JP4084446B2 - Phenolic resin molding material - Google Patents

Phenolic resin molding material Download PDF

Info

Publication number
JP4084446B2
JP4084446B2 JP22926397A JP22926397A JP4084446B2 JP 4084446 B2 JP4084446 B2 JP 4084446B2 JP 22926397 A JP22926397 A JP 22926397A JP 22926397 A JP22926397 A JP 22926397A JP 4084446 B2 JP4084446 B2 JP 4084446B2
Authority
JP
Japan
Prior art keywords
resin
granular
molding
weight
surface tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22926397A
Other languages
Japanese (ja)
Other versions
JPH1160897A (en
Inventor
清彦 山村
俊夫 江南
洋 伊吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP22926397A priority Critical patent/JP4084446B2/en
Publication of JPH1160897A publication Critical patent/JPH1160897A/en
Application granted granted Critical
Publication of JP4084446B2 publication Critical patent/JP4084446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フェノール樹脂成形材料に関し、詳しくは射出成形、トランスファー成形及び圧縮成型用として適していて、成形時の熱安定性、硬化性に優れており、かつ電気部品、自動車部品等に好適な力学的特性に優れたフェノール樹脂成形品を与えることができるフェノール樹脂成形材料に関するものである。
【0002】
【従来の技術】
フェノール樹脂は、安価で、耐熱性、剛性、硬度、電気絶縁性、耐薬品性等の諸特性が優れた樹脂として、従来、電気材料等の各種製品に多用されているが、大部分の製品は、液状の原料を用い、これに炭酸カルシウム、水酸化カルシウム、水酸化アルミニウム、シリカ、クレー、マイカ、ゼオライト、タルク、ガラス繊維、ガラスパウダーなどの無機充填材、木粉、パルプ、布チップ、ポリビニルアルコール繊維など有機充填材等を配合して成形した複合熱硬化性樹脂成形体であった。
この成形体は、安価ではあるが、未反応のフェノールを多く含み、気泡の混入が避けられず、したがって特性的にも高度なものは望めないので、高性能製品には利用され得なかった。
【0003】
これに対して、最近、常温で固体(粉粒体)であって、熱流動性を有する高純度フェノール樹脂成形材料(以下、熱流動性粒状成形材料と略称する。)が開発され、各種高性能部品の素材として広く普及しつつある。
この熱流動性粒状成形材料を用いると、フェノール樹脂の成形法として最も一般的に用いられてきた圧縮成形法以外のトランスファー成形法、射出成形法あるいは押出成形法でも成形することが可能である。熱流動性粒状成形材料を用いてトランスファー成形法、射出成形法あるいは押出成形法にて成形する方法は高流動成形といわれ、得られる成形体は高流動成形体といわれている。
【0004】
しかし、フェノール樹脂成形材料を始めとする熱硬化性樹脂成形材料は、可塑化された溶融状態では、材料中の樹脂の硬化反応の進行によって粘度が増大し、短時間で流動性を失う性質を有しており、可塑化溶融時の熱安定性が極めて低い。特に、従来のフェノール樹脂成形材料を射出成形法にて成形する場合、射出成形機のシリンダー内での可塑化溶融された成形材料の熱安定性が劣り、適正な成形条件が極めて狭いという問題があった。
【0005】
このため、高流動成形可能な熱流動性粒状成形材料を使用しても、通常、特公平1−38816号公報に記載されているように、ガラス繊維のような補強材やステアリン酸亜鉛のような金属含有有機滑剤を含んでいないと、満足な成形ができない現状にある。すなわち、かかる成形材料からガラス繊維や金属含有有機滑剤を除いたフェノール樹脂成形材料を高流動成形すると、成形機のシリンダー内で、成形材料のスムーズな流動性が損なわれ、安定してかつ高精度に成形することが困難であった。
成形材料の流動性が増大すると、金型内での硬化反応が遅くなり、一方、金型内での硬化反応を向上させると、熱安定性が劣るようになり、可塑化溶融状態の熱安定性と金型内の硬化性とを同時に兼ね備えたフェノール樹脂成形材料を得ることは困難であった。
【0006】
また、有機充填材、有機補強材及び無機充填材、無機補強材及び金属含有有機滑剤などを含むフェノール樹脂成形品は、真空中又は不活性ガス雰囲気中で高温焼成して炭化することにより、アモルファスカーボン(グラッシーカーボン)、グラファイト等のような炭素材料として得られるが、焼成炭化工程においてこれらの充填材等を構成する元素が不純物として炭素材料内に残留し、半導体用単結晶引上げるつぼ容器、半導体製造工程で用いられるイオン注入機等の高純度が要求されるアモルファスカーボン成形品用途に用いることができなかった。
【0007】
【発明が解決しようとする課題】
かかる状況に鑑み、本発明の課題は、成形時に気泡等を含むことなく、成形機のシリンダー内での可塑化溶融状態での熱安定性に優れ、金型内での硬化性も優れており、しかも、均一なフェノール樹脂高流動成形体を生産性良く得ることができるフェノール樹脂成形材料を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、上記の課題を解決するために鋭意研究した結果、特定の粒状変性ノボラック樹脂と粒状変性ノボラック樹脂をCステージまで硬化させた粒状フェノール樹脂を配合することにより、上記課題が解決されることを見出し、本発明に到達した。
