JP2005179140A - High thermal conductivity graphite material - Google Patents

High thermal conductivity graphite material Download PDF

Info

Publication number
JP2005179140A
JP2005179140A JP2003424526A JP2003424526A JP2005179140A JP 2005179140 A JP2005179140 A JP 2005179140A JP 2003424526 A JP2003424526 A JP 2003424526A JP 2003424526 A JP2003424526 A JP 2003424526A JP 2005179140 A JP2005179140 A JP 2005179140A
Authority
JP
Japan
Prior art keywords
thermal conductivity
graphite material
high thermal
pitch
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003424526A
Other languages
Japanese (ja)
Inventor
Fumiaki Yokoyama
文昭 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2003424526A priority Critical patent/JP2005179140A/en
Publication of JP2005179140A publication Critical patent/JP2005179140A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a graphite material having a low coefficient of thermal expansion while having excellent thermal conductivity. <P>SOLUTION: The high thermal conductivity graphite material is characterized in that the bulk density is ≥1.85 g/cm<SP>3</SP>, the thermal conductivity in each direction of X, Y, and Z directions is ≥170 W/(m×K) and the coefficient of thermal expansion is ≤5.5×10<SP>-6</SP>/°C, and has isotropy. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、等方性の黒鉛材料に関するものであり、詳細には、例えば、ヒートシンク、熱交換器、アーク放電用電極、イオン注入装置用部品、連続鋳造部材等に用いられる材料として、優れた熱伝導率や低い熱膨張係数を有する黒鉛材料に関するものである。   The present invention relates to an isotropic graphite material, and in particular, as an excellent material used for, for example, a heat sink, a heat exchanger, an electrode for arc discharge, a component for an ion implantation apparatus, a continuous casting member, and the like. The present invention relates to a graphite material having a thermal conductivity and a low thermal expansion coefficient.

従来から、黒鉛材料は公知であり、例えば、下記特許文献1に開示されるものがある。特許文献1のものは、骨材と結合材とからなる炭素黒鉛材料において、その骨材が少なくとも2種以上の黒鉛化性の異なる結合材由来の炭素・黒鉛層を介して結合されていることを特徴とする炭素・黒鉛材料である。
特開平1−160864号公報
Conventionally, graphite materials are known, and for example, there are those disclosed in Patent Document 1 below. In Patent Document 1, in a carbon graphite material composed of an aggregate and a binder, the aggregate is bonded via a carbon / graphite layer derived from at least two kinds of binders having different graphitization properties. It is a carbon / graphite material characterized by
JP-A-1-160864

しかし、特許文献1のものは、熱膨張係数は低いが熱伝導率も低いものであるので、ヒートシンク用材料、連続鋳造部材などの高熱伝導率が必要なものに用いることは困難なものである。   However, since the thing of patent document 1 is a thing with a low thermal expansion coefficient but a low thermal conductivity, it is difficult to use it for materials that require high thermal conductivity, such as heat sink materials and continuous cast members. .

そこで、本発明の目的は、優れた熱伝導率を有しながら、低い熱膨張係数をも有する黒鉛材料を提供することである。   Accordingly, an object of the present invention is to provide a graphite material having an excellent thermal conductivity and also having a low coefficient of thermal expansion.

