WO2005071733A1 - Semiconductor device, power converter employing it, motor employing it, hybrid automobile employing it, and motor drive system employing it - Google Patents

Semiconductor device, power converter employing it, motor employing it, hybrid automobile employing it, and motor drive system employing it Download PDF

Info

Publication number
WO2005071733A1
WO2005071733A1 PCT/JP2004/000660 JP2004000660W WO2005071733A1 WO 2005071733 A1 WO2005071733 A1 WO 2005071733A1 JP 2004000660 W JP2004000660 W JP 2004000660W WO 2005071733 A1 WO2005071733 A1 WO 2005071733A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
motor
semiconductor device
power semiconductor
semiconductor element
Prior art date
Application number
PCT/JP2004/000660
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Shirakawa
Toshiyuki Innami
Shinichi Fujino
Keita Hashimoto
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2004/000660 priority Critical patent/WO2005071733A1/en
Priority to JP2005517178A priority patent/JPWO2005071733A1/en
Publication of WO2005071733A1 publication Critical patent/WO2005071733A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37025Plural core members
    • H01L2224/3703Stacked arrangements
    • H01L2224/37033Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a semiconductor device, a power conversion device using the semiconductor device, a motor using the semiconductor device, a hybrid vehicle using the semiconductor device, and a motor drive system using the semiconductor device.
  • semiconductor devices that can perform well even in high-temperature environments such as engine rooms, power converters using them, modules using them, and hybrid automatic writing using them
  • the present invention relates to a vehicle and a motor drive system using the same.
  • a power converter that supplies AC power to an electric motor is required for a vehicle that uses driving power extracted from the engine and electric motor, such as a hybrid electric vehicle, and that uses power in combination. .
  • the engine is stopped when the vehicle is stopped, such as waiting for a signal.
  • an idle stop system that facilitates mounting on a wide variety of vehicles at low cost is necessary.
  • semiconductor devices built in the evening are: 1) downsizing for incorporation into the motor, and 2) the high temperature of the semiconductor device due to the fact that the motor is located near the engine that is a high heating element. Two points are improvement of long-term reliability for the environment.
  • the one described in Japanese Patent Application Laid-Open No. 2000-183249 does not assume a high-temperature environment near the engine. 1) The temperature of the power semiconductor element rises to near the curing temperature of the conductive resin material. Therefore, curing progresses and the joint becomes weak against stress. 2) Since the environment is high, it is necessary to reduce the heat generation and suppress the temperature of the power semiconductor element.
  • the electrical resistance value of the conductive resin material is large.
  • the volume resistivity of lead tin solder used as a bonding material is about 15 ⁇ ⁇ cm, whereas the volume resistivity of conductive resin material is 1 ⁇ ⁇ cm (from JP 2000-1832 49).
  • the resistance of conductive grease is about 70,000 times that of lead-tin solder.
  • the bus bar wiring expands at a higher temperature than the low thermal expansion material and shrinks at a low temperature due to the difference in the linear expansion coefficient. This phenomenon is conspicuous in a high temperature environment.
  • the bus bar wiring is deformed into a bow shape, and the force in the direction of peeling the bus bar wiring from the semiconductor device is idle stop. It occurs repeatedly depending on the cycle of driving and stopping the car. For this reason, peeling is more likely to occur at the joint.
  • the surface electrode connected to the insulating substrate is on the positive electrode side, and the other surface is the electrode on the negative electrode side.
  • the electrode of the power semiconductor element is referred to as the electrode of MO SFET (Metal Oxide Semiconductor Field Effect Transistor), and the positive electrode side is referred to as the drain electrode and the negative electrode side is referred to as the source electrode.
  • MO SFET Metal Oxide Semiconductor Field Effect Transistor
  • An object of the present invention is to provide a case where a semiconductor device is located in a high-temperature environment near the engine, as in the case where a semiconductor device is built in a generator motor (alternative evening) and a power supply function is added. In other words, it is to provide a semiconductor device capable of improving long-term reliability against a high temperature environment.
  • Another object of the present invention is to provide a power conversion device incorporating a semiconductor device with improved long-term reliability against high temperature environments.
  • Another object of the present invention is to provide a generator motor that incorporates a semiconductor device with improved long-term reliability in a high temperature environment and enables a cascade operation.
  • Still another object of the present invention is to provide a hybrid vehicle that incorporates a semiconductor device with improved long-term reliability against high temperature environments and is capable of idle stop operation.
  • the present invention provides a power semiconductor element having upper and lower electrodes for input / output of a main current, an insulating substrate supporting the one lower electrode, A semiconductor device comprising a laminated conductor plate joined to the other upper surface electrode, wherein the laminated conductor plate has a linear expansion coefficient in the range of 8 to 12 ppm / ⁇ C and is made of solder, gold or silver.
  • One of the nanoparticles is used to join the top electrode.
  • the present invention provides a power semiconductor element having upper and lower electrodes for input and output of a main current, an insulating substrate that supports the one lower electrode, A semiconductor device comprising a laminated conductor plate joined to the other upper surface electrode, wherein the laminated conductor plate is a copper plate, iron-nickel so that the ratio of the respective plate thicknesses is 1: (1-2): 1 It consists of an alloy plate and a copper plate.
  • the present invention provides a power module having power semiconductor elements in upper and lower arms that use upper and lower electrodes for main current input and output, and the power module.
  • a power conversion device including a control unit for controlling driving of the semiconductor element, using a conductor plate having a linear expansion coefficient in the range of 8 to 12 pp mZ ° C, and the upper electrode of the semiconductor element
  • the conductor plates are joined using solder or any material of gold or silver.
  • the present invention provides a motor comprising a stator and a rotor, wherein the power semiconductor element uses two upper and lower electrodes for input and output of a main current.
  • the upper arm and lower arm equipped with a power conversion device that converts power from the battery and supplies power to the motor, using a conductor plate with a linear expansion coefficient in the range of 8 to 12 ppm /
  • the power semiconductor element of the semiconductor device in which the upper surface electrode of the power semiconductor element and the conductor plate are joined using solder or any material of gold or silver and the heat radiating plate are electrically connected, and the heat radiating plate is electrically connected to the bracket. Fixed mechanically and mechanically.
  • the present invention is a hybrid vehicle in which wheels are driven by an engine and a motor, and uses a power having two upper and lower electrodes for main current input and output.
  • a semiconductor device is provided in the upper arm and the lower arm, provided with a power conversion device that converts power from the battery and supplies power to the motor, each having a thickness of 1: (1-2): 1
  • the motor is mounted in an engine room with the heat sink fixed electrically and mechanically to a bracket.
  • FIG. 1 is a block diagram showing a configuration of a hybrid vehicle having an idle stop function for restarting an engine with a motor incorporating a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of a motor incorporating a semiconductor device according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the configuration of a motor incorporating a semiconductor device according to an embodiment of the present invention.
  • FIG. 4 shows a motor semiconductor device incorporating a semiconductor device according to an embodiment of the present invention. It is a perspective view which shows the structure of a certain power converter device.
  • FIG. 5 is a cross-sectional view showing a configuration of a power conversion device that is a semiconductor device according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a configuration of a power conversion device which is a semiconductor device according to another embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a hybrid vehicle having an idle stop function for restarting an engine in a motor vehicle incorporating a semiconductor device according to an embodiment of the present invention.
  • the control device 51 stops the engine 53. After that, when the control device 51 detects an operation that shifts to starting, such as when the driver removes his foot from the brake pedal, or a state where power generation is required such as a battery voltage drop, the control device 51 drives the motor 60 built in the semiconductor device. The power is transmitted to engine 53 by belt B, and engine 53 is restarted.
  • the power source of the semiconductor device built-in module 60 is a DC power source 31 such as a battery.
  • the semiconductor device built-in motor 60 also has a function of a power generation motor that generates electric power by rotating the engine during traveling and charges the electric power to the DC power source 31.
  • the motor 60 with the built-in semiconductor device can be used for conventional power generation, regardless of whether the rotating shafts of the engine 53 and motor 60 are directly connected or belt driven. It is necessary to place it near the engine 53 where the motor (alternate overnight) was placed. That is, the semiconductor device built-in motor 60 is placed in a high-temperature environment, but the semiconductor device built-in motor 60 has a structure that improves the reliability against the high-temperature environment, as will be described later. Semiconductor built-in motor 60 It is possible to replace the generator motor mounted in the high-temperature environment near the engine in terms of size and reliability by integrating functions such as providing the heat radiation function in addition to the heat dissipation function to the heat sink of the body device.
  • the semiconductor built-in motor 60 can be applied to an already designed vehicle. Therefore, according to this embodiment, an idle stop system can be easily realized at low cost.
  • an automobile such as an alternator that has a power operation function, used as a motor, and restarts the engine is generally called a mild hybrid car.
  • FIG. 2 is a block diagram showing the configuration of a motor incorporating a semiconductor device according to an embodiment of the present invention.
  • the semiconductor device built-in motor 60 includes an AC motor (motor / generator) 61 and a motor control device 63.
  • the AC motor 61 includes magnetic pole position detection means 61 MD for detecting the rotational position of the mouth.
  • the motor control device 3 includes a power conversion device 6 3 P, a motor controller 6 3, and an excitation drive circuit 6 3 ED.
  • the power converter 6 3 P is configured as a three-phase bridge circuit including a switching element (UP to ⁇ ) and a rectifying element connected in antiparallel to each switching element.
  • a field effect transistor M0SFET
  • I G B T can also be used as a switching element.
  • the AC motor 61 has a step and a low and is configured as a wound field type three-phase AC motor.
  • An excitation coil 6 1 RC is installed in the low drive connected to the power transmission means 2, and an U-phase, V-phase, and W-phase armature coil 6 1 SC is installed in the steering. .
  • the exciting coil 6 1 RC at the mouth of the AC motor 6 1 is fed by the excitation drive circuit 6 3 ED.
  • the voltage applied to the excitation coil 6 1 RC is also adjusted by this excitation drive circuit 6 3 ED.
  • AC motor 6 1 Steady armature coil 6 1 SC output line of each phase is power converter 6 3 P 3-phase switching element (UP ⁇ book) And a power supply line connected to the high potential side terminal and the low potential side terminal of the DC power supply 31 via the rectifier element.
  • the power converter 6 3 P is an inverter that converts the DC power stored in the DC power supply 3 1 to DC to AC and feeds it to the armature coil 6 1 SC when the AC motor 61 is controlled. Operates as a circuit.
  • the power converter 6 3 P when controlling the power generation using the AC motor 61 as a generator, converts the AC power output from the armature coil 6 1 SC by power generation into AC / DC conversion and supplies the power to the power line. It operates as a bar (rectifier) circuit.
  • the on / off operation of the switching elements (U! 1 to WN) related to the operation of the power converter 6 3 P is operated by the motor controller 6 3 C.
  • the motor controller 6 3 C has switching means for switching the power mode and the power generation mode based on a command from the control device 51, and performs power control and power generation control.
  • the motor controller 6 3 When controlling the AC motor 61 as a motor, the motor controller 6 3 operates as an inverse circuit that converts DC power from the DC power source 31 into AC power, and the AC motor 61 as a generator. When generating control is performed, it operates as a converter (rectifier) circuit that converts AC power from AC motor 61 to DC power.
  • a converter rectifier
  • the motor control device 63 controls the AC motor 61. That is, AC power is supplied to the AC motor 61 from the DC power source 31 via the motor control device 63.