すなわち、本発明は、粒子径が50μm以上で、かつディスクキュアー法で測定した熱流動性が60〜180mmの自己硬化性を有する粒状変性ノボラック樹脂(a)と粒状変性ノボラック樹脂をCステージまで硬化させた粒状フェノール樹脂(b)とを含有し、粒状変性ノボラック樹脂(a)の含有量が70〜30重量%、粒状変性ノボラック樹脂をCステージまで硬化させた粒状フェノール樹脂(b)の含有量が30〜70重量%であって、上記粒状変性ノボラック樹脂(a)は、ノボラック樹脂をヘキサメチレンテトラミンの存在下、水媒体中で懸濁重合することにより製造されるものであって、常温(25℃)での臨界表面張力が35ダイン/cm以下でありかつ融点30〜160℃の低表面張力物質によって被覆されてなり、低表面張力物質の含有量が全フェノール樹脂に対して0.1〜5重量%であり、粒状変性ノボラック樹脂をCステージまで硬化させた上記粒状フェノール樹脂(b)が粒子径5〜30μmで真球状であることを特徴とするフェノール樹脂成形材料である。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
まず、本発明で使用する低表面張力物質によって被覆される自己硬化性を有する粒状変性ノボラック樹脂としては、粒子径が50μm以上、好ましくは100μm以上で、ディスクキュアー法で測定した熱流動性が60〜180mm、好ましくは90〜160mmのものを用いる。
ここで、粒子径とは、粒体の平均最大径、すなわち最大径(外接球直径)の平均値を表す。
粒子径が50μm未満の場合は、成形機への供給が安定して行い難くなる。粒子径の上限は特に制限はないが、実用的な粒子径としては100〜4000μmが適当である。
粒体の形状は球形、円筒形、円柱形、立方体形等のいずれでもよいが、粒子径が小さい場合は球形の方が成形等に際しての輸送性が優れている。
【0010】
前記の熱流動性とは、常温にては固体であるが、加熱状態にて負荷をかけたときに流動性を示す特性をいう。しかし、フェノール樹脂は通常の熱可塑性の樹脂の場合と異なって、自己硬化性を有するので、ある程度以上の長時間にわたって流動性を示す温度にて加熱を続けると、分子内及び分子間での縮合が始まって架橋して硬化する性質をもっている。
そこで、熱流動性を表す尺度として、JIS規格のディスクキュアー法で測定した160°Cにおける所定荷重下の試料樹脂円板の流れ(直径の伸び:mm)で表す。
かかる熱流動性は、具体的にはJIS−K−6911 1995 5.3.2 〔成形材料(円板式) の方法に基づいて試料2gを160°Cで1分間1145kgの荷重で熱プレスし、形成される円板の直径(最長径と最短径の平均値)から求める。
この熱流動性が60mm未満の樹脂は成形性が悪くなる傾向があり、一方、熱流動性が180mmを越える樹脂は、硬化反応に必要な時間が長くなるため、生産性が悪く、しかも、硬化反応によって生成する水分等が成形品内へ閉じ込められるため、欠陥製品となるおそれがある。
【0011】
本発明で使用する自己硬化性を有する粒状変性ノボラック樹脂の製造法としては、各種の方法が採用され、例えば特開平4−159320号公報に記載されている方法のように、ノボラック樹脂をヘキサメチレンテトラミンのようなアルカリ触媒兼メチレン架橋剤及び懸濁安定剤の存在下、水媒体中で懸濁重合を行う方法(自己硬化型変性ノボラック樹脂法)が好適に採用することができる。
この方法によれば、極めて高純度で真球状に近い球状微粒体が得られる。
粒子径の大きな成形原料を得るには、上記微粒体を造粒して所定の粒度に調製する方法が有効である。
【0012】
上記粒状変性ノボラック樹脂を被覆する低表面張力物質は、表面張力として、常温(25℃)で臨界表面張力が35ダイン/cm以下の物質をいい、かつ低表面張力物質に特有の潤滑性、離型性、非付着性等の特性を有する化合物であって、特に金属塩類のような金属元素を含まないものを用いる。
前記の低表面張力物質としては、融点が30〜160℃、好ましくは40〜80℃であって、常温にて固体状の低融点化合物を用いる。融点が30℃未満では成形時に計量不良が起こる傾向にあり、融点が160℃を超えると成形機のシリンダー内で潤滑性が乏しく、安定した成形性が得られない傾向にある。
【0013】
低表面張力物質の代表的な例としては、ラウリン酸、パルミチン酸、ステアリン酸等の高級脂肪酸;ラウリン酸モノグリセライド、エチルステアレート、ステアリン酸モノグリセライド、ソルビタンモノパルミテート、ソルビタンモノステアレート等の高級脂肪酸エステル:トリラウリン、トリステアリン、硬化ひまし油等の固形油脂類:ステアリン酸アマイド、エチレンビスステアリン酸アマイド等の高級脂肪酸アマイド:セチルアルコール、ステアリルアルコール等の高級脂肪族アルコール:ステアリルメタクリレート、ステアリルアクリレート等の高級脂肪族(メタ)アクリレート:パラフィンワックス等のワックス状炭化水素:パーフルオロオクタン酸、9H−ヘキサデカフルオロノナノン酸等の含多価フッ素高級脂肪酸;N−エチルパーフルオロオクチルスルホンアミド等の含多価フッ素高級脂肪族スルホンアミド:2−(パーフルオロオクチル)沃化エチル、2−(パーフルオロデシル)沃化エチル等の含多価フッ素高級脂肪族沃化物:1H,1H,9H−ヘキサデカフルオロノナノール、2−(パーフルオロオクチル)エタノール、2−(パーフルオロデシル)エタノール等の含多価フッ素高級脂肪族アルコール:2−(パーフルオロデシル)メチルメタクリレート、1H,1H,11H−アイコサフルオロウンデシルアクリレート等の含多価フッ素高級脂肪族(メタ)アクリレート:パーフルオロドデカン等の含多価フッ素高級脂肪族炭化水素;2−(P−オキシ安息香酸メチル・ヘキサフルオロプロペン3量体付加物等の含多価フッ素脂肪族芳香族化合物、ペンタフルオロベンズアミド等の含多価フッ素芳香族炭化水素:TFEワックス(テトラフルオロエチレンテロマー)、CTFEテロマー(クロロトリフルオロエチレンテロマー)等の含多価フッ素オリゴマー化合物等、あるいはこれらの誘導体、これらの一種以上よりなる混合物並びにこれらに重合触媒等の添加物を配合した組成物等の低表面張力物質が挙げられる。
【0014】
前記粒状変性ノボラック樹脂の表面に被覆する前記低表面張力物質の量は、全フェノール樹脂(変性ノボラック樹脂と後述のフェノール樹脂)に対して0.1〜5重量%、好ましくは0.2〜3重量%である。低表面張力物質の被覆量がフェノール樹脂に対して0.1重量%未満では、成形の際に、成形機のシリンダー内で閉塞が起こり、連続して成形を行うことが困難になることがあり、他方、低表面張力物質の被覆量が5重量%を越えると、成形性の向上効果が頭打ちとなり、また透明な成形品が得難いことがある。
【0015】
粒状変性ノボラック樹脂に対する低表面張力物質の被覆は、各粒子間にできるだけ均一に分布し、しかも、膜厚が均等であるように施されているものが好ましい。
