the present embodiment has a first conductivity type, for example, an n-type silicon semiconductor substrate 51 at a predetermined depth position in the silicon semiconductor substrate 51.
A first semiconductor well region 52 of conductivity type, for example, p-type is formed, and an element isolation layer (so-called LOCOS layer) 53 is formed on the surface of the semiconductor substrate 51 by selective oxidation for pixel isolation. A second p-type semiconductor well region 54 that reaches below the first p-type semiconductor well region 52
Is formed. The concentration of the n-type semiconductor substrate 51 is, for example, 1
0 14 ~10 16 cm -3 or so, the concentration of the first p-type semiconductor well region 52, for example 10 16 ~10 18 cm -3 or so, the second
The concentration of the p-type semiconductor well region 54 is, for example, 10 16 to
It can be about 10 18 cm -3 .
【0035】第2のp型半導体ウエル領域54は、一
部、素子分離層54で囲まれた画素領域(いわゆるアク
ティブ領域)内に延長するように形成される。即ち、こ
の第2のp型半導体ウエル領域54は、画素領域に対応
する部分を除くように、格子状に形成される。The second p-type semiconductor well region 54 is formed so as to partially extend into a pixel region (a so-called active region) surrounded by the element isolation layer 54. That is, the second p-type semiconductor well region 54 is formed in a lattice shape so as to exclude a portion corresponding to the pixel region.
【0036】第1及び第2のp型半導体ウエル領域52
及び54にて囲まれたn型半導体領域、即ち、半導体基
板52と同じ低濃度であるn型半導体領域55上には、
例えばSiO2 等によるゲート絶縁膜56を介して読み
出し用MOSトランジスタ22のゲート電極57が形成
される。58はゲート電極57の側壁に形成された例え
ばSiO2 等によるサイドウォールである。First and second p-type semiconductor well regions 52
And 54, on the n-type semiconductor region 55, which is the same low concentration as the semiconductor substrate 52,
For example, a gate electrode 57 of the read MOS transistor 22 is formed via a gate insulating film 56 made of, for example, SiO 2 . Reference numeral 58 denotes a side wall formed of, for example, SiO 2 on the side wall of the gate electrode 57.
【0037】そして、n型半導体領域55内の所定深さ
位置に、画素領域の全体にわたるように、低濃度のp型
半導体領域60が形成されると共に、このp型半導体領
域60に接するように、n型半導体領域55の表面にゲ
ート電極57を挟んで一方に読み出し用MOSトランジ
スタ22のn型のソース・ドレイン領域61が形成さ
れ、他方にセンサ部21を構成するn型半導体領域62
が形成される。p型半導体領域60の濃度は、例えば1
015〜1016cm-3程度とすることができる。Then, a low-concentration p-type semiconductor region 60 is formed at a predetermined depth position in the n-type semiconductor region 55 so as to cover the entire pixel region, and is in contact with the p-type semiconductor region 60. An n-type source / drain region 61 of the read MOS transistor 22 is formed on one side of the surface of the n-type semiconductor region 55 with a gate electrode 57 interposed therebetween, and an n-type semiconductor region 62 forming the sensor section 21 on the other side.
Is formed. The concentration of the p-type semiconductor region 60 is, for example, 1
It can be about 0 15 to 10 16 cm -3 .
【0038】ソース・ドレイン領域61は、通常の高濃
度で形成される。センサ部21のn型半導体領域62
は、実質的な電荷蓄積領域となる。このn型の電荷蓄積
領域62の不純物濃度は、ソース・ドレイン領域61よ
り低く、低濃度のn型半導体領域55より高く設定され
る。ソース・ドレイン領域61の濃度は、例えば1019
cm-3以上、センサ部21のn型半導体領域62の濃度
は、例えば1017cm-3程度とすることができる。セン
サ部21では、低濃度のn型半導体領域55と第1のp
型半導体ウエル領域52間でpn接合jが形成され、動
作時に、センサ部21の空乏層が第1のp型半導体ウエ
ル領域52まで広がるようになされる。The source / drain region 61 is formed at a normal high concentration. N-type semiconductor region 62 of sensor unit 21
Becomes a substantial charge storage region. The impurity concentration of the n-type charge storage region 62 is set lower than that of the source / drain region 61 and higher than that of the low-concentration n-type semiconductor region 55. The concentration of the source / drain region 61 is, for example, 10 19
cm −3 or more, the concentration of the n-type semiconductor region 62 of the sensor unit 21 can be, for example, about 10 17 cm −3 . In the sensor section 21, the low-concentration n-type semiconductor region 55 and the first p-type
A pn junction j is formed between the p-type semiconductor well regions 52, so that the depletion layer of the sensor section 21 extends to the first p-type semiconductor well region 52 during operation.
【0039】p型半導体領域60は、ゲートが閉じられ
たオフ状態のときソース・ドレイン領域61及び電荷蓄
積領域62を低濃度のn型半導体領域55と分離する
も、センサ部21の電荷蓄積領域62に光電変換された
信号電荷を蓄積する際に完全空乏化できる程度の低濃度
にコントロールされて形成される。The p-type semiconductor region 60 separates the source / drain region 61 and the charge storage region 62 from the low-concentration n-type semiconductor region 55 when the gate is closed and in the off state. When the photoelectrically converted signal charges are stored in the memory cell 62, the density is controlled to be low enough to be completely depleted.
【0040】ゲート電極57下は、p型半導体領域60
からの不純物拡散で低濃度のp型半導体領域63に形成
される。なお、p型半導体領域63は、イオン注入によ
り所望濃度で積極的に形成することもできる。さらに、
センサ部21において、そのn型の電荷蓄積領域62の
表面、即ち絶縁膜56との界面には、比較的高濃度、例
えば1018cm-3程度のp型半導体領域64を形成する
のが好ましい。Under the gate electrode 57, the p-type semiconductor region 60
Is formed in the low-concentration p-type semiconductor region 63 by impurity diffusion from the substrate. Note that the p-type semiconductor region 63 can be positively formed at a desired concentration by ion implantation. further,
In the sensor section 21, a p-type semiconductor region 64 having a relatively high concentration, for example, about 10 18 cm −3 is preferably formed on the surface of the n-type charge storage region 62, that is, at the interface with the insulating film 56. .
【0041】図6及び図7は、図4の画素241の製造
方法を示す。先ず、図6Aに示すように、低濃度のn型
半導体基板51を用意し、その表面に選択酸化による素
子分離層53を形成する。FIGS. 6 and 7 show a method of manufacturing the pixel 241 of FIG. First, as shown in FIG. 6A, a low-concentration n-type semiconductor substrate 51 is prepared, and an element isolation layer 53 is formed on the surface by selective oxidation.
【0042】次に、図7Bに示すように、素子分離層5
3下及び素子分離層53にて区画された画素領域を含む
全面にp型不純物をイオン注入して、半導体基板51の
所定深さ位置に、第1のp型半導体ウエル領域52を形
成し、画素領域を除いて素子分離層53下に第1のp型
半導体ウエル領域52に達する第2のp型半導体ウエル
領域54を形成し、さらに、第1及び第2のp型半導体
ウエル領域52及び53で囲まれたn型半導体領域55
内の所定深さ位置に、p型不純物をイオン注入して、低
濃度のp型半導体領域60を形成する。この領域60
は、低濃度なので、領域54と重なってもよく、厳密な
マスク合せは不要である。Next, as shown in FIG. 7B, the element isolation layer 5 is formed.
3, a first p-type semiconductor well region 52 is formed at a predetermined depth position of the semiconductor substrate 51 by ion-implanting p-type impurities into the entire surface including the pixel region partitioned by the element isolation layer 53. A second p-type semiconductor well region 54 reaching the first p-type semiconductor well region 52 is formed below the element isolation layer 53 except for the pixel region, and further, the first and second p-type semiconductor well regions 52 and N-type semiconductor region 55 surrounded by 53
A low concentration p-type semiconductor region 60 is formed by ion-implanting a p-type impurity at a predetermined depth position in the inside. This area 60
May be overlapped with the region 54 because of low density, and strict mask alignment is not required.
【0043】次に、図7Cに示すように、p型半導体領
域60より表面側のn型半導体領域55上に、例えばS
iO2 等によるゲート絶縁膜56を介して例えば多結晶
シリコンによるゲート電極57を形成し、その後、ゲー
ト電極57を挟んで自己整合的に且つ選択的にp型不純
物をイオン注入してp型半導体領域60に達するよう
に、n型のソース・ドレイン領域61及びn型の電荷蓄
積領域62を形成する。Next, as shown in FIG. 7C, for example, S is formed on the n-type semiconductor region 55 on the surface side of the p-type semiconductor region 60.
A gate electrode 57 made of, for example, polycrystalline silicon is formed via a gate insulating film 56 made of iO 2 or the like, and then a p-type impurity is ion-implanted in a self-aligned manner and selectively with the gate electrode 57 interposed therebetween to form a p-type An n-type source / drain region 61 and an n-type charge storage region 62 are formed so as to reach the region 60.