  • the output shaft of the AC motor 61 generates a running torque and rotates the crankshaft of the engine via the power transmission means.
  • the motor controller 6 3 stops the power control to the AC motor 61 and performs power generation control. That is, the AC motor 61 is driven by the power of the engine to generate power.
  • the AC power generated by the power generation is converted to DC power by the motor control device 63 and charged to the DC power source 31.
  • the AC motor 61 functions as a motor that generates power by supplying power from the DC power source 31 and also functions as a generator that generates power by supplying power from the engine.
  • FIG. 3 is a cross-sectional view showing the configuration of a motor incorporating a semiconductor device according to an embodiment of the present invention.
  • the AC motor 61 includes a steering 61 S fixed by two brackets 61 BF and 61 BR, and a rotor 61 R rotatably held inside the steering 61 S.
  • the shaft 61 RS of the rotor 61 R is rotatably supported by bearings 61 BE 1 and 61 BE 2 mounted on two brackets.
  • the stage 61 S is composed of a stator core 61 SC and a stator coil 61 SO.
  • Koutuchichi 61 R is composed of a rotor core 61 RC and a rotor coil 61 RO.
  • the motor control device 63 shown in FIG. 2 is attached to the bracket 61 BR.
  • the power conversion device 63 P in the motor control device 63 is fixed to the rear bracket 61 BR by its heat sink.
  • the rear bracket 61 BR is provided with air cooling fins 6 1 CF.
  • the battery terminal 61BT is a positive terminal and the rear bracket 61BR is a negative terminal (ground terminal).
  • the rear bracket 61 BR has the two functions of a power converter 63 P, which is a semiconductor device, and a cooler and electrical wiring, so that the motor 60 with a built-in semiconductor device is dedicated inside the module 60 with a built-in semiconductor device.
  • the ground wiring can be omitted. Due to the effect of reducing the number of components, the semiconductor device built-in mode of the present embodiment makes it possible to incorporate the semiconductor device without enlarging the motor.
  • the rear bracket 61 BR uses a good conductor such as aluminum for use as wiring.
  • the configuration of the power conversion device 63P which is a semiconductor device used in the motor 60 incorporating the semiconductor device according to the present embodiment, will be described with reference to FIG.
  • FIG. 4 is a perspective view showing a configuration of a power conversion device which is a mobile semiconductor device incorporating a semiconductor device according to an embodiment of the present invention.
  • the wiring structure of the power converter 63 P which is a semiconductor device, needs to be a structure that enables this.
  • the structure of the power conversion device 6 3 P which is a semiconductor device, is configured as shown in FIG.
  • FIG. 4 illustrates a wiring structure directly related to the present invention in a semiconductor device built in a motor.
  • the heat dissipation plate 7 is made of a good conductor such as copper or copper-molybdenum, and the power semiconductor element 1 3 b on the low side of the bridge circuit
  • the laminated conductor plate 15 b connected to the source electrode of the switching element UN, VN, ⁇ in Fig. 2 is connected to the heat sink 7 at the other end.
  • the heat sink functions as a ground wiring.
  • the heat sink 7 is fixed to the rear bracket 6 1 BR with the conductor screw 8 etc., heat is transferred from the contact surface with the heat sink 7 and electricity is transferred from the conductor screw to the rear bracket 6 1 BR.
  • Abracket 6 1 BR has the two functions of a semiconductor device cooler and electrical wiring as a power converter.
  • the reliability of a high-temperature environment is improved by integrating functions such as providing a semiconductor device heat sink and a motor rear bracket with heat dissipation and electrical wiring functions. Space saving is realized. As a result, motors with built-in semiconductor devices can be replaced with generator motors installed in high-temperature environments near the engine in terms of size and reliability.
  • FIG. 5 is a cross-sectional view showing a configuration of a power conversion device that is a semiconductor device according to an embodiment of the present invention.
  • the power semiconductor element 13 a and the laminated conductor plate 15 a are joined together by a joining material 18 a.
  • the laminated conductor plate 15a and the conductor plate 10b are joined by a joining material 18b. Since the bonding materials 1 8 a and 1 8 b are parts through which current flows, the materials used are solder or nano-particle high electrical conductivity materials mainly composed of Au and Ag.
  • the laminated conductor plate 15a is a component in which an iron-nickel alloy plate 17 is sandwiched from both sides by copper plates 16a, 16b of approximately the same thickness. When 1 6 b is 1, iron-nickel alloy 1 7 is 1-2.
  • the equivalent linear expansion coefficient of the laminated conductor plate 15 a is calculated as follows.
  • Equation (1) is the result of a laminated board made of different materials. It is a formula that approximates the equivalent linear expansion coefficient.
  • Equivalent linear expansion coefficient- ⁇ Linear expansion coefficient X Young's modulus X plate thickness
  • No. Young's modulus X plate thickness
  • the equivalent linear expansion coefficient of laminated conductor plate 15a is approximately 8 It can be calculated as ⁇ 12 ppm / ° C.
  • the linear expansion coefficient of copper is about 18 p pmZ ° C
  • the linear expansion coefficient of iron-nickel alloy is about 1.5 p pmZ ° C
  • the Young's modulus of copper is 118 Gpa
  • the ungau rate of iron-nickel alloy is 144 Gpa. .
  • the semiconductor element 13a and the conductor plate 10a are joined by solder 12b.
  • the insulating substrate 9 and the heat sink 7 are joined by solder 12a.
  • the insulating substrate 9 is a member in which the conductive plates 10a and 1Ob are stacked in the first layer, the insulator 11 is stacked in the second layer, and the conductive plate 10c is stacked in the third layer.
  • Conductor plates 10a, 10b, and 10c are made of copper, and insulator 1 1 is made of silicon nitride.
  • the thickness of each layer is 0.4mm for the first and third layers, and the second layer is 0mm.
  • the equivalent linear expansion coefficient of the insulating substrate 9 is about 1 O p pm / ° C from equation (1).
  • the linear expansion coefficient of silicon nitride was 2.7 p pmZ
  • the Young's modulus was 303 Gpa
  • the physical properties of copper were the values described above.
  • a heat resistant material is used because it is used in a high temperature environment near the engine.
  • the power semiconductor element 13a is made to have substantially the same linear expansion as the insulating substrate 9 having an equivalent linear expansion coefficient of 10 ppm / ° C and the laminated conductor plate 15a having an equivalent linear expansion coefficient of 8 to 12 ppmZt: Therefore, the difference in expansion of each member, which becomes remarkable in a high temperature environment, can be reduced.
  • the thermal stress generated in the solder 12 b and the bonding material 18 a is minimized, and the long-term reliability is most improved. be able to.
  • the above-mentioned equivalent linear expansion coefficient of the insulating substrate 9 is an example calculated with specific values, but the equivalent linear expansion coefficient range is calculated from the material and thickness range used for the insulating substrate as follows: .
  • the copper thickness of the 1st and 3rd layers is about 0.4mm to 0.
  • the second layer is a silicon nitride plate
  • the thickness is from 0.32 mm to 64 mm
  • the second layer is an aluminum nitride plate
  • the thickness is approximately 0. 6 4 mm.
  • the laminated conductor plate 15 a has a linear expansion coefficient of the insulating substrate when the thickness of the iron-nickel alloy 17 is in the range of 1 to 2 with respect to the thickness 1 of the copper plates 16 a and 16 b. It can be seen that the values can be close.
  • the above explanation is based on the premise that each component remains flat even after thermal expansion.
  • the laminated conductor plate 15 a is made of the same material and the same thickness, but different materials. By sandwiching this plate, it is possible to keep the joint surface with the power semiconductor element flat without deforming into a bow shape even when thermally expanded.
  • the semiconductor device includes the semiconductor device in the generator motor (alternate-evening), and the semiconductor device is located in a high-temperature environment near the engine, as in the case of adding a caulking function. In some cases, long-term reliability in high temperature environments can be improved.
  • the long-term reliability of the power conversion device incorporating the semiconductor device according to the present embodiment against a high temperature environment can be improved.
  • the power generation module according to the present embodiment is capable of a power running operation by incorporating a semiconductor device with improved long-term reliability against a high temperature environment.
  • the hybrid vehicle according to the present embodiment incorporates a semiconductor device with improved long-term reliability against high temperature environments and can perform an idle stop operation.
  • FIG. 6 is a cross-sectional view showing a configuration of a power conversion device which is a semiconductor device according to another embodiment of the present invention.
  • one of the laminated conductor plates 15a is joined to the conductor plate 10b, but the present invention has a configuration in which one of the laminated conductor plates 15a is joined to the conductor plate 1Ob. Limited to However, another embodiment will be described with reference to FIG.
  • This embodiment is different from the embodiment of FIG. 5 in that the wire 14 d is joined to the laminated wiring board 18 a and the wire 14 d is joined to the conductor plate 10 b.
  • the wire 14 d is a wiring mainly composed of aluminum. Since the rest of the structure is the same, this embodiment has the effect of reducing the thermal stress generated in the bonding material 18a and the solder 12b in a high temperature environment, as in the embodiment of FIG.
  • the iron-nickel alloy used in the second layer of laminated wiring board 1 8a has a thermal conductivity of 1 l W / m ° C (reference value: thermal conductivity of copper 3 80 W / m ° C, thermal conductivity of aluminum 2 3 3 W / m ° C), power semiconductor element 1 3 a to wire 1 4 d
  • the thermal conductivity 1 l W / m ° C
  • the power semiconductor element that performs current switching is the hottest component, but due to the increase in thermal resistance, the temperature at the junction between the above-mentioned laminated wiring board 1 8a and wire 1 4d is reduced to the conventional level.
  • the wire can be lowered.
  • a reduction in the temperature of the joint means a reduction in the thermal expansion of the part, and thus shows that long-term reliability is improved compared to the case where the wire is directly joined to the power semiconductor element.
  • the semiconductor device includes the semiconductor device in the generator motor (alternate-evening), and the semiconductor device is located in a high-temperature environment near the engine, as in the case of adding a caulking function. In some cases, long-term reliability in high temperature environments can be improved.
  • the wire wiring that can increase the degree of freedom of the wiring layout of the semiconductor device can be applied to a semiconductor device that uses it in a high temperature environment.
  • the long-term reliability of the power conversion device incorporating the semiconductor device according to the present embodiment against a high temperature environment can be improved.
  • the power generation motor according to the present embodiment can be operated in a row by incorporating a semiconductor device with improved long-term reliability against a high temperature environment.
  • the hybrid vehicle according to the present embodiment incorporates a semiconductor device with improved long-term reliability against high temperature environments and can perform an idle stop operation.
  • the power semiconductor element is a MO SFET.
  • the present invention can be applied to any semiconductor device having two upper and lower electrodes for input and output of the main current, such as IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • the semiconductor device of the present invention is not limited to a semiconductor device built in a motor, and can also be applied to a power conversion device.
  • this semiconductor device By applying this semiconductor device to a power conversion device, it is possible to provide a power conversion device that can be installed in a high-temperature environment and can ensure long-term reliability without having a dedicated cooler. become.
  • the linear expansion coefficient of the laminated conductor plate bonded to the electrode of the power semiconductor element is in the range of 8 to 12 pp mZ ° C, and the solder, gold, or Bonding to the upper surface electrode using any of the silver nanoparticles can improve the long-term reliability of the power semiconductor element junction in a high temperature environment.
  • the semiconductor built-in module of this embodiment has a high temperature in the vicinity of the engine in terms of dimensions and reliability by integrating functions such as providing the heat sink function of the semiconductor device in addition to the heat dissipation function. Since it can replace the generator motor installed in the environment, an idle stop system that can be easily applied to a wide variety of vehicles can be realized at low cost.
  • the semiconductor device when the semiconductor device is located in a high-temperature environment near the engine as in the case where a power generation function is added to a built-in semiconductor device in the generator motor (alternate evening), a long-term operation against a high-temperature environment is possible.
  • a semiconductor device capable of improving reliability can be provided.