被覆法としては、前記粒状変性ノボラック樹脂と低表面張力物質を、例えば加熱装置付き混練機にて、低表面張力物質の融点以上、粒状変性ノボラック樹脂の軟化点以下の温度域内の所定温度にて加熱しつつ混和・攪拌する方法、両原料を上記温度下に流動床攪拌する方法、粒状変性ノボラック樹脂に対して溶解性を示さず低表面張力物質に対して良溶解性を示す溶媒によって低表面張力物質を溶解し、この溶液に粒状変性ノボラック樹脂を混和しつ溶媒を留去・乾燥する方法等が推奨される。
【0016】
この際、後記するように、変性ノボラック樹脂は、少なくとも成形時には水分含有量が1重量%以下に制御されていることが好ましい。通常、重合後の原料変性ノボラック樹脂は、2〜10重量%の水分を含有するので、使用に先立っては、上記限度内に水分が低減するように乾燥しておき、上記被覆を施すのが有効である。この際の乾燥法としては、粒状変性ノボラック樹脂を真空中又は乾燥空気循環下に60〜120°Cの温度に加熱して行う方法が推奨される。この方法において、低表面張力物質による変性ノボラック樹脂の被覆と変性ノボラック樹脂の乾燥とを併せて行うのも効率的である。
【0017】
このようにして調製された低表面張力物質が被覆された粒状変性ノボラック樹脂は、被覆膜が撥水性で低透湿性の低表面張力物質よりなるため、そのままでも長期間設定水分含有量以下に維持することができるが、工業的には品質管理上、成形直前まで密封容器あるいは密封包装に収納して保管するのが好ましい。
もちろん、上記のような乾燥をせず、そのまま被覆処理した粒状変性ノボラック樹脂であっても、成形直前に乾燥を充分に行い、吸湿しない条件下に成形すれば、上記と同様の成形体となすことができる。
【0018】
この際、前記したように変性ノボラック樹脂としては、水分含有量が1重量%以下にされていることが好ましく、0.5重量%以下にされていることがより好ましい。水分含有量が1重量%を越えると、成形の際に成形品中に気孔が残り、また成形条件によっては加水分解等の劣化現象が派生することもある。上記のような変性ノボラック樹脂はトランスファ成形、射出成形あるいは押出成形用に好適なものとして特開平6−206234号に開示されている。
【0019】
次に、本発明で使用されるCステージまで硬化させた粒状フェノール樹脂は、上記変性ノボラック樹脂をCステージまで硬化させたものであり、粒子径は5〜30μmのものが望ましい。これは、反応時に5〜30μmに粒径制御して得られた樹脂を固液濾過し、乾燥した後、140〜240°Cの温度域内の所定温度で硬化処理することにより得られる。前記粒状フェノール樹脂の形状は真球状であることが望ましい。ここで、Cステージとは、熱処理により樹脂が完全に流動性をなくした状態であり、熱処理を行っていない熱流動性が60〜180mmのものをAステージ、さらには、わずかに流動性を残して熱処理を行ったものをBステージと区分される。
このCステージまで硬化させた粒状フェノール樹脂は、前記粒状変性ノボラック樹脂と配合して本発明のフェノール樹脂成形材料を得ることができるが、Cステージまで硬化させた粒状フェノール樹脂の量が粒状変性ノボラック樹脂に対して、30〜70重量%である。Cステージまで硬化させた粒状フェノール樹脂の量が30重量%未満であったり又は70重量%を超えると所望のフェノール樹脂成形材料が得られ難い傾向がある。
【0020】
本発明においては、補強材として、フェノール樹脂成形材料の主材である粒状変性ノボラック樹脂と同じ種類の粒状変性ノボラック樹脂をCステージまで硬化させた粒状フェノール樹脂を用いるので、真空中又は不活性ガス雰囲気中で高温焼成して得られるアモルファスカーボンも炭素比率の極めて高い高純度なものとなり、高純度の品質が要求される半導体用途等への応用をすることができる。
【0021】
【実施例】
以下、本発明を実施例によって具体的に説明する。
参考例1
(粒状変性ノボラック樹脂の製造)
ノボラック樹脂(三井東圧化学株式会社製 #600)150重量部を160°Cで溶融し、この溶融物を完全ケン化ポリビニルアルコール(重合度約2000)1重量部を溶解した90°Cの熱水(220重量部)へ攪拌しながら投入して懸濁液を形成した。次いで、ヘキサメチレンテトラミン24重量部を40重量部の温水に溶解した溶液を上記懸濁液に添加し、90°Cで20分間攪拌下に懸濁重合を行った。重合が終了後、懸濁液を固液分離し、自然乾燥して粒状変性ノボラック樹脂を得た。
この粒状変性ノボラック樹脂の平均粒子径は300μm、熱流動性は150mmであった。
【0022】
参考例2
(硬化させた粒状フェノール樹脂の製造)
参考例1で得られた粒状変性ノボラック樹脂を熱風乾燥機に入れ、160°Cで4時間熱処理し、Cステージまで硬化させた粒状フェノール樹脂を得た。この樹脂がCステージまで硬化されていることは熱流動性がゼロになっていることから確認された。
次いで上記の樹脂を平均粒子径が20μmとなるようにふるいで分級した。
【0023】
実施例1
先ず、表1に示すように、参考例1で得られた粒状変性ノボラック樹脂(平均粒子径300μm、熱流動性150mm)70重量部と、低表面張力物質としてのステアリン酸マグネシウム2.0重量部、ステアリン酸モノグリセライド0.5重量部、ステアリン酸0.5重量部の混合物とを、加熱ジャケットを有する混練機に入れ、100°Cに加熱しながら混合し、粒状変性ノボラック樹脂に低表面張力物質を被覆した。次いで、70°Cで相対湿度2%以下の空気を用いて水分含有率が0.1重量%になるまで乾燥した。
しかる後に、上記のようにして得られた低表面張力物質が被覆された粒状変性ノボラック樹脂と参考例2で得られたCステージまで硬化させた粒状フェノール樹脂(平均粒子径20μm)30重量部を配合して均一に混合した後、二軸混練機にて110°Cで処理を行い、ペレットとした。
【0024】
得られたペレットを粉砕機にて粉砕し、最大直径2mm程度の射出成形用の成形材料を得た。この成形材料にて射出成形を行い、JIS−K−6911 1995 5.17.1〔曲げ強度及び曲げ弾性率〕に基づいて曲げ試験片(幅10mm、長さ80mm、厚さ4mm)を成形し、試験片の曲げ強度及び曲げ弾性率を測定した。また、上記成形材料にて射出成形を行い、JIS−K−6911 1995 5.7 〔成形収縮率及び加熱収縮率(成形材料)〕に基づいてJIS−K−6911 1995 5.7.2 記載の試験片を成形し、収縮率を測定した。
さらに、上記試験片を窒素ガス雰囲気中で1600°Cまで昇温し、焼成炭化した。得られた焼成品の曲げ強度、曲げ弾性率及び収縮率を上記と同様にして測定した。
測定結果を表1に示す。
【0025】
実施例2、3
表1に示す以外は、実施例1と同様にして射出成形用の成形材料を得た。この成形材料にて射出成形及び焼成炭化を行い、実施例1と同様の各試験片を得、各性能を測定した。測定結果を表1に示す。
【0026】
【表1】

