JP2001089239A - High heat conductivity amorphous carbon composite - Google Patents

High heat conductivity amorphous carbon composite

Info

Publication number
JP2001089239A
JP2001089239A JP26994699A JP26994699A JP2001089239A JP 2001089239 A JP2001089239 A JP 2001089239A JP 26994699 A JP26994699 A JP 26994699A JP 26994699 A JP26994699 A JP 26994699A JP 2001089239 A JP2001089239 A JP 2001089239A
Authority
JP
Japan
Prior art keywords
amorphous carbon
molding
carbon composite
heat conductivity
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26994699A
Other languages
Japanese (ja)
Inventor
Kiyohiko Yamamura
清彦 山村
Tomozo Sakaguchi
知三 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP26994699A priority Critical patent/JP2001089239A/en
Publication of JP2001089239A publication Critical patent/JP2001089239A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high heat conductivity amorphous carbon composite having good formability, excellent in heat conductivity and dimensional accuracy and also having high strength. SOLUTION: A molding material obtained by adding 20-80 wt.% high heat conductivity material to a modified novolak resin obtained by suspension polymerization is molded and the resulting molding is carbonized and fired to obtain the objective high heat conductivity amorphous carbon composite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高熱伝導性アモル
ファスカーボン複合体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly thermally conductive amorphous carbon composite.

【0002】[0002]

【従来の技術】熱膨張係数が小さく、熱伝導性と寸法精
度が要求される製品には、主に金属材料及び熱伝導性セ
ラミック材料が用いられていた。しかし、近年寸法精度
のレベルが高くなり、また軽量な材料が要求されるよう
になってきた。ところが、金属材料は比重が大きく、耐
食・耐薬品性などの化学的安定性に問題があり、また、
セラミックス材料も比重が大きく、ある程度の寸法精度
しか満足することができなかった。
2. Description of the Related Art Metallic materials and thermally conductive ceramic materials have been mainly used for products which have a small coefficient of thermal expansion and require thermal conductivity and dimensional accuracy. However, in recent years, the level of dimensional accuracy has increased, and lightweight materials have been required. However, metal materials have a large specific gravity, and have problems in chemical stability such as corrosion resistance and chemical resistance.
Ceramic materials also have a large specific gravity and could only satisfy a certain degree of dimensional accuracy.

【0003】一方、フェノール樹脂、フラン樹脂、ポリ
イミド樹脂などの三次元網目構造を形成する熱硬化性樹
脂を成形加工し、得られた成形体を真空中又は不活性ガ
ス雰囲気下で焼成して得られるアモルファスカーボン材
は、軽量かつ高強度で、熱膨張係数が小さく、さらに摩
擦係数が小さい等の優れた特性を有する材料である。し
かし、熱伝導率が5〜6W/m・Kと低いので、熱伝導
性が要求される部材としては利用されなかった。
On the other hand, a thermosetting resin forming a three-dimensional network structure, such as a phenol resin, a furan resin, and a polyimide resin, is molded and fired in a vacuum or in an inert gas atmosphere. The resulting amorphous carbon material is a material having excellent characteristics such as light weight, high strength, a small coefficient of thermal expansion, and a small coefficient of friction. However, since the thermal conductivity was as low as 5 to 6 W / m · K, it was not used as a member requiring thermal conductivity.

【0004】しかも、上記熱硬化性樹脂はその樹脂の特
性から、圧縮成形法又は押し出し成形法でしか成形体を
得ることができず、量産性に欠けかつ平板状の単純形状
の成形体しか得ることができなっかった。
In addition, the thermosetting resin can be obtained only by a compression molding method or an extrusion molding method due to the properties of the resin, and lacks mass productivity and only obtains a flat plate-shaped molded body. I could not do it.

【0005】[0005]

【発明が解決しようとする課題】かかる状況に鑑み、本
発明の課題は、成形性が良く、熱伝導性と寸法精度に優
れ、強度も高い高熱伝導性アモルファスカーボン複合体
を提供することにある。
SUMMARY OF THE INVENTION In view of such circumstances, an object of the present invention is to provide a highly thermally conductive amorphous carbon composite having good moldability, excellent thermal conductivity and dimensional accuracy, and high strength. .