Abstract

A semiconductor device in which long-term reliability can be enhanced for high-temperature environment when the semiconductor device is placed in high-temperature environment in the vicinity of an engine, e.g. when a generator motor (alternator) incorporating a semiconductor device is additionally imparted with a powering function. The semiconductor device comprises a power semiconductor element (13a) employing electrodes on the upper and lower surfaces for inputting/outputting a main current, and an insulating board (9) for supporting the lower surface electrode of a power semiconductor element (12a). A conductor plate (15a) having a linear expansion coefficient in the range of 8-12 ppm/°C is employed and bonded to the upper surface electrode of the power semiconductor element (13a) using solder or a material of any one of gold or silver.

Description

半導体装置, それを用いた電力変換装置, それを用いたモータ, それを用いたハ イブリッド自動車及びそれを用いたモー夕駆動システム 技術分野 Semiconductor device, power conversion device using the same, motor using the same, hybrid vehicle using the same, and motor drive system using the same
本発明は、 半導体装置、 それを用いた電力変換装置, それを用いたモータ, そ れを用いたハイプリッド自動車及びそれを用いたモー夕駆動システムに係り、 特 明  The present invention relates to a semiconductor device, a power conversion device using the semiconductor device, a motor using the semiconductor device, a hybrid vehicle using the semiconductor device, and a motor drive system using the semiconductor device.
に、 エンジンルーム等の高温環境下でも充分に性能を発揮できる半導体装置、 そ れを用いた電力変換装置, それを用いたモ一夕, それを用いたハイブリッ ド自動 書 In addition, semiconductor devices that can perform well even in high-temperature environments such as engine rooms, power converters using them, modules using them, and hybrid automatic writing using them
車及びそれを用いたモータ駆動システムに関する。 背景技術 The present invention relates to a vehicle and a motor drive system using the same. Background art
ハイプリッド電気自動車のように走行駆動力をエンジンと電気モータから取り 出し、 動力を併用して用いる自動車では、 電気モー夕へ交流電力を供給する電力 変換器が必要であることは広く知られている。  It is widely known that a power converter that supplies AC power to an electric motor is required for a vehicle that uses driving power extracted from the engine and electric motor, such as a hybrid electric vehicle, and that uses power in combination. .
そして、 この種電力変換器のパワー半導体モジュールの半導体チップと A Iヮ ィャポンドとの熱膨張差により生ずるパヮ一半導体チップとワイヤポンドとの接 合面の剥離を防止するため、 例えば、 特開 2 0 0 0— 1 8 3 2 4 9号公報に記載 のように、 低熱膨張材を貼り付けたブスバー配線をパワー半導体素子の上面電極 に導電性榭脂を用いて接合することが知られている。 発明の開示  In order to prevent peeling of the bonding surface between the semiconductor chip of the power semiconductor module of this kind of power converter and the wire pond caused by the thermal expansion difference between the AI pond and the wire pond, for example, As described in Japanese Patent Laid-Open No. 0 0-1 8 3 2 4 9, it is known that a bus bar wiring with a low thermal expansion material bonded thereto is bonded to the upper surface electrode of the power semiconductor element using conductive grease. Disclosure of the invention
ところで、 燃費向上を目的に、 信号待ち等の停車状態でエンジンを止め、 発車 時にエンジンを再始動させるモータを内蔵したアイドルストップ車 (例えば、 特 開 2 0 0 3— 1 1 3 7 6 3号公報) の普及には、 低コストで多種多様な車両への 実装を容易にするアイドルストップシステムが必要である。  By the way, for the purpose of improving fuel economy, the engine is stopped when the vehicle is stopped, such as waiting for a signal. To disseminate the Gazette), an idle stop system that facilitates mounting on a wide variety of vehicles at low cost is necessary.
このようなアイドルストップ機能を、 低コストでかつ容易に多種多様な車両に 持たせる一方法として、 殆どの車両に搭載されている発電モータ (オルタネ一 夕) に半導体装置を内蔵し、 カ行機能を付加する方法が検討されている。 このモAs a way to make such an idle stop function available to a wide variety of vehicles at low cost and easily, a generator motor (alternative) installed in most vehicles. In the evening, a method of incorporating a semiconductor device and adding a banking function is being studied. This mode
—夕に内蔵する半導体装置の課題としては、 1) モータに内蔵するための小型化 と、 2) モ一夕が高発熱体であるエンジンの傍に配置されることから、 半導体装 置の高温環境に対する長期信頼性の向上の 2点である。 —Semiconductor devices built in the evening are: 1) downsizing for incorporation into the motor, and 2) the high temperature of the semiconductor device due to the fact that the motor is located near the engine that is a high heating element. Two points are improvement of long-term reliability for the environment.
長期信頼性に関して、 特開 2000— 183249号公報に記載のものでは、 エンジン近傍の高温環境を想定していないため、 1) パワー半導体素子の温度が 導電性榭脂材の硬化温度近傍まで上昇するため、 硬化が進み、 接合部がストレス に弱くなる。 2) 環境が高温であるため、 発熱を減らしてパワー半導体素子の温 度を抑制する必要があるが、 導電性榭脂材の電気抵抗値が大きいと言う問題点が ある。 例えば、 導電性樹脂材の体積抵抗率 1 Ω · cm (特開 2000- 1832 49号公報より) に対して、 接合材として使用される鉛錫半田の体積抵抗率は約 15 Ω · cmであり、 導電性榭脂材の抵抗は鉛錫半田の抵抗の約 7万倍と大き い。 また、 3) 低熱膨張材を銅バスバー配線に貼り付けた構造では、 その線膨張 率の違いから、 バスバ一配線は低熱膨張材より高温で伸び、 低温で縮むことにな る。 この現象は高温環境において顕著であり、 特開 2000— 183249号公 報に記載の構造では、 バスバー配線が弓形に変形し、 パヮ一半導体素子からブス バー配線を引き剥がす方向の力が、 アイドルストップ車の運転、 休止のサイクル によって、 繰り返し発生することになる。 そのため、 前記接合部に剥離がより生 じ易くなる。 4) バスバー配線が弓形に変形するとそれに接続しているパワー半 導体素子も弓形に変形する。 パワー半導体素子と絶縁基板は、 特開 2000— 1 83249号公報にあるように、 はんだ等の塑性変形しゃすい材料で接合してい るため、 パワー半導体素子と絶縁基板の接合部にも 3) と同様の引き剥がす方向 の力に生じさせることになる。  Regarding long-term reliability, the one described in Japanese Patent Application Laid-Open No. 2000-183249 does not assume a high-temperature environment near the engine. 1) The temperature of the power semiconductor element rises to near the curing temperature of the conductive resin material. Therefore, curing progresses and the joint becomes weak against stress. 2) Since the environment is high, it is necessary to reduce the heat generation and suppress the temperature of the power semiconductor element. However, there is a problem that the electrical resistance value of the conductive resin material is large. For example, the volume resistivity of lead tin solder used as a bonding material is about 15 Ω · cm, whereas the volume resistivity of conductive resin material is 1 Ω · cm (from JP 2000-1832 49). The resistance of conductive grease is about 70,000 times that of lead-tin solder. 3) In the structure in which the low thermal expansion material is attached to the copper bus bar wiring, the bus bar wiring expands at a higher temperature than the low thermal expansion material and shrinks at a low temperature due to the difference in the linear expansion coefficient. This phenomenon is conspicuous in a high temperature environment. In the structure described in the publication of Japanese Patent Application Laid-Open No. 2000-183249, the bus bar wiring is deformed into a bow shape, and the force in the direction of peeling the bus bar wiring from the semiconductor device is idle stop. It occurs repeatedly depending on the cycle of driving and stopping the car. For this reason, peeling is more likely to occur at the joint. 4) When the bus bar wiring is deformed into a bow shape, the power semiconductor elements connected to it are also deformed into a bow shape. Since the power semiconductor element and the insulating substrate are joined with a plastic deformation shielding material such as solder as disclosed in Japanese Patent Laid-Open No. 2000-183249, the joint between the power semiconductor element and the insulating substrate is also 3) A similar force in the direction of peeling will occur.
尚、 ここでいうパワー半導体素子において絶縁基板と接続する面電極が正極側 であり、 もう一方の面が負極側の電極である。 また、 以下では、 パワー半導体素 子の電極を、 M〇SFET(Metal Oxide Semiconductor Field Effect Transist or)の電極の呼称に準じ、 正極側をドレイン電極、 負極側をソース電極と称する。 本発明の目的は、 発電モータ (オル夕ネー夕) に半導体装置を内蔵し、 カ行機 能を付加する場合のように、 エンジン近傍の高温環境に半導体装置が位置する場 合において、 高温環境に対する長期信頼性を向上できる半導体装置を提供するこ とにある。 In the power semiconductor element here, the surface electrode connected to the insulating substrate is on the positive electrode side, and the other surface is the electrode on the negative electrode side. In the following description, the electrode of the power semiconductor element is referred to as the electrode of MO SFET (Metal Oxide Semiconductor Field Effect Transistor), and the positive electrode side is referred to as the drain electrode and the negative electrode side is referred to as the source electrode. An object of the present invention is to provide a case where a semiconductor device is located in a high-temperature environment near the engine, as in the case where a semiconductor device is built in a generator motor (alternative evening) and a power supply function is added. In other words, it is to provide a semiconductor device capable of improving long-term reliability against a high temperature environment.
本発明の他の目的は、 高温環境に対する長期信頼性を向上させた半導体装置を 内蔵した電力変換装置を提供することにある。  Another object of the present invention is to provide a power conversion device incorporating a semiconductor device with improved long-term reliability against high temperature environments.
本発明のその他の目的は、 高温環境に対する長期信頼性を向上させた半導体装 置を内蔵してカ行動作を可能とした発電モータを提供することにある。  Another object of the present invention is to provide a generator motor that incorporates a semiconductor device with improved long-term reliability in a high temperature environment and enables a cascade operation.
本発明のさらに他の目的は、 高温環境に対する長期信頼性を向上させた半導体 装置を内蔵してアイドルストップ動作の可能なハイプリッド自動車を提供するこ とにある。  Still another object of the present invention is to provide a hybrid vehicle that incorporates a semiconductor device with improved long-term reliability against high temperature environments and is capable of idle stop operation.
( 1 ) 上記第 1の目的を達成するために、 本発明は、 主電流の入出力に上下 2 面の電極を設けたパワー半導体素子と、 前記一方の下面電極を支持する絶縁基板 と、 前記他方の上面電極に接合される積層導体板とを備えた半導体装置であって、 前記積層導体板は線膨張率を 8から 1 2 p p m/^Cの範囲とし、 半田或いは、 金 或は銀のいずれかのナノ粒子を用いて上面電極に接合したものである。  (1) In order to achieve the first object, the present invention provides a power semiconductor element having upper and lower electrodes for input / output of a main current, an insulating substrate supporting the one lower electrode, A semiconductor device comprising a laminated conductor plate joined to the other upper surface electrode, wherein the laminated conductor plate has a linear expansion coefficient in the range of 8 to 12 ppm / ^ C and is made of solder, gold or silver. One of the nanoparticles is used to join the top electrode.
かかる構成により、 高温環境に対する長期信頼性を向上できるものとなる。  With this configuration, long-term reliability against high temperature environments can be improved.
( 2 ) 上記第 1の目的を達成するために、 本発明は、 主電流の入出力に上下 2 面の電極を設けたパワー半導体素子と、 前記一方の下面電極を支持する絶縁基板 と、 前記他方の上面電極に接合される積層導体板とを備えた半導体装置であって、 前記積層導体板はそれぞれの板厚の比率が 1 : ( 1〜2 ) : 1となるように銅板、 鉄ニッケル合金板、 銅板で構成したものである。  (2) In order to achieve the first object, the present invention provides a power semiconductor element having upper and lower electrodes for input and output of a main current, an insulating substrate that supports the one lower electrode, A semiconductor device comprising a laminated conductor plate joined to the other upper surface electrode, wherein the laminated conductor plate is a copper plate, iron-nickel so that the ratio of the respective plate thicknesses is 1: (1-2): 1 It consists of an alloy plate and a copper plate.
かかる構成により、 高温環境に対する長期信頼性を向上できるものとなる。  With this configuration, long-term reliability against high temperature environments can be improved.
( 3 ) 上記第 2の目的を達成するために、 本発明は、 主電流の入出に上下 2面 の電極を用いるパワー半導体素子を上アーム及び下アームに有するパワーモジュ ール部と、 前記パワー半導体素子の駆動を制御する制御部とを備えた電力変換装 置であって、 線膨張率が 8から 1 2 p p mZ°Cの範囲の導体板を用い、 前記パヮ —半導体素子の上面電極と前記導体板を半田或いは、 金または銀のいずれかの材 料を用いて接合したものである。  (3) In order to achieve the second object, the present invention provides a power module having power semiconductor elements in upper and lower arms that use upper and lower electrodes for main current input and output, and the power module. A power conversion device including a control unit for controlling driving of the semiconductor element, using a conductor plate having a linear expansion coefficient in the range of 8 to 12 pp mZ ° C, and the upper electrode of the semiconductor element The conductor plates are joined using solder or any material of gold or silver.
