JP2001019546A - Amorphous carbon composite - Google Patents

Amorphous carbon composite

Info

Publication number
JP2001019546A
JP2001019546A JP11188344A JP18834499A JP2001019546A JP 2001019546 A JP2001019546 A JP 2001019546A JP 11188344 A JP11188344 A JP 11188344A JP 18834499 A JP18834499 A JP 18834499A JP 2001019546 A JP2001019546 A JP 2001019546A
Authority
JP
Japan
Prior art keywords
amorphous carbon
molding
weight
carbon
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11188344A
Other languages
Japanese (ja)
Inventor
Tomozo Sakaguchi
知三 坂口
Kiyohiko Yamamura
清彦 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP11188344A priority Critical patent/JP2001019546A/en
Publication of JP2001019546A publication Critical patent/JP2001019546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a composite having low incidences of breakage and crack and excellent dimensional accuracy by adding a carbon material in a specific ratio range to a phenol resin synthesized by a suspension polymerization method, molding the mixture and carbonizing and firing the molding product in vacuum or in an inert gas. SOLUTION: A phenol resin is mixed with 5-60 wt.% of a carbon material. A novolak resin obtained by a suspension polymerization in an aqueous medium in the presence of an alkali catalyst also used as a methylene crosslinking agent such as hexamethylenetetramine or the like is used as a phenol resin raw material. Graphite powder having <=50 μm central sphere diameter or a carbon fiber having <=5 μm diameter and <=150 aspect ratio is preferable as the carbon material. A molding product is preferably mixed with 0.1-5 wt.% of a low surface tension substance such as lauric acid, etc. The phenol raw material is kneaded with the carbon material, molded and carbonized and fired in an inert gas at 800-1,600 deg.C to give an amorphous carbon composite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アモルファスカー
ボン複合体に関するものである。
[0001] The present invention relates to an amorphous carbon composite.

【0002】[0002]

【従来の技術】フェノール樹脂、フラン樹脂、ポリイミ
ド樹脂などの三次元網目構造を形成する熱硬化性樹脂を
成形加工し、該成形体を真空中又は不活性ガス雰囲気中
で焼成することによりアモルファスカーボンを得ること
ができる。このようなアモルファスカーボンは軽量かつ
高強度であり、摩擦係数が小さく、耐薬品性、ガス不透
過性に優れ、熱膨張係数が小さいなどの優れた特性を有
する材料である。
2. Description of the Related Art A thermosetting resin forming a three-dimensional network structure such as a phenolic resin, a furan resin, and a polyimide resin is molded and processed, and the molded body is fired in a vacuum or in an inert gas atmosphere to form an amorphous carbon. Can be obtained. Such amorphous carbon is a material having excellent properties such as light weight and high strength, a small coefficient of friction, excellent chemical resistance and gas impermeability, and a small coefficient of thermal expansion.

【0003】上記のようなアモルファスカーボンは、ガ
ス不透過性、耐薬品性のほか、低電気抵抗性を示すこと
からリン酸型燃料電池や、固体高分子型燃料電池におい
て反応ガスを分離するためのセパレータの材料として注
目されている。また、アモルファスカーボンは熱膨張係
数が小さく、寸法安定性に優れていることから各種小型
部品への応用が検討されており、摩擦係数が小さい特性
を利用して回転軸の軸受け材料、回転軸材料などの各種
摺動部品としての応用も検討されている。
[0003] Amorphous carbon as described above exhibits low electric resistance in addition to gas impermeability and chemical resistance, and is therefore used for separating a reaction gas in a phosphoric acid type fuel cell or a polymer electrolyte fuel cell. Is attracting attention as a material for the separator. In addition, amorphous carbon has a small coefficient of thermal expansion and excellent dimensional stability, so its application to various small parts is being studied. Applications for various sliding parts such as the above are also being studied.

【0004】アモルファスカーボンの原料である前記の
ような熱硬化性樹脂は、その樹脂の特性から、圧縮成形
法又は押し出し成形法などにより成形することしかでき
ず、かつ、平板状のような単純形状の成形体しか得るこ
とができなかった。そのため炭化焼成後に機械加工を施
し、所望の寸法形状に仕上げる必要があった。このよう
にアモルファスカーボンは、機械的な加工が金属材料に
比べ非常に困難であるため、量産性に欠け、かなりのコ
ストアップになるなどの問題があった。
[0004] Due to the characteristics of the resin, the above-mentioned thermosetting resin, which is a raw material of amorphous carbon, can only be molded by a compression molding method or an extrusion molding method and has a simple shape such as a flat plate. Of the molded product of Example 1. Therefore, it was necessary to perform machining after carbonization and firing to finish to a desired size and shape. As described above, since amorphous carbon is much more difficult to mechanically process than a metal material, it has problems such as lack of mass productivity and considerable increase in cost.

【0005】また、熱硬化性樹脂を成形し、成形体を炭
化焼成するときには、樹脂中の水素、窒素、炭素などが
分解ガスとなって発生し、体積で約50%、重量で約3
0%減縮する。そのため炭化焼成したアモルファスカー
ボンは、寸法のバラツキが大きく、寸法精度のあまり必
要のない部品に使用され、寸法精度が必要な製品に使用
する場合は切削加工などの後加工を施す必要があった。
また、厚さの大きい樹脂成形品を焼成すると、発生する
ガスによる割れやクラックの発生率が高くなり、厚さの
大きいアモルファスカーボンを得ることは非常に困難で
あった。
When a thermosetting resin is molded and carbonized and baked, the hydrogen, nitrogen, carbon, and the like in the resin are generated as decomposition gases, resulting in a volume of about 50% and a weight of about 3%.
Reduce by 0%. Therefore, carbonized and fired amorphous carbon has large dimensional variations and is used for parts that do not require much dimensional accuracy. When used for products that require dimensional accuracy, post-processing such as cutting has to be performed.
In addition, when a resin molded product having a large thickness is fired, the rate of occurrence of cracks and cracks due to the generated gas increases, and it has been extremely difficult to obtain amorphous carbon having a large thickness.