本発明の高熱伝導黒鉛材料は、かさ密度が1.85g/cm3以上、X、Y、Z軸方向の各方向における熱伝導率が170watt/m・K以上、熱膨張係数が3.5×10-6〜5.5×10-6/Kであって、等方性のものである。
本発明の高熱伝導率黒鉛材料の製造方法は、平均粒子径10〜25μmに粉砕した針状コークスをフィラーとして用い、バインダーを添加して所定の温度で混捏する混捏工程と、前記混捏工程で混捏されたものを平均粒子径20〜60μmに再粉砕する再粉砕工程と、前記再粉砕工程で再粉砕されたものを所定の圧力で成形する成形工程と、前記成形工程で成形されたものを所定の温度で焼成する焼成工程と、前記焼成工程で焼成されたものをピッチ含浸する含浸工程と、前記含浸工程で含浸されたものを再焼成する再焼成工程と、前記再焼成工程で再焼成されたものを黒鉛化する黒鉛化工程と、前記含浸工程、再焼成工程及び黒鉛化工程をさらに繰り返す工程とからなるものである。
The high thermal conductivity graphite material of the present invention has a bulk density of 1.85 g / cm 3 or more, a thermal conductivity in each of the X, Y, and Z axis directions of 170 watts / m · K or more, and a thermal expansion coefficient of 3.5 ×. 10 −6 to 5.5 × 10 −6 / K, which is isotropic.
The method for producing a high thermal conductivity graphite material of the present invention uses a needle-like coke pulverized to an average particle size of 10 to 25 μm as a filler, adds a binder and kneads at a predetermined temperature, and kneading in the kneading step A re-pulverization step for re-pulverizing the resulting product to an average particle size of 20 to 60 μm, a molding step for molding the re-pulverized product in the re-grinding step at a predetermined pressure, and a predetermined one for molding in the molding step A firing step for firing at a temperature of, an impregnation step for pitch impregnating the product fired in the firing step, a re-baking step for re-baking the material impregnated in the impregnation step, A graphitization step of graphitizing the cake, and a step of further repeating the impregnation step, re-firing step, and graphitization step.

本発明によれば、優れた熱伝導率を有しながら、低い熱膨張係数をも有する高熱伝導黒鉛材料を提供できる。   According to the present invention, it is possible to provide a high thermal conductive graphite material having a low thermal expansion coefficient while having excellent thermal conductivity.

本発明に係る高熱伝導黒鉛材料は、モザイクコークスと呼ばれる黒鉛材料を原料としている。このモザイクコークスとは、組織を構成する光学的異方性組織が、ニードルコークスのように大きく成長したものではなく、マトリックス中に細かく分散したコークスである。
モザイクコークスの中でも、特に、石炭ピッチ系のモザイクコークスは黒鉛化性がよいので、本発明に係る高熱伝導黒鉛材料の原料として好適である。また、このモザイクコークスは、組織を構成する球晶が大きく、ニードル率が低いものが好ましく、さらにニードルコークスに生長する直前のものが好ましい。
The high thermal conductive graphite material according to the present invention uses a graphite material called mosaic coke as a raw material. This mosaic coke is a coke in which the optically anisotropic structure constituting the structure is not greatly grown like needle coke but is finely dispersed in a matrix.
Among the mosaic cokes, coal pitch-based mosaic coke is particularly suitable as a raw material for the high thermal conductive graphite material according to the present invention because it has good graphitization properties. Further, this mosaic coke is preferably one having a large spherulite constituting the structure and a low needle ratio, and more preferably just before growing into needle coke.

本発明に係る高熱伝導黒鉛材料に用いられる石炭ピッチ系のモザイクコークスは、真密度が1.95〜2.05g/cm3であり、室温〜130℃までの平均熱膨張係数が1.5×10-6〜3.5×10-6/Kであるものを用いる。 The coal pitch-based mosaic coke used for the high thermal conductivity graphite material according to the present invention has a true density of 1.95 to 2.05 g / cm 3 and an average thermal expansion coefficient from room temperature to 130 ° C. of 1.5 ×. What is 10 −6 to 3.5 × 10 −6 / K is used.