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記の課
題を解決するために鋭意研究した結果、後述するような
構成にすると、成形性が良く、熱伝導性と寸法精度に優
れ、強度も高い高熱伝導性アモルファスカーボン複合体
を得ることができることを見出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, when the structure described below is adopted, the moldability is excellent, the thermal conductivity and the dimensional accuracy are excellent. The present inventors have found that a highly thermally conductive amorphous carbon composite having high strength can be obtained, and have reached the present invention.

【0007】すなわち、本発明の要旨は、懸濁重合法に
よって得られた変性ノボラック樹脂に、高熱伝導性材料
を20〜80重量%添加して得られた成形材料を成形
し、得られた成形体を炭化焼成したものであることを特
徴とする高熱伝導性アモルファスカーボン複合体であ
る。
That is, the gist of the present invention is to form a molding material obtained by adding 20 to 80% by weight of a high thermal conductive material to a modified novolak resin obtained by a suspension polymerization method. A highly thermally conductive amorphous carbon composite characterized by being carbonized and fired.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の高熱伝導性アモルファスカーボン複合体の原料
である成形材料は、懸濁重合法によって得られた変性ノ
ボラック樹脂に、高熱伝導性材料を添加して得られるも
のであり、変性ノボラック樹脂は、例えば、次のように
して製造することができる。すなわち、特開平4−15
9320号公報に開示されているように、ノボラック樹
脂をヘキサメチレンテトラミンのようなアルカリ触媒兼
メチレン架橋剤及び懸濁安定剤の存在下、水媒体中で懸
濁重合を行う方法(自己硬化型変性ノボラック樹脂法)
によって得られたものを好適に採用することができる。
この方法によれば、極めて高純度で真球状に近い球状微
粒体が得られる。粒径の大きな樹脂原料を得るには、前
記微粒体を造粒して所定の粒度の原料を調製する方法が
有効である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The molding material as a raw material of the high thermal conductive amorphous carbon composite of the present invention is obtained by adding a high thermal conductive material to a modified novolak resin obtained by a suspension polymerization method, and the modified novolak resin is For example, it can be manufactured as follows. That is, Japanese Unexamined Patent Publication No.
No. 9320, a method in which a novolak resin is subjected to suspension polymerization in an aqueous medium in the presence of an alkali catalyst and a methylene crosslinking agent such as hexamethylenetetramine and a suspension stabilizer (self-curing type modification). Novolak resin method)
Can be suitably adopted.
According to this method, spherical particles having a very high purity and a shape close to a true sphere can be obtained. In order to obtain a resin material having a large particle size, a method of granulating the fine particles to prepare a material having a predetermined particle size is effective.

【0009】そして特に変性ノボラック樹脂としてはデ
ィスクキュアー法(JIS−K−6911)で測定した
熱流動性が60〜180mm、好ましくは90〜160
mmであるフェノール樹脂を用いることが好ましい。熱
流動性とは常温にては固体であるが、加熱状態にて負荷
をかけたときに流動性を示す特性をいう。しかし、変性
ノボラック樹脂は通常の熱可塑性の樹脂の場合と異なっ
て自己硬化性を有するので、ある程度以上長時間流動性
を示す温度にて加熱を続けると分子内及び分子間での縮
合が始まって架橋して硬化する性質をもっている。そこ
で、熱流動性を表す尺度として、後述するJIS規格
(ディスクキュアー法)で測定した160℃における所
定荷重下の試料樹脂円板の流れ(直径の伸び;mm)で
表す。
In particular, the modified novolak resin has a heat fluidity of 60 to 180 mm, preferably 90 to 160 mm, measured by a disc cure method (JIS-K-6911).
It is preferable to use a phenol resin having a diameter of mm. Thermofluidity refers to the property of being solid at room temperature, but exhibiting fluidity when a load is applied in a heated state. However, since the modified novolak resin has a self-curing property different from the case of a normal thermoplastic resin, if heating is continued at a temperature showing fluidity for a certain period of time or more, intramolecular and intermolecular condensation starts. It has the property of curing by crosslinking. Therefore, as a scale representing thermal fluidity, the flow (elongation of diameter; mm) of a sample resin disk under a predetermined load at 160 ° C. measured by JIS standard (disc cure method) described later.