( 4 ) 上記第 3の目的を達成するために、 本発明は、 固定子と、 回転子とから なるモータであって、 主電流の入出に上下 2面の電極を用いるパワー半導体素子 を上アーム及び下アームに有し、 バッテリーからの電力を変換して、 前記モータ に電力を供給する電力変換装置を備え、 線膨張率が 8から 1 2 p p m / の範囲 の導体板を用い、 前記パワー半導体素子の上面電極と前記導体板を半田或いは、 金または銀のいずれかの材料を用いて接合した半導体装置のパワー半導体素子と 放熱板を電気接続し、 前記放熱板をブラケッ卜に電気的かつ機械的に固定したも のである。 (4) In order to achieve the third object, the present invention provides a motor comprising a stator and a rotor, wherein the power semiconductor element uses two upper and lower electrodes for input and output of a main current. In the upper arm and lower arm, equipped with a power conversion device that converts power from the battery and supplies power to the motor, using a conductor plate with a linear expansion coefficient in the range of 8 to 12 ppm / The power semiconductor element of the semiconductor device in which the upper surface electrode of the power semiconductor element and the conductor plate are joined using solder or any material of gold or silver and the heat radiating plate are electrically connected, and the heat radiating plate is electrically connected to the bracket. Fixed mechanically and mechanically.
かかる構成により、 高温環境に対する長期信頼性を向上させた半導体装置を内 蔵してモータをカ行動作を可能とする。  With this configuration, a semiconductor device with improved long-term reliability against a high temperature environment can be built in and the motor can be operated in a row.
( 5 ) 上記第 4の目的を達成するために、 本発明は、 エンジンと、 モータによ り車輪が駆動されるハイブリット自動車であって、 主電流の入出に上下 2面の電 極を用いるパワー半導体素子を上アーム及び下アームに有し、 バッテリーからの 電力を変換して、 前記モー夕に電力を供給する電力変換装置を備え、 それぞれの 厚さが 1 : ( 1〜2 ) : 1の銅板、 鉄ニッケル合金板、 銅板からなる積層導体板を 用い、 前記パワー半導体の上面電極と前記積層導体板を半田或いは、 金または銀 のいずれかの材料を用いて接合した半導体装置のパワー半導体素子と放熱板を電 気接続し、 前記モータは、 前記放熱板がブラケットに電気的かつ機械的に固定さ れて、 エンジンルームに搭載されているものである。  (5) In order to achieve the fourth object described above, the present invention is a hybrid vehicle in which wheels are driven by an engine and a motor, and uses a power having two upper and lower electrodes for main current input and output. A semiconductor device is provided in the upper arm and the lower arm, provided with a power conversion device that converts power from the battery and supplies power to the motor, each having a thickness of 1: (1-2): 1 A power semiconductor element of a semiconductor device in which a laminated conductor plate made of a copper plate, an iron-nickel alloy plate, and a copper plate is used, and the upper electrode of the power semiconductor and the laminated conductor plate are joined using a material of either solder or gold or silver The motor is mounted in an engine room with the heat sink fixed electrically and mechanically to a bracket.
掛かる構成により、 高温環境に対する長期信頼性を向上させた半導体装置を内 蔵してアイドルストップ動作の可能なハイブリツド自動車を得ることができる。 図面の簡単な説明  With this configuration, it is possible to obtain a hybrid vehicle capable of performing an idle stop operation by incorporating a semiconductor device with improved long-term reliability against a high temperature environment. Brief Description of Drawings
図 1は、 本発明の一実施形態による半導体装置を内蔵したモータでエンジンを 再始動させるアイドルストップ機能を有するハイプリッド自動車の構成を示すブ ロック図である。  FIG. 1 is a block diagram showing a configuration of a hybrid vehicle having an idle stop function for restarting an engine with a motor incorporating a semiconductor device according to an embodiment of the present invention.
図 2は、 本発明の一実施形態による半導体装置を内蔵したモータの構成を示す ブロック図である。  FIG. 2 is a block diagram showing the configuration of a motor incorporating a semiconductor device according to an embodiment of the present invention.
図 3は、 本発明の一実施形態による半導体装置を内蔵したモータの構成を示す 断面図である。  FIG. 3 is a cross-sectional view showing the configuration of a motor incorporating a semiconductor device according to an embodiment of the present invention.
図 4は、 本発明の一実施形態による半導体装置を内蔵したモータ半導体装置で ある電力変換装置の構成を示す斜視図である。 FIG. 4 shows a motor semiconductor device incorporating a semiconductor device according to an embodiment of the present invention. It is a perspective view which shows the structure of a certain power converter device.
図 5は、 本発明の一実施形態による半導体装置である電力変換装置の構成を示 す断面図である。  FIG. 5 is a cross-sectional view showing a configuration of a power conversion device that is a semiconductor device according to an embodiment of the present invention.
図 6は、 本発明の他の実施形態による半導体装置である電力変換装置の構成を 示す断面図である。 発明を実施するための最良の形態  FIG. 6 is a cross-sectional view showing a configuration of a power conversion device which is a semiconductor device according to another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図 1〜図 5を用いて、 本発明の一実施形態による半導体装置の構成につ いて説明する。  Hereinafter, the configuration of the semiconductor device according to the embodiment of the present invention will be described with reference to FIGS.
最初に、 図 1を用いて、 本実施形態による半導体装置を内蔵したモー夕でェン ジンを再始動させるアイドルストップ機能を有するハイプリッド自動車の構成に ついて説明する。  First, the configuration of a hybrid vehicle having an idle stop function for restarting the engine in the motorcycle incorporating the semiconductor device according to the present embodiment will be described with reference to FIG.
図 1は、 本発明の一実施形態による半導体装置を内蔵したモー夕でエンジンを 再始動させるアイドルストップ機能を有するハイブリツド自動車の構成を示すブ ロック図である。  FIG. 1 is a block diagram showing a configuration of a hybrid vehicle having an idle stop function for restarting an engine in a motor vehicle incorporating a semiconductor device according to an embodiment of the present invention.
エンジン 5 3が十分に暖気されている状態で車両が停車すると、 制御装置 5 1 はエンジン 5 3を停止させる。 その後、 制御装置 5 1は、 運転者がブレーキぺダ ルから足を離す等の発進に移行する動作や、 バッテリ電圧低下等の発電が必要な 状態を検知すると、 半導体装置内蔵モータ 6 0の駆動力をベルト Bによりェンジ ン 5 3に伝達して、 エンジン 5 3を再始動をさせる。 この時、 半導体装置内蔵モ 一夕 6 0の電源は、 バッテリー等の直流電源 3 1である。 また、 本車両において、 半導体装置内蔵モータ 6 0は、 走行時のエンジン回転により発電を行い、 その電 力を直流電源 3 1に充電する発電モータの機能も兼ね備えている。  When the vehicle stops with the engine 53 warmed up sufficiently, the control device 51 stops the engine 53. After that, when the control device 51 detects an operation that shifts to starting, such as when the driver removes his foot from the brake pedal, or a state where power generation is required such as a battery voltage drop, the control device 51 drives the motor 60 built in the semiconductor device. The power is transmitted to engine 53 by belt B, and engine 53 is restarted. At this time, the power source of the semiconductor device built-in module 60 is a DC power source 31 such as a battery. In this vehicle, the semiconductor device built-in motor 60 also has a function of a power generation motor that generates electric power by rotating the engine during traveling and charges the electric power to the DC power source 31.
エンジンの再始動と発電を効率良く行うためには、 エンジン 5 3とモータ 6 0 の回転軸を直結する場合やベルト駆動の場合のいずれにしても、 半導体装置内蔵 モー夕 6 0は、 従来発電モータ (オルタネ一夕) が配置されていたエンジン 5 3 の近傍に配置する必要がある。 即ち、 半導体装置内蔵モータ 6 0は高温環境に置 かれることになるが、 半導体装置内蔵モータ 6 0は後述するように、 高温環境に 対して信頼性を向上させるた構造を有している。 半導体内蔵モータ 6 0は、 半導 体装置の放熱板に放熱機能に加え電気配線の機能を持たせる等の機能集約により、 寸法 ·信頼性の点で、 エンジン近傍の高温環境に搭載されていた発電モータと置 換え可能なものとなっている。 そのため、 半導体内蔵モー夕 6 0は既設計の車両 に対しても適用可能であり、 よって、 本実施形態により、 低コストで容易にアイ ドルストップシステムを実現できるものである。 なお、 このように、 オルタネー 夕のような発電機にカ行動作機能をもたせ、 モータとして使用し、 エンジン再始 動を行う自動車を、 一般に、 マイルドハイブリッド自動車と称されている。 In order to efficiently restart the engine and generate electric power, the motor 60 with the built-in semiconductor device can be used for conventional power generation, regardless of whether the rotating shafts of the engine 53 and motor 60 are directly connected or belt driven. It is necessary to place it near the engine 53 where the motor (alternate overnight) was placed. That is, the semiconductor device built-in motor 60 is placed in a high-temperature environment, but the semiconductor device built-in motor 60 has a structure that improves the reliability against the high-temperature environment, as will be described later. Semiconductor built-in motor 60 It is possible to replace the generator motor mounted in the high-temperature environment near the engine in terms of size and reliability by integrating functions such as providing the heat radiation function in addition to the heat dissipation function to the heat sink of the body device. It has become. Therefore, the semiconductor built-in motor 60 can be applied to an already designed vehicle. Therefore, according to this embodiment, an idle stop system can be easily realized at low cost. In addition, an automobile such as an alternator that has a power operation function, used as a motor, and restarts the engine is generally called a mild hybrid car.
次に、 図 2を用いて、 本実施形態による半導体装置を内蔵したモー夕 6 0の電 気的構成について説明する。  Next, with reference to FIG. 2, the electrical configuration of the module 60 incorporating the semiconductor device according to the present embodiment will be described.
図 2は、 本発明の一実施形態による半導体装置を内蔵したモータの構成を示す ブロック図である。  FIG. 2 is a block diagram showing the configuration of a motor incorporating a semiconductor device according to an embodiment of the present invention.
半導体装置内蔵モータ 6 0は、 交流電動機 (モータ/ジェネレータ) 6 1と、 モー夕制御装置 6 3とから構成される。 交流電動機 6 1は、 口一夕の回転位置を 検知するための磁極位置検出手段 6 1 MDを備えている。  The semiconductor device built-in motor 60 includes an AC motor (motor / generator) 61 and a motor control device 63. The AC motor 61 includes magnetic pole position detection means 61 MD for detecting the rotational position of the mouth.
モータ制御装置 3は、 電力変換装置 6 3 Pと、 モータコントローラ 6 3 と、 励磁駆動回路 6 3 E Dとを有する。  The motor control device 3 includes a power conversion device 6 3 P, a motor controller 6 3, and an excitation drive circuit 6 3 ED.
電力変換装置 6 3 Pは、 スイッチング素子 (UP〜丽) と各スイッチング素子に 逆並列に接続された整流素子を含む 3相ブリッジ回路として構成されている。 本 例では、 スイッチング素子として電解効果型トランジスタ (M0SFET) を使用し、 整流素子としてダイオードを使用する。 スイッチング素子として、 I G B Tを使 用することもできる。  The power converter 6 3 P is configured as a three-phase bridge circuit including a switching element (UP to 丽) and a rectifying element connected in antiparallel to each switching element. In this example, a field effect transistor (M0SFET) is used as the switching element, and a diode is used as the rectifying element. I G B T can also be used as a switching element.
交流電動機 6 1はステ一夕とロー夕とを有し、 巻線界磁式の 3相交流モータと して構成されている。 動力伝達手段 2に駆動連結されたロー夕には、 励磁コイル 6 1 R Cが装着され、 ステ一夕には、 U相、 V相、 W相の電機子コイル 6 1 S Cが設 けられている。  The AC motor 61 has a step and a low and is configured as a wound field type three-phase AC motor. An excitation coil 6 1 RC is installed in the low drive connected to the power transmission means 2, and an U-phase, V-phase, and W-phase armature coil 6 1 SC is installed in the steering. .
交流電動機 6 1の口一夕の励磁コイル 6 1 R Cは、 励磁駆動回路 6 3 E Dによ つて給電される。 また、 励磁コイル 6 1 R Cへの印加電圧も、 この励磁駆動回路 6 3 E Dによって調整される。 交流電動機 6 1のステ一夕の電機子コイル 6 1 S Cの各相の出力線は、 電力変換装置 6 3 Pの 3相のスイッチング素子 (UP〜冊) 及び整流素子を介して、 直流電源 3 1の高電位側端子及び低電位側端子に接続さ れた電源ラインに接続されている。 The exciting coil 6 1 RC at the mouth of the AC motor 6 1 is fed by the excitation drive circuit 6 3 ED. The voltage applied to the excitation coil 6 1 RC is also adjusted by this excitation drive circuit 6 3 ED. AC motor 6 1 Steady armature coil 6 1 SC output line of each phase is power converter 6 3 P 3-phase switching element (UP ~ book) And a power supply line connected to the high potential side terminal and the low potential side terminal of the DC power supply 31 via the rectifier element.
電力変換装置 6 3 Pは、 交流電動機 6 1をモ一夕としてカ行制御するときには、 直流電源 3 1に蓄電された直流電力を直流 交流変換して電機子コイル 6 1 S C に給電するインバー夕回路として作動する。 また、 電力変換装置 6 3 Pは、 交流 電動機 6 1を発電機として発電制御するときには、 発電によって電機子コイル 6 1 S Cから出力される交流電力を交流/直流変換して電源ラインに給電するコン バー夕 (整流器) 回路として作動する。 こうした電力変換装置 6 3 Pの作動に係 るスイッチング素子 (U!1〜 WN) のオン Zオフ操作は、 モ一夕コントローラ 6 3 C によって操作されている。 モータコントローラ 6 3 Cには、 制御装置 5 1からの 指令に基づいて、 カ行モードと発電モードを切替える切替え手段を有し、 カ行制 御と発電制御を行う。 The power converter 6 3 P is an inverter that converts the DC power stored in the DC power supply 3 1 to DC to AC and feeds it to the armature coil 6 1 SC when the AC motor 61 is controlled. Operates as a circuit. In addition, the power converter 6 3 P, when controlling the power generation using the AC motor 61 as a generator, converts the AC power output from the armature coil 6 1 SC by power generation into AC / DC conversion and supplies the power to the power line. It operates as a bar (rectifier) circuit. The on / off operation of the switching elements (U! 1 to WN) related to the operation of the power converter 6 3 P is operated by the motor controller 6 3 C. The motor controller 6 3 C has switching means for switching the power mode and the power generation mode based on a command from the control device 51, and performs power control and power generation control.
モー夕制御装置 6 3は、 交流電動機 6 1をモータとしてカ行制御するときには、 直流電源 3 1からの直流電力を交流電力に変換するインバー夕回路として作動し、 交流電動機 6 1を発電機として発電制御するときには、 交流電動機 6 1からの交 流電力を直流電力に変換するコンバータ (整流器) 回路として作動する。  When controlling the AC motor 61 as a motor, the motor controller 6 3 operates as an inverse circuit that converts DC power from the DC power source 31 into AC power, and the AC motor 61 as a generator. When generating control is performed, it operates as a converter (rectifier) circuit that converts AC power from AC motor 61 to DC power.