次に、本発明に係る高熱伝導黒鉛材料の製造方法について説明する。
まず、上述した石炭ピッチ系モザイクコークスを平均粒子径10〜25μmに粉砕し、この粉砕されたものにバインダーピッチを加えて150〜250℃で混捏して揮発分調整を行う。なお、バインダーピッチには、コールタールピッチ又は石油ピッチが用いられるが、さらに骨材との濡れを良くするためにタール成分を加えたものを用いてもよい。次に、この混捏されたものを平均粒子径20〜60μmに再粉砕し、この再粉砕されたものを500〜1000kg/cm2の圧力でラバー成形して成形体とする。そして、この成形体を、800〜1000℃で焼成し、この焼成された成形体をピッチ含浸する。次に、このピッチ含浸された成形体を再焼成し、この再焼成された成形体を黒鉛化する。さらに、この黒鉛化された成形体をピッチ含浸、再焼成及び黒鉛化する。
Next, the manufacturing method of the high thermal conductivity graphite material according to the present invention will be described.
First, the above-described coal pitch mosaic coke is pulverized to an average particle size of 10 to 25 μm, a binder pitch is added to the pulverized product, and the mixture is kneaded at 150 to 250 ° C. to adjust the volatile content. In addition, although a coal tar pitch or petroleum pitch is used for a binder pitch, in order to improve wettability with an aggregate, what added the tar component may be used. Next, the kneaded product is reground to an average particle size of 20 to 60 μm, and the reground product is rubber molded at a pressure of 500 to 1000 kg / cm 2 to obtain a molded body. And this molded object is baked at 800-1000 degreeC, and this baked molded object is pitch impregnated. Next, the pitch-impregnated shaped body is refired, and the refired shaped body is graphitized. Further, the graphitized shaped body is pitch impregnated, refired and graphitized.

上記製造方法によれば、優れた熱伝導率を有しながら、低い熱膨張係数をも有する高熱伝導黒鉛材料を提供できる。   According to the manufacturing method, it is possible to provide a high thermal conductive graphite material having a low coefficient of thermal expansion while having excellent thermal conductivity.

次に、以下の実施例1、2及び比較例1〜3について、X、Y、Z方向の熱伝導率をレーザーフラッシュ法で測定した。具体的には、試料を直径10mm、厚み2〜3mmに加工し、レーザーフラッシュ熱定数測定装置で熱拡散率を求め、熱容量、かさ密度から熱伝導率を算出した。また、熱膨張率は、試料黒鉛を10×10×60(mm)に加工し、膨張長さを検出する所謂ディラトメーター法で測定した。   Next, for the following Examples 1 and 2 and Comparative Examples 1 to 3, thermal conductivity in the X, Y, and Z directions was measured by a laser flash method. Specifically, the sample was processed into a diameter of 10 mm and a thickness of 2 to 3 mm, the thermal diffusivity was determined with a laser flash thermal constant measuring device, and the thermal conductivity was calculated from the heat capacity and bulk density. The thermal expansion coefficient was measured by a so-called dilatometer method in which sample graphite was processed to 10 × 10 × 60 (mm) and the expansion length was detected.

石炭ピッチ系モザイクコークス(真密度2.00g/cm3)を平均粒子径20ミクロンに粉砕し、フィラーとした。このフィラー100部にバインダーとしてコールタールピッチを58部加えて200℃で混捏し、揮発分調整を行って取り出した。混捏物を常法どおり平均粒子径40ミクロン前後に粉砕したのち、Cold Isostatic Pressing(冷間等方圧加圧法の意味で、以下CIPとする)にて700kg/cm2にてラバー成形して成形体を得て、さらに焼成工程、ピッチ含浸焼成工程、黒鉛化工程を経て黒鉛ブロック(密度1.81g/cm3)を得た。
さらに得られた黒鉛にピッチ含浸、焼成を行った後、黒鉛化した。
このようにして得られた黒鉛材料を実施例1の試料とした。
Coal pitch-based mosaic coke (true density of 2.00 g / cm 3 ) was pulverized to an average particle size of 20 microns to obtain a filler. 58 parts of coal tar pitch as a binder was added to 100 parts of this filler, and the mixture was kneaded at 200 ° C., and volatile matter was adjusted and taken out. The kneaded material is crushed to an average particle diameter of around 40 microns as usual, and then molded by rubber molding at 700 kg / cm 2 using Cold Isostatic Pressing (hereinafter referred to as CIP). Then, a graphite block (density 1.81 g / cm 3 ) was obtained through a firing step, a pitch impregnation firing step, and a graphitization step.
Further, the obtained graphite was pitch-impregnated and fired, and then graphitized.
The graphite material thus obtained was used as a sample of Example 1.