【0006】[0006]

【発明が解決しようとする課題】かかる状況に鑑み、本
発明の課題は、アモルファスカーボンの優れた特性を損
なうことなく、割れやクラックの発生率が低く、厚さが
大きく、寸法精度が良くて生産性の良いアモルファスカ
ーボン複合体を提供することにある。
SUMMARY OF THE INVENTION In view of such circumstances, an object of the present invention is to reduce the occurrence of cracks and cracks, increase the thickness, and improve the dimensional accuracy without impairing the excellent properties of amorphous carbon. An object is to provide an amorphous carbon composite having good productivity.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究を行った結果、懸濁重合法によっ
て合成したフェノール樹脂に炭素材を添加した材料を成
形し、真空又は不活性ガス雰囲気中で炭化焼成すると、
アモルファスカーボン複合体を得ることができ、このア
モルファスカーボン複合体は上記課題が解決されるもの
であることを見出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, formed a material obtained by adding a carbon material to a phenol resin synthesized by a suspension polymerization method, and formed a vacuum or vacuum. When carbonized and fired in an inert gas atmosphere,
An amorphous carbon composite can be obtained, and the amorphous carbon composite has been found to solve the above problems, and has reached the present invention.

【0008】すなわち、本発明の要旨は、懸濁重合法に
よって合成したフェノール樹脂に炭素材を5〜60重量
%添加した成形材料を成形し、得られた成形品を真空又
は不活性ガス雰囲気中で炭化焼成したものであることを
特徴とするアモルファスカーボン複合体である。また前
記炭素材として、中心球径が50μm以下の黒鉛粉末、
又は直径が5μm以下でアスペクト比が150以下の炭
素繊維を用いたアモルファスカーボン複合体は、前記し
たアモルファスカーボン複合体の性質に加えて、強度、
ガス不透過性、表面粗度に優れたものとなる。さらにま
た前記成形材料として、低表面張力物質を0.1〜5重
量%含有するものを用いると、より寸法精度が良くてよ
り生産性の良いアモルファスカーボン複合体となる。
That is, the gist of the present invention is to form a molding material in which a carbon material is added to a phenol resin synthesized by a suspension polymerization method in an amount of 5 to 60% by weight, and the obtained molded product is placed in a vacuum or an inert gas atmosphere. An amorphous carbon composite characterized by being carbonized and calcined. Further, as the carbon material, a graphite powder having a central sphere diameter of 50 μm or less,
Or an amorphous carbon composite using a carbon fiber having a diameter of 5 μm or less and an aspect ratio of 150 or less, in addition to the properties of the above-described amorphous carbon composite, strength,
It is excellent in gas impermeability and surface roughness. Furthermore, when a material containing 0.1 to 5% by weight of a low surface tension substance is used as the molding material, an amorphous carbon composite having better dimensional accuracy and higher productivity can be obtained.

【0009】[0009]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明のアモルファスカーボン複合体は、懸濁重
合法によって合成したフェノール樹脂に炭素材を添加し
た成形材料を成形し、得られた成形品を真空又は不活性
ガス雰囲気中で炭化焼成したものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The amorphous carbon composite of the present invention is obtained by molding a molding material obtained by adding a carbon material to a phenol resin synthesized by a suspension polymerization method, and calcining and firing the obtained molded product in a vacuum or an inert gas atmosphere. .

【0010】本発明に用いられるフェノール樹脂原料
は、例えば特開平4−159320号公報に開示されて
いるような、ノボラック樹脂をヘキサメチレンテトラミ
ンのようなアルカリ触媒兼メチレン架橋剤及び懸濁安定
剤の存在下、水媒体中で懸濁重合を行う方法(自己硬化
型変性ノボラック樹脂法)によって得られたもの、フェ
ノール及びホルムアルデヒドを塩基性触媒及び懸濁安定
剤の存在下、水性媒体中にて懸濁重合を行う方法等の重
合法(固形レゾール樹脂法)によって得られたものを好
適に採用することができる。これらのフェノール樹脂原
料は、真球状に近い球状フェノール樹脂原料であり、粒
径の大きな成形原料を得るには、上記微粒体を造粒して
所定の粒度の原料を調製したものが有効である。
The phenolic resin raw material used in the present invention is prepared by converting a novolak resin to an alkali catalyst and a methylene crosslinking agent such as hexamethylenetetramine and a suspension stabilizer as disclosed in, for example, JP-A-4-159320. In the presence of phenol and formaldehyde obtained by a method of performing suspension polymerization in an aqueous medium (self-curing modified novolak resin method) in an aqueous medium, phenol and formaldehyde are suspended in an aqueous medium in the presence of a basic catalyst and a suspension stabilizer. Those obtained by a polymerization method (solid resol resin method) such as a method of performing turbid polymerization can be suitably used. These phenolic resin raw materials are spherical phenolic resin raw materials having a shape close to a perfect sphere. In order to obtain a molding raw material having a large particle size, it is effective to prepare the raw material having a predetermined particle size by granulating the fine particles. .

【0011】フェノール樹脂に添加する炭素材として
は、黒鉛、炭素繊維及びこれらの混合物などが挙げら
れ、黒鉛としては天然黒鉛粉末、人造黒鉛粉末が好まし
い。添加剤として炭素材が優れている点はアモルファス
カーボンと共通する特性を数多く有しており、アモルフ
ァスカーボンとの接合性が良いためである。一般的に炭
素材は、耐熱性、耐薬品性があり、低電気抵抗、低摩擦
係数、高熱伝導性の特性を有する材料であるが、多孔質
であるため曲げ強度、ガス不透過性が悪い材料として知
られている。
Examples of the carbon material to be added to the phenol resin include graphite, carbon fiber, and a mixture thereof. Natural graphite powder and artificial graphite powder are preferable as graphite. The advantage of the carbon material as an additive is that it has many characteristics in common with amorphous carbon and has good bonding properties with amorphous carbon. Generally, carbon material is a material having heat resistance, chemical resistance, low electric resistance, low coefficient of friction, and high thermal conductivity, but is poor in bending strength and gas impermeability because it is porous. Known as material.