【0010】この熱流動性が60mm未満の樹脂は成形
性が悪く、他方180mmを超える樹脂は、硬化反応に
必要な時間が長くなるため生産性が悪い、しかも、硬化
反応によって生成する水分等が成形体内へ閉じ込められ
るため、欠陥製品となる恐れがある。
A resin having a heat fluidity of less than 60 mm has poor moldability, while a resin having a heat fluidity of more than 180 mm requires a long time for a curing reaction, resulting in poor productivity. Since it is trapped in the molded body, there is a possibility that the product will be defective.

【0011】本発明において用いる高熱伝導性材料とし
ては、熱伝導率は100℃における熱伝導率が20W/
m・K以上のものが好ましく、30W/m・K以上のも
のがより好ましい。熱伝導率が20W/m・K未満のも
のでは十分な熱伝導性が得られない。高熱伝導性材料の
具合的例としてはセラミック系の高熱伝導性材料が好ま
しく、例えば、炭化珪素、マグネシア、酸化ベリウム、
炭化ホウ素などが挙げられ、これらは、単独でも2種以
上を混合して用いてもよい。中でも炭化珪素が好まし
い。
The high thermal conductive material used in the present invention has a thermal conductivity of 20 W / 100 ° C.
Those having mK or more are preferable, and those having 30 W / mK or more are more preferable. If the thermal conductivity is less than 20 W / m · K, sufficient thermal conductivity cannot be obtained. As a specific example of the high heat conductive material, a ceramic high heat conductive material is preferable, for example, silicon carbide, magnesia, beryllium oxide,
Examples thereof include boron carbide, and these may be used alone or in combination of two or more. Among them, silicon carbide is preferable.

【0012】高熱伝導性材料を変性ノボラック樹脂に添
加する割合は20〜80重量%、好ましくは30〜60
重量%である。添加量が20重量%未満では十分な熱伝
導性が得られず、一方80重量%より多ければ成形が困
難となる。
The proportion of the high thermal conductive material added to the modified novolak resin is 20 to 80% by weight, preferably 30 to 60% by weight.
% By weight. If the amount is less than 20% by weight, sufficient thermal conductivity cannot be obtained, while if it is more than 80% by weight, molding becomes difficult.

【0013】上記のように変性ノボラック樹脂に高熱伝
導性材料を添加して成形材料とするが、本発明において
は、さらにこの成形材料に低表面張力物質を添加しても
よい。低表面張力物質を添加した成形材料は、より生産
性が良くなり、寸法精度が向上するという長所を有す
る。低表面張力物質は、融点が30℃〜160℃、好ま
しくは40℃〜80℃で、常温にて固体状の低融点化合
物で、かつ潤滑性、離型性、非付着性等の低表面張力物
質(例えば常温〔25℃〕で臨界表面張力が約35ダイ
ン/cm以下の物質)に特有の特性を有する化合物を用
いる。融点が30℃未満では成形時に計量不良が起こる
傾向にあり、160℃を超えると成形機のシリンダー内
で潤滑性が乏しく、安定した成形性が得られない傾向に
ある。
As described above, a high thermal conductive material is added to the modified novolak resin to form a molding material. In the present invention, a low surface tension substance may be further added to this molding material. A molding material to which a low surface tension substance is added has advantages in that productivity is improved and dimensional accuracy is improved. The low surface tension substance has a melting point of 30 ° C. to 160 ° C., preferably 40 ° C. to 80 ° C., is a low melting point compound which is solid at ordinary temperature, and has low surface tension such as lubricity, releasability and non-adhesion. A compound having characteristics specific to a substance (for example, a substance having a critical surface tension of about 35 dynes / cm or less at room temperature [25 ° C.]) is used. If the melting point is less than 30 ° C., poor measurement tends to occur during molding, and if it exceeds 160 ° C., lubricity in the cylinder of the molding machine is poor, and stable moldability tends not to be obtained.