【0044】次に、図7Dに示すように、ゲート電極5
7の側壁に例えばSiO2 等による絶縁性のサイドウォ
ール58を形成する。そして,n型の電荷蓄積領域62
の表面にp型不純物をイオン注入して自己整合的に高濃
度のp型半導体領域64を形成する。Next, as shown in FIG. 7D, the gate electrode 5
An insulating side wall 58 made of, for example, SiO 2 or the like is formed on the side wall 7. Then, the n-type charge storage region 62
A high concentration p-type semiconductor region 64 is formed in a self-aligned manner by ion-implanting a p-type impurity into the surface of the substrate.
【0045】本実施の形態に係る画素241を備えた固
体撮像素子によれば、画素241に入射された光により
光電変換された一方の電荷、本例では信号電荷となる電
子がセンサ部21のn型の電荷蓄積領域62に蓄積され
る。電荷蓄積領域62に蓄積された信号電荷は、読み出
し時に、読み出し用MOSトランジスタ22のゲートが
オンすることにより、ソース・ドレイン領域61へ読み
出される。According to the solid-state imaging device including the pixel 241 according to the present embodiment, one of the electric charges photoelectrically converted by the light incident on the pixel 241, in this example, the electron which becomes the signal electric charge The charge is stored in the n-type charge storage region 62. The signal charge stored in the charge storage region 62 is read to the source / drain region 61 when the gate of the read MOS transistor 22 is turned on at the time of reading.
【0046】センサ部21では、電荷蓄積領域62及び
低濃度のn型半導体領域55からなる所謂n型領域と、
第1のp型半導体ウエル領域52との間で形成されるp
n接合jの位置が深くなるので、空乏層の広がり深さが
大きくなって、センサ部21における光電変換効率が増
加し、赤色光の感度が上がる。In the sensor section 21, a so-called n-type region including a charge storage region 62 and a low-concentration n-type semiconductor region 55 is provided.
P formed between first p-type semiconductor well region 52
Since the position of the n-junction j is deepened, the depth of the depletion layer is increased, the photoelectric conversion efficiency in the sensor unit 21 is increased, and the sensitivity of red light is increased.
【0047】低濃度のn型半導体領域55内にセンサ部
21の電荷蓄積領域62を形成するので、電荷蓄積領域
62を低濃度にすることが可能となり、完全空乏化し易
く、低い電圧でセンサ部21の信号電荷をソース・ドレ
イン領域61へ完全転送することができる。従って、ノ
イズが少なく、残像の無い画像が得られる。Since the charge storage region 62 of the sensor section 21 is formed in the low-concentration n-type semiconductor region 55, the charge storage region 62 can be made to have a low concentration, and it is easy to completely deplete. 21 can be completely transferred to the source / drain region 61. Therefore, an image with little noise and no afterimage can be obtained.
【0048】電荷蓄積領域62を低濃度で形成できるの
で、製造マージンを広くとることが可能になり、製造が
容易になる。Since the charge storage region 62 can be formed at a low concentration, a manufacturing margin can be widened and the manufacturing becomes easy.
【0049】電荷蓄積領域62及びソース・ドレイン領
域下に低濃度のp型半導体領域60が形成されるので、
ゲートがオフ状態において、電荷蓄積領域62とソース
・ドレイン領域61間のリーク電流を阻止でき、読み出
し用MOSトランジスタ22としての動作を行わせるこ
とができる。Since the low-concentration p-type semiconductor region 60 is formed below the charge storage region 62 and the source / drain regions,
When the gate is off, a leak current between the charge storage region 62 and the source / drain region 61 can be prevented, and the operation as the read MOS transistor 22 can be performed.
【0050】センサ部21では、n型の電荷蓄積領域6
2の表面に高濃度のp型半導体領域64を形成するとき
は、センサ部21における絶縁膜56との界面で発生す
る電子がp型半導体領域64で再結合され、電荷蓄積領
域62に入り込むことがない。また、ゲート下のチャネ
ル領域63がp型化しているときは、ゲート絶縁膜56
との界面で発生する電子が電荷蓄積領域62に入らず、
ソース・ドレイン領域61に流入する。従って、暗電流
を小さくすることができる。In the sensor section 21, the n-type charge storage region 6
When the high-concentration p-type semiconductor region 64 is formed on the surface of the semiconductor device 2, electrons generated at the interface between the sensor portion 21 and the insulating film 56 are recombined in the p-type semiconductor region 64 and enter the charge storage region 62. There is no. When the channel region 63 under the gate is of p-type, the gate insulating film 56
Electrons generated at the interface with the semiconductor do not enter the charge storage region 62,
It flows into the source / drain region 61. Therefore, the dark current can be reduced.
【0051】本実施の形態に係る製造方法によれば、p
型及びn型の不純物を選択的に、且つ自己整合的にイオ
ン注入して各領域61,62,64を形成することがで
き、また領域60に厳密なマスク合せは不要であるの
で、図4に示す画素241を備えたMOS型の固体撮像
素子を精度よく且つ容易に製造することができる。According to the manufacturing method of this embodiment, p
Since each of the regions 61, 62, and 64 can be formed by selectively and self-aligning ion implantation of the n-type and n-type impurities, and strict mask alignment is not required for the region 60, FIG. Can be accurately and easily manufactured with the MOS type solid-state imaging device having the pixel 241 shown in FIG.
【0052】上述の画素241では、センサ部21を構
成するn型半導体領域55内に低濃度のp型半導体領域
60が形成されているため、図4のA−A線上(センサ
部21の深さ方向)のポテンシャルをみると、図5に示
すようなp型半導体領域60で電子eに対してバリア6
6を有するポテンシャル分布67となる。従って、n型
半導体領域55の深い位置で光電変換により発生した電
子eは、電荷蓄積領域62に入りにくい。画素241の
センサ部21は、従来より感度向上が図れるが、バリア
66を改善して更なる感度を向上させることが望まれ
る。In the above-described pixel 241, since the low-concentration p-type semiconductor region 60 is formed in the n-type semiconductor region 55 constituting the sensor section 21, the pixel 241 is located on the line AA in FIG. 5), the barrier 6 against electrons e in the p-type semiconductor region 60 as shown in FIG.
A potential distribution 67 having 6 is obtained. Therefore, electrons e generated by photoelectric conversion at a deep position in the n-type semiconductor region 55 are unlikely to enter the charge storage region 62. Although the sensitivity of the sensor unit 21 of the pixel 241 can be improved as compared with the related art, it is desired to improve the barrier 66 to further improve the sensitivity.
【0053】図8は、この点を改善したもので、図1の
固体撮像素子20における画素24、特にそのセンサ部
21及び読み出し用MOSトランジスタ22を含む領域
部の他の実施の形態を示す。FIG. 8 shows another embodiment of the solid-state imaging device 20 shown in FIG. 1 in which the pixel 24, in particular, the sensor unit 21 and the readout MOS transistor 22 are included.
【0054】本実施の形態に係る画素242は、前述と
同様に、第2導電型、例えばn型のシリコン半導体基板
51内の所定深さ位置に第1導電型の例えばp型の第1
の半導体ウエル領域52が形成され、半導体基板51の
表面に画素分離のための選択酸化による素子分離層(い
わゆるLOCOS層)53が形成され、この素子分離層
53下に第1のp型半導体ウエル領域52に達する第2
のp型半導体ウエル領域54が形成される。この場合
も、第2のp型半導体ウエル領域54は、素子分離層5
3で囲まれた画素領域(いわゆるアクティブ領域)内に
延長するように形成される。n型半導体基板51の濃度
は例えば1014〜1016cm-3程度、第1のp型半導体
ウエル領域52の濃度は例えば1016〜1018cm-3程
度、第2のp型半導体ウエル領域54の濃度は例えば1
016〜1018cm-3程度とすることができる。As described above, the pixel 242 according to the present embodiment has a first conductivity type, for example, a p-type first pixel at a predetermined depth position in a second conductivity type, for example, an n-type silicon semiconductor substrate 51.
Is formed, and an element isolation layer (so-called LOCOS layer) 53 is formed on the surface of the semiconductor substrate 51 by selective oxidation for pixel isolation, and a first p-type semiconductor well is formed under the element isolation layer 53. The second reaching area 52
Is formed. Also in this case, the second p-type semiconductor well region 54 is
It is formed so as to extend into a pixel area (so-called active area) surrounded by 3. The concentration of the n-type semiconductor substrate 51 is, for example, about 10 14 to 10 16 cm −3 , the concentration of the first p-type semiconductor well region 52 is, for example, about 10 16 to 10 18 cm −3 , and the second p-type semiconductor well region is The concentration of 54 is, for example, 1
It can be about 0 16 to 10 18 cm -3 .