【0012】炭素材の添加割合は、5〜60重量%、好
ましくは20〜55重量%、より好ましくは30〜50
重量%である。添加する量が多いほど複合体の曲げ強度
が弱くなったり、アモルファスカーボンと炭素材の結合
力が低下し、粉落ちする問題が発生する。そして炭素材
の添加割合が60重量%を越えると成形材料の溶融粘度
が高くなり、成形性が極端に悪くなる。一方5重量%未
満では添加効果が現れ難い。
The proportion of the carbon material added is 5 to 60% by weight, preferably 20 to 55% by weight, more preferably 30 to 50% by weight.
% By weight. As the amount of addition increases, the bending strength of the composite becomes weaker, the bonding force between the amorphous carbon and the carbon material decreases, and the problem of powder falling occurs. If the addition ratio of the carbon material exceeds 60% by weight, the melt viscosity of the molding material increases, and the moldability becomes extremely poor. On the other hand, if it is less than 5% by weight, the effect of addition is difficult to appear.

【0013】本発明において、天然黒鉛粉末、人造黒鉛
粉末などの粉末状炭素材を添加する場合、中心粒径が小
さいほどフェノール樹脂への分散性が良く、中心粒径が
50μmを越えた場合、強度が低下したり、表面粗度が
悪くなる傾向にある。実用的に用いられる中心粒径とし
ては0.1〜50μmである。
In the present invention, when a powdered carbon material such as natural graphite powder or artificial graphite powder is added, the smaller the center particle size is, the better the dispersibility in the phenol resin is. If the center particle size exceeds 50 μm, The strength tends to decrease and the surface roughness tends to deteriorate. The practically used center particle size is 0.1 to 50 μm.

【0014】炭素繊維の場合は直径が5μm以下でアス
ペクト比が150以下である形状のものを用いることが
好ましい。炭素繊維の直径が5μmを越えた場合、強度
が低下したり、表面粗度が悪くなる傾向にある。本発明
において、炭素繊維のアスペクト比(長さと直径の比)
を上記の如く規定したのは、アスペクト比が150を越
えた場合、繊維が直線でなく曲率をもって存在しやすく
なり、繊維自体が絡まり樹脂がその間にうまく入らず、
結果として緻密化が困難となって強度が低下するからで
ある。
In the case of carbon fiber, it is preferable to use a carbon fiber having a diameter of 5 μm or less and an aspect ratio of 150 or less. When the diameter of the carbon fiber exceeds 5 μm, the strength tends to decrease and the surface roughness tends to deteriorate. In the present invention, the aspect ratio of carbon fiber (the ratio of length to diameter)
Is defined as above, when the aspect ratio exceeds 150, the fiber is likely to exist with a curvature instead of a straight line, the fiber itself is entangled, the resin does not enter well in between,
As a result, densification becomes difficult and strength is reduced.

【0015】炭素材は焼成中に寸法収縮をほとんど起こ
さないため、フェノール樹脂に炭素材を添加する割合が
多いほど、焼成時の体積収縮率及び重量減少率が少なく
なり、寸法のバラツキが小さくなる。また炭素材は焼成
中に分解ガスをほとんど放出しないため、フェノール樹
脂に炭素材を添加する割合が多いほど樹脂成形品からの
発生ガス量が相対的に減り、焼成によるワレやクラック
の発生率が低くなり、厚みの厚い成形品を焼成するとき
に非常に効果がある。
Since the carbon material hardly undergoes dimensional shrinkage during firing, the larger the proportion of the carbon material added to the phenolic resin, the smaller the volume shrinkage and weight loss during firing and the smaller the dimensional variation. . Also, since carbon materials hardly release decomposition gas during firing, the greater the proportion of carbon material added to the phenolic resin, the lower the amount of gas generated from the resin molded product, and the lower the rate of cracking and cracking caused by firing. This is very effective when firing a molded article having a low thickness.

【0016】さらに、成形材料に低表面張力物質を成形
材料に対して0.1〜5重量%配合することが好まし
い。より好ましくは0.2〜3重量%配合する。低表面
張力物質の配合量が成形材料に対して0.1重量%未満
では、成形の際に、成形機のシリンダー内で閉塞が起こ
り、連続して成形を行うことが困難になることがあり、
他方、5重量%を越えると成形性の向上効果が頭打ちと
なる傾向にある。低表面張力物質は、融点が30℃〜1
60℃、好ましくは40℃〜80℃である常温で固体状
の低融点化合物であり、かつ常温〔25℃〕で臨界表面
張力が約35ダイン/cm以下の潤滑性、離型性、非付
着性等の物質である。融点が30℃未満では成形時に計
量不良が起こる傾向にあり、160℃を超えると成形機
のシリンダー内で潤滑性が乏しく、安定した成形性が得
られない傾向にある。
Further, it is preferable that a low surface tension substance is added to the molding material in an amount of 0.1 to 5% by weight based on the molding material. More preferably, the content is 0.2 to 3% by weight. If the compounding amount of the low surface tension substance is less than 0.1% by weight based on the molding material, blockage may occur in the cylinder of the molding machine during molding, and it may be difficult to continuously perform molding. ,
On the other hand, if it exceeds 5% by weight, the effect of improving moldability tends to level off. The low surface tension substance has a melting point of 30 ° C to 1 ° C.
It is a low melting point compound which is solid at room temperature of 60 ° C., preferably 40 ° C. to 80 ° C. and has a critical surface tension of about 35 dynes / cm or less at room temperature [25 ° C.], lubricity, mold release, non-adhesion It is a substance such as sex. If the melting point is less than 30 ° C., poor measurement tends to occur during molding, and if it exceeds 160 ° C., lubricity in the cylinder of the molding machine is poor, and stable moldability tends not to be obtained.