【0014】代表的な例としては、ラウリン酸、パルミ
チン酸、ステアリン酸等の高級脂肪酸;ラウリン酸モノ
グリセライド、エチルステアレート、ステアリン酸モノ
グリセライド、ソルビタンモノパルミテート、ソルビタ
ンモノステアレート等の高級脂肪酸エステル;トリラウ
リン、トリステアリン、硬化ひまし油等の固形油脂類;
ステアリン酸アマイド、エチレンビスステアリン酸アマ
イド等の高級脂肪酸アマイド;セチルアルコール、ステ
アリルアルコール等の高級脂肪族アルコール;ステアリ
ルメタクリレート、ステアリルアクリレート等の高級脂
肪族(メタ)アクリレート;パラフィンワックス等のワ
ックス状炭化水素;パーフルオロオクタン酸、9H−ヘ
キサデカフルオロノナノン酸等の含多価フッ素高級脂肪
酸;N−エチルパーフルオロオクチルスルホンアミド等
の含多価フッ素高級脂肪族スルホンアミド;2−(パー
フルオロオクチル)沃化エチル、2−(パーフルオロデ
シル)沃化エチル等の含多価フッ素高級脂肪族沃化物;
1H,1H,9H−ヘキサデカフルオロノナノール、2
−(パーフルオロオクチル)エタノール、2−(パーフ
ルオロデシル)エタノール等の含多価フッ素高級脂肪族
アルコール;2−(パーフルオロデシル)メチルメタク
リレート、1H,1H,11H−アイコサフルオロウン
デシルアクリレート等の含多価フッ素高級脂肪族(メ
タ)アクリレート;パーフルオロドデカン等の含多価フ
ッ素高級脂肪族炭化水素;2−(P−オキシ安息香酸メ
チル・ヘキサフルオロプロペン3量体付加物等の含多価
フッ素脂肪族芳香族化合物、ペンタフルオロベンズアミ
ド等の含多価フッ素芳香族炭化水素;TFEワックス
(テトラフルオロエチレンテロマー)、CTFEテロマ
ー(クロロトリフルオロエチレンテロマー)等の含多価
フッ素オリゴマー化合物等、あるいはこれらの誘導体、
これらの一種以上よりなる混合物並びにこれらに重合触
媒等の添加物を配合した組成物等の低表面張力物質が挙
げられる。
Representative examples include higher fatty acids such as lauric acid, palmitic acid and stearic acid; higher fatty acid esters such as lauric acid monoglyceride, ethyl stearate, stearic acid monoglyceride, sorbitan monopalmitate and sorbitan monostearate; Solid fats and oils such as trilaurin, tristearin, hardened castor oil;
Higher fatty acid amides such as stearic acid amide and ethylenebisstearic acid amide; higher aliphatic alcohols such as cetyl alcohol and stearyl alcohol; higher aliphatic (meth) acrylates such as stearyl methacrylate and stearyl acrylate; waxy hydrocarbons such as paraffin wax Polyvalent fluorine-containing higher fatty acids such as perfluorooctanoic acid and 9H-hexadecafluorononanoic acid; polyvalent fluorine-containing higher aliphatic sulfonamides such as N-ethylperfluorooctylsulfonamide; 2- (perfluorooctyl) Polyvalent fluorine-containing higher aliphatic iodides such as ethyl iodide and 2- (perfluorodecyl) ethyl iodide;
1H, 1H, 9H-hexadecafluorononanol, 2
Poly (fluorinated higher aliphatic alcohols such as-(perfluorooctyl) ethanol, 2- (perfluorodecyl) ethanol); 2- (perfluorodecyl) methyl methacrylate, 1H, 1H, 11H-icosafluoroundecyl acrylate, etc. Poly (fluorine-containing higher aliphatic (meth) acrylates); polyvalent fluorine-containing higher aliphatic hydrocarbons such as perfluorododecane; poly (methyl-oxybenzoate / hexafluoropropene trimer adduct) Polyvalent fluorine-containing aromatic hydrocarbons such as fluorinated aliphatic aromatic compounds and pentafluorobenzamide; polyvalent fluorine-containing oligomer compounds such as TFE wax (tetrafluoroethylene telomer) and CTFE telomer (chlorotrifluoroethylene telomer); Or derivatives thereof,
A low surface tension substance such as a mixture of one or more of these substances and a composition in which additives such as a polymerization catalyst are blended with these are exemplified.

