JP2001036001A - Power semiconductor module - Google Patents

Power semiconductor module

Info

Publication number
JP2001036001A
JP2001036001A JP11206667A JP20666799A JP2001036001A JP 2001036001 A JP2001036001 A JP 2001036001A JP 11206667 A JP11206667 A JP 11206667A JP 20666799 A JP20666799 A JP 20666799A JP 2001036001 A JP2001036001 A JP 2001036001A
Authority
JP
Japan
Prior art keywords
power semiconductor
semiconductor chip
semiconductor module
insulating substrate
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11206667A
Other languages
Japanese (ja)
Inventor
Masayasu Ishiko
雅康 石子
Yuji Yagi
雄二 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP11206667A priority Critical patent/JP2001036001A/en
Publication of JP2001036001A publication Critical patent/JP2001036001A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Abstract

PROBLEM TO BE SOLVED: To provide a power semiconductor module which can effectively cool a sealed power element. SOLUTION: In a power semiconductor module 100, rather than a metallic fine wire used conventionally but a net-like metallic fine wire is used for a connecting the line between an emitter electrode 14 and an electrode terminal 22 for an emitter. The net-like metallic fine wire 24 is very much larger in surface area than that of the metallic fine wire. Therefore, the heat radiation efficiency is improved, so it can effectively cool a power semiconductor chip 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車に使用
される電力半導体パワーモジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power semiconductor power module used for an electric vehicle.

【0002】[0002]

【従来の技術】電気自動車等(ハイブリッド自動車を含
む)の電動機のコイルに所定の交流電力を供給するイン
バータは、電力用スイッチング素子等で構成されてい
る。電力用半導体としては、IGBTやパワーMOSF
ET等の半導体チップに形成されたパワー素子が用いら
れている。パワー素子が形成された半導体チップは、制
御回路等と共に一つのパワーモジュールに封止されてい
る。
2. Description of the Related Art An inverter for supplying a predetermined AC power to a coil of a motor of an electric vehicle or the like (including a hybrid vehicle) is composed of a power switching element and the like. IGBT and power MOSF as power semiconductors
A power element formed on a semiconductor chip such as an ET is used. The semiconductor chip on which the power elements are formed is sealed in one power module together with a control circuit and the like.

【0003】このようなパワーモジュールにおいては、
封止されているパワー素子自体に大電流が流れるため、
このパワー素子が発熱し熱破壊が起こる場合がある。こ
のような熱破壊を防止するために、従来、封止されてい
る半導体チップを絶縁板を介して放熱板に取り付け、こ
の放熱板を冷却することで、半導体チップの冷却が行わ
れていた。
In such a power module,
Since a large current flows through the sealed power element itself,
This power element generates heat and may cause thermal destruction. Conventionally, in order to prevent such thermal destruction, the semiconductor chip has been cooled by attaching a sealed semiconductor chip to a heat sink via an insulating plate and cooling the heat sink.

【0004】図17には、従来の電力半導体モジュール
が示されている。電力半導体モジュール600内には、
パワー素子としてIGBT(Insulated Ga
teBipolar Transistor)が形成さ
れた電力半導体チップ2と、ダイオードが形成された半
導体チップ40が封入されている。電力半導体チップ2
及び半導体チップ40は、AlN等絶縁基板4上の導電
体層6に半田(図示せず)等で固定されている。導電体
層6は、電力半導体チップ2及び半導体チップ40のエ
ミッタ電流等が適切に取り出せるように、パターンが形
成されている。
FIG. 17 shows a conventional power semiconductor module. In the power semiconductor module 600,
IGBT (Insulated Ga) as a power element
The power semiconductor chip 2 on which teBipolar Transistor is formed and the semiconductor chip 40 on which a diode is formed are sealed. Power semiconductor chip 2
The semiconductor chip 40 is fixed to the conductor layer 6 on the insulating substrate 4 such as AlN by solder (not shown) or the like. The conductor layer 6 is patterned so that the emitter current and the like of the power semiconductor chip 2 and the semiconductor chip 40 can be appropriately taken out.

【0005】電力半導体チップ2上のエミッタ電極(図
示せず)は、AlやAu等の金属細線でできている金属
細線80によって導電体層6と電気的に接続されてい
る。一方、導電体層6には、電力半導体チップ2と外部
装置とを電気的に接続するためのエミッタ用電極端子2
2が接続されており、エミッタ電流を外部装置へ供給す
る。半導体チップ40上のダイオードのアノード電極
(図示せず)は、金属細線84を介して、エミッタ用電
極端子22に電気的に接続されている。一方、電力半導
体チップ2上のゲート電極(図示せず)は、エミッタ電
極と同様に、金属細線80によって、導電体層6の所定
の位置に、電気的に接続される。
An emitter electrode (not shown) on the power semiconductor chip 2 is electrically connected to the conductor layer 6 by a thin metal wire 80 made of a thin metal wire such as Al or Au. On the other hand, the conductor layer 6 has an emitter electrode terminal 2 for electrically connecting the power semiconductor chip 2 and an external device.
2 are connected to supply an emitter current to an external device. An anode electrode (not shown) of the diode on the semiconductor chip 40 is electrically connected to the emitter electrode terminal 22 via a thin metal wire 84. On the other hand, a gate electrode (not shown) on the power semiconductor chip 2 is electrically connected to a predetermined position of the conductor layer 6 by a thin metal wire 80, similarly to the emitter electrode.

【0006】このように、従来は、電力半導体チップ2
上のエミッタ電極とエミッタ用電極端子22とは金属細
線82で接続されていた。
As described above, conventionally, the power semiconductor chip 2
The upper emitter electrode and the emitter electrode terminal 22 were connected by a thin metal wire 82.

【0007】[0007]

【発明が解決しようとする課題】電気自動車などの駆動
用インバータに使用する電力半導体モジュールは、数百
A程度の電流が必要である。このような大電流が流れる
と、金属細線自身の抵抗による発熱や半導体チップ内部
で発生した熱を有効に冷却できなくなる。そして、半導
体チップの温度が上昇し、半導体チップの安全動作領域
が低下するという問題点があった。
A power semiconductor module used for a driving inverter of an electric vehicle or the like needs a current of about several hundreds of amperes. When such a large current flows, the heat generated by the resistance of the thin metal wires and the heat generated inside the semiconductor chip cannot be effectively cooled. Then, there has been a problem that the temperature of the semiconductor chip increases and the safe operation area of the semiconductor chip decreases.