【0017】低表面張力物質の代表的な例としては、ラ
ウリン酸、パルミチン酸、ステアリン酸等の高級脂肪
酸;ラウリン酸モノグリセライド、エチルステアレー
ト、ステアリン酸モノグリセライド、ソルビタンモノパ
ルミテート、ソルビタンモノステアレート等の高級脂肪
酸エステル;トリラウリン、トリステアリン、硬化ひま
し油等の固形油脂類;ステアリン酸アマイド、エチレン
ビスステアリン酸アマイド等の高級脂肪酸アマイド;セ
チルアルコール、ステアリルアルコール等の高級脂肪族
アルコール;ステアリルメタクリレート、ステアリルア
クリレート等の高級脂肪族(メタ)アクリレート;パラ
フィンワックス等のワックス状炭化水素;パーフルオロ
オクタン酸、9H−ヘキサデカフルオロノナノン酸等の
含多価フッ素高級脂肪酸;N−エチルパーフルオロオク
チルスルホンアミド等の含多価フッ素高級脂肪族スルホ
ンアミド;2−(パーフルオロオクチル)沃化エチル、
2−(パーフルオロデシル)沃化エチル等の含多価フッ
素高級脂肪族沃化物;1H,1H,9H−ヘキサデカフ
ルオロノナノール、2−(パーフルオロオクチル)エタ
ノール、2−(パーフルオロデシル)エタノール等の含
多価フッ素高級脂肪族アルコール;2−(パーフルオロ
デシル)メチルメタクリレート、1H,1H,11H−
アイコサフルオロウンデシルアクリレート等の含多価フ
ッ素高級脂肪族(メタ)アクリレート;パーフルオロド
デカン等の含多価フッ素高級脂肪族炭化水素;2−(P
−オキシ安息香酸メチル・ヘキサフルオロプロペン3量
体付加物等の含多価フッ素脂肪族芳香族化合物、ペンタ
フルオロベンズアミド等の含多価フッ素芳香族炭化水
素;TFEワックス(テトラフルオロエチレンテロマ
ー)、CTFEテロマー(クロロトリフルオロエチレン
テロマー)等の含多価フッ素オリゴマー化合物等、ある
いはこれらの誘導体、これらの一種以上よりなる混合物
並びにこれらに重合触媒等の添加物を配合した組成物等
の低表面張力物質が挙げられる。
Representative examples of low surface tension substances include higher fatty acids such as lauric acid, palmitic acid and stearic acid; lauric acid monoglyceride, ethyl stearate, stearic acid monoglyceride, sorbitan monopalmitate, sorbitan monostearate and the like. Higher fatty acid esters such as trilaurin, tristearin, and hardened castor oil; higher fatty acid amides such as stearic acid amide and ethylenebisstearic acid amide; higher fatty alcohols such as cetyl alcohol and stearyl alcohol; stearyl methacrylate and stearyl acrylate Higher aliphatic (meth) acrylates, etc .; waxy hydrocarbons, such as paraffin wax; polyvalent fluorine-containing higher fatty acids, such as perfluorooctanoic acid and 9H-hexadecafluorononanoic acid ; 含多 number fluorine higher aliphatic sulfonamides such as N- ethyl perfluorooctyl sulfonamide; 2- (perfluorooctyl) ethyl iodide,
Polyvalent fluorine-containing higher aliphatic iodides such as ethyl 2- (perfluorodecyl) iodide; 1H, 1H, 9H-hexadecafluorononanol, 2- (perfluorooctyl) ethanol, 2- (perfluorodecyl) Polyvalent fluorine-containing higher aliphatic alcohols such as ethanol; 2- (perfluorodecyl) methyl methacrylate, 1H, 1H, 11H-
Polyvalent fluorine-containing higher aliphatic (meth) acrylates such as eicosafluoroundecyl acrylate; polyvalent fluorine-containing higher aliphatic hydrocarbons such as perfluorododecane; 2- (P
A polyvalent fluorine-containing aromatic aromatic compound such as methyloxybenzoate / hexafluoropropene trimer adduct; a polyvalent fluorine-containing aromatic hydrocarbon such as pentafluorobenzamide; TFE wax (tetrafluoroethylene telomer); CTFE Low surface tension substances such as polyvalent fluorine-containing oligomer compounds such as telomers (chlorotrifluoroethylene telomer), or derivatives thereof, mixtures of one or more of these, and compositions in which additives such as polymerization catalysts are added thereto. Is mentioned.

【0018】フェノール樹脂原料と炭素材(さらに必要
ならばそれに低表面張力物質)との混練は、例えばハイ
スピードミキサーや二軸押出機を用いるなど均一に混ぜ
ることができる方法であればいかなる方法を用いても良
い。
The kneading of the phenolic resin raw material and the carbon material (and, if necessary, a low surface tension substance) can be performed by any method that can be uniformly mixed, for example, using a high speed mixer or a twin screw extruder. May be used.

【0019】混練された成形材料は、少なくとも成形時
には水分含有量が1重量%以下に制御されていることが
好ましい。通常、重合後のフェノール樹脂原料は、数重
量%以上の水分を含有するので、使用に先立っては、上
記限度内に水分が低減するように乾燥しておき、上記混
練を施すのが有効である。この際の乾燥法としては、粒
状フェノール樹脂原料を真空中又は乾燥空気循環下に6
0〜120℃の温度に加熱して行う方法が推奨される。
前記したように成形材料は、水分含有量が1重量%以下
にすることが好ましく、0.5重量%以下にすることが
より好ましい。水分含有量が1重量%を越えると、成形
の際に成形品中に気孔が残り、また成形条件によっては
加水分解等の劣化現象が派生することもある。
Preferably, the water content of the kneaded molding material is controlled to 1% by weight or less at least at the time of molding. Usually, the phenolic resin raw material after polymerization contains water of several weight% or more. Therefore, it is effective to dry the phenolic resin raw material so as to reduce the water content within the above-mentioned limits and knead the material before use. is there. At this time, the granular phenol resin raw material is dried in a vacuum or under a circulation of dry air for 6 hours.
A method of heating to a temperature of 0 to 120 ° C. is recommended.
As described above, the molding material preferably has a water content of 1% by weight or less, more preferably 0.5% by weight or less. If the water content exceeds 1% by weight, pores remain in the molded product during molding, and depending on the molding conditions, degradation phenomena such as hydrolysis may occur.