【0015】低表面張力物質は成形材料に0.1〜5重
量%含有させることが好ましい。より好ましくは0.2
〜3重量%含有させる。低表面張力物質の含有量が0.
1重量%未満では、成形の際に、成形機のシリンダー内
で閉塞が起こり連続して成形を行うことが困難になるこ
とがあり、他方、5重量%を超えると成形性の向上効果
が頭打ちとなる。
The low surface tension substance is preferably contained in the molding material in an amount of 0.1 to 5% by weight. More preferably 0.2
-3% by weight. The content of the low surface tension substance is 0.
If the amount is less than 1% by weight, the molding may be blocked in the cylinder of the molding machine at the time of molding and it may be difficult to continuously perform molding. Becomes

【0016】変性ノボラック樹脂原料と高熱伝導性材料
よりなる(さらに必要ならば同時に低表面張力物質を加
えた)成形材料の混練は、均一に混ぜる方法であればい
かなる方法を用いてもよく、例えばハイスピードミキサ
ーや二軸押出機を用いるなどして行うことができる。
The kneading of the molding material composed of the modified novolak resin raw material and the high thermal conductive material (and, if necessary, simultaneously with the addition of a low surface tension substance) may be carried out by any method as long as it is a method of uniformly mixing. It can be performed using a high-speed mixer or a twin-screw extruder.

【0017】混練された成形材料は、少なくとも成形時
には水分含有量が1重量%以下に制御されていることが
好ましい。通常、重合後の原料の変性ノボラック樹脂
は、数重量%以上の水分を含有するので、使用に先立っ
ては、上記限度内に水分が低減するように乾燥してお
き、上記混練を施すのが有効である。この際の乾燥法と
しては、粒状変性ノボラック樹脂を真空中又は乾燥空気
循環下にて60〜120℃の温度に加熱して行う方法が
推奨される。
The kneaded molding material preferably has a water content controlled to at most 1% by weight at least at the time of molding. Usually, the modified novolak resin as a raw material after polymerization contains water of several weight% or more. Therefore, prior to use, it is preferable to dry the water so that the water content is reduced within the above-mentioned limits and to perform the kneading. It is valid. As a drying method at this time, a method in which the granular modified novolak resin is heated to a temperature of 60 to 120 ° C. in a vacuum or under a circulation of dry air is recommended.

【0018】以上のように調製された成形材料は、工業
的には品質管理上、成形直前まで密封容器あるいは密封
包装に収納して保管するのが好ましい。もちろん、上記
のように成形材料を乾燥せずそのまま混練処理した成形
材料であっても、成形直前に乾燥を充分に行い、吸湿し
ない条件下に成形すれば、上記と同様の成形体にするこ
とができる。
The molding material prepared as described above is industrially preferably stored in a sealed container or sealed packaging until immediately before molding in view of quality control. Of course, even if the molding material is kneaded without drying the molding material as described above, if the molding is sufficiently dried immediately before molding and molded under conditions that do not absorb moisture, a molded product similar to the above can be obtained. Can be.