Figure 0004084446
【0027】
実施例1〜3においては、射出成形中、安定した状態で連続的に成形することができ、得られた試験片には気泡の混入は認められなかった。また、表1から明らかなように、本発明のフェノール樹脂成形材料は射出成形サイクル時間が短く、それから得られた成形品は収縮率が低く、優れた曲げ強度及び曲げ弾性率を有し、さらに、かかる成形品から得られた焼成品は収縮率が低く、優れた曲げ強度及び曲げ弾性率を有するものであった。
【0028】
比較例1
低表面張力物質を被覆した粒状変性ノボラック樹脂のみを用いた以外は、実施例1と同様にして射出成形及び焼成炭化を行った。しかし、射出成形中、安定した状態で連続的に成形することはできなかった。
測定結果を表2に示す。
【0029】
比較例2
粒状変性ノボラック樹脂が80重量部、粒状変性ノボラック樹脂をCステージまで硬化させたフェノール樹脂が20重量部とした以外は、実施例1と同様にして射出成形及び焼成炭化を行った。しかし、射出成形中、安定した状態で連続的に成形することはできなかった。
測定結果を表2に示す。
【0030】
比較例3
粒状変性ノボラック樹脂が20重量部、粒状変性ノボラック樹脂をCステージまで硬化させたフェノール樹脂が80重量部とした以外は、実施例1と同様にして射出成形用の成形材料を得た。この成形材料にて射出成形を行ったが、射出成形をすることができず、試験片を得ることができなかった。
【0031】
【表2】
Figure 0004084446
【0032】
表2から明らかなように、比較例1及び比較例2においては、射出成形サイクル時間が長く、それから得られた成形品は収縮率が高く、また、焼成品の曲げ強度が低いものであった。
【0033】
比較例4
表3に示すように、粒状変性ノボラック樹脂が50重量部、粒状変性ノボラック樹脂をBステージまで硬化させたフェノール樹脂が50重量部とした以外は、実施例1と同様にして射出成形用の成形材料を得た。この成形材料にて射出成形を行ったが、射出成形をすることができず試験片を得ることができなかった。
【0034】
比較例5
表3に示すように、粒状変性ノボラック樹脂50重量部、市販のフェノール樹脂(鐘紡株式会社製 ベルパールR−800:平均粒子径15〜20μm)50重量部とした以外は、実施例1と同様にして射出成形用の成形材料を得た。この成形材料にて射出成形を行ったが、射出成形をすることができず、試験片を得ることができなかった。
【0035】
【表3】
Figure 0004084446
【0036】
【発明の効果】
本発明のフェノール樹脂成形材料は、繊維補強剤及び金属含有有機滑材を全く含まないにもかかわらず、成形時に気泡等を含むことなく、安定して射出成形等の高流動成形が可能である。また、成形サイクルを短くできることから、量産化に好適である。さらに、成形時の収縮率及び成形品の焼成時の収縮率が低いため、精度の要求される精密部品等の分野にも好適に利用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phenolic resin molding material, and is particularly suitable for injection molding, transfer molding and compression molding, and has excellent thermal stability and curability during molding, and is suitable for electrical parts, automobile parts, and the like. The present invention relates to a phenol resin molding material that can give a phenol resin molded article having excellent mechanical properties.
[0002]
[Prior art]
Phenolic resins are inexpensive and have been widely used in various products such as electrical materials as resins with excellent properties such as heat resistance, rigidity, hardness, electrical insulation, and chemical resistance. Uses liquid raw materials, including calcium carbonate, calcium hydroxide, aluminum hydroxide, silica, clay, mica, zeolite, talc, glass fiber, glass powder and other inorganic fillers, wood flour, pulp, cloth chips, It was a composite thermosetting resin molded article formed by blending an organic filler such as polyvinyl alcohol fiber.
Although this molded article is inexpensive, it contains a large amount of unreacted phenol, and it is unavoidable that air bubbles are mixed in. Therefore, it cannot be used for a high-performance product because it cannot be highly advanced in terms of characteristics.
[0003]
On the other hand, recently, a high-purity phenolic resin molding material (hereinafter abbreviated as a heat-fluidable granular molding material) that is solid (powder) at room temperature and has heat fluidity has been developed. Widely used as a material for performance parts.
When this heat-fluidable granular molding material is used, it can be molded by a transfer molding method, an injection molding method or an extrusion molding method other than the compression molding method which has been most commonly used as a molding method of phenol resin. A method of molding by using a heat flowable granular molding material by a transfer molding method, an injection molding method or an extrusion molding method is called high fluid molding, and the resulting molding is called a high fluid molding.
[0004]
However, thermosetting resin molding materials such as phenol resin molding materials have the property that, in a plasticized molten state, the viscosity increases due to the progress of the curing reaction of the resin in the material and loses fluidity in a short time. And has very low thermal stability during plasticizing and melting. In particular, when a conventional phenol resin molding material is molded by an injection molding method, the plastic stability of the molding material that has been plasticized and melted in the cylinder of an injection molding machine is inferior, and the proper molding conditions are extremely narrow. there were.
[0005]
For this reason, even if a heat-fluidable granular molding material capable of high-fluid molding is used, normally, as described in JP-B-1-38816, a reinforcing material such as glass fiber or zinc stearate is used. If the metal-containing organic lubricant is not included, satisfactory molding cannot be achieved. That is, when a phenol resin molding material obtained by removing glass fiber and metal-containing organic lubricant from such molding material is subjected to high flow molding, the smooth fluidity of the molding material is impaired in the cylinder of the molding machine, and it is stable and highly accurate. It was difficult to mold into.
Increasing the fluidity of the molding material slows down the curing reaction in the mold, while improving the curing reaction in the mold makes the thermal stability inferior and stabilizes the plasticized molten state. It was difficult to obtain a phenolic resin molding material having both the properties and the curability in the mold.
[0006]
In addition, phenol resin molded products containing organic fillers, organic reinforcing materials and inorganic fillers, inorganic reinforcing materials, metal-containing organic lubricants, etc. are amorphous by firing at high temperature in a vacuum or in an inert gas atmosphere and carbonizing. Obtained as a carbon material such as carbon (glassy carbon), graphite, etc., but the elements constituting these fillers etc. remain as impurities in the carbon material in the firing carbonization process, and a single crystal pulling pot for semiconductors, semiconductors It could not be used for amorphous carbon molded product applications that require high purity such as ion implanters used in the manufacturing process.
[0007]
[Problems to be solved by the invention]
In view of this situation, the object of the present invention is excellent in thermal stability in a plasticized and melted state in a cylinder of a molding machine without including bubbles during molding, and also has excellent curability in a mold. And it is providing the phenol resin molding material which can obtain a uniform phenol resin high fluid molded object with sufficient productivity.
[0008]
[Means for Solving the Problems]
As a result of diligent research to solve the above problems, the present invention solves the above problems by blending a specific granular modified novolak resin and a granular phenol resin obtained by curing the granular modified novolak resin up to the C stage. The present invention has been found.
That is, the present invention cures the granular modified novolak resin (a) and the granular modified novolac resin having a particle diameter of 50 μm or more and a self-curing property of 60 to 180 mm as measured by the disk cure method to the C stage. The granular phenolic resin (b) containing the granular phenolic resin (b), the content of the granular modified novolac resin (a) is 70 to 30% by weight, and the granular modified novolac resin is cured to the C stage. there a 30 to 70 wt%, the granular modified novolak resin (a) in the presence of hexamethylenetetramine a novolak resin, be one that is produced by suspension polymerization in aqueous medium, at room temperature ( covered by a low surface tension material 25 ° C.) the critical surface tension at is less 35 dynes / cm and a melting point 30 to 160 ° C. will be, low table The content of the tension material is 0.1 to 5% by weight relative to the total phenolic resin, the particulate phenolic resin obtained by curing the particulate modified novolac resin to a C stage (b) is in spherical particle diameter 5~30μm It is a phenol resin molding material characterized by being.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
First, the self-curing granular modified novolak resin coated with the low surface tension material used in the present invention has a particle diameter of 50 μm or more, preferably 100 μm or more, and a heat fluidity measured by the disk cure method of 60. One having a thickness of ˜180 mm, preferably 90 to 160 mm is used.
Here, the particle diameter represents the average maximum diameter of the granules, that is, the average value of the maximum diameter (circumscribed sphere diameter).
When the particle diameter is less than 50 μm, it is difficult to stably supply the molding machine. The upper limit of the particle size is not particularly limited, but a practical particle size of 100 to 4000 μm is appropriate.
The shape of the granule may be any of a spherical shape, a cylindrical shape, a cylindrical shape, a cubic shape, and the like. However, when the particle size is small, the spherical shape has better transportability during molding.
[0010]