【0020】前記フェノール樹脂に炭素材を5〜60重
量%添加した(さらに必要ならばそれに低表面張力物質
を0.1〜5重量%添加した)成形材料を成形し、得ら
れた成形品を真空中又は不活性ガス雰囲気中で炭化焼成
する。成形方法としては通常の方法で行うことができる
が、このとき、予め焼成時の寸法収縮を見込んだ金型で
射出成形法により成形加工すると、寸法精度が良く、要
求されている寸法形状になっているため、切削加工のよ
うなコスト高となる後加工が不要であり量産性に優れ
る。
A molding material in which a carbon material is added to the phenol resin in an amount of 5 to 60% by weight (and a low surface tension substance is added in an amount of 0.1 to 5% by weight, if necessary) is molded. The carbonization firing is performed in a vacuum or an inert gas atmosphere. As a molding method, it can be performed by a usual method. At this time, if molding is performed by an injection molding method using a mold in which dimensional shrinkage at the time of firing is anticipated, the dimensional accuracy is good and the required dimensional shape is obtained. This eliminates the need for costly post-processing such as cutting, and is excellent in mass productivity.

【0021】炭化焼成温度は、通常800℃〜1600
℃が好ましく、900℃〜1500℃がより好ましい。
炭化焼成温度が800℃未満では樹脂成形品中のフェノ
ール樹脂が完全にアモルファスカーボン化しておらず、
1600℃を超えると過剰焼成となり、黒鉛化が進む傾
向にある。不活性ガスとしては窒素ガス、ヘリウムガ
ス、アルゴンガスなどが挙げられる。
The carbonization firing temperature is usually 800 ° C. to 1600
C is preferable, and 900 C to 1500 C is more preferable.
If the carbonization firing temperature is less than 800 ° C., the phenolic resin in the resin molded product is not completely amorphous carbon,
If the temperature exceeds 1600 ° C., excessive firing occurs, and the graphitization tends to proceed. Examples of the inert gas include a nitrogen gas, a helium gas, and an argon gas.

【0022】炭素材を上記割合で添加して得られたアモ
ルファスカーボン複合体はアモルファスカーボンの優れ
た特性である軽量性、耐薬品性、低摩擦係数、ガス不透
過性、寸法安定性を損ねることがなく、しかも熱伝導率
を高くすることができ、比抵抗を小さくすることができ
る。
The amorphous carbon composite obtained by adding the carbon material in the above ratio impairs the excellent properties of amorphous carbon such as light weight, chemical resistance, low friction coefficient, gas impermeability and dimensional stability. In addition, the thermal conductivity can be increased, and the specific resistance can be reduced.

【0023】[0023]

【実施例】次に本発明を実施例によって具体的に説明す
るが、本発明はこれら実施例により限定されない。
EXAMPLES Next, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.

【0024】参考例 ノボラック樹脂(三井東圧化学(株)製#600)15
0重量部を160℃で溶融して、完全けん化ポリビニル
アルコール(重合度約2000)1重量部を溶解した9
0℃の熱水(220重量部)中へ攪拌しながら投入して
分散して懸濁系を形成し、続いてヘキサミン24重量部
を40重量部の温水に溶解して添加し、さらに同温度に
て20分間攪拌を続けて懸濁重合を行い、反応を終了後
懸濁体を固液分離し、乾燥してフェノール樹脂原料を得
た。このフェノール樹脂原料の特性を表1に示す。ただ
し、表1に示すこれらの特性は次の方法で測定した。
Reference Example Novolak resin (# 600 manufactured by Mitsui Toatsu Chemicals, Inc.) 15
0 parts by weight were melted at 160 ° C. to dissolve 1 part by weight of completely saponified polyvinyl alcohol (degree of polymerization: about 2000).
The suspension was poured into hot water (220 parts by weight) at 0 ° C. while stirring to form a suspension, and then 24 parts by weight of hexamine was dissolved in 40 parts by weight of warm water and added. The suspension was stirred for 20 minutes to carry out suspension polymerization. After the reaction was completed, the suspension was subjected to solid-liquid separation and dried to obtain a phenol resin raw material. Table 1 shows the characteristics of the phenol resin raw material. However, these characteristics shown in Table 1 were measured by the following methods.