【0019】前記成形材料を、成形し、成形体を得る。
成形方法としては、射出成形、トランスファ成形あるい
は押出成形などの方法が挙げられ、特に、成形の際、予
め焼成時の寸法収縮を見込んだ寸法形状の金型で射出成
形法により成形加工すると生産性の点で特に好ましい。
得られた成形体を炭化焼成するには、成形体を真空、不
活性ガス又は還元性雰囲気中で800℃〜1600℃、
好ましくは900〜1500℃で加熱する。炭化焼成温
度が800℃未満では成形体中のフェノール樹脂が完全
にアモルファスカーボン化せず、1600℃を超えると
過剰焼成となり、黒鉛化が進む傾向にある。また、不活
性ガスとしては窒素、ヘリウム、アルゴン等のガスが挙
げられ、手軽さの点で窒素ガスが好ましい。
The molding material is molded to obtain a molded body.
Examples of the molding method include methods such as injection molding, transfer molding, and extrusion molding. In particular, when molding is performed by an injection molding method using a mold having a dimension and shape that allows for dimensional shrinkage during firing in advance, productivity is improved. This is particularly preferred in view of the above.
In order to carbonize and sinter the obtained molded body, the molded body is heated at 800 ° C. to 1600 ° C. in a vacuum, an inert gas or a reducing atmosphere.
Preferably, it is heated at 900 to 1500 ° C. If the carbonization firing temperature is lower than 800 ° C., the phenolic resin in the molded product does not completely turn into amorphous carbon. If the carbonization firing temperature exceeds 1600 ° C., excessive firing occurs and the graphitization tends to progress. Examples of the inert gas include gases such as nitrogen, helium, and argon, and nitrogen gas is preferable in terms of simplicity.

【0020】上記のようにして高熱伝導性アモルファス
カーボン複合体を得る。このようにして得られる高熱伝
導性アモルファスカーボン複合体は、成形性が良く、熱
伝導性と寸法精度に優れ、強度も高いものである。
As described above, a highly thermally conductive amorphous carbon composite is obtained. The thus obtained high thermal conductive amorphous carbon composite has good moldability, excellent thermal conductivity and dimensional accuracy, and high strength.

【0021】[0021]

【実施例】以下、本発明を実施例によって具体的に説明
する。本発明はこれら実施例により限定されない。
The present invention will be specifically described below with reference to examples. The present invention is not limited by these examples.

【0022】参考例 ノボラック樹脂(三井東圧化学(株)製#600)15
0重量部を160℃で溶融して、完全けん化ポリビニル
アルコール(重合度約2000)1重量部を溶解した9
0℃の熱水(220重量部)中へ攪拌しながら投入して
分散して懸濁系を形成し、続いてヘキサミン24重量部
を40重量部の温水に溶解して添加し、さらに同温度に
て20分間攪拌を続けて懸濁重合を行い、反応を終了後
懸濁体を固液分離し、乾燥して変性ノボラック樹脂原料
を得た。この変性ノボラック樹脂原料の特性を表1に示
す。ただし、表1に示すこれらの特性は次の方法で測定
した。
Reference Example Novolak resin (# 600 manufactured by Mitsui Toatsu Chemicals, Inc.) 15
0 parts by weight were melted at 160 ° C. to dissolve 1 part by weight of completely saponified polyvinyl alcohol (degree of polymerization: about 2000).
The suspension was poured into hot water (220 parts by weight) at 0 ° C. while stirring to form a suspension, and 24 parts by weight of hexamine was dissolved in 40 parts by weight of warm water and added. The suspension was stirred for 20 minutes to carry out suspension polymerization. After the reaction was completed, the suspension was subjected to solid-liquid separation and dried to obtain a modified novolak resin raw material. Table 1 shows the characteristics of the modified novolak resin raw material. However, these characteristics shown in Table 1 were measured by the following methods.