【0055】第1及び第2のp型半導体ウエル領域52
及び54にて囲まれた基板51と同じ低濃度のn型半導
体領域55上には、例えばSiO2 等によるゲート絶縁
膜56を介して例えば多結晶シリコンによる読み出し用
MOSトランジスタのゲート電極57が形成される。5
8はゲート電極57の側壁に形成された例えばSiO 2
等による絶縁性サイドウォールである。n型半導体領域
55は、周囲からの少しの拡散以外は、基板51の濃度
と同じである。First and second p-type semiconductor well regions 52
And the same low-concentration n-type semiconductor as the substrate 51 surrounded by
On the body region 55, for example, SiOTwoGate insulation
For reading using, for example, polycrystalline silicon through the film 56
A gate electrode 57 of the MOS transistor is formed. 5
8 is, for example, SiO 2 formed on the side wall of the gate electrode 57. Two
And the like. n-type semiconductor region
55 is the concentration of the substrate 51 except for a little diffusion from the surroundings.
Is the same as
【0056】そして、本例では、特に、ゲート電極57
を挟んでn型半導体領域55の一方の領域部に読み出し
用MOSトランジスタのn型のソース・ドレイン領域6
1が形成されると共に、ソース・ドレイン領域61下に
p型半導体領域71が形成され、n型半導体領域55の
他方の領域部にセンサ部(フォトダイオード)を構成す
るn型半導体領域、即ち電荷蓄積領域62が形成され
る。n型のソース・ドレイン領域61の濃度は例えば1
019cm-3以上、p型半導体領域71の濃度は例えば1
016〜1018cm-3程度、電荷蓄積領域62の濃度は例
えば1017cm-3程度とすることができる。In this embodiment, the gate electrode 57
The n-type source / drain region 6 of the read MOS transistor is provided in one region of the n-type semiconductor region 55 with the
1 is formed, a p-type semiconductor region 71 is formed below the source / drain region 61, and an n-type semiconductor region constituting a sensor unit (photodiode) is formed in the other region of the n-type semiconductor region 55, that is, a charge. An accumulation region 62 is formed. The concentration of the n-type source / drain region 61 is, for example, 1
0 19 cm −3 or more, the concentration of the p-type semiconductor region 71 is, for example, 1
The density of the charge storage region 62 can be set to, for example, about 10 17 cm −3, for example, about 0 16 to 10 18 cm −3 .
【0057】この電荷蓄積領域62の表面には、好まし
くは高濃度、例えば1018cm-3程度のp型半導体領域
64が形成される。さらに、好ましくはゲート電極57
下には、所望濃度、即ち比較的低濃度、例えば1016c
m-3程度のp型半導体領域63が形成される。n型の電
荷蓄積領域62は、図示するように、一部このp型半導
体領域63接続されるように形成される。A p-type semiconductor region 64 having a high concentration, for example, about 10 18 cm −3 is formed on the surface of the charge storage region 62. Furthermore, preferably the gate electrode 57
Below the desired concentration, ie a relatively low concentration, for example 10 16 c
A p-type semiconductor region 63 of about m −3 is formed. As shown, the n-type charge storage region 62 is formed so as to be partially connected to the p-type semiconductor region 63.
【0058】図9〜図11は、図8の画素242の製造
方法を示す。先ず、図9Aに示すように、低濃度のn型
半導体基板51を用意し、その表面に選択酸化による素
子分離層53を形成する。9 to 11 show a method of manufacturing the pixel 242 shown in FIG. First, as shown in FIG. 9A, a low-concentration n-type semiconductor substrate 51 is prepared, and an element isolation layer 53 is formed on the surface thereof by selective oxidation.
【0059】次に、図9Bに示すように、素子分離層5
3下及び素子分離層53にて区画された画素領域を含む
全面の半導体基板51の所定深さ位置に、第1のp型半
導体ウエル領域52をイオン注入で形成し、画素領域を
除いて素子分離層53下に、第1のp型半導体ウエル領
域52に達する第2のp型半導体ウエル領域54をイオ
ン注入で形成し、さらに、素子分離層53で区画された
画素領域の表面に、素子分離層53をマスクとして自己
整合的にイオン注入で比較的低濃度のp型半導体領域6
3を形成する。第1及び第2のp型半導体ウエル領域5
2及び54と、表面のp型半導体領域63で囲まれるよ
うに、半導体基板51と同じ低濃度のn型半導体領域5
5が存在する。Next, as shown in FIG. 9B, the element isolation layer 5
3 and a first p-type semiconductor well region 52 is formed by ion implantation at a predetermined depth position of the semiconductor substrate 51 over the entire surface including the pixel region partitioned by the element isolation layer 53, and excluding the pixel region. A second p-type semiconductor well region 54 reaching the first p-type semiconductor well region 52 is formed below the isolation layer 53 by ion implantation. Further, an element is formed on the surface of the pixel region partitioned by the element isolation layer 53. P-type semiconductor region 6 having a relatively low concentration by ion implantation in a self-aligned manner using isolation layer 53 as a mask.
Form 3 First and second p-type semiconductor well regions 5
2 and 54 and the same low-concentration n-type semiconductor region 5 as the semiconductor substrate 51 so as to be surrounded by the p-type semiconductor region 63 on the surface.
There are five.
【0060】次に、図10Cに示すように、画素領域
上、即ち、p型半導体領域63上に、例えばSiO2 等
によるゲート絶縁膜56を介して例えば多結晶シリコン
によるゲート電極57を形成する。Next, as shown in FIG. 10C, a gate electrode 57 made of, for example, polycrystalline silicon is formed on the pixel region, that is, on the p-type semiconductor region 63 via a gate insulating film 56 made of, for example, SiO 2. .
【0061】次に、図10Dに示すように、ゲート電極
57を挟んで画素領域の一方の領域部に、素子分離層5
3及びゲート電極57をマスクとして自己整合的にイオ
ン注入で読み出し用MOSトランジスタのn型の高濃度
のソース・ドレイン領域61とその下のp型半導体領域
71を形成し、画素領域の他方の領域部に、素子分離層
53及びゲート電極57をマスクとして自己整合的にイ
オン注入でセンサ部21を構成するn型の電荷蓄積領域
62を形成する。Next, as shown in FIG. 10D, the element isolation layer 5 is formed in one of the pixel regions with the gate electrode 57 interposed therebetween.
The n-type high-concentration source / drain region 61 of the read MOS transistor and the p-type semiconductor region 71 thereunder are formed by ion implantation in a self-aligned manner using the gate electrode 3 and the gate electrode 57 as a mask, and the other region of the pixel region is formed. An n-type charge storage region 62 constituting the sensor unit 21 is formed in a self-aligned manner by ion implantation using the element isolation layer 53 and the gate electrode 57 as a mask.
【0062】次に、全面に例えばSiO2 膜を堆積しエ
ッチングを行って、図11Eに示すように、ゲート電極
57の側壁に絶縁性のサイドウォール58を形成する。Next, for example, an SiO 2 film is deposited on the entire surface and etched to form an insulating sidewall 58 on the side wall of the gate electrode 57 as shown in FIG. 11E.
【0063】次に、図11Fに示すように、ゲート電極
57を挟んで画素領域の他方の領域部の表面に、n型の
電荷蓄積領域62に達するように、サイドウォール58
及び素子分離層53をマスクにして自己整合的にイオン
注入でゲート下のp型半導体領域63より高濃度のp型
半導体領域64を形成する。Next, as shown in FIG. 11F, the side wall 58 is formed on the surface of the other region of the pixel region with the gate electrode 57 interposed therebetween so as to reach the n-type charge storage region 62.
A p-type semiconductor region 64 having a higher concentration than the p-type semiconductor region 63 under the gate is formed by ion implantation in a self-aligned manner using the element isolation layer 53 as a mask.
【0064】本実施の形態に係る画素242を備えた固
体撮像素子によれば、前述と同様に、画素242に入射
された光により光電変換された一方の電荷、本例では信
号電荷となる電子がセンサ部21のn型の電荷蓄積領域
62に蓄積される。電荷蓄積領域62に蓄積された信号
電荷は、読み出し時に、読み出し用MOSトランジスタ
22のゲートがオンすることにより、ソース・ドレイン
領域61へ読み出される。According to the solid-state imaging device having the pixel 242 according to the present embodiment, as described above, one of the charges photoelectrically converted by the light incident on the pixel 242, in this example, the electron serving as the signal charge. Is stored in the n-type charge storage region 62 of the sensor section 21. The signal charge stored in the charge storage region 62 is read to the source / drain region 61 when the gate of the read MOS transistor 22 is turned on at the time of reading.
【0065】センサ部21では、電荷蓄積領域62及び
低濃度のn型半導体領域55からなる所謂n型領域と、
第1のp型半導体ウエル領域52との間で形成されるp
n接合の位置が深くなるので、空乏層の広がり深さが大
きくなり、センサ部21における光電変換効率が増加
し、赤色光の感度が上がる。In the sensor section 21, a so-called n-type region including a charge storage region 62 and a low-concentration n-type semiconductor region 55 is provided.
P formed between first p-type semiconductor well region 52
Since the position of the n-junction is deep, the depth of the depletion layer is large, the photoelectric conversion efficiency in the sensor unit 21 is increased, and the sensitivity of red light is increased.