【0025】熱流動性(HPF)は、JIS−K−69
11(1979)5.3.2〔成形材料(円板式)〕の
方法に基づき、試料2gを160℃で1分間1145k
gの荷重下で熱プレスし、形成された円板の直径(最長
径と最短径の平均値)から求めた。平均粒径は、試料を
ガラスプレート上に展開して顕微鏡写真を撮り、任意に
選んだ100個の粒径を測定して、その平均値で示し
た。水分は、赤外線ヒーターを用い、試料10gを80
℃で30分間加熱しその重量減少から求めた。
The thermal fluidity (HPF) is measured according to JIS-K-69.
11 (1979) 5.3.2 [Molding material (disc type)], 1 g of a sample at 1145k at 160 ° C for 1 minute
It was hot-pressed under a load of g and determined from the diameter (average value of the longest diameter and the shortest diameter) of the formed disk. The average particle size was obtained by developing a sample on a glass plate, taking a micrograph, measuring 100 randomly selected particle sizes, and indicating the average value. The moisture was measured using an infrared heater,
C. for 30 minutes and the weight loss was determined.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例1〜5 参考例で得たフェノール樹脂原料に中心粒径が0.5〜
30μmである天然黒鉛粉末を20〜60重量%の割合
で混合し、成形材料とした。その際低表面張力物質であ
るステアリン酸とステアリン酸モノグリセライドを成形
材料に対してそれぞれ0.5重量%添加した。この成形
材料を(株)名機製作所製M150BL−TS型成形機
を用いて射出成形を行った。得られた成形品のサイズは
幅15mm、長さ120mm、厚さ6mmであった。こ
の成形品を高性能焼成炉を用い、窒素ガス雰囲気中で最
高温度1500℃で炭化焼成し、アモルファスカーボン
複合体を得た。射出成形時の成形性及び100サンプル
におけるアモルファスカーボン複合体の割れ・クラック
の発生率、長さ方向の寸法測定による寸法のバラツキ範
囲を評価し、その結果を表2に示す。
Examples 1 to 5 The phenolic resin raw material obtained in Reference Example had a center particle size of 0.5 to
30 μm of natural graphite powder was mixed at a ratio of 20 to 60% by weight to obtain a molding material. At that time, stearic acid and stearic acid monoglyceride, which are low surface tension substances, were each added in an amount of 0.5% by weight to the molding material. This molding material was injection-molded using a M150BL-TS molding machine manufactured by Meiki Seisakusho Co., Ltd. The size of the obtained molded product was 15 mm in width, 120 mm in length, and 6 mm in thickness. This molded product was carbonized and fired in a nitrogen gas atmosphere at a maximum temperature of 1500 ° C. using a high-performance firing furnace to obtain an amorphous carbon composite. The moldability during injection molding, the rate of occurrence of cracks and cracks in the amorphous carbon composite in 100 samples, and the range of dimensional variation by length measurement in the length direction were evaluated. The results are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】実施例6〜10 実施例1〜5で用いた天然黒鉛粉末の代わりに人造黒鉛
粉末を用いた。その他は実施例1〜5と同様の方法でア
モルファスカーボン複合体を得た。射出成形時の成形性
及びアモルファスカーボン複合体の評価は実施例1〜5
と同様の方法で評価し、その結果を表3に示す。
Examples 6 to 10 In place of the natural graphite powder used in Examples 1 to 5, artificial graphite powder was used. Otherwise, an amorphous carbon composite was obtained in the same manner as in Examples 1 to 5. The evaluation of the moldability and the amorphous carbon composite at the time of injection molding was performed in Examples 1 to 5.
The results are shown in Table 3.

【0030】実施例11 フェノール樹脂原料に、中心粒径が60μmの人造黒鉛
粉末を40重量%添加し混合した。その際低表面張力物
質であるステアリン酸とステアリン酸モノグリセライド
を成形材料に対してそれぞれ0.5重量%添加した。こ
の成形材料を実施例1〜5と同様の方法で射出成形し、
焼成を行った。射出成形時の成形性及びアモルファスカ
ーボン複合体の評価は実施例1〜5と同様の方法で評価
し、その結果を表3に示す。人造黒鉛粉末の中心粒径が
大きいために、アモルファスカーボンの優れた特性であ
るガス不透過性が損なわれ、表面粗度が悪くなった。
Example 11 An artificial graphite powder having a center particle diameter of 60 μm was added to a phenol resin raw material at 40% by weight and mixed. At that time, stearic acid and stearic acid monoglyceride, which are low surface tension substances, were each added in an amount of 0.5% by weight to the molding material. This molding material is injection-molded in the same manner as in Examples 1 to 5,
The firing was performed. The moldability during injection molding and the evaluation of the amorphous carbon composite were evaluated in the same manner as in Examples 1 to 5, and the results are shown in Table 3. Due to the large central particle size of the artificial graphite powder, the gas impermeability, which is an excellent property of amorphous carbon, was impaired, and the surface roughness deteriorated.

【0031】[0031]

【表3】 [Table 3]

【0032】実施例12〜16 実施例1〜5で用いた天然黒鉛粉末の代わりに炭素繊維
を用いた。その他は実施例1〜5と同様の方法でアモル
ファスカーボン複合体を得た。射出成形時の成形性及び
アモルファスカーボン複合体の評価は実施例1〜5と同
様の方法で評価し、その結果を表4に示す。
Examples 12 to 16 Carbon fibers were used in place of the natural graphite powder used in Examples 1 to 5. Otherwise, an amorphous carbon composite was obtained in the same manner as in Examples 1 to 5. The moldability during injection molding and the evaluation of the amorphous carbon composite were evaluated in the same manner as in Examples 1 to 5, and the results are shown in Table 4.

【0033】[0033]

【表4】 [Table 4]

【0034】実施例17〜21 フェノール樹脂原料に、種々の形状の炭素繊維を40重
量%添加し、その際低表面張力物質であるステアリン酸
とステアリン酸モノグリセライドを成形材料に対してそ
れぞれ0.5重量%添加した。この成形材料を実施例1
〜5と同様の方法で射出成形し、焼成を行った。射出成
形時の成形性及びアモルファスカーボン複合体の評価は
実施例1〜5と同様の方法で評価し、その結果を表5に
示す。炭素繊維の直径が大きかったり、アスペクト比が
大きいと炭素繊維がフェノール樹脂中にうまく分散せ
ず、焼成されたアモルファスカーボン複合体は結果とし
て緻密化しておらず、曲げ強度が弱く、ガス不透過性の
悪いものであった。
Examples 17 to 21 Carbon fiber of various shapes was added to a phenol resin raw material by 40% by weight, and stearic acid and stearic acid monoglyceride, which are low surface tension substances, were added to the molding material in amounts of 0.5% each. % By weight. This molding material was used in Example 1.
Injection molding was performed in the same manner as in Nos. 1 to 5, and firing was performed. The moldability at the time of injection molding and the evaluation of the amorphous carbon composite were evaluated in the same manner as in Examples 1 to 5, and the results are shown in Table 5. If the diameter of the carbon fiber is large or the aspect ratio is large, the carbon fiber does not disperse well in the phenolic resin, and the fired amorphous carbon composite does not densify as a result, has low flexural strength, and is impermeable to gas. Was bad.