石炭ピッチ系モザイクコークスを平均粒子径13ミクロンに粉砕し、フィラーとした。このフィラー100部にバインダーとしてコールタールピッチを62部加えて200℃で混捏し、揮発分調整を行って取り出した。混捏物を常法どおり40ミクロン前後に粉砕したのちCIPにて700kg/cm2で成形して成形体を得、焼成工程、ピッチ含浸焼成工程、黒鉛化工程を経て黒鉛ブロック(密度1.82g/cm3)を得た。
さらに得られた黒鉛にピッチ含浸、焼成を行った後、黒鉛化した。
このようにして得られた黒鉛材料を実施例2の試料とした。
Coal pitch-based mosaic coke was pulverized to an average particle size of 13 microns to obtain a filler. 62 parts of coal tar pitch as a binder was added to 100 parts of this filler, and the mixture was kneaded at 200 ° C., and volatile matter was adjusted and taken out. The kneaded material is pulverized to about 40 microns as usual, and then molded with CIP at 700 kg / cm 2 to obtain a molded body. After the firing step, pitch impregnation firing step, and graphitization step, the graphite block (density 1.82 g / cm 3 ) was obtained.
Further, the obtained graphite was pitch-impregnated and fired, and then graphitized.
The graphite material thus obtained was used as a sample of Example 2.

比較例1Comparative Example 1

ニードル率の高い石炭ピッチ系モザイクコークス(真密度2.01g/cm3)を平均粒子径20ミクロンに粉砕し、フィラーとした。このフィラー100部にコールタールピッチを58部加えて200℃で混捏し、揮発分調整を行って取り出した。これを常法どおり40ミクロン前後に粉砕したのちCIPにて700kg/cm2にてラバー成形して成形体を得て、さらに焼成工程、ピッチ含浸焼成工程、黒鉛化工程を経て黒鉛ブロック(密度1.81g/cm3)を得た。
さらに得られた黒鉛にピッチ含浸、焼成を行った後、黒鉛化した。
このようにして得られた黒鉛材料を比較例1の試料とした。
Coal pitch-based mosaic coke having a high needle ratio (true density of 2.01 g / cm 3 ) was pulverized to an average particle size of 20 microns to obtain a filler. 58 parts of coal tar pitch was added to 100 parts of this filler, and the mixture was kneaded at 200 ° C., and the volatile matter was adjusted and taken out. This was pulverized to about 40 microns as usual, and then rubber molded with CIP at 700 kg / cm 2 to obtain a molded body. Further, a graphite block (density 1) was obtained through a firing step, a pitch impregnation firing step, and a graphitization step. .81 g / cm 3 ).
Further, the obtained graphite was pitch-impregnated and fired, and then graphitized.
The graphite material thus obtained was used as a sample of Comparative Example 1.

比較例2Comparative Example 2

実施例1で用いた石炭ピッチ系モザイクコークスより球晶の大きさが小さい石炭ピッチ系モザイクコークス(真密度2.00g/cm3)を平均粒子径20ミクロンに粉砕し、フィラーとした。このフィラー100部にバインダーとしてコールタールピッチを60部加えて200℃で混捏し、揮発分調整を行って取り出した。混捏物を常法どおり40ミクロン前後に粉砕したのちCIPにて700kg/cm2にてラバー成形して成形体を得て、さらに焼成工程、ピッチ含浸焼成工程、黒鉛化工程を経て黒鉛ブロック(密度1.81g/cm3)を得た。
得られた黒鉛にピッチ含浸、焼成を行った後、黒鉛化した。
このようにして得られた黒鉛材料を比較例2の試料とした。
Coal pitch mosaic coke (true density 2.00 g / cm 3 ) having a smaller spherulite size than that of the coal pitch mosaic coke used in Example 1 was pulverized to an average particle size of 20 microns to obtain a filler. 60 parts of coal tar pitch as a binder was added to 100 parts of this filler, and the mixture was kneaded at 200 ° C., and volatile matter was adjusted and taken out. The kneaded material is pulverized to about 40 microns as usual, and then rubber molded with CIP at 700 kg / cm 2 to obtain a molded body. Further, a graphite block (density) is obtained through a firing step, a pitch impregnation firing step, and a graphitization step. 1.81 g / cm 3 ) was obtained.
The obtained graphite was pitch impregnated and fired, and then graphitized.
The graphite material thus obtained was used as a sample of Comparative Example 2.