【0066】また、光がソース・ドレイン領域61下、
センサ部21及びゲート下のいずれに入射されても、深
い第1のp型半導体ウエル領域52上の低濃度のn型半
導体領域55で光電変換されれば、その信号電荷となる
電子はセンサ部21の電荷蓄積領域62に集められる。
従って、より感度が向上する。Further, light is emitted below the source / drain region 61,
Irrespective of whether the light is incident on the sensor section 21 or under the gate, if the photoelectric conversion is performed in the low-concentration n-type semiconductor area 55 on the deep first p-type semiconductor well area 52, the electrons serving as the signal charges are converted to the sensor section. 21 are collected in the charge storage region 62.
Therefore, the sensitivity is further improved.
【0067】読み出し用MOSトランジスタ22のn型
のソース・ドレイン領域61下にp型半導体領域71が
形成されているので、ゲートのオフ状態において、セン
サ部21の電荷蓄積領域62とソース・ドレイン領域6
1間のリーク電流は抑えられ、読み出し用MOSトラン
ジスタ22としての動作が行える。Since the p-type semiconductor region 71 is formed below the n-type source / drain region 61 of the read MOS transistor 22, the charge accumulation region 62 and the source / drain region of the sensor section 21 are turned off when the gate is off. 6
The leakage current between 1 is suppressed, and the operation as the read MOS transistor 22 can be performed.
【0068】前述の図4に示すp型半導体領域60は、
センサ部21下にも形成されるので、濃度を非常に薄く
する必要があるため、厳しく濃度コントロールが要求さ
れる。しかし、本例のp型半導体領域71は、ソース・
ドレイン領域下のみに形成され、センサ部21側には形
成されないので、濃度としてはリーク電流を阻止する程
度であればよく、特に厳しく濃度コントロールする必要
はない。従って、製造マージンが広くなる。The p-type semiconductor region 60 shown in FIG.
Since it is also formed below the sensor section 21, it is necessary to make the density extremely low, so that strict density control is required. However, the p-type semiconductor region 71 of this example is
Since it is formed only below the drain region and is not formed on the sensor section 21 side, the concentration is only required to prevent leakage current, and it is not particularly necessary to strictly control the concentration. Therefore, the manufacturing margin is widened.
【0069】p型半導体領域71がソース・ドレイン領
域61下のみ形成されているので、センサ部21でのn
型領域が大きくなり、且つn型半導体領域55の深い位
置で光電変換により発生した電子も電荷蓄積領域62に
入り易くなり、図4の画素241に比べて、より感度を
向上することができる。Since the p-type semiconductor region 71 is formed only below the source / drain region 61, n
The type region becomes large, and electrons generated by photoelectric conversion at a deep position in the n-type semiconductor region 55 also easily enter the charge storage region 62, so that the sensitivity can be further improved as compared with the pixel 241 of FIG.
【0070】ゲート下に低濃度のp型半導体領域63が
形成されるので、センサ部21、即ちフォトダイオード
の電荷蓄積領域62の電位を低くでき、低電圧化ができ
る。即ち、受光時に、ゲートが開いていると、センサ部
21の電荷蓄積領域62から電子がリークするので、リ
ークする分だけ電荷蓄積領域62の電位を高くしないと
(例えば0.5V程度)、電子が蓄積できない。しか
し、ゲート下にp型半導体領域63が形成されること
で、受光時にゲートが閉まり、電子はリークせずにセン
サ部に蓄積される。電圧の小さいところまで、例えば0
Vに近いところまで電子を蓄積することができる。従っ
て、電荷蓄積領域62の電圧を低くでき、例えば1V程
度でもフォトダイオードとして機能させることができ、
低電圧化が可能になる。つまり、ゲート下のポテンシャ
ルが例えば0.5V程度であるとフォトダイオードには
電子が0.5Vまでしか蓄積できない。しかし、ゲート
下が0Vまで閉まっていると、フォトダイオードに0V
まで電子を蓄積できる。従って、同じ電子数を蓄積する
のにつくるフォトダイオードのポテンシャル深さは、前
者では1.5V必要とするが、後者では1.0Vで済む
ことになる。なお、0Vに近い方が容量が大きいので、
同じ1Vの振幅でもさらに電子が多く蓄積される。Since the low-concentration p-type semiconductor region 63 is formed under the gate, the potential of the sensor section 21, that is, the charge storage region 62 of the photodiode can be lowered, and the voltage can be reduced. That is, if the gate is open during light reception, electrons leak from the charge storage region 62 of the sensor unit 21. Therefore, unless the potential of the charge storage region 62 is increased by the amount of leakage (for example, about 0.5 V), Cannot be accumulated. However, since the p-type semiconductor region 63 is formed under the gate, the gate is closed at the time of light reception, and electrons are accumulated in the sensor unit without leaking. Until the voltage is small, for example, 0
Electrons can be stored up to a position close to V. Therefore, the voltage of the charge storage region 62 can be reduced, and for example, even at about 1 V, it can function as a photodiode.
Low voltage is possible. That is, if the potential under the gate is, for example, about 0.5 V, electrons can only be stored in the photodiode up to 0.5 V. However, if the bottom of the gate is closed to 0V, the photodiode
Can store up to electrons. Therefore, the potential depth of the photodiode to store the same number of electrons is 1.5 V in the former, but only 1.0 V in the latter. The closer to 0V, the larger the capacitance, so
Even with the same amplitude of 1 V, more electrons are accumulated.
【0071】p型半導体領域63によって、ゲートのし
きい値電圧Vthを自由にコントロールできる。そして、
読み出しゲート電圧を低くすることができ、低電圧で動
作することができる。The threshold voltage Vth of the gate can be freely controlled by the p-type semiconductor region 63. And
The read gate voltage can be reduced, and operation can be performed at a low voltage.
【0072】ゲートをオフ状態にしているときには、ゲ
ート下のゲート絶縁膜界面(いわゆるチャネル領域)
と、センサ部21の電荷蓄積領域62とがゲート下のp
型半導体領域63によって分離されているので、ゲート
下のゲート絶縁膜界面から発生する電子は、センサ部2
1の電荷蓄積領域62に入らず、ソース・ドレイン領域
61に流入する。従って暗電流を低減することができ
る。When the gate is off, the gate insulating film interface under the gate (so-called channel region)
And the charge accumulation region 62 of the sensor unit 21
Generated from the interface between the gate insulating film under the gate and the sensor section 2,
1 does not enter the charge accumulation region 62 but flows into the source / drain region 61. Therefore, dark current can be reduced.
【0073】p型半導体領域63を有することによっ
て、センサ部21の電荷蓄積領域62からソース・ドレ
イン領域61へ電子が流出しにくく、電荷蓄積領域62
の飽和電位が低くなり、コンデンサとしてのセンサ部2
1の容量が大きくなって、蓄積される飽和電子数を大き
くすることができる。センサ部21の電荷蓄積領域62
の空乏化電位を低くできるので、白点が少なくなり、歩
留まりを上げることができる。The presence of the p-type semiconductor region 63 makes it difficult for electrons to flow out of the charge storage region 62 of the sensor section 21 to the source / drain region 61, so that the charge storage region 62
The saturation potential of the sensor unit 2
1 increases, and the number of accumulated saturated electrons can be increased. Charge storage region 62 of sensor unit 21
Can reduce the depletion potential, thereby reducing white spots and increasing the yield.
【0074】適度の濃度のp型半導体領域63によって
ソース・ドレイン領域61と電荷蓄積領域62が分離さ
れているので、両領域61,62からの空乏層が伸びて
パンチスルーを起こすことが阻止され、ゲート長を短く
することができ、画素の微細化が可能になる。Since the source / drain region 61 and the charge storage region 62 are separated from each other by the p-type semiconductor region 63 having an appropriate concentration, the depletion layer from both the regions 61 and 62 is prevented from extending to cause punch-through. The gate length can be shortened, and the pixel can be miniaturized.
【0075】センサ部21の電荷蓄積領域62上に濃度
の高いp型半導体領域64を有することにより、p型半
導体領域64と絶縁膜との界面で発生する電子は、p型
半導体領域63内で再結合されて消滅し、暗電流を低減
することができる。Since the high-concentration p-type semiconductor region 64 is provided on the charge storage region 62 of the sensor section 21, electrons generated at the interface between the p-type semiconductor region 64 and the insulating film are generated in the p-type semiconductor region 63. It is recombined and disappears, and dark current can be reduced.
【0076】センサ部21におけるn型の電荷蓄積領域
62は、基板51と同程度の低濃度のn型半導体領域5
5内に形成されるので、低濃度で安定して形成できる。
従って、電荷蓄積領域62を完全空乏化させることが容
易になり、低い電圧で信号電荷を完全転送することがで
きる。従って、ノイズが少なく、残像の無い画像が得ら
れる。The n-type charge accumulation region 62 in the sensor section 21 is a low-concentration n-type semiconductor region 5 of the same level as the substrate 51.