エンジンを起動するとき、 モー夕制御装置 6 3は、 交流電動機 6 1をカ行制御 する。 即ち、 交流電動機 6 1には、 直流電源 3 1からモー夕制御装置 6 3を介し て交流電力が供給される。 交流電動機 6 1の出力軸は、 カ行トルクを発生し、 動 力伝達手段を介してエンジンのクランクシャフトを回転させる。 エンジンが所定 の回転数に達すると、 自力回転を開始する。 本例では、 交流電動機 6 1は、 スタ 一夕モ—夕としての役割を果たすことになる。 エンジンが安定して自立運転をしているとき、 モ一夕制御装置 6 3は、 交流電 動機 6 1へのカ行制御を停止し、 発電制御を行う。 即ち、 交流電動機 6 1は、 ェ ンジンの動力によって駆動され、 発電を行う。 発電によって発生した交流電力は、 モー夕制御装置 6 3によって直流電力に変換され直流電源 3 1へ充電される。 このように、 交流電動機 6 1は、 直流電源 3 1からの電力供給によって動力を 発生するモ一夕として機能すると共に、 エンジンからの動力供給によって発電を 行う発電機として機能する。 次に、 図 3を用いて、 本実施形態による半導体装置を内蔵したモー夕 60の機 械的構成について説明する。 When starting the engine, the motor control device 63 controls the AC motor 61. That is, AC power is supplied to the AC motor 61 from the DC power source 31 via the motor control device 63. The output shaft of the AC motor 61 generates a running torque and rotates the crankshaft of the engine via the power transmission means. When the engine reaches a predetermined speed, it starts to rotate on its own. In this example, the AC motor 61 will play the role of the star evening mode. When the engine is stably operating independently, the motor controller 6 3 stops the power control to the AC motor 61 and performs power generation control. That is, the AC motor 61 is driven by the power of the engine to generate power. The AC power generated by the power generation is converted to DC power by the motor control device 63 and charged to the DC power source 31. Thus, the AC motor 61 functions as a motor that generates power by supplying power from the DC power source 31 and also functions as a generator that generates power by supplying power from the engine. Next, the mechanical configuration of the mobile 60 incorporating the semiconductor device according to the present embodiment will be described with reference to FIG.
図 3は、 本発明の一実施形態による半導体装置を内蔵したモータの構成を示す 断面図である。  FIG. 3 is a cross-sectional view showing the configuration of a motor incorporating a semiconductor device according to an embodiment of the present invention.
交流電動機 61は、 2個のブラケット 61 BF, 61 BRによって固定された ステ一夕 61 Sと、 ステ一夕 61 Sの内側に回転可能に保持されたロータ 61 R とを備えている。 ロータ 61 Rのシャフト 61 RSは、 2つのブラケットに取り 付けられた軸受 61 BE 1, 61 BE 2によって回転可能に支持されている。 ス テ一夕 61 Sは、 固定子鉄芯 61 SCと、 固定子コイル 61 SOとから構成され る。 口一夕 61 Rは、 回転子鉄芯 61 RCと、 回転子コイル 61 ROとから構成 される。 ブラケット 61 BRには、 図 2に示したモータ制御装置 63が取り付け られている。  The AC motor 61 includes a steering 61 S fixed by two brackets 61 BF and 61 BR, and a rotor 61 R rotatably held inside the steering 61 S. The shaft 61 RS of the rotor 61 R is rotatably supported by bearings 61 BE 1 and 61 BE 2 mounted on two brackets. The stage 61 S is composed of a stator core 61 SC and a stator coil 61 SO. Koutuchichi 61 R is composed of a rotor core 61 RC and a rotor coil 61 RO. The motor control device 63 shown in FIG. 2 is attached to the bracket 61 BR.
モー夕制御装置 63の中の電力変換装置 63 Pは、 その放熱板にてリアブラケ ット 61 BRに面固定されている。 リアブラケット 61 BRには、 空冷フィン 6 1 CFがー体的に設けられている。 半導体装置内蔵モータ 60では、 バッテリ端 子 61 BTが正極端子、 リアブラケット 61 BRが負極端子 (グランド端子) で ある。 リアブラケット 61 BRに半導体装置である電力変換装置 63 Pの冷却器 と電気配線の二つの機能を持たせることで、 半導体装置内蔵モータ 60は、 半導 体装置内蔵モ一夕 60の内部において専用のグランド配線を省くことができた。 その部品削減効果により、 本実施形態の半導体装置内蔵モー夕では、 そのモータ を大きくすること無く、 半導体装置を内蔵することを可能にした。 なお、 リアブ ラケット 61 BRは、 配線として使用するために、 アルミニウム等の良導体が用 いられている。  The power conversion device 63 P in the motor control device 63 is fixed to the rear bracket 61 BR by its heat sink. The rear bracket 61 BR is provided with air cooling fins 6 1 CF. In the semiconductor device built-in motor 60, the battery terminal 61BT is a positive terminal and the rear bracket 61BR is a negative terminal (ground terminal). The rear bracket 61 BR has the two functions of a power converter 63 P, which is a semiconductor device, and a cooler and electrical wiring, so that the motor 60 with a built-in semiconductor device is dedicated inside the module 60 with a built-in semiconductor device. The ground wiring can be omitted. Due to the effect of reducing the number of components, the semiconductor device built-in mode of the present embodiment makes it possible to incorporate the semiconductor device without enlarging the motor. The rear bracket 61 BR uses a good conductor such as aluminum for use as wiring.
次に、 図 4を用いて、 本実施形態による半導体装置を内蔵したモー夕 60に用 いる半導体装置である電力変換装置 63 Pの構成について説明する。  Next, the configuration of the power conversion device 63P, which is a semiconductor device used in the motor 60 incorporating the semiconductor device according to the present embodiment, will be described with reference to FIG.
図 4は、 本発明の一実施形態による半導体装置を内蔵したモー夕半導体装置で ある電力変換装置の構成を示す斜視図である。  FIG. 4 is a perspective view showing a configuration of a power conversion device which is a mobile semiconductor device incorporating a semiconductor device according to an embodiment of the present invention.
リアブラケット 61 BRに二つの機能を持たせるためには、 半導体装置である 電力変換装置 63 Pの配線構造もそれを可能とする構造にする必要がある。 そこ で、 本実施形態では、 半導体装置である電力変換装置 6 3 Pの構造を、 図 4に示 す構成としている。 図 4は、 モータに内蔵する半導体装置において、 本発明に直 接係わる配線構造を図示したものである。 In order for the rear bracket 61 BR to have two functions, the wiring structure of the power converter 63 P, which is a semiconductor device, needs to be a structure that enables this. There Thus, in the present embodiment, the structure of the power conversion device 6 3 P, which is a semiconductor device, is configured as shown in FIG. FIG. 4 illustrates a wiring structure directly related to the present invention in a semiconductor device built in a motor.
図 4に示す構造では、 リアブラケット 6 1 B Rへ電流を流すために、 まず、 放 熱板 7を銅や銅 -モリブデン等の良導体で構成し、 プリッジ回路ロウサイド側のパ ヮー半導体素子 1 3 b (図 2のスイッチング素子 UN, VN, 霞) のソース電極と接 続している積層導体板 1 5 bをそのもう一端で放熱板 7と接続している。 これに より、 放熱板はグランド配線としての機能を持つことになる。 放熱板 7をリアブ ラケット 6 1 B Rと導体のネジ 8等で面固定すると、 放熱板 7との接触面から熱 を、 導体ネジから電気をリアブラケット 6 1 B Rへ伝えることになり、 即ち、 リ アブラケット 6 1 B Rは、 電力変換装置である半導体装置の冷却器と電気配線の 二つの機能を持つことになる。  In the structure shown in Fig. 4, in order to pass current to the rear bracket 6 1 BR, first, the heat dissipation plate 7 is made of a good conductor such as copper or copper-molybdenum, and the power semiconductor element 1 3 b on the low side of the bridge circuit The laminated conductor plate 15 b connected to the source electrode of the switching element UN, VN, の in Fig. 2 is connected to the heat sink 7 at the other end. As a result, the heat sink functions as a ground wiring. When the heat sink 7 is fixed to the rear bracket 6 1 BR with the conductor screw 8 etc., heat is transferred from the contact surface with the heat sink 7 and electricity is transferred from the conductor screw to the rear bracket 6 1 BR. Abracket 6 1 BR has the two functions of a semiconductor device cooler and electrical wiring as a power converter.
以上の説明のように、 本実施形態では、 高温環境における信頼性を向上させた 半導体装置に半導体装置の放熱板とモー夕のリアブラケットに放熱と電気配線の 機能を持たせる等の機能集約による省スペース化を実現している。 それにより、 半導体装置を内蔵したモータは、 寸法 ·信頼性の点で、 エンジン近傍の高温環境 に搭載されていた発電モータと置換え可能なものとなっている。  As described above, in this embodiment, the reliability of a high-temperature environment is improved by integrating functions such as providing a semiconductor device heat sink and a motor rear bracket with heat dissipation and electrical wiring functions. Space saving is realized. As a result, motors with built-in semiconductor devices can be replaced with generator motors installed in high-temperature environments near the engine in terms of size and reliability.
次に、 図 5を用いて、 本実施形態による半導体装置である電力変換装置の構成 について説明する。  Next, the configuration of the power conversion device as the semiconductor device according to the present embodiment will be described with reference to FIG.
図 5は、 本発明の一実施形態による半導体装置である電力変換装置の構成を示 す断面図である。  FIG. 5 is a cross-sectional view showing a configuration of a power conversion device that is a semiconductor device according to an embodiment of the present invention.
パワー半導体素子 1 3 aと積層導体板 1 5 aは、 接合材 1 8 aによって接合してい る。 積層導体板 1 5 aと導体板 1 0 bは、 接合材 1 8 bによって接合している。 接 合材 1 8 a, 1 8 bは電流が流れる部位であるため、 その材料には半田または A u, A gを主成分としたナノ粒子材の高電気伝導材を用いている。 また、 積層導体板 1 5 aは、 ほぼ同じ厚さの銅板 1 6 a, 1 6 bで鉄ニッケル合金板 1 7を両側から 挟んだ部品であり、 その板厚の比は銅板 1 6 a, 1 6 bを 1とすると、 鉄ニッケル 合金 1 7は 1 ~ 2である。 ここで、 積層導体板 1 5 aの等価線膨張率を計算すると、 以下のように求められる。 式 (1 ) は、 材質の異なる板を張り合わせた積層板の 等価線膨張率を概算する式である。 等価線膨張率-∑ (線膨張率 Xヤング率 X板厚) ノ∑ (ヤング率 X板厚) … (1) 式 ( 1 ) より、 積層導体板 1 5 aの等価線膨張率は約 8〜 12 p p m/°Cと求め ることができる。 ここで、 銅の線膨張率は約 18 p pmZ°C、 鉄ニッケル合金の 線膨張率は約 1.5 p pmZ°C、 銅のヤング率は 1 18Gpa、 鉄ニッケル合金のャ ング率は 144Gpaである。 The power semiconductor element 13 a and the laminated conductor plate 15 a are joined together by a joining material 18 a. The laminated conductor plate 15a and the conductor plate 10b are joined by a joining material 18b. Since the bonding materials 1 8 a and 1 8 b are parts through which current flows, the materials used are solder or nano-particle high electrical conductivity materials mainly composed of Au and Ag. The laminated conductor plate 15a is a component in which an iron-nickel alloy plate 17 is sandwiched from both sides by copper plates 16a, 16b of approximately the same thickness. When 1 6 b is 1, iron-nickel alloy 1 7 is 1-2. Here, the equivalent linear expansion coefficient of the laminated conductor plate 15 a is calculated as follows. Equation (1) is the result of a laminated board made of different materials. It is a formula that approximates the equivalent linear expansion coefficient. Equivalent linear expansion coefficient-∑ (Linear expansion coefficient X Young's modulus X plate thickness) No. (Young's modulus X plate thickness)… From Eq. (1), the equivalent linear expansion coefficient of laminated conductor plate 15a is approximately 8 It can be calculated as ~ 12 ppm / ° C. Here, the linear expansion coefficient of copper is about 18 p pmZ ° C, the linear expansion coefficient of iron-nickel alloy is about 1.5 p pmZ ° C, the Young's modulus of copper is 118 Gpa, and the ungau rate of iron-nickel alloy is 144 Gpa. .
次に、 本実施形態に直接係わる各構成物とそれらの接続関係を説明する。 パヮ —半導体素子 1 3aと導体板 1 0aは、 半田 12 bによって接合している。 絶縁基 板 9と放熱板 7は、 半田 12aによって接合している。 絶縁基板 9は、 第 1層目に 導体板 1 0aと 1 O bを、 第 2層目に絶縁体 1 1を、 第 3層目に導体板 10 cを積 層した部材である。 導体板 10a, 10 b, 10 cに銅を、 絶縁体 1 1に窒ィ匕シリ コンを用いて、 各層の厚さを第 1層と第 3層は 0. 4mmに、 第 2層を 0. 32 mmにした場合、 式 (1) より絶縁基板 9の等価線膨張率は約 1 O p pm/°Cで ある。 ここで窒化シリコンの線膨張率は 2.7 p pmZ 、 ヤング率は 303 Gp a、 銅の物性値は前述の値を用いた。 前述で示した本実施形態に直接係わる各構成 物には、 エンジン近傍の高温環境で使用するため、 耐熱性のある材料が用いられ る。  Next, each component directly related to the present embodiment and their connection relationship will be described. The semiconductor element 13a and the conductor plate 10a are joined by solder 12b. The insulating substrate 9 and the heat sink 7 are joined by solder 12a. The insulating substrate 9 is a member in which the conductive plates 10a and 1Ob are stacked in the first layer, the insulator 11 is stacked in the second layer, and the conductive plate 10c is stacked in the third layer. Conductor plates 10a, 10b, and 10c are made of copper, and insulator 1 1 is made of silicon nitride. The thickness of each layer is 0.4mm for the first and third layers, and the second layer is 0mm. In the case of 32 mm, the equivalent linear expansion coefficient of the insulating substrate 9 is about 1 O p pm / ° C from equation (1). Here, the linear expansion coefficient of silicon nitride was 2.7 p pmZ, the Young's modulus was 303 Gpa, and the physical properties of copper were the values described above. For each component directly related to the present embodiment described above, a heat resistant material is used because it is used in a high temperature environment near the engine.