【0008】また、金属細線の熱膨張で、半導体チップ
と金属細線との接続部に過大な熱ストレスが発生し、接
合面の剥離が生じやすくなる。
Further, due to the thermal expansion of the thin metal wire, an excessive thermal stress is generated at a connection portion between the semiconductor chip and the thin metal wire, so that the bonding surface is apt to be separated.

【0009】上記のような不具合を是正するために、エ
ミッタ電極に金属細線を数10本接続される方法が取ら
れる場合がある。この場合、ワイヤーボンディング工程
に費やす時間が長くなり、製造コストが高くなるという
問題点があった。
In order to correct the above-mentioned problems, a method of connecting several tens of thin metal wires to the emitter electrode may be adopted. In this case, there is a problem in that the time spent in the wire bonding process is lengthened and the manufacturing cost is increased.

【0010】また、金属細線は寄生インダクタンスを有
するため、流れる電流の変化によるサージ電圧やそれに
伴う電気的な雑音が、インバータや周辺機器の動作に好
ましくない影響を与えていた。
[0010] In addition, since the thin metal wire has a parasitic inductance, a surge voltage due to a change in a flowing current and electric noise accompanying the change have adversely affected the operation of the inverter and peripheral devices.

【0011】本発明は、上記課題を解決するためになさ
れたものであり、封止されたパワー素子を、効果的に冷
却することができる電力半導体モジュールを提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a power semiconductor module capable of effectively cooling a sealed power element.

【0012】[0012]

【課題を解決するための手段】本発明は、電力半導体チ
ップを内蔵する電力半導体モジュールであって、外部と
の電気的接続を行う電極端子と、この電極端子と前記電
力半導体チップとを電気的に接続する接続線路と、を含
み、前記接続線路の少なくとも一部が網状金属細線から
なることを特徴とする。
SUMMARY OF THE INVENTION The present invention relates to a power semiconductor module having a built-in power semiconductor chip, comprising an electrode terminal for making an electrical connection to the outside, and an electrical connection between the electrode terminal and the power semiconductor chip. And at least a part of the connection line is made of a net-like metal wire.

【0013】電力半導体チップは、その動作に応じて発
熱する。接続線路は、電気的接続を行う導電体であり、
電力半導体チップの熱は接続線路を通じて伝達されやす
い。そして、この接続線路の少なくとも一部は、細い金
属線が多数編まれた網状金属細線からなっている。この
網状金属細線は表面積が非常に大きいため、この網状金
属細線は電力半導体チップで発生した熱を効果的に放熱
することが可能である。
The power semiconductor chip generates heat according to its operation. The connection line is a conductor that makes an electrical connection,
The heat of the power semiconductor chip is easily transmitted through the connection line. At least a part of the connection line is made of a net-like metal wire in which a large number of thin metal wires are woven. Since the reticulated metal wire has a very large surface area, the reticulated metal wire can effectively radiate heat generated in the power semiconductor chip.

【0014】また、本発明は、電力半導体チップを内蔵
する電力半導体モジュールであって、外部との電気的接
続を行う電極端子と、この電極端子と前記電力半導体チ
ップとを電気的に接続する接続線路と、を含み、前記電
極端子の少なくとも一部が金属板からなり、前記接続線
路の少なくとも一部が、貫通穴を有する絶縁基板の両面
及び前記貫通穴の内壁部に形成された導電体層からなる
ことを特徴する。
The present invention also relates to a power semiconductor module incorporating a power semiconductor chip, comprising an electrode terminal for making an electrical connection to the outside, and a connection for electrically connecting the electrode terminal to the power semiconductor chip. A conductive layer formed on both sides of an insulating substrate having a through hole and on an inner wall portion of the through hole, wherein at least a part of the electrode terminal is made of a metal plate. It is characterized by consisting of.

【0015】電力半導体チップは、絶縁基板の両面及び
前記貫通穴の内壁部に形成された導電体層を介して電極
端子と接続される。また、導電体層と接続される電極端
子もその一部は金属板であり、面積が比較的大きい。従
って、電力半導体チップで発生する熱を、効率よく放熱
することが可能である。
The power semiconductor chip is connected to electrode terminals via conductor layers formed on both surfaces of the insulating substrate and on the inner wall of the through hole. Further, a part of the electrode terminal connected to the conductor layer is also a metal plate and has a relatively large area. Therefore, heat generated in the power semiconductor chip can be efficiently dissipated.

【0016】また、電力半導体チップと電極端子との接
続線路が絶縁基板の両面に形成された導電体層であるた
め、電力半導体チップと電極端子との距離を小さくする
ことが可能となる。従って、金属細線と比較して、導電
体層の長さは短くて良い。そのため、導電体層の抵抗値
が小さくなり、電流による導電体層自体の発熱量も小さ
くなる。また、寄生インダクタンスが小さくなり、サー
ジ電圧及び電気的雑音を低下させることが可能である。
Further, since the connection line between the power semiconductor chip and the electrode terminal is a conductor layer formed on both surfaces of the insulating substrate, the distance between the power semiconductor chip and the electrode terminal can be reduced. Therefore, the length of the conductor layer may be shorter than that of the thin metal wire. Therefore, the resistance value of the conductor layer decreases, and the amount of heat generated by the conductor layer itself due to electric current also decreases. Further, the parasitic inductance is reduced, and the surge voltage and the electric noise can be reduced.

【0017】また、電力半導体チップと電極端子との距
離を小さくすることができるので、電力半導体モジュー
ル全体の大きさを小さくすることが可能であり、製造コ
ストが安価な電力半導体モジュールを提供することが可
能となる。
Further, since the distance between the power semiconductor chip and the electrode terminals can be reduced, it is possible to reduce the size of the entire power semiconductor module, and to provide a power semiconductor module with a low manufacturing cost. Becomes possible.