The heat fluidity is a property that is solid at normal temperature but exhibits fluidity when a load is applied in a heated state. However, unlike ordinary thermoplastic resins, phenolic resins have self-curing properties, so if heating is continued at a temperature that exhibits fluidity for a certain period of time, condensation within and between molecules will occur. Has the property of cross-linking and curing.
Therefore, as a measure representing thermal fluidity, it is represented by the flow (diameter elongation: mm) of the sample resin disk under a predetermined load at 160 ° C. measured by the disk cure method of JIS standard.
Specifically, the heat fluidity is formed by hot pressing 2 g of a sample at 160 ° C. with a load of 1145 kg for 1 minute based on the method of JIS-K-6911 1995 5.3.2 [molding material (disk type)]. It is obtained from the diameter of the disc (average value of longest diameter and shortest diameter).
A resin having a thermal fluidity of less than 60 mm tends to have a poor moldability, whereas a resin having a thermal fluidity of more than 180 mm has a poor productivity because it takes a long time for the curing reaction. Since moisture or the like generated by the reaction is confined in the molded product, there is a risk of becoming a defective product.
[0011]
As a method for producing the self-curing granular modified novolak resin used in the present invention, various methods are employed. For example, as described in JP-A-4-159320, novolak resin is converted to hexamethylene. A method of performing suspension polymerization in an aqueous medium in the presence of an alkali catalyst / methylene crosslinking agent such as tetramine and a suspension stabilizer (self-curing modified novolak resin method) can be suitably employed.
According to this method, spherical fine particles having extremely high purity and almost spherical shape can be obtained.
In order to obtain a molding raw material having a large particle size, a method of granulating the fine particles to prepare a predetermined particle size is effective.
[0012]
Low surface tension material covering the granular modified novolak resin, as the surface tension, the critical surface tension at normal temperature (25 ° C.) good The following substances 35 dynes / cm, and lubricity typical of low surface tension material, A compound having properties such as releasability and non-adhesiveness, and in particular a compound not containing a metal element such as a metal salt is used.
As said low surface tension substance, melting | fusing point is 30-160 degreeC, Preferably it is 40-80 degreeC, Comprising: A solid low melting point compound is used at normal temperature. If the melting point is less than 30 ° C., poor measurement tends to occur at the time of molding, and if the melting point exceeds 160 ° C., lubricity is poor in the cylinder of the molding machine, and stable moldability tends to be not obtained.
[0013]
Representative examples of low surface tension materials include higher fatty acids such as lauric acid, palmitic acid and stearic acid; higher fatty acids such as lauric acid monoglyceride, ethyl stearate, stearic acid monoglyceride, sorbitan monopalmitate and sorbitan monostearate Esters: Solid fats and oils such as trilaurin, tristearin and hardened castor oil: Higher fatty acid amides such as stearic acid amide and ethylenebisstearic acid amide: Higher aliphatic alcohols such as cetyl alcohol and stearyl alcohol: Higher fatty alcohols such as stearyl methacrylate and stearyl acrylate Aliphatic (meth) acrylates: waxy hydrocarbons such as paraffin wax: polyvalent fluorine-containing higher fatty acids such as perfluorooctanoic acid and 9H-hexadecafluorononanoic acid; N-ethyl Polyvalent fluorine-containing higher aliphatic sulfonamides such as perfluorooctylsulfonamide: Polyvalent fluorine-containing higher aliphatic iodides such as 2- (perfluorooctyl) ethyl iodide and 2- (perfluorodecyl) ethyl iodide: Polyhydric higher aliphatic alcohols such as 1H, 1H, 9H-hexadecafluorononanol, 2- (perfluorooctyl) ethanol, 2- (perfluorodecyl) ethanol: 2- (perfluorodecyl) methyl methacrylate, 1H, 1H, 11H-polyvalent fluorine-containing higher aliphatic (meth) acrylates such as eicosafluoroundecyl acrylate: polyvalent fluorine-containing higher aliphatic hydrocarbons such as perfluorododecane; 2- (methyl P-oxybenzoate)・ Polyvalent fluorine-containing aliphatic aliphatic compounds such as hexafluoropropene trimer adducts, pens Polyvalent fluorine-containing aromatic hydrocarbons such as fluorobenzamide: Polyvalent fluorine-containing oligomeric compounds such as TFE wax (tetrafluoroethylene telomer), CTFE telomer (chlorotrifluoroethylene telomer), etc., or derivatives thereof, one or more of these And a low surface tension substance such as a composition in which an additive such as a polymerization catalyst is blended with the mixture.
[0014]
The amount of the low surface tension material coated on the surface of the granular modified novolak resin is 0.1 to 5% by weight, preferably 0.2 to 3%, based on the total phenol resin (modified novolac resin and phenol resin described later). % By weight. If the coating amount of the low surface tension material is less than 0.1% by weight with respect to the phenol resin, it may become difficult to perform continuous molding due to clogging in the cylinder of the molding machine during molding. On the other hand, when the coating amount of the low surface tension substance exceeds 5% by weight, the effect of improving the moldability reaches its peak, and it may be difficult to obtain a transparent molded product.
[0015]
The coating of the low surface tension substance on the granular modified novolac resin is preferably applied so that it is distributed as uniformly as possible between the particles and the film thickness is uniform.
As the coating method, the granular modified novolac resin and the low surface tension substance are mixed at a predetermined temperature within a temperature range not lower than the melting point of the low surface tension substance and not higher than the softening point of the granular modified novolac resin, for example, in a kneader equipped with a heating device. Low surface by a method of mixing and stirring while heating, a method of stirring both raw materials at a fluidized bed at the above temperature, and a solvent that shows good solubility in low surface tension substances without showing solubility in granular modified novolak resin A method in which a tensile substance is dissolved, a granular modified novolak resin is mixed into this solution, and the solvent is distilled off and dried is recommended.
[0016]
At this time, as will be described later, the modified novolak resin is preferably controlled to have a water content of 1% by weight or less at least during molding. Usually, the raw material-modified novolak resin after polymerization contains 2 to 10% by weight of water. Therefore, prior to use, the raw material-modified novolak resin is dried so that the water content falls within the above limit, and the above coating is applied. It is valid. As a drying method at this time, a method in which the granular modified novolak resin is heated to a temperature of 60 to 120 ° C. in a vacuum or under a circulation of dry air is recommended. In this method, it is also efficient to combine the coating of the modified novolac resin with a low surface tension substance and the drying of the modified novolak resin.
[0017]
The granular modified novolak resin coated with the low surface tension material prepared in this way is made of a low surface tension material having a water repellency and low moisture permeability, so that the moisture content can be kept below the set water content for a long time. Although it can be maintained, in terms of quality control, it is preferably stored and stored in a sealed container or a sealed package until just before molding.
Of course, even a granular modified novolak resin that has been coated as it is without being dried as described above can be formed into a molded body similar to the above if it is sufficiently dried immediately before molding and molded under conditions that do not absorb moisture. be able to.
[0018]
At this time, as described above, the modified novolak resin preferably has a water content of 1% by weight or less, and more preferably 0.5% by weight or less. When the water content exceeds 1% by weight, pores remain in the molded product during molding, and deterioration phenomena such as hydrolysis may be induced depending on molding conditions. The modified novolak resin as described above is disclosed in JP-A-6-206234 as being suitable for transfer molding, injection molding or extrusion molding.
[0019]
Next, the granular phenol resin cured to the C stage used in the present invention is obtained by curing the modified novolac resin to the C stage, and the particle diameter is preferably 5 to 30 μm. This can be obtained by solid-liquid filtration and drying the resin obtained by controlling the particle size to 5 to 30 μm during the reaction, followed by curing at a predetermined temperature within a temperature range of 140 to 240 ° C. It is desirable that the granular phenol resin has a true spherical shape. Here, the C stage is a state in which the resin has completely lost its fluidity by heat treatment, and the heat fluidity of 60 to 180 mm that has not been heat-treated is the A stage, and the fluidity remains slightly. Those subjected to heat treatment are classified as B stage.