次に、 本実施形態の構造の作用について説明する。 本実施形態の構造はパワー 半導体素子 1 3aを等価線膨張率 10 p pm/°Cの絶縁基板 9と等価線膨張率 8〜 1 2 p pmZt:の積層導体板 1 5 aのほぼ同じ線膨張率の部材で挟んでいるため、 高温環境で顕著になる各部材の膨張差を小さくすることができる。 理想的には積 層導体板 1 5 aの線膨張率を絶縁基板 9に一致させることで、 半田 12 bと接合材 1 8 aに生じる熱応力が最小になり、 最も長期信頼性を向上させることができる。 前述の絶縁基板 9の等価線膨張率は、 具体的な値で計算した一例であるが、 絶縁 基板に使われる材料と厚さの範囲から等価線膨張率の範囲を計算すると次のよう になる。 絶縁基板において、 第 1層と第 3層の銅板厚さは凡そ 0. 4mmから 0. 5 mmの範囲であり、 第 2層が窒化シリコン板の場合はその厚さが 0 . 3 2 mm から 6 4 mmの範囲、 第 2層が窒化アルミ板の場合はその厚さは凡そ 0 . 6 4 mmである。 式 (1 ) を用いて計算すると、 前述の板材と厚さの組み合せから 絶縁基板の等価線膨張率は 8〜 1 2 p p mZ°Cの範囲にあることが分かる。 ここ で、 窒化アルミの線膨張率は 4. 4 p p mZ :、 ヤング率は 1 6 0 G P aとして計 算した。 の分析により、 積層導体板 1 5 aは、 銅板 1 6 a、 1 6 bの厚さ 1に対し て鉄ニッケル合金 1 7の厚さを 1〜 2の範囲にすると絶縁基板の線膨張率に近い 値にすることができることが分かる。 なお、 前述の説明は、 各部品が熱膨張して も平坦なままであることとを前提としているが、 本構造では、 積層導体板 1 5 aを 同じ材料かつ同じ厚さの板で異なる材料の板を挟み込む構造にすることで、 熱膨 張した場合でも弓形に変形せず、 パワー半導体素子との接合面を平坦に保つこと が出来る構造になっている。 Next, the operation of the structure of this embodiment will be described. In the structure of this embodiment, the power semiconductor element 13a is made to have substantially the same linear expansion as the insulating substrate 9 having an equivalent linear expansion coefficient of 10 ppm / ° C and the laminated conductor plate 15a having an equivalent linear expansion coefficient of 8 to 12 ppmZt: Therefore, the difference in expansion of each member, which becomes remarkable in a high temperature environment, can be reduced. Ideally, by matching the linear expansion coefficient of the laminated conductor plate 15 a to that of the insulating substrate 9, the thermal stress generated in the solder 12 b and the bonding material 18 a is minimized, and the long-term reliability is most improved. be able to. The above-mentioned equivalent linear expansion coefficient of the insulating substrate 9 is an example calculated with specific values, but the equivalent linear expansion coefficient range is calculated from the material and thickness range used for the insulating substrate as follows: . In the insulating substrate, the copper thickness of the 1st and 3rd layers is about 0.4mm to 0. When the second layer is a silicon nitride plate, the thickness is from 0.32 mm to 64 mm, and when the second layer is an aluminum nitride plate, the thickness is approximately 0. 6 4 mm. When calculated using equation (1), it can be seen that the equivalent linear expansion coefficient of the insulating substrate is in the range of 8 to 12 pp mZ ° C from the combination of the plate and thickness described above. Here, the linear expansion coefficient of aluminum nitride was calculated as 4.4 pp mZ: and the Young's modulus was calculated as 1600 GPa. From the above analysis, the laminated conductor plate 15 a has a linear expansion coefficient of the insulating substrate when the thickness of the iron-nickel alloy 17 is in the range of 1 to 2 with respect to the thickness 1 of the copper plates 16 a and 16 b. It can be seen that the values can be close. The above explanation is based on the premise that each component remains flat even after thermal expansion. However, in this structure, the laminated conductor plate 15 a is made of the same material and the same thickness, but different materials. By sandwiching this plate, it is possible to keep the joint surface with the power semiconductor element flat without deforming into a bow shape even when thermally expanded.
以上説明したように、 本実施形態による半導体装置は、 発電モータ (オルタネ —夕) に半導体装置を内蔵し、 カ行機能を付加する場合のように、 エンジン近傍 の高温環境に半導体装置が位置する場合において、 高温環境に対する長期信頼性 を向上できる。  As described above, the semiconductor device according to the present embodiment includes the semiconductor device in the generator motor (alternate-evening), and the semiconductor device is located in a high-temperature environment near the engine, as in the case of adding a caulking function. In some cases, long-term reliability in high temperature environments can be improved.
また、 本実施形態による半導体装置を内蔵した電力変換装置の高温環境に対す る長期信頼性を向上できる。  In addition, the long-term reliability of the power conversion device incorporating the semiconductor device according to the present embodiment against a high temperature environment can be improved.
さらに、 本実施形態による発電モ一夕は、 高温環境に対する長期信頼性を向上 させた半導体装置を内蔵して力行動作が可能となる。  Furthermore, the power generation module according to the present embodiment is capable of a power running operation by incorporating a semiconductor device with improved long-term reliability against a high temperature environment.
また、 本実施形態によるハイブリッド自動車は、 高温環境に対する長期信頼性 を向上させた半導体装置を内蔵してアイドルストップ動作が可能となる。  In addition, the hybrid vehicle according to the present embodiment incorporates a semiconductor device with improved long-term reliability against high temperature environments and can perform an idle stop operation.
次に、 図 6を用いて、 本発明の他の実施形態による半導体装置である電力変換 装置の構成について説明する。 なお、 図 1〜図 4の構成は、 本実施形態でも共通 である。  Next, the configuration of a power conversion device that is a semiconductor device according to another embodiment of the present invention will be described with reference to FIG. 1 to 4 is the same in this embodiment.
図 6は、 本発明の他の実施形態による半導体装置である電力変換装置の構成を 示す断面図である。  FIG. 6 is a cross-sectional view showing a configuration of a power conversion device which is a semiconductor device according to another embodiment of the present invention.
図 5の実施形態において、 積層導体板 1 5 aはその一方を導体板 1 0 bと接合し ているが、 本発明は積層導体板 1 5 aの一方を導体板 1 O bと接合した構成に限定 するものではなく、 他の実施形態について図 6を用いて説明する。 In the embodiment of FIG. 5, one of the laminated conductor plates 15a is joined to the conductor plate 10b, but the present invention has a configuration in which one of the laminated conductor plates 15a is joined to the conductor plate 1Ob. Limited to However, another embodiment will be described with reference to FIG.
本実施形態では、 積層配線板 1 8 aにワイヤ 1 4 dが接合し、 そしてワイヤ 1 4 dが導体板 1 0 bと接合している点が図 5の実施形態と異なる。 なお、 ワイヤ 1 4 dはアルミニウムを主成分した配線である。 その他は同じ構造であるため、 本 実施形態では、 図 5の実施形態と同様、 高温環境で接合材 1 8 aと半田 1 2 bに生 じる熱応力を小さくする効果がある。  This embodiment is different from the embodiment of FIG. 5 in that the wire 14 d is joined to the laminated wiring board 18 a and the wire 14 d is joined to the conductor plate 10 b. The wire 14 d is a wiring mainly composed of aluminum. Since the rest of the structure is the same, this embodiment has the effect of reducing the thermal stress generated in the bonding material 18a and the solder 12b in a high temperature environment, as in the embodiment of FIG.
積層配線板 1 8 aとワイヤ 1 4 dの接合部の信頼性について説明すれば、 積層配 線板 1 8 aの第 2層に使用されている鉄ニッケル合金は熱伝導率が 1 l W/m°C (参考値:銅の熱伝導率 3 8 0 W/m°C、 アルミの熱伝導率 2 3 3 W/m°C) と小 さく、 パワー半導体素子 1 3 aからワイヤ 1 4 dまでの熱抵抗を大きくする効果が ある。 半導体装置において、 電流スイチッングをするパワー半導体素子が最も高 温になる部品であるが、 熱抵抗の増大により、 前述の積層配線板 1 8 aとワイヤ 1 4 dの接合部の温度を、 従来のワイヤをパワー半導体素子と直接接合した場合と 比べ、 低くすることができる。 接合部の温度低減はその部分の熱膨張の低減を意 味し、 よって、 ワイヤをパワー半導体素子と直接接合した場合と比べ、 長期的信 頼性が向上することを示している。  To explain the reliability of the joint between laminated wiring board 1 8a and wire 1 4d, the iron-nickel alloy used in the second layer of laminated wiring board 1 8a has a thermal conductivity of 1 l W / m ° C (reference value: thermal conductivity of copper 3 80 W / m ° C, thermal conductivity of aluminum 2 3 3 W / m ° C), power semiconductor element 1 3 a to wire 1 4 d This has the effect of increasing the thermal resistance. In semiconductor devices, the power semiconductor element that performs current switching is the hottest component, but due to the increase in thermal resistance, the temperature at the junction between the above-mentioned laminated wiring board 1 8a and wire 1 4d is reduced to the conventional level. Compared to the case where the wire is directly bonded to the power semiconductor element, the wire can be lowered. A reduction in the temperature of the joint means a reduction in the thermal expansion of the part, and thus shows that long-term reliability is improved compared to the case where the wire is directly joined to the power semiconductor element.
以上説明したように、 本実施形態による半導体装置は、 発電モータ (オルタネ —夕) に半導体装置を内蔵し、 カ行機能を付加する場合のように、 エンジン近傍 の高温環境に半導体装置が位置する場合において、 高温環境に対する長期信頼性 を向上できる。  As described above, the semiconductor device according to the present embodiment includes the semiconductor device in the generator motor (alternate-evening), and the semiconductor device is located in a high-temperature environment near the engine, as in the case of adding a caulking function. In some cases, long-term reliability in high temperature environments can be improved.
また、 本実施形態では、 半導体装置の配線レイアウトの自由度を上げることが できるワイヤ配線を高温環境で使用する半導体装置に適用可能にしたものである。 また、 本実施形態による半導体装置を内蔵した電力変換装置の高温環境に対す る長期信頼性を向上できる。  Further, in the present embodiment, the wire wiring that can increase the degree of freedom of the wiring layout of the semiconductor device can be applied to a semiconductor device that uses it in a high temperature environment. In addition, the long-term reliability of the power conversion device incorporating the semiconductor device according to the present embodiment against a high temperature environment can be improved.
さらに、 本実施形態による発電モータは、 高温環境に対する長期信頼性を向上 させた半導体装置を内蔵してカ行動作が可能となる。  Furthermore, the power generation motor according to the present embodiment can be operated in a row by incorporating a semiconductor device with improved long-term reliability against a high temperature environment.
また、 本実施形態によるハイブリッド自動車は、 高温環境に対する長期信頼性 を向上させた半導体装置を内蔵してアイドルストップ動作が可能となる。  In addition, the hybrid vehicle according to the present embodiment incorporates a semiconductor device with improved long-term reliability against high temperature environments and can perform an idle stop operation.
なお、 本発明における半導体装置において、 パワー半導体素子は MO S F E T に限定したものはなく、 I G B T (Insul ated Gate Bipolar Trans i s tor)等の主電 流の入出に上下 2面の電極を持っている半導体素子ならば、 同様に適用すること ができる。 In the semiconductor device according to the present invention, the power semiconductor element is a MO SFET. However, the present invention can be applied to any semiconductor device having two upper and lower electrodes for input and output of the main current, such as IGBT (Insulated Gate Bipolar Transistor).
また、 本発明の半導体装置はモータに内蔵する半導体装置に限定したものでは なく、 電力変換装置にも適用することができる。 電力変換装置に本半導体装置を 適用することによって、 高温環境の場所に搭載できて、 かつ専用の冷却器を持た なくても長期的な信頼性を確保可能な電力変換装置を提供することが可能になる。 以上のように、 本発明の各実施形態によれば、 パワー半導体素子の電極に接合 される積層導体板の線膨張率を 8から 1 2 p p mZ°Cの範囲とし、 半田或いは、 金或は銀のいずれかのナノ粒子を用いて上面電極に接合することによって、 高温 環境に対するパワー半導体素子の接合部の長期信頼性を向上させることができる。 また、 本実施形態の半導体内蔵モ一夕は、 半導体装置の放熱板に放熱機能に加 え電気配線の機能を持たせる等の機能集約により、 寸法,信頼性の点で、 ェンジ ン近傍の高温環境に搭載されていた発電モータと置換え可能なものとなっている ため、 低コストで容易に多種多様な車両への適用可能なアイドルストップシステ ムを実現できる。 産業上の利用可能性  Further, the semiconductor device of the present invention is not limited to a semiconductor device built in a motor, and can also be applied to a power conversion device. By applying this semiconductor device to a power conversion device, it is possible to provide a power conversion device that can be installed in a high-temperature environment and can ensure long-term reliability without having a dedicated cooler. become. As described above, according to each embodiment of the present invention, the linear expansion coefficient of the laminated conductor plate bonded to the electrode of the power semiconductor element is in the range of 8 to 12 pp mZ ° C, and the solder, gold, or Bonding to the upper surface electrode using any of the silver nanoparticles can improve the long-term reliability of the power semiconductor element junction in a high temperature environment. In addition, the semiconductor built-in module of this embodiment has a high temperature in the vicinity of the engine in terms of dimensions and reliability by integrating functions such as providing the heat sink function of the semiconductor device in addition to the heat dissipation function. Since it can replace the generator motor installed in the environment, an idle stop system that can be easily applied to a wide variety of vehicles can be realized at low cost. Industrial applicability
本発明によれば、 発電モータ (オルタネー夕) に半導体装置を内蔵し、 カ行機 能を付加する場合のように、 エンジン近傍の高温環境に半導体装置が位置する場 合において、 高温環境に対する長期信頼性を向上できる半導体装置を提供するこ とができる。  According to the present invention, when the semiconductor device is located in a high-temperature environment near the engine as in the case where a power generation function is added to a built-in semiconductor device in the generator motor (alternate evening), a long-term operation against a high-temperature environment is possible. A semiconductor device capable of improving reliability can be provided.
また、 高温環境に対する長期信頼性を向上させた半導体装置を内蔵した電力変 換装置を提供することができる。  In addition, it is possible to provide a power conversion device incorporating a semiconductor device with improved long-term reliability against a high temperature environment.
さらに、 高温環境に対する長期信頼性を向上させた半導体装置を内蔵してカ行 動作を可能とした発電モータを提供することができる。  Furthermore, it is possible to provide a power generation motor capable of a caulking operation by incorporating a semiconductor device with improved long-term reliability against a high temperature environment.
また、 高温環境に対する長期信頼性を向上させた半導体装置を内蔵してアイド ルストップ動作の可能なハイプリッド自動車を提供することができる。  In addition, it is possible to provide a hybrid vehicle that incorporates a semiconductor device with improved long-term reliability in a high-temperature environment and can perform an idle stop operation.