比較例3Comparative Example 3

石炭ピッチ系モザイクコークスを平均粒子径7ミクロンに粉砕し、フィラーとした。このフィラー100部にバインダーとしてコールタールピッチを75部加えて200℃で混捏し、揮発分調整を行って取り出した。混捏物を定法どおり40ミクロン前後に粉砕したのち、CIPにて700kg/cm2にてラバー成形して成形体を得て、さらに焼成工程、ピッチ含浸焼成工程、黒鉛化工程を経て黒鉛ブロック(密度1.84g/cm3)を得た。
さらにピッチ含浸、焼成を行った後、黒鉛化した。
このようにして得られた黒鉛材料を比較例3の試料とした。
Coal pitch-based mosaic coke was pulverized to an average particle size of 7 microns to obtain a filler. 75 parts of coal tar pitch as a binder was added to 100 parts of this filler, and the mixture was kneaded at 200 ° C., and the volatile matter was adjusted and taken out. The kneaded material is pulverized to around 40 microns as usual, and then rubber molded with CIP at 700 kg / cm 2 to obtain a molded body, which is further subjected to a graphite block (density 1.84 g / cm 3 ) was obtained.
Further, it was graphitized after pitch impregnation and firing.
The graphite material thus obtained was used as a sample of Comparative Example 3.

実施例1、2及び比較例1〜3の試料のX、Y、Z方向のかさ密度、熱伝導率及び熱膨張係数(623〜723Kにおけるもの)の測定結果を下記の表1に示す。   Table 1 below shows the measurement results of the bulk density, thermal conductivity, and thermal expansion coefficient (in 623 to 723K) of the samples of Examples 1 and 2 and Comparative Examples 1 to 3 in the X, Y, and Z directions.

Figure 2005179140
Figure 2005179140

石炭ピッチ系モザイクコークスの平均粒子径を10〜25ミクロンの間として、実施例1及び2の各工程を行えば、かさ密度が1.85g/cm3以上、X、Y、Z軸方向の各方向における熱伝導率が170watt/m・K以上、熱膨張係数が5.5×10-6/K以下である等方性の高熱伝導黒鉛材料を提供できることが確認された。
これに対し、比較例1のように、ニードル率が高いコークスを原料として用いた場合の高熱伝導黒鉛材料は、実施例1及び2の高熱伝導黒鉛材料に比べ、熱伝導率が明らかに劣ることが確認された。
また、比較例2のように、球晶の大きさが小さいモザイクコークスを原料として用いた場合の高熱伝導黒鉛材料においては、熱伝導率及び熱膨張係数の両方が実施例1及び2の高熱伝導黒鉛材料に比べ、明らかに劣ることが確認された。
また、比較例3のように、本来適正なモザイクコークスであっても、微粒子にしたものを原料として用いた場合の高熱伝導黒鉛材料においては、実施例1及び2の高熱伝導黒鉛材料に比べ、熱伝導率が明らかに劣ることがわかり、熱膨張係数については、やや劣ることが確認された。
When each step of Examples 1 and 2 is performed with the average particle diameter of the coal pitch mosaic mosaic coke being between 10 and 25 microns, the bulk density is 1.85 g / cm 3 or more, and each of the X, Y, and Z axis directions. It was confirmed that an isotropic high thermal conductive graphite material having a thermal conductivity in the direction of 170 watt / m · K or more and a thermal expansion coefficient of 5.5 × 10 −6 / K or less can be provided.
On the other hand, as in Comparative Example 1, the high thermal conductivity graphite material when coke having a high needle rate is used as a raw material is clearly inferior in thermal conductivity to the high thermal conductivity graphite material of Examples 1 and 2. Was confirmed.
Moreover, in the high thermal conductivity graphite material in which mosaic coke having a small spherulite size is used as a raw material as in Comparative Example 2, both the thermal conductivity and the thermal expansion coefficient are high thermal conductivities of Examples 1 and 2. It was confirmed that it was clearly inferior to the graphite material.
Further, as in Comparative Example 3, even in the originally proper mosaic coke, in the high thermal conductive graphite material when the fine particles are used as a raw material, compared to the high thermal conductive graphite material of Examples 1 and 2, It was found that the thermal conductivity was clearly inferior, and the thermal expansion coefficient was confirmed to be somewhat inferior.