The granular phenol resin cured to the C stage can be blended with the granular modified novolac resin to obtain the phenol resin molding material of the present invention. The amount of the granular phenol resin cured to the C stage is the granular modified novolak. 30 to 70% by weight based on the resin. If the amount of the granular phenol resin cured to the C stage is less than 30% by weight or exceeds 70% by weight, it tends to be difficult to obtain a desired phenol resin molding material.
[0020]
In the present invention, a granular phenol resin obtained by curing a granular modified novolak resin of the same type as the granular modified novolak resin, which is the main component of the phenol resin molding material, to the C stage is used as the reinforcing material. Amorphous carbon obtained by high-temperature firing in an atmosphere is also highly pure with a high carbon ratio, and can be applied to semiconductor applications and the like that require high-purity quality.
[0021]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
Reference example 1
(Manufacture of granular modified novolac resin)
A 90 ° C heat in which 150 parts by weight of novolak resin (# 600, Mitsui Toatsu Chemical Co., Ltd.) was melted at 160 ° C, and 1 part by weight of completely saponified polyvinyl alcohol (degree of polymerization: about 2000) was dissolved. A suspension was formed by pouring into water (220 parts by weight) with stirring. Next, a solution prepared by dissolving 24 parts by weight of hexamethylenetetramine in 40 parts by weight of warm water was added to the above suspension, and suspension polymerization was performed at 90 ° C. with stirring for 20 minutes. After completion of the polymerization, the suspension was subjected to solid-liquid separation and naturally dried to obtain a granular modified novolak resin.
The granular modified novolak resin had an average particle size of 300 μm and a thermal fluidity of 150 mm.
[0022]
Reference example 2
(Production of cured granular phenolic resin)
The granular modified novolak resin obtained in Reference Example 1 was put in a hot air dryer and heat treated at 160 ° C. for 4 hours to obtain a granular phenol resin cured to the C stage. It was confirmed that the resin was cured to the C stage because the thermal fluidity was zero.
Next, the above resin was classified by sieving so that the average particle size was 20 μm.
[0023]
Example 1
First, as shown in Table 1, 70 parts by weight of the granular modified novolak resin (average particle size 300 μm, thermal fluidity 150 mm) obtained in Reference Example 1 and 2.0 parts by weight of magnesium stearate as a low surface tension substance A mixture of 0.5 parts by weight of stearic acid monoglyceride and 0.5 parts by weight of stearic acid is placed in a kneader having a heating jacket and mixed while heating to 100 ° C. to give a low surface tension substance to the granular modified novolak resin. Was coated. Subsequently, it was dried using air having a relative humidity of 2% or less at 70 ° C. until the water content became 0.1% by weight.
Thereafter, 30 parts by weight of the granular modified novolak resin coated with the low surface tension substance obtained as described above and the granular phenol resin (average particle diameter 20 μm) cured to the C stage obtained in Reference Example 2 were used. After blending and mixing uniformly, the mixture was processed at 110 ° C. with a twin-screw kneader to obtain pellets.
[0024]
The obtained pellets were pulverized by a pulverizer to obtain a molding material for injection molding having a maximum diameter of about 2 mm. Injection molding is performed with this molding material, and a bending test piece (width 10 mm, length 80 mm, thickness 4 mm) is molded based on JIS-K-6911 1995 5.17.1 [bending strength and bending elastic modulus]. The bending strength and bending elastic modulus of the piece were measured. Also, injection molding is performed with the above molding material, and a test piece described in JIS-K-6911 1995 5.7.2 is molded based on JIS-K-6911 1995 5.7 [molding shrinkage and heat shrinkage (molding material)]. The shrinkage rate was measured.
Further, the test piece was heated to 1600 ° C. in a nitrogen gas atmosphere and calcined. The obtained fired product was measured for bending strength, flexural modulus and shrinkage in the same manner as described above.
The measurement results are shown in Table 1.
[0025]
Examples 2 and 3
Except as shown in Table 1, a molding material for injection molding was obtained in the same manner as in Example 1. The molding material was subjected to injection molding and calcination carbonization to obtain each test piece similar to that in Example 1, and each performance was measured. The measurement results are shown in Table 1.
[0026]
[Table 1]
Figure 0004084446
[0027]
In Examples 1 to 3, it was possible to continuously mold in a stable state during injection molding, and no bubbles were found in the obtained test pieces. Further, as is clear from Table 1, the phenolic resin molding material of the present invention has a short injection molding cycle time, and the molded product obtained therefrom has a low shrinkage rate, excellent bending strength and bending elastic modulus, The fired product obtained from such a molded product had a low shrinkage and had excellent bending strength and bending elastic modulus.
[0028]
Comparative Example 1
Injection molding and calcination carbonization were performed in the same manner as in Example 1 except that only the granular modified novolak resin coated with the low surface tension substance was used. However, it was not possible to continuously mold in a stable state during injection molding.
The measurement results are shown in Table 2.
[0029]
Comparative Example 2
Injection molding and calcination carbonization were carried out in the same manner as in Example 1 except that 80 parts by weight of the granular modified novolac resin and 20 parts by weight of the phenol resin obtained by curing the granular modified novolak resin up to the C stage. However, it was not possible to continuously mold in a stable state during injection molding.
The measurement results are shown in Table 2.
[0030]
Comparative Example 3
A molding material for injection molding was obtained in the same manner as in Example 1 except that 20 parts by weight of the granular modified novolac resin and 80 parts by weight of the phenol resin obtained by curing the granular modified novolac resin up to the C stage. Although injection molding was performed with this molding material, injection molding could not be performed and a test piece could not be obtained.
[0031]
[Table 2]
Figure 0004084446
[0032]
As is clear from Table 2, in Comparative Examples 1 and 2, the injection molding cycle time was long, and the molded products obtained therefrom had a high shrinkage rate and the fired product had a low bending strength. .
[0033]
Comparative Example 4
As shown in Table 3, molding for injection molding was carried out in the same manner as in Example 1 except that the granular modified novolak resin was 50 parts by weight and the phenolic resin obtained by curing the granular modified novolac resin to the B stage was 50 parts by weight. Obtained material. Although injection molding was performed with this molding material, injection molding could not be performed and a test piece could not be obtained.
[0034]
Comparative Example 5
As shown in Table 3, the same procedure as in Example 1 was conducted except that 50 parts by weight of a granular modified novolak resin and 50 parts by weight of a commercially available phenol resin (Bellespar R-800: average particle size 15 to 20 μm, manufactured by Kanebo Co., Ltd.) were used. Thus, a molding material for injection molding was obtained. Although injection molding was performed with this molding material, injection molding could not be performed and a test piece could not be obtained.
[0035]
[Table 3]
Figure 0004084446
[0036]
【The invention's effect】
Although the phenol resin molding material of the present invention does not contain any fiber reinforcing agent and metal-containing organic lubricant, it can stably perform high-flow molding such as injection molding without containing bubbles during molding. . Moreover, since a molding cycle can be shortened, it is suitable for mass production. Furthermore, since the shrinkage rate at the time of molding and the shrinkage rate at the time of firing the molded product are low, it can be suitably used in the field of precision parts and the like that require precision.