Claims

請求の範囲 The scope of the claims
1 . 主電流の入出に上下 2面の電極を用いるパワー半導体素子と、 1. a power semiconductor device using two upper and lower electrodes for main current input and output; and
このパワー半導体素子の下面電極を支持する絶縁基板とを有する半導体装置で あって、  A semiconductor device having an insulating substrate for supporting a lower electrode of the power semiconductor element,
線膨張率が 8から 1 2 p p m/tの範囲の導体板を用い、 前記パワー半導体素 子の上面電極と前記導体板を半田或いは、 金または銀のいずれかの材料を用いて 接合したことを特徴とする半導体装置。  A conductor plate having a linear expansion coefficient in the range of 8 to 12 ppm / t is used, and the upper electrode of the power semiconductor element and the conductor plate are joined using either solder or a material of gold or silver. A featured semiconductor device.
2 . 主電流の入出に上下 2面の電極を用いるパワー半導体素子と、 2. a power semiconductor device using two upper and lower electrodes for main current input and output; and
このパワー半導体素子の下面電極を支持する絶縁基板を有する半導体装置であ つて、  A semiconductor device having an insulating substrate for supporting the lower surface electrode of the power semiconductor element,
それぞれの厚さが 1 : ( 1〜2 ): 1の銅板、 鉄ニッケル合金板、 銅板からなる 積層導体板を用い、 前記パワー半導体の上面電極と前記積層導体板を半田或いは、 金または銀のいずれかの材料を用いて接合したことを特徴とする半導体装置。  Each layer has a thickness of 1: (1-2): 1 using a laminated conductor plate made of copper plate, iron-nickel alloy plate, copper plate, soldering the upper surface electrode of the power semiconductor and the laminated conductor plate, or gold or silver A semiconductor device which is bonded using any material.
3 . 主電流の入出に上下 2面の電極を用いるパワー半導体素子を上アーム及び下 アームに有するパワーモジュール部と、 前記パヮ一半導体素子の駆動を制御する 制御部とを備えた電力変換装置であつて、 3. A power conversion apparatus comprising a power module unit having upper and lower arm power semiconductor elements that use upper and lower electrodes for main current input and output, and a control unit that controls driving of the first semiconductor element. Atsute
線膨張率が 8から 1 2 p p mZtの範囲の導体板を用い、 前記パワー半導体素 子の上面電極と前記導体板を半田或いは、 金または銀のいずれかの材料を用いて 接合したことを特徴とする電力変換装置。  A conductor plate having a linear expansion coefficient in the range of 8 to 12 pp mZt is used, and the upper electrode of the power semiconductor element and the conductor plate are joined using solder, or any material of gold or silver. A power converter.
4. 主電流の入出に上下 2面の電極を用いるパワー半導体素子と、 4. A power semiconductor device that uses two upper and lower electrodes to input and output the main current;
このパワー半導体素子の下面電極を支持する絶縁基板を有する半導体装置であ つて、  A semiconductor device having an insulating substrate for supporting the lower surface electrode of the power semiconductor element,
それぞれの厚さが 1 : ( 1〜2 ): 1の銅板、 鉄ニッケル合金板、 銅板からなる 積層導体板を用い、 前記パワー半導体の上面電極と前記積層導体板を半田或いは、 金または銀のいずれかの材料を用いて接合した半導体装置を内蔵していることを 特徴とする電力変換装置。 Each layer has a thickness of 1: (1-2): 1 using a laminated conductor plate made of copper plate, iron-nickel alloy plate, copper plate, soldering the upper surface electrode of the power semiconductor and the laminated conductor plate, or gold or silver It has a built-in semiconductor device joined using any material. A power conversion device.
5 . 固定子と、 回転子とからなるモー夕であって、 5. It is a motor consisting of a stator and a rotor,
主電流の入出に上下 2面の電極を用いるパワー半導体素子を上アーム及び下ァ —ムに有し、 バッテリーからの電力を変換して、 前記モータに電力を供給する電 力変換装置を備え、  A power semiconductor device using upper and lower electrodes for input and output of the main current is provided in the upper arm and the lower arm, and includes a power conversion device that converts power from the battery and supplies power to the motor.
線膨張率が 8から 1 2 p p mZ の範囲の導体板を用い、 前記パワー半導体素 子の上面電極と前記導体板を半田或いは、 金または銀のいずれかの材料を用いて 接合した半導体装置のパワー半導体素子と放熱板を電気接続し、 前記放熱板をブ ラケッ卜に電気的かつ機械的に固定したことを特徴とするモータ。  A semiconductor device in which a conductor plate having a linear expansion coefficient in the range of 8 to 12 pp mZ is used, and the upper surface electrode of the power semiconductor element and the conductor plate are joined using a material of either solder or gold or silver. A motor characterized in that a power semiconductor element and a heat radiating plate are electrically connected, and the heat radiating plate is electrically and mechanically fixed to a bracket.
6 . 請求項 5記載のモータにおいて、 前記半導体装置は、 ブラケットの内面に装 着されることを特徴とするモー夕。 6. The motor according to claim 5, wherein the semiconductor device is mounted on an inner surface of a bracket.
7 . 固定子と、 回転子とからなるモー夕であって、 7. It is a motor consisting of a stator and a rotor,
主電流の入出に上下 2面の電極を用いるパワー半導体素子を上アーム及び下ァ ームに有し、 バッテリーからの電力を変換して、 前記モー夕に電力を供給する電 力変換装置を備え、  Power semiconductor elements that use upper and lower electrodes for main current input and output are provided in the upper arm and lower arm, and includes a power conversion device that converts power from the battery and supplies power to the motor. ,
それぞれの厚さが 1 : ( 1〜2 ) : 1の銅板、 鉄ニッケル合金板、 銅板からなる 積層導体板を用い、 前記パワー半導体素子の上面電極と積層導体板を半田或いは、 金または銀のいずれかの材料を用いて接合したパワー半導体素子^:放熱板を電気 接続し、 前記放熱板をブラケットに電気的かつ機械的に固定したことを特徴とす るモ一夕。  Each of the thicknesses is 1: (1-2): A laminated conductor plate made of a copper plate, an iron-nickel alloy plate, and a copper plate is used. The upper electrode and the laminated conductor plate of the power semiconductor element are soldered or made of gold or silver. A power semiconductor element bonded using any material ^: a motor characterized in that a heat sink is electrically connected and the heat sink is electrically and mechanically fixed to a bracket.
8 . 請求項 7記載のモー夕において、 前記パヮ一半導体素子は、 ブラケットの内 面に装着されることを特徴とするモータ。 8. The motor according to claim 7, wherein the first semiconductor element is mounted on an inner surface of a bracket.
9 . エンジンと、 モータにより車輪が駆動されるハイブリット自動車であって、 主電流の入出に上下 2面の電極を用いるパワー半導体素子を上アーム及び下ァ ームに有し、 バッテリーからの電力を変換して、 前記モータに電力を供給する電 力変換装置を備え、 9. A hybrid vehicle in which wheels are driven by an engine and a motor, and a power semiconductor element using two upper and lower electrodes for main current input and output is connected to the upper arm and lower A power conversion device that converts power from a battery and supplies power to the motor;
線膨張率が 8から 1 2 p p mZ^の範囲の導体板を用い、 前記パワー半導体素 子の上面電極と前記導体板を半田或いは、 金または銀のいずれかの材料を用いて 接合した半導体装置のパヮー半導体素子と放熱板を電気接続し、  A semiconductor device using a conductor plate having a linear expansion coefficient in the range of 8 to 12 pp mZ ^, and joining the upper electrode of the power semiconductor element and the conductor plate using either solder or gold or silver material The power semiconductor element and the heat sink are electrically connected,
前記モータは、 前記放熱板がブラケットに電気的かつ機械的に固定されて、 ェ ンジンルームに搭載されていることを特徴とするハイプリット自動車。  The motor according to claim 1, wherein the motor is mounted in an engine room in which the heat radiating plate is electrically and mechanically fixed to a bracket.
1 0 . エンジンと、 モー夕により車輪が駆動されるハイブリット自動車であって、 主電流の入出に上下 2面の電極を用いるパワー半導体素子を上アーム及び下ァ1 0. A hybrid vehicle in which wheels are driven by an engine and a motor, and a power semiconductor element that uses two upper and lower electrodes for main current input and output is connected to an upper arm and a lower motor.
—ムに有し、 バッテリーからの電力を変換して、 前記モータに電力を供給する電 力変換装置を備え、 A power converter that converts power from the battery and supplies power to the motor;
それぞれの厚さが 1 : ( 1〜2 ): 1の銅板、 鉄ニッケル合金板、 銅板からなる 積層導体板を用い、 前記パワー半導体の上面電極と前記積層導体板を半田或いは、 金または銀のいずれかの材料を用いて接合した半導体装置のパワー半導体素子と 放熱板を電気接続し、  Each layer has a thickness of 1: (1-2): 1 using a laminated conductor plate made of copper plate, iron-nickel alloy plate, copper plate, soldering the upper surface electrode of the power semiconductor and the laminated conductor plate, or gold or silver The power semiconductor element of the semiconductor device joined using any material and the heat sink are electrically connected,
前記モ一夕は、 前記放熱板がブラケットに電気的かつ機械的に固定されて、 ェ ンジンルームに搭載されていることを特徵とするハイプリット自動車。  The motor vehicle is characterized in that the heat radiating plate is electrically and mechanically fixed to a bracket and mounted in an engine room.
1 1 . 固定子と、 回転子とからなるモータと、 1 1. A motor consisting of a stator and a rotor,
主電流の入出に上下 2面の電極を用いるパワー半導体素子を上アーム及び下ァ —ムに有し、 バッテリーからの電力を変換して、 前記モータに電力を供給する電 力変換装置を有するモータ駆動システムであって、  A motor having a power semiconductor device having upper and lower arm power semiconductor elements that use upper and lower electrodes for input and output of a main current, converting electric power from a battery, and supplying electric power to the motor A drive system,
線膨張率が 8から 1 2 p p mZt:の範囲の導体板を用い、 前記パワー半導体素 子の上面電極と前記導体板を半田或いは、 金または銀のいずれかの材料を用いて 接合した半導体装置のパワー半導体素子と放熱板を電気接続し、  A semiconductor device using a conductor plate with a linear expansion coefficient in the range of 8 to 12 pp mZt: and joining the upper electrode of the power semiconductor element and the conductor plate using either solder or a material of gold or silver Electrical connection between the power semiconductor element and the heat sink
前記モータは、 前記放熱板がブラケットに電気的かつ機械的に固定されて、 ェ ンジンルームに搭載されていることを特徴とするモー夕駆動システム。  The motor drive system according to claim 1, wherein the heat radiating plate is electrically and mechanically fixed to a bracket and mounted in an engine room.
PCT/JP2004/000660 2004-01-26 2004-01-26 Semiconductor device, power converter employing it, motor employing it, hybrid automobile employing it, and motor drive system employing it WO2005071733A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/000660 WO2005071733A1 (en) 2004-01-26 2004-01-26 Semiconductor device, power converter employing it, motor employing it, hybrid automobile employing it, and motor drive system employing it
JP2005517178A JPWO2005071733A1 (en) 2004-01-26 2004-01-26 Semiconductor device, power conversion device using the same, motor using the same, hybrid vehicle using the same, and motor drive system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/000660 WO2005071733A1 (en) 2004-01-26 2004-01-26 Semiconductor device, power converter employing it, motor employing it, hybrid automobile employing it, and motor drive system employing it