【0018】電力半導体モジュールは、前記電力半導体
チップの一主面に密着されている放熱板を更に有するこ
とが好適である。電力半導体チップは電極端子と接続さ
れた側と、放熱板が密着させられた側の両側から効率的
に冷却されることが可能である。
It is preferable that the power semiconductor module further includes a heat radiating plate closely attached to one main surface of the power semiconductor chip. The power semiconductor chip can be efficiently cooled from both sides of the side connected to the electrode terminals and the side to which the heat sink is adhered.

【0019】また、前記絶縁基板は、その一主面上に、
前記電力半導体チップと電気的に接続される制御用半導
体チップを有することが好適である。
Further, the insulating substrate has, on one main surface thereof,
It is preferable to have a control semiconductor chip electrically connected to the power semiconductor chip.

【0020】制御用半導体チップは絶縁基板上に有るた
め、電力半導体チップと制御用半導体チップとの接続線
路の長さを小さくすることができ、接続線路上に混入す
る電気的な雑音を減らすことが可能である。従って、制
御用半導体チップと電力半導体チップとの間の接続線路
に混入する電気的雑音による電力半導体チップの誤動作
を防止することができる。
Since the control semiconductor chip is on the insulating substrate, the length of the connection line between the power semiconductor chip and the control semiconductor chip can be reduced, and the electric noise mixed into the connection line can be reduced. Is possible. Therefore, it is possible to prevent the power semiconductor chip from malfunctioning due to electric noise mixed into the connection line between the control semiconductor chip and the power semiconductor chip.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)を、図面に従って説明する。尚、各図
面を通して、同一の部材には同一の符号が付されてい
る。
Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings. The same members are denoted by the same reference symbols throughout the drawings.

【0022】図1及び図2には、本実施形態の電力半導
体モジュールの概略図が示されている。図1は電力半導
体モジュール100の断面概略図であり、図2のBB線
の断面概略図である。そして、図2は図1のAA線での
平面概略図である。
FIGS. 1 and 2 are schematic diagrams of a power semiconductor module according to the present embodiment. FIG. 1 is a schematic sectional view of the power semiconductor module 100, and is a schematic sectional view taken along line BB of FIG. FIG. 2 is a schematic plan view taken along line AA in FIG.

【0023】電力半導体モジュール100内には、表面
にパワー素子としてIGBTが形成された電力半導体チ
ップ2が、絶縁基板4上の導電体層6に半田等で固定さ
れている。絶縁基板4は導電体層10を介して、金属基
板34に取り付けられている。絶縁基板4によって、導
電体層10と電力半導体チップ2は電気的に絶縁され
る。
In the power semiconductor module 100, a power semiconductor chip 2 on the surface of which an IGBT is formed as a power element is fixed to a conductor layer 6 on an insulating substrate 4 by soldering or the like. The insulating substrate 4 is attached to the metal substrate 34 via the conductor layer 10. The conductor layer 10 and the power semiconductor chip 2 are electrically insulated by the insulating substrate 4.

【0024】なお、ここでは、パワー素子としてIGB
Tを使用しているが、パワーMOSFET(Metal
Oxide Semiconductor Feil
d−Effect Transistor)等の他のパ
ワー素子を用いてもよい。
Here, IGB is used as a power element.
T, but the power MOSFET (Metal
Oxide Semiconductor Fail
Other power elements such as d-Effect Transistor may be used.

【0025】図3には、電力半導体チップ2の平面図が
示されている。電力半導体チップ2にはパワー素子とし
てIGBTが形成されており、その表面にゲート電極1
2と複数のエミッタ電極14とを有し、その裏の面のほ
ぼ全面にコレクタ電極(図示せず)を有している。
FIG. 3 is a plan view of the power semiconductor chip 2. An IGBT is formed on the power semiconductor chip 2 as a power element, and a gate electrode 1 is formed on the surface of the IGBT.
2 and a plurality of emitter electrodes 14, and a collector electrode (not shown) is provided on almost the entire back surface thereof.

【0026】電力半導体チップ2上のゲート電極12、
エミッタ電極14及びコレクタ電極(即ち、電力半導体
チップ2の半導体基板)に電圧を供給するために、これ
らの電極とチップ外部へ電気的に接続される電極端子と
を電気的に接続する必要がある。ゲート電極12は、金
属細線16と導電体層17とを介して、ゲート用電極端
子18に電気的に接続される。このゲート用電極端子1
8から電力半導体チップ2上のゲート電極12へ電圧が
供給される。
A gate electrode 12 on the power semiconductor chip 2;
In order to supply a voltage to the emitter electrode 14 and the collector electrode (that is, the semiconductor substrate of the power semiconductor chip 2), it is necessary to electrically connect these electrodes to electrode terminals electrically connected to the outside of the chip. . The gate electrode 12 is electrically connected to the gate electrode terminal 18 via the thin metal wire 16 and the conductor layer 17. This gate electrode terminal 1
8 supplies a voltage to the gate electrode 12 on the power semiconductor chip 2.

【0027】電力半導体チップ2上のコレクタ電極、即
ち、電力半導体チップ2の半導体基板への電圧供給は、
コレクタ用電極端子20から、電力半導体チップ2の裏
の面の導電体層6を介して行われる。
The voltage supply to the collector electrode on the power semiconductor chip 2, that is, the semiconductor substrate of the power semiconductor chip 2,
The operation is performed from the collector electrode terminal 20 via the conductor layer 6 on the back surface of the power semiconductor chip 2.