Claims (1)

粒子径が50μm以上で、かつディスクキュアー法で測定した熱流動性が60〜180mmの自己硬化性を有する粒状変性ノボラック樹脂(a)と粒状変性ノボラック樹脂をCステージまで硬化させた粒状フェノール樹脂(b)とを含有し、粒状変性ノボラック樹脂(a)の含有量が70〜30重量%、粒状変性ノボラック樹脂をCステージまで硬化させた粒状フェノール樹脂(b)の含有量が30〜70重量%であって、上記粒状変性ノボラック樹脂(a)は、ノボラック樹脂をヘキサメチレンテトラミンの存在下、水媒体中で懸濁重合することにより製造されるものであって、常温(25℃)での臨界表面張力が35ダイン/cm以下でありかつ融点30〜160℃の低表面張力物質によって被覆されてなり、低表面張力物質の含有量が全フェノール樹脂に対して0.1〜5重量%であり、粒状変性ノボラック樹脂をCステージまで硬化させた上記粒状フェノール樹脂(b)が粒子径5〜30μmで真球状であることを特徴とするフェノール樹脂成形材料。A granular modified novolak resin (a) having a particle diameter of 50 μm or more and a self-curing property of 60 to 180 mm as measured by a disk cure method and a granular phenol resin obtained by curing the granular modified novolac resin to the C stage ( b), the content of the granular modified novolak resin (a) is 70 to 30% by weight, and the content of the granular phenolic resin (b) obtained by curing the granular modified novolak resin to the C stage is 30 to 70% by weight. The granular modified novolak resin (a) is produced by suspension polymerization of a novolak resin in an aqueous medium in the presence of hexamethylenetetramine, and is critical at room temperature (25 ° C.). the surface tension is covered by a low surface tension material 35 dynes / cm or less and a melting point 30 to 160 ° C., the content of low surface tension materials A 0.1 to 5% by weight of the phenol resin, phenol which the particulate phenolic resin obtained by curing the particulate modified novolac resin to a C stage (b) is characterized in that it is a spherical particle diameter 5~30μm Resin molding material.
JP22926397A 1997-08-26 1997-08-26 Phenolic resin molding material Expired - Lifetime JP4084446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22926397A JP4084446B2 (en) 1997-08-26 1997-08-26 Phenolic resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22926397A JP4084446B2 (en) 1997-08-26 1997-08-26 Phenolic resin molding material