【0023】熱流動性(HPF)は、JIS−K−69
11(1979)5.3.2〔成形材料(円板式)〕の
方法に基づき、試料2gを160℃で1分間1145k
gの荷重下で熱プレスし、形成される円板の直径(最長
径と最短径の平均値)から求めた。平均粒径は、試料を
ガラスプレート上に展開して顕微鏡写真を撮り、任意に
選んだ100個の粒径を測定して、その平均値で示し
た。水分は、赤外線ヒーターを用い、試料10gを80
℃で30分間加熱しその重量減少から求めた。
The thermal fluidity (HPF) is measured according to JIS-K-69.
11 (1979) 5.3.2 [Molding material (disc type)], 1 g of a sample at 1145k at 160 ° C for 1 minute
It was hot-pressed under a load of g and determined from the diameter (average value of the longest diameter and the shortest diameter) of the formed disk. The average particle size was obtained by developing a sample on a glass plate, taking a micrograph, measuring 100 randomly selected particle sizes, and indicating the average value. The moisture was measured using an infrared heater,
C. for 30 minutes and the weight loss was determined.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例1〜4及び比較例2 表2に示す割合で各成分を配合し、均一混合した後二軸
混練機にて110℃で処理を行いペレット状にした。そ
れを粉砕機を用いて粉砕し平均粒径2mm(最大5m
m)程度の射出成形用の成形材料を得た。この成形材料
を用いて射出成形を行い、曲げ試験片(幅12.5mm
×長さ126.0mm×厚さ4.0mm)及び円盤状収
縮試験片(外径90.0mm×厚さ4.0mm)を得
た。比較例1は変性ノボラック樹脂のみで射出成形を行
った。さらに、成形体を窒素ガス雰囲気中で1600℃
まで昇温し焼成を行った。得られた焼成品の曲げ強度、
収縮率及び熱伝導率を各JIS K−6911に準拠し
て行った。その評価結果を表2に示す。
Examples 1 to 4 and Comparative Example 2 The components were blended at the ratios shown in Table 2 and uniformly mixed, followed by treatment at 110 ° C. in a twin-screw kneader to form pellets. It is pulverized using a pulverizer and has an average particle size of 2 mm (maximum 5 m
m) of a molding material for injection molding was obtained. Injection molding is performed using this molding material, and a bending test piece (width 12.5 mm
× length 126.0 mm × thickness 4.0 mm) and a disc-shaped shrinkage test specimen (outer diameter 90.0 mm × thickness 4.0 mm). In Comparative Example 1, injection molding was performed using only the modified novolak resin. Further, the compact was heated at 1600 ° C. in a nitrogen gas atmosphere.
Then, the temperature was raised and firing was performed. Bending strength of the obtained fired product,
The shrinkage rate and the thermal conductivity were measured in accordance with JIS K-6911. Table 2 shows the evaluation results.

【0026】[0026]

【表2】 [Table 2]

【0027】表2から明らかなように、実施例の熱伝導
性アモルファスカーボン複合体は、比較例1のものに比
べ、高い熱伝導性を示し、焼成収縮率が低く焼成後の強
度も同等となることが確認できた。また、射出成形性に
おいても、安定した連続成形が可能であった。なお、比
較例2は射出成形ができなかった。
As is clear from Table 2, the thermally conductive amorphous carbon composite of the example has a higher thermal conductivity than that of the comparative example 1 and has a low firing shrinkage and the same strength after firing. Was confirmed. In addition, stable continuous molding was also possible in injection moldability. In Comparative Example 2, injection molding could not be performed.

【0028】[0028]

【発明の効果】本発明の高熱伝導性アモルファスカーボ
ン複合体は、成形性が良く、熱伝導性と寸法精度に優
れ、強度も高いものである。したがって、このような性
質が要求される電気部品や機械部品に好適に使用するこ
とができる。
The high thermal conductive amorphous carbon composite of the present invention has good moldability, excellent thermal conductivity and dimensional accuracy, and high strength. Therefore, it can be suitably used for electric parts and mechanical parts requiring such properties.

フロントページの続き Fターム(参考) 4G001 BA22 BA78 BB22 BB60 BC26 BD03 4G032 AA14 AA33 BA00 4H012 MA01 4J002 AE032 BD122 BD152 CC071 DJ006 EB067 EC067 EF057 EH047 EH057 EH077 EP017 EV287 FD202 FD206 FD207Continued on front page F term (reference) 4G001 BA22 BA78 BB22 BB60 BC26 BD03 4G032 AA14 AA33 BA00 4H012 MA01 4J002 AE032 BD122 BD152 CC071 DJ006 EB067 EC067 EF057 EH047 EH057 EH077 EP017 EV287 FD202 FD206 FD207