5, it can be formed stably at a low concentration.
Therefore, it is easy to completely deplete the charge storage region 62, and the signal charge can be completely transferred at a low voltage. Therefore, an image with little noise and no afterimage can be obtained.
【0077】電荷蓄積領域62を低濃度で形成できるの
で、製造マージンを広くとることが可能になり、製造が
容易になる。Since the charge storage region 62 can be formed at a low concentration, a manufacturing margin can be widened and manufacturing becomes easy.
【0078】図8の構成において、ゲート下のp型半導
体領域63及び電荷蓄積領域62上のp型半導体領域6
4を省略した場合にも、高感度化、低電圧化、さらに電
荷蓄積領域62及びソース・ドレイン領域61下のp型
半導体領域71の製造マージンを広げる等の効果を奏す
る。なお、ゲート下のp型半導体領域63を積極的に形
成しなくても、p型半導体領域71からの不純物拡散が
ゲート下まで拡散し、ゲート下をp型化することができ
る。このゲート下のp型化によって、p型半導体領域6
3を形成した場合と同様の効果も期待できる。In the structure of FIG. 8, the p-type semiconductor region 63 under the gate and the p-type semiconductor region 6 on the charge storage region 62
Even when the step 4 is omitted, effects such as an increase in sensitivity, a reduction in voltage, and an increase in a manufacturing margin of the p-type semiconductor region 71 below the charge storage region 62 and the source / drain region 61 are obtained. Note that even if the p-type semiconductor region 63 under the gate is not actively formed, the impurity diffusion from the p-type semiconductor region 71 can be diffused to below the gate, and the region under the gate can be made p-type. By forming the p-type under the gate, the p-type semiconductor region 6 is formed.
The same effect as in the case of forming No. 3 can be expected.
【0079】本実施の形態に係る製造方法によれば、各
領域61,62,63,64,71を素子分離層53、
ゲート電極57及びサイドウォール58をマスクとして
自己整合的にイオン注入で形成することができるので、
図8に示す画素242を備えたCMOS型の固体撮像素
子を精度よく、且つ容易に製造することができる。According to the manufacturing method of the present embodiment, each of the regions 61, 62, 63, 64, 71 is formed with the element isolation layer 53,
Since the gate electrode 57 and the sidewall 58 can be formed by ion implantation in a self-aligned manner using the mask as a mask,
A CMOS solid-state imaging device including the pixel 242 shown in FIG. 8 can be manufactured accurately and easily.
【0080】その他、MOS型の固体撮像素子の、読み
出し用スイッチ素子を用いる全ての種類の画素にも適用
することができる。In addition, the present invention can be applied to all kinds of pixels of the MOS type solid-state imaging device using the readout switch element.
【0081】[0081]
【発明の効果】本発明に係る固体撮像素子によれば、所
定深さ位置の第1の第1導電型半導体ウエル領域と素子
分離層下の第2の第1導電型半導体ウエル領域で囲まれ
た第2導電型半導体領域の表面に、ゲートを挟んでセン
サ部を構成する第2導電型の電荷蓄積領域と読み出し用
トランジスタの第2導電型のソース・ドレイン領域を形
成することにより、センサ部における空乏層の広がり深
さが大きくなり、光電変換効率が増加して赤色光の感度
を向上することができる。同時に、第1導電型半導体ウ
エル領域で囲まれた第2導電型半導体領域の全体が、セ
ンサ部であるフォトダイオードで構成する一方の第2導
電型領域となることによって、さらに感度を向上するこ
とができる。According to the solid-state imaging device of the present invention, the first well of the first conductivity type semiconductor at a predetermined depth and the second well of the first conductivity type under the element isolation layer are surrounded. Forming, on the surface of the second conductive type semiconductor region, a charge storage region of the second conductive type and a source / drain region of the second conductive type of the readout transistor, with the gate interposed therebetween, thereby forming the sensor unit. , The depth of depletion of the depletion layer increases, the photoelectric conversion efficiency increases, and the sensitivity of red light can be improved. At the same time, the whole second conductivity type semiconductor region surrounded by the first conductivity type semiconductor well region becomes one of the second conductivity type regions constituted by the photodiode serving as the sensor portion, thereby further improving the sensitivity. Can be.
【0082】電荷蓄積領域、ゲート下及びソース・ドレ
イン領域と、第2導電型半導体領域との間に第1導電型
半導体領域を形成するときは、電荷蓄積領域及びソース
・ドレイン領域間のリーク電流を阻止し、読み出し用ト
ランジスタの動作を確実にする。When the first conductivity type semiconductor region is formed between the charge storage region, the region under the gate and the source / drain region, and the second conductivity type semiconductor region, the leakage current between the charge storage region and the source / drain region And the operation of the read transistor is ensured.
【0083】ソース・ドレイン領域下のみに第1導電型
半導体領域を形成するときは、電荷蓄積領域及びソース
・ドレイン間のリーク電流を阻止し、読み出し用トラン
ジスタの動作を確実にすると共に、ゲート下及び電荷蓄
積領域下に第1導電型半導体領域が無い分、更に第2導
電型半導体領域の面積が広くなり、さらなる感度向上が
図れる。また、ソース・ドレイン領域下のみに第1導電
型半導体領域を形成するときは、この第1導電型半導体
領域の濃度をリーク電流の阻止のみを考慮して設定する
ことができるので、濃度コントロールが容易となり、製
造マージンが広がり、製造を容易にすることができる。When the first conductivity type semiconductor region is formed only under the source / drain region, a leak current between the charge storage region and the source / drain is prevented, and the operation of the read transistor is ensured. In addition, since the first conductivity type semiconductor region is not provided under the charge storage region, the area of the second conductivity type semiconductor region is further increased, so that the sensitivity can be further improved. Further, when the first conductivity type semiconductor region is formed only under the source / drain regions, the concentration of the first conductivity type semiconductor region can be set only in consideration of the prevention of leakage current. This facilitates manufacturing, increases the manufacturing margin, and facilitates manufacturing.
【0084】ゲート下に第1導電型半導体領域が形成さ
れるときは、ゲートがオフ状態のとき、この第1導電型
半導体領域によって、ゲート下のゲート絶縁膜界面と電
荷蓄積領域が互に分離され、ゲート絶縁膜界面から発生
する電荷は電荷蓄積領域に入らず、ソース・ドレイン領
域側に流入し、暗電流を小さくすることができる。When the first conductivity type semiconductor region is formed under the gate, when the gate is off, the first conductivity type semiconductor region separates the interface between the gate insulating film under the gate and the charge storage region from each other. As a result, the charge generated from the gate insulating film interface does not enter the charge accumulation region but flows to the source / drain region side, so that the dark current can be reduced.
【0085】ゲート下に第1導電型半導体領域を有する
ことによって、ゲートがオフ状態のとき、センサ部の電
荷蓄積領域からソース・ドレイン領域に信号電荷が流出
しにくく、電荷蓄積領域の飽和電位が低くなり、容量を
大きくして飽和電荷数を大きくできる。電荷蓄積領域の
空乏化電位を低くできるので、白点が少なくなり、歩留
まりを向上することができる。By providing the first conductivity type semiconductor region under the gate, when the gate is in the off state, it is difficult for signal charges to flow from the charge storage region of the sensor section to the source / drain regions, and the saturation potential of the charge storage region is reduced. The saturation charge number can be increased by increasing the capacitance. Since the depletion potential of the charge storage region can be reduced, white spots are reduced, and the yield can be improved.
【0086】ゲート下の第1導電型半導体領域によっ
て、しきい値電圧Vthのコントロールができ、読み出し
ゲート電圧を低くすることができるので、低電圧で動作
することができる。ゲート下の第1導電型半導体領域に
よってセンサ部の電荷蓄積領域とソース・ドレイン領域
が分離されるので、パンチスルーがなく、ゲート長を小
さくし、画素の微細化ができる。The threshold voltage Vth can be controlled by the first conductivity type semiconductor region under the gate, and the read gate voltage can be reduced, so that operation can be performed at a low voltage. Since the charge accumulation region and the source / drain region of the sensor section are separated by the first conductivity type semiconductor region under the gate, there is no punch-through, the gate length can be reduced, and the pixel can be miniaturized.
【0087】センサ部の第2導電型の電荷蓄積領域上に
第1導電型半導体領域を形成するときは、センサ部にお
ける絶縁膜界面で発生する電荷がこの第1導電型半導体
領域で再結合し、センサ部の電荷蓄積領域に入り込まれ
ないので、暗電流を低減することができる。When the first conductivity type semiconductor region is formed on the second conductivity type charge accumulation region of the sensor portion, charges generated at the interface of the insulating film in the sensor portion recombine in the first conductivity type semiconductor region. Since it does not enter the charge accumulation region of the sensor unit, the dark current can be reduced.