【0028】電力半導体チップ2上のエミッタ電極14
への電圧供給は、エミッタ用電極端子22から行われ
る。エミッタ電極14には、網状金属細線24が、半田
等で接続されている。網状金属細線24は、金属細線1
6より細い多数の網状に編まれた金属細線から構成され
ている。網状金属細線24には、さらに配線用金属端子
26が、半田で接続されている。配線用金属端子26は
導電体層28に半田で接合されており、導電体層28に
は更にエミッタ用電極端子22が接合されている。この
ように、エミッタ電極14は、網状金属細線24、配線
用金属端子26、導電体層28を介してエミッタ用電極
端子22に電気的に接続されている。
Emitter electrode 14 on power semiconductor chip 2
Is supplied from the emitter electrode terminal 22. A fine mesh wire 24 is connected to the emitter electrode 14 with solder or the like. The reticulated metal wire 24 is the metal wire 1
It is composed of a large number of fine metal wires woven into a net shape smaller than 6. Wiring metal terminals 26 are further connected to the net-like metal wires 24 by soldering. The wiring metal terminal 26 is joined to the conductor layer 28 by soldering, and the emitter electrode terminal 22 is further joined to the conductor layer 28. As described above, the emitter electrode 14 is electrically connected to the emitter electrode terminal 22 via the thin net-like metal wire 24, the wiring metal terminal 26, and the conductor layer 28.

【0029】電力半導体チップ2、絶縁基板4、各電極
端子18,20,22等は、外殻ケース32と金属基板
34で構成されるパッケージ36内に封入される。この
とき、パッケージ36内部を、シリコンゲル、エポキシ
樹脂等で満たしても良い。
The power semiconductor chip 2, the insulating substrate 4, the electrode terminals 18, 20, 22 and the like are enclosed in a package 36 composed of an outer case 32 and a metal substrate 34. At this time, the inside of the package 36 may be filled with silicon gel, epoxy resin, or the like.

【0030】電力半導体モジュール100においては、
エミッタ電極14とエミッタ用電極端子22との接続線
路は、従来用いられていた金属細線(例えば金属細線1
6と同じ素材のもの)ではなく、網状金属細線24が使
用されている。網状金属細線24は金属細線と比較し
て、表面積が非常に大きい。そのため、放熱効率が向上
し、効果的に電力半導体チップ2を冷却することが可能
である。
In the power semiconductor module 100,
The connection line between the emitter electrode 14 and the emitter electrode terminal 22 is formed of a conventionally used thin metal wire (for example, a thin metal wire 1).
6, the net-like metal fine wires 24 are used. The reticulated metal wire 24 has a very large surface area compared to the metal wire. Therefore, the heat radiation efficiency is improved, and the power semiconductor chip 2 can be effectively cooled.

【0031】図4、図5及び図6には、他の実施形態の
電力半導体モジュールの概略図が示されている。図4
は、電力半導体モジュール200の断面概略図であり、
図5のEE線での断面概略図である。また、図5は、図
4のCC線での平面概略図であり、図6は、図5のDD
線での断面図である。
FIGS. 4, 5 and 6 show schematic views of a power semiconductor module according to another embodiment. FIG.
Is a schematic cross-sectional view of the power semiconductor module 200;
FIG. 6 is a schematic sectional view taken along line EE in FIG. 5. FIG. 5 is a schematic plan view taken along the line CC in FIG. 4, and FIG.
It is sectional drawing in a line.

【0032】電力半導体モジュール200には、パワー
素子としてIGBTが形成された電力半導体チップ2
と、ダイオードが形成された半導体チップ40が内蔵さ
れている。図7には、半導体チップ40の平面図が示さ
れている。半導体チップ40には、ダイオードが形成さ
れており、表面にはアノード電極42と、裏の面にカソ
ード電極(図示せず)が形成されている。
The power semiconductor module 200 has a power semiconductor chip 2 on which an IGBT is formed as a power element.
And a semiconductor chip 40 on which a diode is formed. FIG. 7 is a plan view of the semiconductor chip 40. A diode is formed on the semiconductor chip 40, and an anode electrode 42 is formed on the front surface, and a cathode electrode (not shown) is formed on the back surface.

【0033】電力半導体チップ2及び半導体チップ40
は、両面にそれぞれ導電体層6及び導電体層10を有す
るAlN等の絶縁基板4の導電体層6上に、半田(図示
せず)等で固定される。電力半導体チップ2の裏の面の
コレクタ電極と半導体チップ40の裏の面のカソード電
極とは、この導電体層6で電気的に接続される。
Power semiconductor chip 2 and semiconductor chip 40
Is fixed on the conductor layer 6 of an insulating substrate 4 made of AlN or the like having the conductor layer 6 and the conductor layer 10 on both surfaces by solder (not shown) or the like. The collector electrode on the back surface of the power semiconductor chip 2 and the cathode electrode on the back surface of the semiconductor chip 40 are electrically connected by the conductor layer 6.

【0034】一方、電力半導体チップ2上のゲート電極
12、エミッタ電極14、半導体チップ40のアノード
電極42は、それぞれ各チップの表の面側で、両面に導
電体層44,46を有する絶縁基板48の導電体層46
に電気的に接続される。
On the other hand, the gate electrode 12, the emitter electrode 14 on the power semiconductor chip 2 and the anode electrode 42 of the semiconductor chip 40 are respectively provided on the front side of each chip and on an insulating substrate having conductor layers 44 and 46 on both sides. 48 conductive layers 46
Is electrically connected to

【0035】図8には、図6に示された絶縁基板48の
概略図が示されている。図8(a)には、絶縁基板48
を表の面から眺めた平面図が示されており、図8(b)
には、絶縁基板48を裏の面から見た平面図が示されて
おり、図8(c)には、図8(a)のFF線での断面拡
大図が示されている。絶縁基板48の裏の面には、電力
半導体チップ2のゲート電極12、エミッタ電極14及
び半導体チップ40のアノード電極42を半田等で接続
できるように、導電体層46がパターニングされている
(図8(b))。このパターニングされた導電体層46
は、絶縁基板に設けられ複数の貫通穴50の内壁部に形
成された導電体層52で、表の面の導電体層46とそれ
ぞれ接続されている。
FIG. 8 is a schematic view of the insulating substrate 48 shown in FIG. FIG. 8A shows an insulating substrate 48.
FIG. 8B is a plan view of FIG.
FIG. 8A is a plan view of the insulating substrate 48 as viewed from the back surface, and FIG. 8C is an enlarged cross-sectional view taken along line FF of FIG. 8A. On the back surface of the insulating substrate 48, a conductor layer 46 is patterned so that the gate electrode 12, the emitter electrode 14 of the power semiconductor chip 2 and the anode electrode 42 of the semiconductor chip 40 can be connected by solder or the like (FIG. 8 (b)). This patterned conductor layer 46
Is a conductor layer 52 provided on the insulating substrate and formed on the inner wall of the plurality of through holes 50, and is connected to the conductor layer 46 on the front surface.