したがって、本発明に係る実施例1及び2の高熱伝導黒鉛材料は、従来のもの(比較例1〜3の高熱伝導黒鉛材料)よりも優れた熱伝導率を有しながら、低い熱膨張係数をも有するものであることが確認できた。   Therefore, the high thermal conductivity graphite materials of Examples 1 and 2 according to the present invention have a thermal conductivity superior to that of the conventional one (the high thermal conductivity graphite materials of Comparative Examples 1 to 3), and a low thermal expansion coefficient. It has also been confirmed that it also has.

なお、本発明は、特許請求の範囲を逸脱しない範囲で設計変更できるものであり、上記実施形態に限定されるものではない。

The present invention can be modified in design without departing from the scope of the claims, and is not limited to the above embodiment.

Claims (2)

かさ密度が1.85g/cm3以上、X、Y、Z軸方向の各方向における熱伝導率が170watt/m・K以上、熱膨張係数が5.5×10-6/K以下である等方性の高熱伝導黒鉛材料。 Bulk density is 1.85 g / cm 3 or more, thermal conductivity in each of the X, Y, and Z axis directions is 170 watts / m · K or more, and a thermal expansion coefficient is 5.5 × 10 −6 / K or less. Isotropic high thermal conductive graphite material. 平均粒子径10〜25μmに粉砕した針状コークスをフィラーとして用い、バインダーを添加して所定の温度で混捏する混捏工程と、
前記混捏工程で混捏されたものを平均粒子径20〜60μmに再粉砕する再粉砕工程と、
前記再粉砕工程で再粉砕されたものを所定の圧力で成形する成形工程と、
前記成形工程で成形されたものを所定の温度で焼成する焼成工程と、
前記焼成工程で焼成されたものをピッチ含浸する含浸工程と、
前記含浸工程で含浸されたものを再焼成する再焼成工程と、
前記再焼成工程で再焼成されたものを黒鉛化する黒鉛化工程と、
前記含浸工程、前記再焼成工程及び前記黒鉛化工程をさらに繰り返す工程とからなる高熱伝導率黒鉛材料の製造方法。

A kneading step in which needle-like coke pulverized to an average particle size of 10 to 25 μm is used as a filler, and a binder is added and kneaded at a predetermined temperature;
A regrinding step of regrinding the kneaded material in the kneading step to an average particle size of 20-60 μm
A molding step for molding the one re-pulverized in the re-pulverization step at a predetermined pressure;
A firing step of firing the product molded in the molding step at a predetermined temperature;
Impregnation step of pitch impregnating the one fired in the firing step;
A refiring step of refiring the impregnated step;
A graphitization step of graphitizing the refired step in the rebaking step;
A method for producing a high thermal conductivity graphite material comprising a step of further repeating the impregnation step, the refiring step, and the graphitization step.