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 懸濁重合法によって得られた変性ノボラ
ック樹脂に、高熱伝導性材料を20〜80重量%添加し
て得られた成形材料を成形し、得られた成形体を炭化焼
成したものであることを特徴とする高熱伝導性アモルフ
ァスカーボン複合体。
1. A molding material obtained by adding a high thermal conductive material to a modified novolak resin obtained by a suspension polymerization method in an amount of 20 to 80% by weight, and the obtained molding is carbonized and fired. A highly thermally conductive amorphous carbon composite, characterized in that:
【請求項2】 請求項1記載の高熱伝導性材料が炭化珪
素であることを特徴とする高熱伝導性アモルファスカー
ボン複合体。
2. A highly thermally conductive amorphous carbon composite, wherein the highly thermally conductive material according to claim 1 is silicon carbide.
【請求項3】 請求項1記載の成形材料が、低表面張力
物質を0.1〜5重量%含有するものであることを特徴
とする高熱伝導性アモルファスカーボン複合体。
3. The high thermal conductive amorphous carbon composite according to claim 1, wherein the molding material contains a low surface tension substance in an amount of 0.1 to 5% by weight.
JP26994699A 1999-09-24 1999-09-24 High heat conductivity amorphous carbon composite Pending JP2001089239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26994699A JP2001089239A (en) 1999-09-24 1999-09-24 High heat conductivity amorphous carbon composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26994699A JP2001089239A (en) 1999-09-24 1999-09-24 High heat conductivity amorphous carbon composite

Publications (1)

Publication Number Publication Date
JP2001089239A true JP2001089239A (en) 2001-04-03

Family

ID=17479419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26994699A Pending JP2001089239A (en) 1999-09-24 1999-09-24 High heat conductivity amorphous carbon composite

Country Status (1)

Country Link
JP (1) JP2001089239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052406A1 (en) * 2014-09-29 2016-04-07 積水化学工業株式会社 Carbon coated heat conducting material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052406A1 (en) * 2014-09-29 2016-04-07 積水化学工業株式会社 Carbon coated heat conducting material
CN106470834A (en) * 2014-09-29 2017-03-01 积水化学工业株式会社 Carbon coating Heat Conduction Material
US10121717B2 (en) 2014-09-29 2018-11-06 Sekisui Chemical Co., Ltd. Carbon-coated thermal conductive material
CN106470834B (en) * 2014-09-29 2019-06-07 积水化学工业株式会社 Carbon coating Heat Conduction Material

Similar Documents

Publication Publication Date Title
Liu et al. Powder modification mechanism, effects of binder compositions on the thermal behavior, and the mechanical properties of the ceramic injection molded system
JP3249257B2 (en) Amorphous carbon molded body and method for producing the same
JP2001089239A (en) High heat conductivity amorphous carbon composite
JP4084446B2 (en) Phenolic resin molding material
JP2008069045A (en) Magnesia-carbon brick
JP2001019546A (en) Amorphous carbon composite
Szafran et al. Effect of glass transition temperature of polymeric binders on properties ceramic materials
JPH10278079A (en) Manufacture of phenol resin high-flow molded body
JPH04270185A (en) High-molecular solid solution binder for processing metal and ceramic powder
JP3425986B2 (en) Phenolic resin high flow molding and molding method thereof
JP2003026900A (en) Method for producing resin material for injection molding
JPH06206957A (en) Phenolic resin molding material
JP5562112B2 (en) Injection molding method of injection molding material for manufacturing porous ceramics and manufacturing method of porous ceramics
JPH0421626B2 (en)
JP2005000969A (en) Inorganic substance blending composition for mold and method for making mold for tire using the same
JPH01261265A (en) Binder for ceramic injection molding
JP2968930B2 (en) Freezing molding method
JP2017178660A (en) Method for producing carbon particle
JP2007015111A (en) Manufacturing method of heat-resistant heat insulating material
JPH11342518A (en) Injection molding of phenol resin
JP2003285358A (en) Method for manufacturing phenol resin molded product
JP2003327482A (en) Pore forming material for ceramic composition and hydrated pore forming material
JP2003034746A (en) Phenolic resin molding material for forming fuel cell separator
JP5562127B2 (en) Method for forming molding material for manufacturing porous ceramics and method for manufacturing porous ceramics
JPS6146428B2 (en)