【0035】[0035]

【表5】 [Table 5]

【0036】比較例1 炭素材を添加せずにフェノール樹脂原料に、低表面張力
物質であるステアリン酸とステアリン酸モノグリセライ
ドをフェノール樹脂原料に対してそれぞれ0.5重量%
添加した。この成形材料を実施例1〜5と同様の方法で
射出成形し、焼成を行った。ただし成形品のサイズは幅
15mm、長さ120mm、厚さ4mmであった。射出
成形時の成形性及びアモルファスカーボン複合体の評価
は実施例1〜5と同様の方法で評価し、その結果を表6
に示す。成形品の厚みが4mmであれば炭素材を添加し
なくても焼成することが可能であるが、焼成時の体積収
縮率が大きいため寸法のバラツキ範囲が大きくなる。
Comparative Example 1 Stearic acid and stearic acid monoglyceride, which are low surface tension substances, were added to a phenol resin raw material without adding a carbon material at 0.5% by weight based on the phenol resin raw material.
Was added. This molding material was injection-molded in the same manner as in Examples 1 to 5 and fired. However, the size of the molded product was 15 mm in width, 120 mm in length, and 4 mm in thickness. The moldability during injection molding and the evaluation of the amorphous carbon composite were evaluated in the same manner as in Examples 1 to 5, and the results were shown in Table 6.
Shown in If the thickness of the molded product is 4 mm, firing can be performed without adding a carbon material, but the range of dimensional variation is large because the volume shrinkage during firing is large.

【0037】比較例2 炭素材を添加せずにフェノール樹脂原料に、低表面張力
物質であるステアリン酸とステアリン酸モノグリセライ
ドをフェノール樹脂原料に対してそれぞれ0.5重量%
添加した。この成形材料を実施例1〜5と同様の方法で
射出成形し、焼成を行った。射出成形時の成形性の評価
は実施例1〜5と同様の方法で評価し、その結果を表6
に示す。比較例2においては炭素材を添加しなかったた
め焼成時の発生ガスによりアモルファスカーボンに割れ
やクラックが発生し、良品を得ることができなかった。
しかし実施例のようにフェノール樹脂に炭素材を添加す
ると、成形品での厚みが6mmでも焼成することがで
き、さらに厚い成形品も焼成することが可能であった。
Comparative Example 2 Stearic acid and stearic acid monoglyceride, which are low surface tension substances, were added to a phenol resin raw material without adding a carbon material in an amount of 0.5% by weight based on the phenol resin raw material.
Was added. This molding material was injection-molded in the same manner as in Examples 1 to 5 and fired. The moldability during injection molding was evaluated in the same manner as in Examples 1 to 5, and the results were shown in Table 6.
Shown in In Comparative Example 2, since no carbon material was added, cracks and cracks occurred in the amorphous carbon due to the gas generated during firing, and a good product could not be obtained.
However, when a carbon material was added to the phenolic resin as in the example, it was possible to fire even a molded product having a thickness of 6 mm, and it was also possible to fire a thicker molded product.

【0038】比較例3 フェノール樹脂原料に、中心粒径が10μmの天然黒鉛
粉末を65重量%添加し混合した。その際低表面張力物
質であるステアリン酸とステアリン酸モノグリセライド
を成形材料に対してそれぞれ0.5重量%添加した。こ
の成形材料を実施例1〜5と同様の方法で射出成形し
た。しかし、天然黒鉛粉末の添加割合が多く、成形材料
の溶融粘度が高くなり射出成形することができなかっ
た。結果を表6に示す。
Comparative Example 3 To a phenol resin raw material was added 65% by weight of a natural graphite powder having a center particle size of 10 μm and mixed. At that time, stearic acid and stearic acid monoglyceride, which are low surface tension substances, were each added in an amount of 0.5% by weight to the molding material. This molding material was injection molded in the same manner as in Examples 1 to 5. However, the addition ratio of natural graphite powder was large, and the melt viscosity of the molding material was high, so that injection molding could not be performed. Table 6 shows the results.

【0039】比較例4 フェノール樹脂原料に、中心粒径が10μmの人造黒鉛
粉末を65重量%添加し混合した。その際低表面張力物
質であるステアリン酸とステアリン酸モノグリセライド
を成形材料に対してそれぞれ0.5重量%添加した。こ
の成形材料を実施例1〜5と同様の方法で射出成形し
た。しかし、天然黒鉛粉末と同様に人造黒鉛粉末の添加
割合が多く、成形材料の溶融粘度が高くなり射出成形す
ることができなかった。結果を表6に示す。
Comparative Example 4 An artificial graphite powder having a center particle diameter of 10 μm was added to a phenol resin raw material at 65% by weight and mixed. At that time, stearic acid and stearic acid monoglyceride, which are low surface tension substances, were each added in an amount of 0.5% by weight to the molding material. This molding material was injection molded in the same manner as in Examples 1 to 5. However, as in the case of natural graphite powder, the addition ratio of artificial graphite powder was large, and the melt viscosity of the molding material was high, so that injection molding was not possible. Table 6 shows the results.