Publications (2)

Publication Number Publication Date
JPH1160897A JPH1160897A (en) 1999-03-05
JP4084446B2 true JP4084446B2 (en) 2008-04-30

Family

ID=16889382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22926397A Expired - Lifetime JP4084446B2 (en) 1997-08-26 1997-08-26 Phenolic resin molding material

Country Status (1)

Country Link
JP (1) JP4084446B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068128A (en) * 1999-06-24 2001-03-16 Unitika Ltd Separator for fuel cell and manufacture thereof
ATE535576T1 (en) 2000-07-03 2011-12-15 Cluster Technology Co Ltd SHAPED STRUCTURE COMPRISING A MICROSCOPIC STRUCTURE AND MOLDING METHOD FOR PRODUCING SAME
JP4493189B2 (en) * 2000-09-06 2010-06-30 旭化成建材株式会社 Phenolic resin composition
JP2002231261A (en) * 2001-01-26 2002-08-16 Unitika Ltd Separator for fuel cell and its manufacturing method
JP2003026900A (en) * 2001-07-17 2003-01-29 Unitika Ltd Method for producing resin material for injection molding
JP2003068333A (en) * 2001-08-27 2003-03-07 Unitika Ltd Molding method of resin product for forming fuel cell separator
JP2005036137A (en) * 2003-07-17 2005-02-10 Kyocera Chemical Corp Phenolic resin molding material

Also Published As

Publication number Publication date
JPH1160897A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JP4084446B2 (en) Phenolic resin molding material
JPH045693B2 (en)
US4405745A (en) Polymer stabilization
AU2005296244B2 (en) Thermoset desiccant product and mehod for making same
JP3249257B2 (en) Amorphous carbon molded body and method for producing the same
US4430459A (en) Method and composition for a furan-modified phenolic novolak binder system
JPS5829269B2 (en) Manufacturing method of carbonaceous bricks
DE3722602A1 (en) METHOD FOR PRODUCING SHAPED PARTS BASED ON SILICON OXYCARBIDE
JPH10278079A (en) Manufacture of phenol resin high-flow molded body
JP3692682B2 (en) Manufacturing method of ceramic molded body
JP3425986B2 (en) Phenolic resin high flow molding and molding method thereof
JPH11342518A (en) Injection molding of phenol resin
JPH04201433A (en) Preparation of molded item made of polyimide resin
JP2001089239A (en) High heat conductivity amorphous carbon composite
JPS6139331B2 (en)
JP2003026900A (en) Method for producing resin material for injection molding
JPS5849745A (en) Phenolic resin molding compound
JPH06279099A (en) Binder for refractory and preparation of refractory granule using the binder
JPH0494908A (en) Resin composition for powder molding
JPS63190779A (en) Manufacture of silicon carbide porous body
JPH04260642A (en) Binder for kneading and granulating refractory and preparation of granules with the binder
JPH06206957A (en) Phenolic resin molding material
JP2003285358A (en) Method for manufacturing phenol resin molded product
JPS6195084A (en) Manufacture of pencil core
JPH0244063A (en) Production of carbonaceous insulating structural body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

EXPY Cancellation because of completion of term