【0036】導電体層46には、エミッタ用電極端子2
2が接続される。このエミッタ用電極端子22は、その
一部が金属板から形成されている。エミッタ用電極端子
22は面積が広く作られている。
The conductor electrode 46 has an emitter electrode terminal 2
2 are connected. Part of the emitter electrode terminal 22 is formed from a metal plate. The emitter electrode terminal 22 has a large area.

【0037】絶縁基板48は半透明基板であっても良
く、絶縁基板48の表の面と裏の面に、導電体層46に
それぞれ電力半導体チップ2又は半導体チップ40を固
定する際の位置あわせのための位置合わせマーク54、
56等が施されている。
The insulating substrate 48 may be a translucent substrate, and the positioning when fixing the power semiconductor chip 2 or the semiconductor chip 40 to the conductor layer 46 on the front and back surfaces of the insulating substrate 48, respectively. Alignment mark 54 for
56 etc. are given.

【0038】図9には、電力半導体モジュール200の
組立工程が示されている。絶縁基板48の導電体層46
には、電力半導体チップ2及び半導体チップ40をそれ
ぞれ、リフローソルダリングにより半田で固定する(図
9(a))。この接続には、半田の代わりに導電性樹脂
を用いても良い。このとき、絶縁基板48は半透明基板
であって、絶縁基板48の表の面と裏の面の位置合わせ
マーク54,56によって、絶縁基板48と電力半導体
チップ2及び半導体チップ40の位置あわせを容易に行
うことができる。
FIG. 9 shows an assembling process of the power semiconductor module 200. Conductor layer 46 of insulating substrate 48
Next, the power semiconductor chip 2 and the semiconductor chip 40 are fixed by soldering by reflow soldering, respectively (FIG. 9A). For this connection, a conductive resin may be used instead of the solder. At this time, the insulating substrate 48 is a translucent substrate, and the positioning of the insulating substrate 48 with the power semiconductor chip 2 and the semiconductor chip 40 is performed by the alignment marks 54 and 56 on the front and back surfaces of the insulating substrate 48. It can be done easily.

【0039】その後、導電体層44にエミッタ用電極端
子22を半田等で接続する。また、電力半導体チップ2
及び半導体チップ40の裏の面は、絶縁基板4の導電体
層6に半田等で接合される(図9(b))。その後、絶
縁基板4を金属基板34に接続することで、パッケージ
36内に封入され、電力半導体モジュール200が完成
する(図4、図5、図6)。このとき、内部にシリコン
ゲルを挿入し、最後にエポキシ樹脂でモジュール隙間を
埋めてもよい。
Thereafter, the emitter electrode terminal 22 is connected to the conductor layer 44 by soldering or the like. In addition, the power semiconductor chip 2
The back surface of the semiconductor chip 40 is joined to the conductor layer 6 of the insulating substrate 4 by solder or the like (FIG. 9B). After that, by connecting the insulating substrate 4 to the metal substrate 34, it is sealed in the package 36, and the power semiconductor module 200 is completed (FIGS. 4, 5, and 6). At this time, a silicone gel may be inserted into the inside, and finally the module gap may be filled with epoxy resin.

【0040】図10には、電力半導体モジュール200
の定格出力に対する電力半導体チップ2の最高温度が示
されている。電力半導体モジュール200は従来のもの
と比較して、約15℃最高温度の低下が観測された。
FIG. 10 shows a power semiconductor module 200.
3 shows the maximum temperature of the power semiconductor chip 2 with respect to the rated output. The power semiconductor module 200 was observed to have a maximum temperature drop of about 15 ° C. as compared to the conventional one.

【0041】このように、本実施形態の電力半導体モジ
ュールは、導電体層46で電極用端子22,18等と接
続される。従って、金属細線と比較して、導電体層46
の長さは短くて良い。そのため、導電体層の抵抗値が小
さくなり、電流による導電体層自体の発熱量も小さくな
る。また、寄生インダクタンスが小さくなり、サージ電
圧及び電気的雑音を低下させることが可能である。
As described above, the power semiconductor module of the present embodiment is connected to the electrode terminals 22, 18 and the like by the conductor layer 46. Therefore, compared to the thin metal wire, the conductor layer 46
May be short. Therefore, the resistance value of the conductor layer decreases, and the amount of heat generated by the conductor layer itself due to electric current also decreases. Further, the parasitic inductance is reduced, and the surge voltage and the electric noise can be reduced.

【0042】また、電極端子22、18、20は、少な
くともその一部が金属板となっており、面積が比較的大
きい。従って、電力半導体チップ2で発生する熱を効率
よく放熱することが可能である。
The electrode terminals 22, 18, and 20 are at least partially formed of a metal plate and have a relatively large area. Therefore, heat generated in the power semiconductor chip 2 can be efficiently radiated.

【0043】また、電力半導体チップ2とエミッタ用電
極端子22との距離を小さくすることができるので、電
力半導体モジュール全体の大きさを小さくすることが可
能であり、製造コストが安価な電力半導体モジュールを
提供することが可能となる。
Further, since the distance between the power semiconductor chip 2 and the emitter electrode terminal 22 can be reduced, the size of the entire power semiconductor module can be reduced, and the power semiconductor module can be manufactured at low cost. Can be provided.

【0044】また、電力半導体チップ2は、絶縁基板4
8がある程度の熱伝導性を有する絶縁基板であれば、金
属基板34は放熱板の機能を果たし、発生する熱を放熱
することも可能である。
The power semiconductor chip 2 includes an insulating substrate 4
If 8 is an insulating substrate having a certain degree of thermal conductivity, the metal substrate 34 can function as a heat radiating plate and radiate generated heat.