Publications (1)

Publication Number Publication Date
WO2005071733A1 true WO2005071733A1 (en) 2005-08-04

Family

ID=34805298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000660 WO2005071733A1 (en) 2004-01-26 2004-01-26 Semiconductor device, power converter employing it, motor employing it, hybrid automobile employing it, and motor drive system employing it

Country Status (2)

Country Link
JP (1) JPWO2005071733A1 (en)
WO (1) WO2005071733A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012076259A1 (en) * 2010-12-06 2012-06-14 Robert Bosch Gmbh Semiconductor component having increased stability relative to thermomechanical influences, and method for contacting a semiconductor
JP2012145489A (en) * 2011-01-13 2012-08-02 Sankei Engineering:Kk Manufacturing method of inspection probe
WO2013171084A3 (en) * 2012-05-16 2014-01-23 Robert Bosch Gmbh Electric contact structure for semiconductors
JP2015222759A (en) * 2014-05-22 2015-12-10 三菱電機株式会社 Power semiconductor device
JP2017005037A (en) * 2015-06-08 2017-01-05 三菱電機株式会社 Power semiconductor device
JP2019009349A (en) * 2017-06-27 2019-01-17 日立金属株式会社 Electric connecting member, electric connecting structure, and manufacturing method of electric connecting member
WO2020255663A1 (en) * 2019-06-20 2020-12-24 ローム株式会社 Semiconductor device and production method for semiconductor device
CN112410178A (en) * 2020-12-04 2021-02-26 李娄 Microorganism save set of control by temperature change
CN112567504A (en) * 2018-11-30 2021-03-26 日立金属株式会社 Electric connection member, electric connection structure, and method for manufacturing electric connection structure
JP2021168361A (en) * 2020-04-13 2021-10-21 住友電気工業株式会社 Optical module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163045A (en) * 1997-11-26 1999-06-18 Toshiba Corp Semiconductor device and its manufacture
JP2001036001A (en) * 1999-07-21 2001-02-09 Toyota Central Res & Dev Lab Inc Power semiconductor module
JP2002186222A (en) * 2000-12-18 2002-06-28 Mitsubishi Electric Corp Motor with built-in controller and vehicle loading the same
JP2003229449A (en) * 2002-01-31 2003-08-15 Toyota Motor Corp Semiconductor device and method of manufacturing the same
JP2003332393A (en) * 2002-05-16 2003-11-21 Sanyo Electric Co Ltd Semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936186A (en) * 1995-07-24 1997-02-07 Hitachi Ltd Power semiconductor module and its mounting method
JP2004128264A (en) * 2002-10-03 2004-04-22 Toyota Industries Corp Semiconductor module and flat lead

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163045A (en) * 1997-11-26 1999-06-18 Toshiba Corp Semiconductor device and its manufacture
JP2001036001A (en) * 1999-07-21 2001-02-09 Toyota Central Res & Dev Lab Inc Power semiconductor module
JP2002186222A (en) * 2000-12-18 2002-06-28 Mitsubishi Electric Corp Motor with built-in controller and vehicle loading the same
JP2003229449A (en) * 2002-01-31 2003-08-15 Toyota Motor Corp Semiconductor device and method of manufacturing the same
JP2003332393A (en) * 2002-05-16 2003-11-21 Sanyo Electric Co Ltd Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012076259A1 (en) * 2010-12-06 2012-06-14 Robert Bosch Gmbh Semiconductor component having increased stability relative to thermomechanical influences, and method for contacting a semiconductor
JP2012145489A (en) * 2011-01-13 2012-08-02 Sankei Engineering:Kk Manufacturing method of inspection probe
WO2013171084A3 (en) * 2012-05-16 2014-01-23 Robert Bosch Gmbh Electric contact structure for semiconductors
JP2015222759A (en) * 2014-05-22 2015-12-10 三菱電機株式会社 Power semiconductor device
JP2017005037A (en) * 2015-06-08 2017-01-05 三菱電機株式会社 Power semiconductor device
JP2019009349A (en) * 2017-06-27 2019-01-17 日立金属株式会社 Electric connecting member, electric connecting structure, and manufacturing method of electric connecting member
CN112567504A (en) * 2018-11-30 2021-03-26 日立金属株式会社 Electric connection member, electric connection structure, and method for manufacturing electric connection structure
WO2020255663A1 (en) * 2019-06-20 2020-12-24 ローム株式会社 Semiconductor device and production method for semiconductor device
JP7451521B2 (en) 2019-06-20 2024-03-18 ローム株式会社 Semiconductor device and semiconductor device manufacturing method
JP2021168361A (en) * 2020-04-13 2021-10-21 住友電気工業株式会社 Optical module
JP7392558B2 (en) 2020-04-13 2023-12-06 住友電気工業株式会社 optical module
CN112410178A (en) * 2020-12-04 2021-02-26 李娄 Microorganism save set of control by temperature change

Also Published As

Publication number Publication date
JPWO2005071733A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
US9123693B2 (en) Mold module utilized as power unit of electric power steering apparatus and electric power steering apparatus
JP4293246B2 (en) Power converter
JP4378239B2 (en) A semiconductor device, a power conversion device using the semiconductor device, and a hybrid vehicle using the power conversion device.
JP4720756B2 (en) Semiconductor power conversion device and manufacturing method thereof
US9935526B2 (en) Electric rotating machine
JP4947135B2 (en) Semiconductor package and manufacturing method thereof
JP2006211835A (en) Rotating electric machine
WO2004038896A1 (en) Generator-motor
JP2008029093A (en) Power conversion equipment
US11025140B2 (en) Rotary electric machine having heat sink for semiconductor device of controller
US8531067B2 (en) Alternator with synchronous rectification equipped with an improved electronic power module
WO2005071733A1 (en) Semiconductor device, power converter employing it, motor employing it, hybrid automobile employing it, and motor drive system employing it
JP4075992B2 (en) Semiconductor module manufacturing method, semiconductor module, integrated motor using the same, and automobile equipped with the integrated motor
JP4064741B2 (en) Semiconductor device
JP5948106B2 (en) Power semiconductor module and power converter using the same
JP2009130201A (en) Semiconductor device
US20060022355A1 (en) Power module and electric transportation apparatus incorporating the same
JP4192786B2 (en) Conductive adhesive sheet, method for manufacturing the same, and power conversion device
JP2006165409A (en) Power conversion equipment
JP2007081155A (en) Semiconductor device
US20110127863A1 (en) Alternator with synchronous rectification equipped with an improved electronic power module
JP3972855B2 (en) Inverter module
JP4227987B2 (en) Rotating electric machine and manufacturing method thereof
JPH11252885A (en) Motor driving equipment and manufacture thereof
JP3922698B2 (en) Semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517178

Country of ref document: JP

122 Ep: pct application non-entry in european phase