【0088】第2導電型の電荷蓄積領域が低濃度の第2
導電型半導体領域内に形成されるので、電荷蓄積領域と
しては低濃度で安定して形成することができ、完全空乏
化させることが容易になり、信号電荷を低い電圧で完全
転送させることができる。従って、ノイズが少なく、残
像の無い画像を提供することができる。When the charge accumulation region of the second conductivity type has a low concentration
Since the charge accumulation region is formed in the conductive semiconductor region, the charge accumulation region can be formed stably at a low concentration, can be easily completely depleted, and can completely transfer signal charges at a low voltage. . Therefore, an image with little noise and no afterimage can be provided.
【0089】本発明に係る固体撮像素子の製造方法によ
れば、上記特性を有する固体撮像素子を自己整合的に容
易且つ高精度に製造することができる。According to the method of manufacturing a solid-state imaging device according to the present invention, a solid-state imaging device having the above characteristics can be manufactured easily and with high precision in a self-aligned manner.
【図1】本発明に係る固体撮像素子の一実施の形態を示
す構成図である。FIG. 1 is a configuration diagram illustrating an embodiment of a solid-state imaging device according to the present invention.
【図2】本発明の固体撮像素子に適用される単位画素の
他の例を示す構成図である。FIG. 2 is a configuration diagram showing another example of a unit pixel applied to the solid-state imaging device of the present invention.
【図3】本発明の固体撮像素子に適用される単位画素の
他の例を示す構成図である。FIG. 3 is a configuration diagram showing another example of a unit pixel applied to the solid-state imaging device of the present invention.
【図4】本発明に係る固体撮像素子の画素部分の一実施
の形態を示す断面図である。FIG. 4 is a cross-sectional view showing one embodiment of a pixel portion of the solid-state imaging device according to the present invention.
【図5】図4のA−A線上のポテンシャル分布図であ
る。FIG. 5 is a potential distribution diagram on the line AA in FIG. 4;
【図6】A〜B 図4の固体撮像素子の製造工程図であ
る。6A to 6B are manufacturing process diagrams of the solid-state imaging device of FIG. 4;
【図7】C〜D 図4の固体撮像素子の製造工程図であ
る。7A to 7D are manufacturing process diagrams of the solid-state imaging device of FIG. 4;
【図8】本発明に係る固体撮像素子の画素部分の他の実
施の形態を示す断面図である。FIG. 8 is a cross-sectional view showing another embodiment of the pixel portion of the solid-state imaging device according to the present invention.
【図9】A〜B 図8の固体撮像素子の製造工程図であ
る。9A to 9B are manufacturing process diagrams of the solid-state imaging device of FIG. 8;
【図10】C〜D 図8の固体撮像素子の製造工程図で
ある。10A to 10D are manufacturing process diagrams of the solid-state imaging device of FIG. 8;
【図11】E〜F 図8の固体撮像素子の製造工程図で
ある。11A to 11F are manufacturing process diagrams of the solid-state imaging device of FIG. 8;
【図12】従来の固体撮像素子の画素部分の断面図であ
る。FIG. 12 is a cross-sectional view of a pixel portion of a conventional solid-state imaging device.
20‥‥MOS型の固体撮像素子、21‥‥センサ部
(フォトダイオード)、12‥‥読み出し用MOSトラ
ンジスタ、13‥‥垂直選択用MOSトランジスタ、1
4,141,142‥‥単位画素、51‥‥n型半導体
基板、52‥‥第1のp型半導体ウエル領域、53‥‥
素子分離層(LOCOS層)、54‥‥第2のp型半導
体ウエル領域、55‥‥n型半導体領域、56‥‥ゲー
ト絶縁膜、57‥‥ゲート電極、60‥‥p型半導体領
域、61‥‥n型ソース・ドレイン領域、62‥‥n型
電荷蓄積領域、63‥‥p型半導体領域、64‥‥p型
半導体領域、71‥‥p型半導体領域20 ‥‥ MOS type solid-state imaging device, 21 ‥‥ sensor unit (photodiode), 12 ‥‥ readout MOS transistor, 13 ‥‥ vertical selection MOS transistor, 1
4, 141, 142 unit pixels, 51 n-type semiconductor substrate, 52 first p-type semiconductor well region, 53
Element isolation layer (LOCOS layer), 54 ‥‥ second p-type semiconductor well region, 55 ‥‥ n-type semiconductor region, 56 ‥‥ gate insulating film, 57 ‥‥ gate electrode, 60 ‥‥ p-type semiconductor region, 61 ‥‥ n-type source / drain region, 62 ‥‥ n-type charge storage region, 63 ‥‥ p-type semiconductor region, 64 ‥‥ p-type semiconductor region, 71 ‥‥ p-type semiconductor region
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 亮司 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 上野 貴久 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 Fターム(参考) 4M118 AA01 AA03 AA05 AB01 BA14 CA04 CA18 EA01 EA06 EA07 EA14 EA15 FA06 FA26 FA28 FA33 5C024 AA01 CA12 CA16 CA31 FA01 FA11 GA31 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Ryoji Suzuki 6-7-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (72) Inventor Takahisa Ueno 6-35, Kita-Shinagawa, Shinagawa-ku, Tokyo Sony Corporation F term (reference) 4M118 AA01 AA03 AA05 AB01 BA14 CA04 CA18 EA01 EA06 EA07 EA14 EA15 FA06 FA26 FA28 FA33 5C024 AA01 CA12 CA16 CA31 FA01 FA11 GA31
Claims (9)
出し用トランジスタを有する画素が配列されてなる固体
撮像素子であって、 所定深さ位置の第1の第1導電型半導体ウエル領域と、
素子分離層下の第2の第1導電型半導体ウエル領域とに
て囲まれた第2導電型半導体領域の表面側に、前記読み
出し用トランジスタのゲートを挟んで前記センサ部を構
成する第2導電型の電荷蓄積領域と、前記読み出し用ト
ランジスタの第2導電型のソース・ドレイン領域とが形
成され、 前記電荷蓄積領域、前記ゲート下及び前記ソース・ドレ
イン領域と、前記第2導電型半導体領域との間に第1導
電型半導体領域が形成されて成ることを特徴とする固体
撮像素子。1. A solid-state imaging device in which a pn-junction sensor unit and pixels having at least a readout transistor are arranged, comprising: a first first conductivity type semiconductor well region at a predetermined depth position;
A second conductive layer forming the sensor section on the surface side of the second conductive type semiconductor region surrounded by the second first conductive type semiconductor well region below the element isolation layer with the gate of the read transistor interposed therebetween. A charge storage region, and a second conductivity type source / drain region of the readout transistor. The charge storage region, the gate and the source / drain region, the second conductivity type semiconductor region, A solid-state imaging device comprising a first conductivity type semiconductor region formed therebetween.
第1導電型半導体領域が形成されて成ることを特徴とす
る請求項1に記載の固体撮像素子。2. The solid-state imaging device according to claim 1, wherein a first conductivity type semiconductor region is formed on a surface of the second conductivity type charge accumulation region.
出し用トランジスタを有する画素が配列されてなる固体
撮像素子であって、 所定深さ位置の第1の第1導電型半導体ウエル領域と、
素子分離層下の第2の第1導電型半導体ウエル領域とに
て囲まれた第2導電型半導体領域の表面側に、前記読み
出し用トランジスタのゲートを挟んで前記センサ部を構
成する第2導電型の電荷蓄積領域と、前記読み出し用ト
ランジスタの第2導電型のソース・ドレイン領域とが形
成され、 前記ソース・ドレイン領域下に第1導電型半導体領域が
形成されて成ることを特徴とする固体撮像素子。3. A solid-state imaging device in which a pn junction sensor unit and pixels having at least a readout transistor are arranged, a first well of a first conductivity type semiconductor at a predetermined depth position,
A second conductive layer forming the sensor section on the surface side of the second conductive type semiconductor region surrounded by the second first conductive type semiconductor well region below the element isolation layer with the gate of the read transistor interposed therebetween. A charge storage region of a first conductivity type, a source / drain region of a second conductivity type of the read transistor, and a semiconductor region of a first conductivity type formed below the source / drain region. Imaging device.
第1導電型半導体領域が形成されて成ることを特徴とす
る請求項3に記載の固体撮像素子。4. The solid-state imaging device according to claim 3, wherein a first conductivity type semiconductor region is formed on a surface of the second conductivity type charge storage region.
出し用トランジスタを有する画素が配列されてなる固体
撮像素子であって、 所定深さ位置の第1の第1導電型半導体ウエル領域と、
素子分離層下の第2の第1導電型半導体ウエル領域とに
て囲まれた第2導電型半導体領域の表面側に、前記読み
出し用トランジスタのゲートを挟んで前記センサ部を構
成する第2導電型の電荷蓄積領域と、前記読み出し用ト
ランジスタの第2導電型のソース・ドレイン領域とが形
成され、 前記ゲート下に第1導電型半導体領域が形成されて成る
ことを特徴とする固体撮像素子。5. A solid-state imaging device in which a pn junction sensor unit and pixels having at least a readout transistor are arranged, comprising: a first first conductivity type semiconductor well region at a predetermined depth;
A second conductive layer forming the sensor section on the surface side of the second conductive type semiconductor region surrounded by the second first conductive type semiconductor well region below the element isolation layer with the gate of the read transistor interposed therebetween. A solid-state imaging device, comprising: a charge storage region of a first conductivity type; a source / drain region of a second conductivity type of the readout transistor; and a first conductivity type semiconductor region below the gate.