【0045】図11及び図12に、他の実施形態の電力
半導体モジュール300が示されている。図11は、図
12における電力半導体モジュール300のHH線での
断面図である。また、図12は、図11における電力半
導体モジュール300のGG線での平面図である。電力
半導体モジュール300の絶縁基板48上には、電力半
導体チップ2を制御する制御回路を有する制御用半導体
チップ80が接続されている。この制御用半導体チップ
80は電力半導体モジュール300の外部から制御信号
を入力され、その信号に応じて、電力半導体チップ2の
駆動電流を制御することが可能である。
FIGS. 11 and 12 show a power semiconductor module 300 according to another embodiment. FIG. 11 is a cross-sectional view of the power semiconductor module 300 taken along line HH in FIG. FIG. 12 is a plan view of the power semiconductor module 300 in FIG. 11 taken along the line GG. On the insulating substrate 48 of the power semiconductor module 300, a control semiconductor chip 80 having a control circuit for controlling the power semiconductor chip 2 is connected. The control semiconductor chip 80 receives a control signal from the outside of the power semiconductor module 300 and can control the drive current of the power semiconductor chip 2 according to the signal.

【0046】図13には、絶縁基板48の平面図が示さ
れている。図13(a)には、絶縁基板48の表の面の
平面図が示されており、図13(b)には、絶縁基板4
8の裏の面の平面図が示されている。この平面図におい
ては、絶縁基板48は、折り曲げられる部分が延ばされ
た状態である。制御用半導体チップ80は、表の面の部
分84に半田等で固定される。制御用半導体チップ80
から電力半導体チップ2に入力される制御信号は、絶縁
基板48上の導電体層46でゲート電極に入力される。
このように、電力半導体モジュール300は、絶縁基板
48に制御用半導体チップ80を有しているため、制御
用半導体チップ80と電力半導体チップ2との接続線路
の距離が短くなる。そのため、接続線路への電磁的雑音
の混入を大幅に減らすことが可能である。
FIG. 13 is a plan view of the insulating substrate 48. FIG. 13A is a plan view of the front surface of the insulating substrate 48, and FIG.
8 shows a plan view of the back surface. In this plan view, the insulating substrate 48 is in a state where a bent portion is extended. The control semiconductor chip 80 is fixed to the front surface portion 84 with solder or the like. Control semiconductor chip 80
Is input to the power semiconductor chip 2 through the conductor layer 46 on the insulating substrate 48 to the gate electrode.
As described above, since the power semiconductor module 300 includes the control semiconductor chip 80 on the insulating substrate 48, the distance of the connection line between the control semiconductor chip 80 and the power semiconductor chip 2 is reduced. Therefore, it is possible to greatly reduce the mixing of electromagnetic noise into the connection line.

【0047】また、図14には、他の電力半導体モジュ
ール400が示されている。電力半導体モジュール40
0は、絶縁基板48の導電体層44上にさらに絶縁基板
60が接続され、絶縁基板60上に制御用半導体チップ
62,64等を固定されている。制御用半導体チップ6
2,64は外部と電気的に接続される外部電極端子61
を有している。
FIG. 14 shows another power semiconductor module 400. Power semiconductor module 40
In the reference numeral 0, an insulating substrate 60 is further connected on the conductor layer 44 of the insulating substrate 48, and the control semiconductor chips 62, 64 and the like are fixed on the insulating substrate 60. Control semiconductor chip 6
Reference numerals 2 and 64 denote external electrode terminals 61 electrically connected to the outside.
have.

【0048】図15に絶縁基板60の平面図が示されて
おり、図15(a)には絶縁基板60の表の面が示され
ており、図15(b)には、絶縁基板60の裏の面が示
されている。絶縁基板60は両面に導電体層66,68
を有する。
FIG. 15 is a plan view of the insulating substrate 60, FIG. 15A shows a front surface of the insulating substrate 60, and FIG. The back side is shown. The insulating substrate 60 has conductor layers 66 and 68 on both sides.
Having.

【0049】導電体層68は絶縁基板48の導電体層4
4に半田等で接続される。導電体層68は、絶縁基板4
8の導電体層44を介して、電力半導体チップ2のゲー
ト電極とエミッタ電極とそれぞれ適切に電気的に接続さ
れるようにパターン形成されている。
The conductor layer 68 is formed on the conductor layer 4 of the insulating substrate 48.
4 is connected by solder or the like. The conductor layer 68 is formed on the insulating substrate 4.
The pattern is formed so that the gate electrode and the emitter electrode of the power semiconductor chip 2 are appropriately and electrically connected to each other via the eight conductor layers 44.

【0050】また、導電体層66は、エミッタ用電極端
子22やゲート用電極端子18とが、電力半導体チップ
2と適切に接続されるようにパターン形成されている。
また、導電体層66の一部には、制御用半導体チップ6
2,64が固定できる領域72が設けられている。導電
体層66と68とは、貫通穴70を介して電気的に接続
されている。
The conductor layer 66 is patterned so that the emitter electrode terminal 22 and the gate electrode terminal 18 are appropriately connected to the power semiconductor chip 2.
Further, a part of the conductor layer 66 includes the control semiconductor chip 6.
There is provided an area 72 to which the second and the second 64 can be fixed. The conductor layers 66 and 68 are electrically connected through the through hole 70.

【0051】電力半導体モジュール400においては、
絶縁基板60に制御用半導体チップ80を有しているた
め、制御用半導体チップ80と電力半導体チップ2との
接続線路の距離が短くなる。そのため、接続線路への電
磁的雑音の混入を大幅に減らすことが可能である。
In the power semiconductor module 400,
Since the control semiconductor chip 80 is provided on the insulating substrate 60, the distance of the connection line between the control semiconductor chip 80 and the power semiconductor chip 2 is reduced. Therefore, it is possible to greatly reduce the mixing of electromagnetic noise into the connection line.

【0052】また、図16には、エミッタ用電極端子2
2の一部に水冷パイプ74を有する電力半導体モジュー
ル500が示されている。このように、エミッタ用電極
端子22の一部に水冷パイプ74を設けることで、さら
に、電力半導体チップ2への冷却を向上させることが可
能である。
FIG. 16 shows the emitter electrode terminal 2.
2, a power semiconductor module 500 having a water cooling pipe 74 is shown. Thus, by providing the water cooling pipe 74 in a part of the emitter electrode terminal 22, it is possible to further improve the cooling of the power semiconductor chip 2.