【0040】[0040]

【表6】 [Table 6]

【0041】[0041]

【発明の効果】本発明によれば、懸濁重合法によって作
られたフェノール樹脂材料に、炭素材を5〜60重量%
添加した成形材料を成形し、さらに成形品を真空又は不
活性ガス雰囲気中で焼成することにより、割れやクラッ
クの発生率が低く、厚さが大きく、寸法精度が良いアモ
ルファスカーボン複合体を生産性良く提供することがで
きる。得られたアモルファスカーボン複合体は、アモル
ファスカーボンの優れた特性を損ねることなく、強度、
熱伝導率、電気導電性に優れるので、燃料電池セパレー
ター、摺動部品、半導体部品、精密部品などに使用する
ことができる。さらに添加する炭素材を選択することに
よって、ガス不透過性、表面粗度にも優れるものとな
る。
According to the present invention, a carbon material is added to a phenol resin material produced by a suspension polymerization method in an amount of 5 to 60% by weight.
By molding the added molding material and firing the molded product in a vacuum or inert gas atmosphere, it is possible to produce amorphous carbon composites with low crack and crack occurrence rates, large thickness and good dimensional accuracy. Can be provided well. The obtained amorphous carbon composite has strength and strength without impairing the excellent properties of amorphous carbon.
Since it has excellent thermal conductivity and electrical conductivity, it can be used for fuel cell separators, sliding parts, semiconductor parts, precision parts and the like. Further, by selecting the carbon material to be added, the gas impermeability and the surface roughness are improved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 懸濁重合法によって合成したフェノール
樹脂に炭素材を5〜60重量%添加した成形材料を成形
し、得られた成形品を真空又は不活性ガス雰囲気中で炭
化焼成したものであることを特徴とするアモルファスカ
ーボン複合体。
1. A molding material in which a carbon material is added to a phenol resin synthesized by a suspension polymerization method in an amount of 5 to 60% by weight, and the obtained molding is carbonized and fired in a vacuum or an inert gas atmosphere. An amorphous carbon composite, comprising:
【請求項2】 炭素材が、中心球径が50μm以下の黒
鉛粉末であることを特徴とする請求項1記載のアモルフ
ァスカーボン複合体。
2. The amorphous carbon composite according to claim 1, wherein the carbon material is a graphite powder having a central sphere diameter of 50 μm or less.
【請求項3】 炭素材が、直径が5μm以下でアスペク
ト比が150以下の炭素繊維であることを特徴とする請
求項1記載のアモルファスカーボン複合体。
3. The amorphous carbon composite according to claim 1, wherein the carbon material is a carbon fiber having a diameter of 5 μm or less and an aspect ratio of 150 or less.
【請求項4】 成形材料が、低表面張力物質を0.1〜
5重量%含有するものであることを特徴とする請求項1
記載のアモルファスカーボン複合体。
4. The molding material contains a low surface tension substance in an amount of from 0.1 to 0.1%.
2. The composition according to claim 1, wherein the content is 5% by weight.
The described amorphous carbon composite.
JP11188344A 1999-07-02 1999-07-02 Amorphous carbon composite Pending JP2001019546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11188344A JP2001019546A (en) 1999-07-02 1999-07-02 Amorphous carbon composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11188344A JP2001019546A (en) 1999-07-02 1999-07-02 Amorphous carbon composite

Publications (1)

Publication Number Publication Date
JP2001019546A true JP2001019546A (en) 2001-01-23

Family

ID=16221986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11188344A Pending JP2001019546A (en) 1999-07-02 1999-07-02 Amorphous carbon composite

Country Status (1)

Country Link
JP (1) JP2001019546A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027674A1 (en) * 2011-08-19 2013-02-28 積水化学工業株式会社 Carbon fiber composite material
WO2016052406A1 (en) * 2014-09-29 2016-04-07 積水化学工業株式会社 Carbon coated heat conducting material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027674A1 (en) * 2011-08-19 2013-02-28 積水化学工業株式会社 Carbon fiber composite material
JPWO2013027674A1 (en) * 2011-08-19 2015-03-19 積水化学工業株式会社 Carbon fiber composite material
US10696804B2 (en) 2011-08-19 2020-06-30 Sekisui Chemical Co., Ltd. Carbon fiber composite material
WO2016052406A1 (en) * 2014-09-29 2016-04-07 積水化学工業株式会社 Carbon coated heat conducting material
JP6022087B2 (en) * 2014-09-29 2016-11-09 積水化学工業株式会社 Carbon-coated thermal conductive material
CN106470834A (en) * 2014-09-29 2017-03-01 积水化学工业株式会社 Carbon coating Heat Conduction Material
JPWO2016052406A1 (en) * 2014-09-29 2017-04-27 積水化学工業株式会社 Carbon-coated thermal conductive material
US10121717B2 (en) 2014-09-29 2018-11-06 Sekisui Chemical Co., Ltd. Carbon-coated thermal conductive material
CN106470834B (en) * 2014-09-29 2019-06-07 积水化学工业株式会社 Carbon coating Heat Conduction Material

Similar Documents

Publication Publication Date Title
JP6073327B2 (en) Manufacturing method for lightweight ceramic materials
JP2014532027A5 (en)
JPH01313369A (en) Method for dispersing carbon carbide whisker
JP2001019546A (en) Amorphous carbon composite
KR20230022416A (en) Binders for Injection Molding Compositions
JP5080736B2 (en) Refractory manufacturing method and refractory obtained thereby
JP2008069045A (en) Magnesia-carbon brick
JP4084446B2 (en) Phenolic resin molding material
JP3249257B2 (en) Amorphous carbon molded body and method for producing the same
KR20130040930A (en) Method for producing a ceramic substance for a ceramic material
RU2377223C1 (en) Method to produce composite carbon materials
JP2001089239A (en) High heat conductivity amorphous carbon composite
JP5621480B2 (en) Firing pencil lead
JP6701540B1 (en) Porous material for manufacturing porous ceramic filters
JP5770228B2 (en) Manufacturing method of honeycomb structure
JP2003026900A (en) Method for producing resin material for injection molding
JP4973917B2 (en) Carbon material manufacturing method
JPH01294507A (en) Production of carbon or graphite material
JPH10278079A (en) Manufacture of phenol resin high-flow molded body
JP2003068333A (en) Molding method of resin product for forming fuel cell separator
RU2030044C1 (en) Process of manufacture of conductive contact elements
JP2000094121A (en) Manufacture of plate for slide gate
JPH02199071A (en) Heat-insulation material and production thereof
JP2005179140A (en) High thermal conductivity graphite material
JP2017178660A (en) Method for producing carbon particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110