JP2003424526A 2003-12-22 2003-12-22 High thermal conductivity graphite material Pending JP2005179140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424526A JP2005179140A (en) 2003-12-22 2003-12-22 High thermal conductivity graphite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424526A JP2005179140A (en) 2003-12-22 2003-12-22 High thermal conductivity graphite material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008282893A Division JP5072802B2 (en) 2008-11-04 2008-11-04 Method for producing high thermal conductive graphite material

Publications (1)

Publication Number Publication Date
JP2005179140A true JP2005179140A (en) 2005-07-07

Family

ID=34784695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424526A Pending JP2005179140A (en) 2003-12-22 2003-12-22 High thermal conductivity graphite material

Country Status (1)

Country Link
JP (1) JP2005179140A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049492A1 (en) * 2005-10-28 2007-05-03 Toyo Tanso Co., Ltd. Graphite member for beam-line internal member of ion implantation apparatus
JP2008001571A (en) * 2006-06-23 2008-01-10 Toyo Tanso Kk High thermal conductive carbon material and method of manufacturing the same
JP2010503605A (en) * 2006-09-12 2010-02-04 グラフテック、インターナショナル、ホールディングス、インコーポレーテッド Low CTE isotropic graphite
CN113661151A (en) * 2019-03-29 2021-11-16 日铁化学材料株式会社 Method for manufacturing high-density artificial graphite electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049492A1 (en) * 2005-10-28 2007-05-03 Toyo Tanso Co., Ltd. Graphite member for beam-line internal member of ion implantation apparatus
US8673450B2 (en) 2005-10-28 2014-03-18 Toyo Tanso Co., Ltd. Graphite member for beam-line internal member of ion implantation apparatus
JP2008001571A (en) * 2006-06-23 2008-01-10 Toyo Tanso Kk High thermal conductive carbon material and method of manufacturing the same
JP2010503605A (en) * 2006-09-12 2010-02-04 グラフテック、インターナショナル、ホールディングス、インコーポレーテッド Low CTE isotropic graphite
JP4734674B2 (en) * 2006-09-12 2011-07-27 グラフテック インターナショナル ホールディングス インコーポレーテッド Low CTE isotropic graphite
CN113661151A (en) * 2019-03-29 2021-11-16 日铁化学材料株式会社 Method for manufacturing high-density artificial graphite electrode

Similar Documents

Publication Publication Date Title
US7658902B2 (en) Low CTE highly isotropic graphite
JP6878407B2 (en) Manufacturing method for artificial graphite electrodes
US10308513B2 (en) Method for producing graphite bodies
JP5072802B2 (en) Method for producing high thermal conductive graphite material
CN111018554A (en) Method for preparing ultrahigh-power graphite electrode by using graphene
KR101745034B1 (en) Carbon material and process for production thereof
JP2010507550A (en) High purity nuclear graphite
JP4430448B2 (en) Method for producing isotropic graphite material
JP2005179140A (en) High thermal conductivity graphite material
JPH05251088A (en) Manufacture of porous carbon electrode plate for fuel cell
JP2008001571A (en) High thermal conductive carbon material and method of manufacturing the same
JP4809582B2 (en) High thermal conductive graphite material and method for producing the same
JP2000007436A (en) Graphite material and its production
US10377672B2 (en) Methods for producing polygranular graphite bodies
US9546113B2 (en) High porosity/low permeability graphite bodies and process for the production thereof
JP2001130963A (en) Method for producing isotropic high-density carbon material
JP7357286B2 (en) Method for producing graphite material with high coefficient of thermal expansion and its graphite material
JP7167815B2 (en) Raw coke production method
KR102192302B1 (en) Carbon-Carbon Composites and Method for Producing the Same
JP4539147B2 (en) Method for producing graphite electrode for electric discharge machining
JPS61191509A (en) Production of isotropic graphitic material
KR20240002812A (en) Carbon block, graphite block having high thermal conductivity manufactured therefrom, and manufacturing methods for the same
JP2002154874A (en) Method for manufacturing isotropic graphite material having high coefficient of thermal expansion and graphite tool and graphite base material each consisting of the isotropic graphite material
JP2003212655A (en) Low thermal expansion graphite material and production method therefor
JPS62158106A (en) Production of graphite material for coating silicon carbide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902