【0053】[0053]

【発明の効果】以上のように、本発明では、外部との電
気的接続を行う電極端子と電力半導体チップの特に接続
線路側から逃げる熱量が大きくなるので、電力半導体チ
ップを効果的に冷却することが可能である。
As described above, according to the present invention, the amount of heat escaping from the electrode terminals for making an electrical connection to the outside and the power semiconductor chip, particularly from the connection line side, increases, so that the power semiconductor chip is effectively cooled. It is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施形態の電力半導体モジュールの断面概
略図である。
FIG. 1 is a schematic sectional view of a power semiconductor module according to an embodiment.

【図2】 本実施形態の電力半導体モジュールの平面概
略図である。
FIG. 2 is a schematic plan view of the power semiconductor module of the present embodiment.

【図3】 電力半導体チップの平面図である。FIG. 3 is a plan view of a power semiconductor chip.

【図4】 他の実施形態の電力半導体モジュールの断面
概略図である。
FIG. 4 is a schematic sectional view of a power semiconductor module according to another embodiment.

【図5】 他の実施形態の電力半導体モジュールの平面
概略図である。
FIG. 5 is a schematic plan view of a power semiconductor module according to another embodiment.

【図6】 他の実施形態の電力半導体モジュールの図5
におけるDD線での断面概略図である。
FIG. 6 shows a power semiconductor module according to another embodiment.
3 is a schematic sectional view taken along line DD in FIG.

【図7】 ダイオードが形成された半導体チップの平面
図である。
FIG. 7 is a plan view of a semiconductor chip on which a diode is formed.

【図8】 電力半導体チップと電極とを接続する絶縁基
板の概略図である。
FIG. 8 is a schematic diagram of an insulating substrate for connecting a power semiconductor chip and an electrode.

【図9】 電力半導体モジュールの製造方法が示された
工程概略図である。
FIG. 9 is a process schematic view showing a method for manufacturing a power semiconductor module.

【図10】 本実施形態の電力半導体モジュールと従来
の電力半導体モジュールとのチップ最高温度の違いを表
した図である。
FIG. 10 is a diagram showing a difference in maximum chip temperature between the power semiconductor module of the present embodiment and a conventional power semiconductor module.

【図11】 他の実施形態の電力半導体モジュールの断
面概略図である。
FIG. 11 is a schematic sectional view of a power semiconductor module according to another embodiment.

【図12】 他の実施形態の電力半導体モジュールの平
面概略図である。
FIG. 12 is a schematic plan view of a power semiconductor module according to another embodiment.

【図13】 他の実施形態の絶縁基板の平面図である。FIG. 13 is a plan view of an insulating substrate according to another embodiment.

【図14】 他の実施形態の電力半導体モジュールの断
面図である。
FIG. 14 is a cross-sectional view of a power semiconductor module according to another embodiment.

【図15】 他の実施形態の絶縁基板の平面図である。FIG. 15 is a plan view of an insulating substrate according to another embodiment.

【図16】 水冷パイプを有する電力半導体モジュール
の断面図である。
FIG. 16 is a sectional view of a power semiconductor module having a water cooling pipe.

【図17】 従来の電力半導体モジュールの断面図であ
る。
FIG. 17 is a cross-sectional view of a conventional power semiconductor module.

【符号の説明】[Explanation of symbols]

2 電力半導体チップ、18,20,22 電極端子、
24 網状金属細線、44,46 導電体層、48 絶
縁基板、100,200,300,400 電力半導体
モジュール。
2 power semiconductor chips, 18, 20, 22 electrode terminals,
24 Reticulated metal wire, 44, 46 Conductive layer, 48 Insulating substrate, 100, 200, 300, 400 Power semiconductor module.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電力半導体チップを内蔵する電力半導体
モジュールであって、 外部との電気的接続を行う電極端子と、 この電極端子と前記電力半導体チップとを電気的に接続
する接続線路と、を含み、 前記接続線路の少なくとも一部が網状金属細線からなる
ことを特徴とする電力半導体モジュール。
1. A power semiconductor module incorporating a power semiconductor chip, comprising: an electrode terminal for making an electrical connection to the outside; and a connection line for electrically connecting the electrode terminal to the power semiconductor chip. A power semiconductor module, wherein at least a part of the connection line is formed of a net-like metal wire.
【請求項2】 電力半導体チップを内蔵する電力半導体
モジュールであって、 外部との電気的接続を行う電極端子と、 この電極端子と前記電力半導体チップとを電気的に接続
する接続線路と、を含み、 前記電極端子の少なくとも一部が金属板からなり、 前記接続線路の少なくとも一部が、貫通穴を有する絶縁
基板の両面及び前記貫通穴の内壁部に形成された導電体
層からなることを特徴する電力半導体モジュール。
2. A power semiconductor module incorporating a power semiconductor chip, comprising: an electrode terminal for making an electrical connection to the outside; and a connection line for electrically connecting the electrode terminal to the power semiconductor chip. At least a part of the electrode terminal is made of a metal plate, and at least a part of the connection line is made of a conductor layer formed on both surfaces of an insulating substrate having a through hole and an inner wall portion of the through hole. Characteristic power semiconductor module.
【請求項3】 請求項2に記載の電力半導体モジュール
であって、 前記電力半導体チップの一主面に密着されている放熱板
を更に有することを特徴とする電力半導体モジュール。
3. The power semiconductor module according to claim 2, further comprising a radiator plate adhered to one main surface of said power semiconductor chip.
【請求項4】 請求項2又は3に記載の電力半導体モジ
ュールであって、 前記絶縁基板は、その一主面上に、前記電力半導体チッ
プと電気的に接続される制御用半導体チップを有するこ
とを特徴とする電力半導体モジュール。
4. The power semiconductor module according to claim 2, wherein the insulating substrate has a control semiconductor chip electrically connected to the power semiconductor chip on one main surface thereof. A power semiconductor module, characterized in that:
JP11206667A 1999-07-21 1999-07-21 Power semiconductor module Pending JP2001036001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11206667A JP2001036001A (en) 1999-07-21 1999-07-21 Power semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11206667A JP2001036001A (en) 1999-07-21 1999-07-21 Power semiconductor module