第1導電型半導体領域が形成されて成ることを特徴とす
る請求項5に記載の固体撮像素子。6. The solid-state imaging device according to claim 5, wherein a first conductivity type semiconductor region is formed on a surface of said second conductivity type charge storage region.
ドレイン領域下に第1導電型半導体領域が形成されて成
ることを特徴とする請求項5に記載の固体撮像素子。7. The source of said read transistor
The solid-state imaging device according to claim 5, wherein a first conductivity type semiconductor region is formed below the drain region.
による素子分離層を形成する工程と、 前記半導体基板内の所定深さ位置に第1の第1導電型半
導体ウエル領域を形成し、前記素子分離層下に該第1の
第1導電型半導体ウエル領域に達するように、第2の第
1導電型半導体ウエル領域を形成し、前記第1及び第2
の第1導電型半導体ウエル領域にて囲まれた第2導電型
半導体領域内の所定深さ位置に第1導電型半導体領域を
形成する工程と、 ゲート電極を挟んで前記第1導電型半導体領域に達する
ように、第2導電型のソース・ドレイン領域とセンサ部
を構成する第2導電型の電荷蓄積領域を形成する工程を
有することを特徴とする固体撮像素子の製造方法。8. A step of forming an element isolation layer by an insulating layer on a surface of a semiconductor substrate of a second conductivity type; and forming a first well of a first conductivity type semiconductor at a predetermined depth position in the semiconductor substrate. Forming a second first conductivity type semiconductor well region under the element isolation layer so as to reach the first first conductivity type semiconductor well region;
Forming a first conductivity type semiconductor region at a predetermined depth position in a second conductivity type semiconductor region surrounded by the first conductivity type semiconductor well region; and the first conductivity type semiconductor region with a gate electrode interposed therebetween. Forming a source / drain region of the second conductivity type and a charge accumulation region of the second conductivity type constituting the sensor section so as to reach the above-mentioned condition.
による素子分離層を形成する工程と、 前記半導体基板内の所定深さ位置に第1の第1導電型半
導体ウエル領域を形成し、前記素子分離層下に該第1の
第1導電型半導体ウエル領域に達するように、第2の第
1導電型半導体ウエル領域を形成し、前記第1及び第2
の第1導電型半導体ウエル領域にて囲まれた第2導電型
半導体領域の表面全面に第1導電型半導体領域を形成す
る工程と、 ゲート電極を挟んで一方の領域に第2導電型のソース・
ドレイン領域及び該ソース・ドレイン領域下の第1導電
型半導体領域を形成すると共に、他方の領域にセンサ部
を構成する第2導電型の電荷蓄積領域を形成する工程を
有することを特徴とする固体撮像素子の製造方法。9. A step of forming an element isolation layer of an insulating layer on a surface of a semiconductor substrate of a second conductivity type; and forming a first well of a first conductivity type semiconductor at a predetermined depth position in the semiconductor substrate. Forming a second first conductivity type semiconductor well region under the element isolation layer so as to reach the first first conductivity type semiconductor well region;
Forming a first conductivity type semiconductor region over the entire surface of the second conductivity type semiconductor region surrounded by the first conductivity type semiconductor well region; and forming a second conductivity type source in one of the regions with the gate electrode interposed therebetween.・
Forming a drain region and a semiconductor region of a first conductivity type below the source / drain region, and forming a charge accumulation region of a second conductivity type constituting a sensor section in the other region; A method for manufacturing an image sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22269299A JP4406964B2 (en) | 1999-08-05 | 1999-08-05 | Solid-state imaging device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22269299A JP4406964B2 (en) | 1999-08-05 | 1999-08-05 | Solid-state imaging device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001053260A true JP2001053260A (en) | 2001-02-23 |
JP4406964B2 JP4406964B2 (en) | 2010-02-03 |
Family
ID=16786428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22269299A Expired - Fee Related JP4406964B2 (en) | 1999-08-05 | 1999-08-05 | Solid-state imaging device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4406964B2 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004193547A (en) * | 2002-06-27 | 2004-07-08 | Canon Inc | Solid-state image sensing device and camera system using the same |
JP2005268295A (en) * | 2004-03-16 | 2005-09-29 | Canon Inc | Solid state image sensor |
JP2006024962A (en) * | 2002-06-27 | 2006-01-26 | Canon Inc | Solid-state imaging device and camera system using the solid-state imaging device |
JP2006041542A (en) * | 2004-07-29 | 2006-02-09 | Magnachip Semiconductor Ltd | Image sensor and its fabrication process |
JP2006093319A (en) * | 2004-09-22 | 2006-04-06 | Sony Corp | Cmos solid state image pickup device, its manufacturing method and drive method thereof |
EP1722421A2 (en) * | 2005-05-13 | 2006-11-15 | Stmicroelectronics Sa | Floating integrated photodiode |
JP2007073770A (en) * | 2005-09-07 | 2007-03-22 | Matsushita Electric Ind Co Ltd | Solid-state imaging device and its manufacturing method |
US7236197B2 (en) * | 2001-11-13 | 2007-06-26 | Kabushiki Kaisha Toshiba | Solid-state image sensor using junction gate type field-effect transistor as pixel |
US7304286B2 (en) | 2003-02-21 | 2007-12-04 | Matsushita Electric Industrial Co., Ltd. | Solid-state imaging device, method for manufacturing the same and interline transfer CCD image sensor |
JP2008004682A (en) * | 2006-06-21 | 2008-01-10 | Matsushita Electric Ind Co Ltd | Solid-state imaging device, and method of driving and manufacturing the same |
KR100813801B1 (en) * | 2001-12-27 | 2008-03-13 | 매그나칩 반도체 유한회사 | Image sensor with improved light sensitivity and fabricating method of the same |
JP2009206260A (en) * | 2008-02-27 | 2009-09-10 | Canon Inc | Photoelectric conversion device and imaging system using photoelectric conversion device |
US7592579B2 (en) | 2007-12-28 | 2009-09-22 | Canon Kabushiki Kaisha | Photoelectric conversion device manufacturing method, semiconductor device manufacturing method, photoelectric conversion device, and image sensing system |
US7623101B2 (en) | 2001-02-27 | 2009-11-24 | Samsung Mobile Display Co., Ltd. | Light emitting device and light emitting system |
KR100935269B1 (en) * | 2007-12-27 | 2010-01-06 | 주식회사 동부하이텍 | Image Sensor and Methof for Manufacturing Thereof |
JP2010147193A (en) * | 2008-12-17 | 2010-07-01 | Sharp Corp | Solid-state imaging apparatus, method for manufacturing the same, and electronic information device |
US7875915B2 (en) | 2005-05-13 | 2011-01-25 | Stmicroelectronics S.A. | Integrated circuit comprising a photodiode of the floating substrate type and corresponding fabrication process |
EP2228825A3 (en) * | 2009-03-09 | 2012-05-23 | Sony Corporation | Solid-state imaging device, electronic equipment and manufacturing method of the solid-state imaging device |
WO2013129559A1 (en) * | 2012-02-29 | 2013-09-06 | Etoh Takeharu | Solid-state imaging device |
JP2013236075A (en) * | 2012-05-04 | 2013-11-21 | Taiwan Semiconductor Manufacturing Co Ltd | Image device and method for forming the same |
KR101475998B1 (en) * | 2009-04-10 | 2014-12-23 | 샤프 가부시키가이샤 | Solid-state image capturing element and driving method for the same, method for manufacturing solid-state image capturing element, and electronic information device |
JP2016143870A (en) * | 2015-02-05 | 2016-08-08 | キヤノン株式会社 | Solid-state image pickup device |
JP2017120829A (en) * | 2015-12-28 | 2017-07-06 | ルネサスエレクトロニクス株式会社 | Semiconductor device and method of manufacturing the same |
US11431922B2 (en) | 2018-06-26 | 2022-08-30 | Canon Kabushiki Kaisha | Photoelectric conversion apparatus, imaging system, and moving object, with high sensitivity and saturation charge |
-
1999
- 1999-08-05 JP JP22269299A patent/JP4406964B2/en not_active Expired - Fee Related
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7623101B2 (en) | 2001-02-27 | 2009-11-24 | Samsung Mobile Display Co., Ltd. | Light emitting device and light emitting system |
US7236197B2 (en) * | 2001-11-13 | 2007-06-26 | Kabushiki Kaisha Toshiba | Solid-state image sensor using junction gate type field-effect transistor as pixel |
US7679667B2 (en) | 2001-11-13 | 2010-03-16 | Kabushiki Kaisha Toshiba | Solid-state image sensor using junction gate type field-effect transistor as pixel |
US7508017B2 (en) | 2001-11-13 | 2009-03-24 | Kabushiki Kaisha Toshiba | Solid-state image sensor using junction gate type field-effect transistor as pixel |
KR100813801B1 (en) * | 2001-12-27 | 2008-03-13 | 매그나칩 반도체 유한회사 | Image sensor with improved light sensitivity and fabricating method of the same |