Publications (1)

Publication Number Publication Date
JP2001036001A true JP2001036001A (en) 2001-02-09

Family

ID=16527145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11206667A Pending JP2001036001A (en) 1999-07-21 1999-07-21 Power semiconductor module

Country Status (1)

Country Link
JP (1) JP2001036001A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071733A1 (en) * 2004-01-26 2005-08-04 Hitachi, Ltd. Semiconductor device, power converter employing it, motor employing it, hybrid automobile employing it, and motor drive system employing it
US6992409B2 (en) 2002-03-15 2006-01-31 Denso Corporation Liquid-cooled rotary electric machine integrated with an inverter
JP2006344841A (en) * 2005-06-10 2006-12-21 Mitsubishi Electric Corp Power semiconductor module
JP2010093287A (en) * 2009-12-17 2010-04-22 Mitsubishi Electric Corp Power semiconductor module
JP2012049281A (en) * 2010-08-26 2012-03-08 Toyota Motor Corp Semiconductor device
CN106133896A (en) * 2014-04-04 2016-11-16 三菱电机株式会社 Semiconductor module
JP2017168628A (en) * 2016-03-16 2017-09-21 株式会社オートネットワーク技術研究所 Circuit structure
US10340217B2 (en) 2017-02-24 2019-07-02 Mitsubishi Electric Corporation Semiconductor device including a cylindrical electrode inserted into a looped portion of an electrode
WO2023186339A1 (en) * 2022-03-29 2023-10-05 Heraeus Deutschland GmbH & Co. KG Electronic modules having electrical connection elements in the form of wedge-wedge-bonded structures not consisting of solid metal material

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992409B2 (en) 2002-03-15 2006-01-31 Denso Corporation Liquid-cooled rotary electric machine integrated with an inverter
WO2005071733A1 (en) * 2004-01-26 2005-08-04 Hitachi, Ltd. Semiconductor device, power converter employing it, motor employing it, hybrid automobile employing it, and motor drive system employing it
JPWO2005071733A1 (en) * 2004-01-26 2007-07-26 株式会社日立製作所 Semiconductor device, power conversion device using the same, motor using the same, hybrid vehicle using the same, and motor drive system using the same
JP2006344841A (en) * 2005-06-10 2006-12-21 Mitsubishi Electric Corp Power semiconductor module
JP4485995B2 (en) * 2005-06-10 2010-06-23 三菱電機株式会社 Power semiconductor module
JP2010093287A (en) * 2009-12-17 2010-04-22 Mitsubishi Electric Corp Power semiconductor module
JP2012049281A (en) * 2010-08-26 2012-03-08 Toyota Motor Corp Semiconductor device
CN106133896A (en) * 2014-04-04 2016-11-16 三菱电机株式会社 Semiconductor module
JPWO2015151285A1 (en) * 2014-04-04 2017-04-13 三菱電機株式会社 Semiconductor module
EP3477690A1 (en) * 2014-04-04 2019-05-01 Mitsubishi Electric Corporation Semiconductor module
CN106133896B (en) * 2014-04-04 2018-12-04 三菱电机株式会社 Semiconductor module
US9853009B2 (en) 2014-04-04 2017-12-26 Mitsubishi Electric Corporation Semiconductor module having a conductor member for reducing thermal stress
EP3128541A4 (en) * 2014-04-04 2018-03-14 Mitsubishi Electric Corporation Semiconductor module
WO2017159341A1 (en) * 2016-03-16 2017-09-21 株式会社オートネットワーク技術研究所 Circuit constituent
JP2017168628A (en) * 2016-03-16 2017-09-21 株式会社オートネットワーク技術研究所 Circuit structure
US10389099B2 (en) 2016-03-16 2019-08-20 Autonetworks Technologies, Ltd. Circuit assembly
US10340217B2 (en) 2017-02-24 2019-07-02 Mitsubishi Electric Corporation Semiconductor device including a cylindrical electrode inserted into a looped portion of an electrode
US10651121B2 (en) 2017-02-24 2020-05-12 Mitsubishi Electric Corporation Semiconductor device manufacturing method including forming a wide portion spreading over a looped portion
DE102017223094B4 (en) 2017-02-24 2022-04-28 Mitsubishi Electric Corporation Semiconductor device and manufacturing method for a semiconductor device
WO2023186339A1 (en) * 2022-03-29 2023-10-05 Heraeus Deutschland GmbH & Co. KG Electronic modules having electrical connection elements in the form of wedge-wedge-bonded structures not consisting of solid metal material

Similar Documents

Publication Publication Date Title
US8324726B2 (en) Semiconductor device, electrode member and electrode member fabrication method
US6441520B1 (en) Power module
JP7204770B2 (en) Double-sided cooling power module and manufacturing method thereof
US6642576B1 (en) Power semiconductor device having layered structure of power semiconductor elements and terminal members
JP3516789B2 (en) Semiconductor power module
JP6354845B2 (en) Semiconductor module
WO2013021647A1 (en) Semiconductor module, semiconductor device provided with semiconductor module, and method for manufacturing semiconductor module
JP2007234690A (en) Power semiconductor module
JP2005303018A (en) Semiconductor device
CN110178304B (en) Semiconductor device with a plurality of semiconductor chips
JP2001036001A (en) Power semiconductor module
JP2019079839A (en) Semiconductor power module
JP4061551B2 (en) Semiconductor device
CN211182190U (en) Insulated gate bipolar transistor, intelligent power module and air conditioner
JP2004221381A (en) Semiconductor device
US20130228909A1 (en) Semiconductor device and method for manufacturing semiconductor device
CN111540723A (en) Power semiconductor device
JP2006165322A (en) Semiconductor module
WO2022059251A1 (en) Semiconductor device
JP3525823B2 (en) Mounting structure of complementary IGBT
JP2000353777A (en) Power semiconductor module and manufacture thereof
JP2004048084A (en) Semiconductor power module
JPH11220074A (en) Semiconductor device
KR100861863B1 (en) Semiconductor module having multiple semiconductor chips
JP2016001644A (en) Semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902