US8580595B2 (en) | 2002-06-27 | 2013-11-12 | Canon Kabushiki Kaisha | Solid-state image sensing device and camera system the same |
JP2006024962A (en) * | 2002-06-27 | 2006-01-26 | Canon Inc | Solid-state imaging device and camera system using the solid-state imaging device |
US8436406B2 (en) | 2002-06-27 | 2013-05-07 | Canon Kabushiki Kaisha | Solid-state image sensing device and camera system using the same |
US7723766B2 (en) | 2002-06-27 | 2010-05-25 | Canon Kabushiki Kaisha | Solid-state image sensing device and camera system using the same |
US7705381B2 (en) | 2002-06-27 | 2010-04-27 | Canon Kabushiki Kaisha | Solid-state image sensing device and camera system using the same |
US7423305B2 (en) | 2002-06-27 | 2008-09-09 | Canon Kabushiki Kaisha | Solid-state image sensing device having high sensitivity and camera system using the same |
JP2004193547A (en) * | 2002-06-27 | 2004-07-08 | Canon Inc | Solid-state image sensing device and camera system using the same |
US7304286B2 (en) | 2003-02-21 | 2007-12-04 | Matsushita Electric Industrial Co., Ltd. | Solid-state imaging device, method for manufacturing the same and interline transfer CCD image sensor |
CN100461434C (en) * | 2003-02-21 | 2009-02-11 | 松下电器产业株式会社 | Solid-state imaging device, method for manufacturing the same and interline transfer CCD image sensor |
JP4700919B2 (en) * | 2004-03-16 | 2011-06-15 | キヤノン株式会社 | Solid-state image sensor |
JP2005268295A (en) * | 2004-03-16 | 2005-09-29 | Canon Inc | Solid state image sensor |
JP2006041542A (en) * | 2004-07-29 | 2006-02-09 | Magnachip Semiconductor Ltd | Image sensor and its fabrication process |
JP2006093319A (en) * | 2004-09-22 | 2006-04-06 | Sony Corp | Cmos solid state image pickup device, its manufacturing method and drive method thereof |
KR101177129B1 (en) | 2004-09-22 | 2012-08-24 | 소니 주식회사 | Cmos solid-state imaging device and method of manufacturing the same as well as drive method of cmos solid-state imaging device |
JP4595464B2 (en) * | 2004-09-22 | 2010-12-08 | ソニー株式会社 | Manufacturing method of CMOS solid-state imaging device |
US7879637B2 (en) | 2004-09-22 | 2011-02-01 | Sony Corporation | CMOS solid-state imaging device and method of manufacturing the same as well as drive method of CMOS solid-state imaging device |
EP1722421A2 (en) * | 2005-05-13 | 2006-11-15 | Stmicroelectronics Sa | Floating integrated photodiode |
US7875915B2 (en) | 2005-05-13 | 2011-01-25 | Stmicroelectronics S.A. | Integrated circuit comprising a photodiode of the floating substrate type and corresponding fabrication process |
EP1722421A3 (en) * | 2005-05-13 | 2007-04-18 | Stmicroelectronics Sa | Floating integrated photodiode |
JP2007073770A (en) * | 2005-09-07 | 2007-03-22 | Matsushita Electric Ind Co Ltd | Solid-state imaging device and its manufacturing method |
JP2008004682A (en) * | 2006-06-21 | 2008-01-10 | Matsushita Electric Ind Co Ltd | Solid-state imaging device, and method of driving and manufacturing the same |
KR100935269B1 (en) * | 2007-12-27 | 2010-01-06 | 주식회사 동부하이텍 | Image Sensor and Methof for Manufacturing Thereof |
US7592579B2 (en) | 2007-12-28 | 2009-09-22 | Canon Kabushiki Kaisha | Photoelectric conversion device manufacturing method, semiconductor device manufacturing method, photoelectric conversion device, and image sensing system |
US8013369B2 (en) | 2008-02-27 | 2011-09-06 | Canon Kabushiki Kaisha | Photoelectric conversion apparatus and imaging system using photoelectric conversion apparatus |
JP2009206260A (en) * | 2008-02-27 | 2009-09-10 | Canon Inc | Photoelectric conversion device and imaging system using photoelectric conversion device |
JP2010147193A (en) * | 2008-12-17 | 2010-07-01 | Sharp Corp | Solid-state imaging apparatus, method for manufacturing the same, and electronic information device |
US8115851B2 (en) | 2008-12-17 | 2012-02-14 | Sharp Kabushiki Kaisha | Solid-state image capturing apparatus, method for manufacturing same, and electronic information device |
EP2228825A3 (en) * | 2009-03-09 | 2012-05-23 | Sony Corporation | Solid-state imaging device, electronic equipment and manufacturing method of the solid-state imaging device |
US8975667B2 (en) | 2009-03-09 | 2015-03-10 | Sony Corporation | Solid-state imaging device, electronic equipment and manufacturing method of the solid-state imaging device |
KR101475998B1 (en) * | 2009-04-10 | 2014-12-23 | 샤프 가부시키가이샤 | Solid-state image capturing element and driving method for the same, method for manufacturing solid-state image capturing element, and electronic information device |
WO2013129559A1 (en) * | 2012-02-29 | 2013-09-06 | Etoh Takeharu | Solid-state imaging device |
US9503663B2 (en) | 2012-02-29 | 2016-11-22 | Takeharu Etoh | Solid-state imaging apparatus |
US8883544B2 (en) | 2012-05-04 | 2014-11-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming an image device |
JP2013236075A (en) * | 2012-05-04 | 2013-11-21 | Taiwan Semiconductor Manufacturing Co Ltd | Image device and method for forming the same |
US9406715B2 (en) | 2012-05-04 | 2016-08-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Image sensor device |
US10163951B2 (en) | 2012-05-04 | 2018-12-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | Image sensor device |
US10734428B2 (en) | 2012-05-04 | 2020-08-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Image sensor device |
US11502121B2 (en) | 2012-05-04 | 2022-11-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Image sensor device |
JP2016143870A (en) * | 2015-02-05 | 2016-08-08 | キヤノン株式会社 | Solid-state image pickup device |
JP2017120829A (en) * | 2015-12-28 | 2017-07-06 | ルネサスエレクトロニクス株式会社 | Semiconductor device and method of manufacturing the same |
CN107104115A (en) * | 2015-12-28 | 2017-08-29 | 瑞萨电子株式会社 | Semiconductor devices and its manufacture method |
US11431922B2 (en) | 2018-06-26 | 2022-08-30 | Canon Kabushiki Kaisha | Photoelectric conversion apparatus, imaging system, and moving object, with high sensitivity and saturation charge |
Also Published As
Publication number | Publication date |
---|---|
JP4406964B2 (en) | 2010-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001053260A (en) | Solid-state image pickup element and manufacture thereof | |
US7271430B2 (en) | Image sensors for reducing dark current and methods of fabricating the same | |
US8580595B2 (en) | Solid-state image sensing device and camera system the same | |
US7514733B2 (en) | CMOS image device and local impurity region and method of manufacturing the same | |
US7642107B2 (en) | Split transfer gate for dark current suppression an imager pixel | |
JP3403061B2 (en) | Solid-state imaging device | |
JP5100988B2 (en) | Image sensor and manufacturing method thereof | |
US20050051701A1 (en) | Image sensor having pinned floating diffusion diode | |
JP2000299453A (en) | Solid-state image pickup device and its manufacture | |
US8723285B2 (en) | Photoelectric conversion device manufacturing method thereof, and camera | |
JP2004071628A (en) | Semiconductor photodetecting device | |
JP2005347759A (en) | Image sensor for reducing dark current, and manufacturing method therefor | |
JP2004039832A (en) | Photoelectric converter and its manufacturing method | |
JPH11307752A (en) | Solid state image sensor | |
JPH11274461A (en) | Solid image pickup device and its manufacture | |
JP2007073544A (en) | Solid state imaging device and its manufacturing method | |
JP5274118B2 (en) | Solid-state imaging device | |
JP2002124657A (en) | Cmos image sensor | |
KR100833609B1 (en) | Cmos image sensor and method for fabricating the same | |
JP3313683B2 (en) | Solid-state imaging device and solid-state imaging device | |
JP4775486B2 (en) | Solid-state imaging device and manufacturing method thereof | |
JPS6223156A (en) | Semiconductor device and manufacture thereof | |
JPH1012855A (en) | Solid state imaging device | |
JP2005039219A (en) | Solid-state imaging device | |
JP2009283727A (en) | Solid-state imaging device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060313 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090710 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091020 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091102 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131120 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |