JP2001012210A - 各種蒸気ガスタービン合体機関 - Google Patents

各種蒸気ガスタービン合体機関

Info

Publication number
JP2001012210A
JP2001012210A JP2000043706A JP2000043706A JP2001012210A JP 2001012210 A JP2001012210 A JP 2001012210A JP 2000043706 A JP2000043706 A JP 2000043706A JP 2000043706 A JP2000043706 A JP 2000043706A JP 2001012210 A JP2001012210 A JP 2001012210A
Authority
JP
Japan
Prior art keywords
steam
turbine
heat exchanger
heat
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000043706A
Other languages
English (en)
Inventor
Hiroyasu Tanigawa
浩保 谷川
Kazunaga Tanigawa
和永 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11117404A external-priority patent/JP2000038904A/ja
Application filed by Individual filed Critical Individual
Priority to JP2000043706A priority Critical patent/JP2001012210A/ja
Publication of JP2001012210A publication Critical patent/JP2001012210A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

(57)【要約】 【課題】 地球温暖化防止が急務であり、電気料金も高
く、自動車公害も我慢の限界です。そこで内燃機関の燃
料費を半額として、CO2を含む公害の排出を皆無と
し、熱と電気と冷熱を供給する内燃機関を提供すること
を目的とする。 【解決手段】 蒸気ガスタービン合体機関の燃焼器兼熱
交換器の外壁を導水管を含む螺旋状の水冷外壁単位組立
構造等とし、小径多数蜂の巣状に短小化高圧化配置し
て、その内部に螺旋環状に導水管を1以上設けて、同一
圧縮空気量で、従来技術の4倍前後の燃料を高圧の雰囲
気で、900℃制御燃焼で過熱蒸気噴射量を最大にし
て、限りなく過熱蒸気に変換し、蒸気タービン側に供給
する熱エネルギを、最先端複合発電設備の10倍以上と
して、凝縮水固定燃焼排気ガス0及び、蒸気ガスタービ
ンの排気温度0℃以下とした冷熱供給も含めて、蒸気ガ
スタービン合体機関サイクルの熱効率80%前後、及び
比出力の大上昇を図る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、蒸気ガスタービン
合体機関、詳しくは、蒸気ガスタービンの全多数燃焼器
兼熱交換器の外壁を、略螺旋状の熔接構造水冷外壁熱交
換器又は、螺旋状の水冷外壁単位組立構造熱交換器又
は、螺旋状の溶接構造水冷外壁単位組立て構造熱交換器
として、小径多数蜂の巣状に短小化配置して、内部に螺
旋環状に導水管乃至蒸気管を、1以上出来るだけ多数用
途に合わせて設けて、上流側に燃料蒸気供給手段を設け
て、出来るだけ高圧の雰囲気で900℃前後で、燃焼制
御燃焼させることで、水素の燃焼ガスである過熱蒸気
(以後過熱蒸気を燃焼ガスに含める)の噴射量を最大に
して、完全燃焼短時間終了し、地球温暖化ガス(CO
2)を水固定として、排気ガス(CO2)0に近付けた
燃焼器兼熱交換とします。該熱交換伝熱面積を増大する
と共に、短小高圧容器として燃料蒸気供給手段の燃料供
給を、従来技術の4倍前後に増設容易にし、供給燃料の
全部前後から大部分の熱エネルギを、過熱蒸気に変換し
て、該燃焼ガスと過熱蒸気全部により出力を得る、又は
燃焼ガスと過熱蒸気の一部により出力を得る蒸気ガスタ
ービンにより、更に燃焼ガス(CO2)水固定を増進確
定して、有害ガス排気0として排気し、残りの過熱蒸気
で蒸気タービン等を駆動します。例えば過熱蒸気溜に貯
蔵して、該過熱蒸気溜より過熱蒸気を噴射するロケット
等を含めて、該燃焼ガスと過熱蒸気により出力を得る蒸
気ガスタービンと、過熱蒸気により出力を得る蒸気ター
ビンにより、各種航空機、各種船舶、各種車両、各種熱
と電気と冷熱の供給設備、電気の供給設備等あらゆる用
途に対応可能にして、磁気摩擦動力伝達装置も適宜に含
めた新技術の各種蒸気ガスタービン合体機関に関する。
【0002】
【従来の技術】蒸気タービン・ガスタービン複合機関の
うち、ガスタービン燃焼器の内部に熱交換器を設けた先
行技術として特開昭50−89737号が開示されてい
る。この発明は、ガスタービン燃焼器の高温領域に、蒸
気タービンサイクルの過熱器乃至再熱器を設けることに
よって、特別の補助的な燃焼器を必要とすることなく、
蒸気タービンサイクルの過熱蒸気温度を高め、複合プラ
ント全体の効率向上を図るものである。又、特開昭52
−156248号は、ガスタービン間の燃焼ガスとの熱
交換によって蒸発を行なうことにより、廃熱回収ボイラ
出口廃ガス温度の低下を図り、ボイラ効率を向上させる
ことが開示されている。しかし、これらは、いずれも過
給ボイラサイクルの熱効率の向上を図るもので、ガスタ
ービンの圧力比と比出力の同時上昇を図るものでもガス
タービンの熱効率上昇を図るものでもない。
【0003】又、先の出願としてガスタービン燃焼器を
改良した、特願平6−330862号、特願平7−14
5074号、特願平7−335595号、特願平8−4
1998号、特願平8−80407号、特願平8−14
3391号、特願平8−204049号、特願平8−2
72806号、特願平9−106925号、特願平9−
181944号、特願平10−134720号、特願平
10−134721号、特願平11−69406号、特
願平11−77189号があります。以上先の出願に基
づく優先権主張出願は概略的に、全動翼を含む及び/ガ
スタービンの全複数の燃焼器を長大化して、該水冷外壁
を螺旋状に具備して高圧容器とした熱交換器としても兼
用して、大部分の供給熱量を過熱蒸気に変換可能にする
ことにより、タービン耐熱限界温度を越えることなく圧
力比及び比出力を極限まで同時に上昇可能にする装置及
び方法とするものです。
【0004】
【発明が解決しようとする課題】内燃機関として重要な
ものに、有害排気ガスを0にする使命があります。ガス
タービンサイクルの性能として重要なものに、熱効率及
び比出力があり、圧力比が大きい程高い熱効率が得ら
れ、熱効率(圧力比)が一定では、サイクルに供給する
熱量が大きい程大きな比出力が得られる。即ち、この圧
力比及び比出力の増大は、いずれもタービンの耐熱限界
温度で大きな制約を受ける。このため、蒸気ガスタービ
ンの耐熱限界温度を越えることなく、更に蒸気ガスター
ビン排気で地域冷房するため、圧力比及び供給熱量(燃
料燃焼質量)を極限まで増大する方法は、供給熱量(燃
料発熱量)の大部分を過熱蒸気に変換して蒸気ガスター
ビンや蒸気タービン等に使用して、熱効率×比出力=圧
力比×燃焼ガス質量容積=速度×質量容積を大増大する
(谷川力学では、質量容積X速度(圧力比)が仕事を
し、高温は単位容積質量小=仕事量の減少要因と考え
る)と共に、燃焼ガス温度が、タービン入口耐熱限界温
度以下から、用途により400℃以下となるように、燃
焼器兼熱交換器で限りなく熱交換して得た、超臨界を含
む出来るだけ大量の過熱蒸気の噴射撹拌燃焼により、燃
焼器兼熱交換器内で過熱蒸気にCO2やNOx等を固定
混合して、有害燃焼ガス0に近付けます。過熱蒸気圧力
を圧力比の10倍近傍に大上昇して噴射燃焼する、燃料
撹拌燃焼・燃焼ガス質量容積の増大として、該過熱蒸気
を燃焼ガスで冷却することも含めて、蒸気ガスタービン
を駆動して、該排気を凝縮水に固定して、有害燃焼ガス
0の、排気温度を0℃以下とすることも含めて排気しま
す。該過熱蒸気を噴射するロケットや蒸気タービンの駆
動を含めて、該夫夫の出力により各種機械の駆動や、人
や荷物を運輸する用途や、熱や電気や冷熱を供給する用
途に使用することを目的とする。
【0005】即ち、ガスタービンの圧力比及び、比出力
を増大するための障害は、供給熱量のうち燃料発熱量で
あり、燃料発熱量の用途は過熱蒸気に変換すると、各種
蒸気タービンを含めて、限りなく多いため、燃焼器兼熱
交換器を、小径多数蜂の巣状に短小化・高圧化配置し、
その内部に螺旋環状に導水管乃至蒸気管を1以上出来る
だけ多数、用途に合わせて設けて、燃焼ガスを内径内側
から、蒸気ガスタービン最適段に供給して、伝熱面積を
大増大した熱交換器としても兼用して、最上流側多数の
燃料蒸気供給手段により、高圧雰囲気で燃料・過熱蒸気
噴射、900℃前後の燃焼制御燃焼として、超臨界など
過熱蒸気噴射撹拌冷却燃焼・熱交換により、有害燃焼ガ
ス水固定・有害排気ガス0乃至NOx皆無燃焼として、
燃料発熱量を過熱蒸気に大変換して、蒸気ガスタービン
の入口温度耐熱限界温度以下、更に400℃以下まで限
りなく熱交換して、過熱蒸気の質量容積増大及び、燃料
燃焼容積質量4倍増等により、圧力比及び比出力を、極
限まで増大させることができる機関を提供します。例え
ば燃料燃焼質量を、最大で理論空燃比まで、従来技術の
4倍前後に増大可能にして、圧力比及び燃料燃焼質量の
増大により、供給熱量のうち、蒸気ガスタービンの使用
燃焼ガス熱量を大幅に低減して、蒸気ガスタービンの熱
効率及び比出力を、上昇する装置を提供します。その過
程で外気熱エネルギも過熱蒸気に変換して、燃焼ガスと
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気の全部乃至1部により、蒸気ガ
スタービンを駆動し、過熱蒸気により、蒸気タービン圧
縮機や蒸気タービンを駆動して、該夫夫により例えば各
種車両を駆動し、又は各種航空機を駆動し、又は各種船
舶等を駆動し、又は各種機械を駆動することを目的とす
る。
【0006】ガスタービンの作動ガスとしての燃焼ガス
は、一般に空気の割合が非常に多く、理論空燃比の4倍
前後の空気を含む(以下4倍前後の空気を含むものに統
一して説明するが数値に限定するものではない)。即
ち、従来技術では、大量の熱エネルギを消費して圧縮し
た空気の、80%近くを無駄に排出し、加えて燃焼温度
の低減に使用して大損失となるため、熱交換冷却により
燃焼用として圧縮した空気を、100%燃焼に利用・燃
料燃焼質量を4倍も含めて、圧縮空気の必要な別用途に
はバイパスを設けて対応し、出来るだけ高圧の雰囲気で
限りなく熱交換し、過熱蒸気を大増大して、蒸気ガスタ
ービン入口温度400℃以下に低下も含めて、燃焼ガス
容積減少質量増大による、圧力比及び燃料燃焼質量の増
大により、外気温度を含む供給熱量のうち、蒸気ガスタ
ービンの使用熱量を大低減して、使用燃焼ガス質量容積
を、過熱蒸気噴射撹拌900℃制御燃焼により、過熱蒸
気により大増大し、蒸気ガスタービンの熱効率を従来技
術の3倍前後に、大上昇すると共に、比出力を大上昇し
ます。燃焼ガスと燃焼ガス温度が蒸気ガスタービンの耐
熱限界温度以下になるように熱交換して得た過熱蒸気に
より、蒸気ガスタービンを駆動し、該過熱蒸気で蒸気タ
ービン等を駆動して、圧力を空気圧縮の10倍近くに大
上昇した、超臨界の蒸気条件を含む過熱蒸気の使用によ
り、CO2を含む有害排気ガスを水固定排水として0
に、総熱効率を2乃至3倍前後に大上昇すると共に、比
出力を大上昇することを目的とする。
【0007】蒸気ガスタービン燃焼器を、小径多数蜂の
巣状に短小化配置して、内部に螺旋環状に導水管を1以
上設けて、伝熱面積を大増大した燃焼器兼熱交換器とし
ても兼用すると、圧力比が大きい程蒸気ガスタービンの
熱効率が高くなり、同じ発熱量の燃料燃焼では、圧力比
が大きい程高温が得られるのに加えて、燃焼器兼熱交換
器の燃焼ガス温度が、900 C前後と高温程熱交換も
容易となる。このため、同一圧縮空気量で燃料供給量4
倍の増大を含めて、最先端蒸気・ガスタービン複合サイ
クル発電設備の、廃熱回収熱交換器で回収する場合の、
10倍以上の熱エネルギ回収により、熱効率を2倍にす
ることを目的にします。更に熱交換器の伝熱面積の縮少
短小化可能により、最上流側のみ燃料蒸気供給手段を可
能にします。高圧の雰囲気での困難な、900℃前後の
燃焼制御NOx皆無燃焼を、超臨界を含む過熱蒸気の噴
射量を最大にすることで可能にし、該過熱蒸気の超高速
噴射撹拌燃焼により、最短時間完全燃焼終了・NOx皆
無燃焼とし、熱交換蒸気ガスタービン入口燃焼ガス温度
400℃では、燃焼ガス容積が従来技術の略1/2にな
るため、燃料燃焼質量4倍増に加えて、超臨界を含む5
40℃前後の過熱蒸気噴射撹拌燃焼として、過熱蒸気を
含む燃焼ガス容積質量の大増大を図り、過熱蒸気による
冷却燃焼により、NOx皆無燃焼にします。更に圧力比
の上昇及び、燃焼ガスで冷却CO2水固定、蒸気ガスタ
ービン排気温度の低下による、排気損失の大幅な低減を
可能にし、発熱量を極限まで有効利用可能な、超高性能
・超高熱効率の、蒸気ガスタービン合体機関を提供する
と共に、磁気摩擦動力伝達装置を最大限に活用して、動
力伝達損失を極限まで低減することを目的とする。
【0008】地球温暖化防止が声高に叫ばれております
が、実態は全く逆に、CO2排出増大が加速しておりま
す。また公害被害者も地球規模で増大しており、特に大
都市周辺の道路沿いに棲む、公害被害者は我慢の限界に
近づいております。そこで誰でも考えることに、人類の
ために何か貢献したいという思いです。私も完全往復機
関と完全回転機関を提供して、人類のために貢献したい
と考えて、略55年を経過しました。その過程で最も強
く感じていることは、少し困難な問題があると、申合せ
たように、誰も挑戦しないことです。即ち、自然現象に
酸性雨があり、人間の周辺には、飲料水など水に物質が
溶解混合したものばかりで、水中植物の藻類などCO2
を消費しておるのです。この自然現象など水の性質に人
智を結集すれば、内燃機関からNOxやCO2など、有
害な排気を皆無にできることは明白です。特に内燃機関
は高圧高温反応から、0℃以下の低圧低温反応に混合ま
で、あらゆる条件が完備しているのに加えて、NOxを
低減するためにも、熱効率を上昇するためにも、完全燃
焼短時間終了するためにも、水素の燃焼ガスである過熱
蒸気を、超臨界以下で超高速噴射撹拌燃焼するのが、欠
点皆無で最高に良いという問題があります。そこで用途
に合わせて燃焼器兼熱交換器の圧力比を最高として、出
来るだけ高圧の雰囲気で熱交換することで、出来るだけ
大量高圧の過熱蒸気を噴射撹拌燃焼して、完全燃焼短時
間終了して、NOxやCO2等の有害物質を過熱蒸気乃
至水に固定混合し、更に蒸気ガスタービンで過熱蒸気と
低温燃焼ガスを撹拌混合して、酸性雨以上の低温条件と
して有害燃焼ガス水固定とし、更に用途規模に合わせ
て、燃焼ガス水固定・無害水を促進する物質を混入し
て、有害排気0で公害皆無の排気・排水として、熱効率
を80%前後に上昇することを目的とする。
【0009】
【課題を解決するための手段】内燃機関を運転しながら
地球温暖化防止するためには、CO2の排出を一刻も早
く皆無に近付けることです。そして内燃機関の公害を皆
無にするためには、NOxや浮遊粒子状物質などの公害
物質排出を、一刻も早く皆無に近付けることです。そこ
で本発明は、CO2及びNOx及び浮遊粒子状物質など
の公害物質を、先ず900℃前後で燃焼制御過熱蒸気噴
射量最大として、完全燃焼短時間終了して、CO2の排
出のみとします。燃焼器兼熱交換器を利用して、出来る
だけ高圧の雰囲気で燃焼及び熱交換して、限りなく燃焼
ガス温度を低下して、蒸気ガスタービン入口温度400
℃以下を含めて、排気温度0℃以下成層圏以下の低温も
含めて、あらゆる有害燃焼ガスを、付着溶解する水蒸気
乃至水を増大します。更に水に固定することで有害燃焼
ガス排出を0にするため、用途に合わせて排気温度0℃
以下の燃焼ガスを、蒸気ガスタービンの過熱蒸気に合流
して、該過熱蒸気を冷却し、燃焼ガス質量増大=出力増
大・水蒸気冷却により、低温の酸性雨環境も含めて、有
害燃焼ガスを水固定にして排水します。その過程で用途
に合わせて、有害燃焼ガス水固定・無害排水を促進する
物質を、給水等に混入して、無害の排気及び無害の排水
とします。
【0010】圧縮機及び燃焼器兼熱交換器で限りなく熱
交換することで、圧縮機の圧力比を最高にして、出来る
だけ高圧の雰囲気で燃焼・過熱蒸気噴射及び熱交換し
て、超臨界以下の過熱蒸気を、出来るだけ大量に噴射撹
拌完全燃焼短時間終了して、非常に困難な900℃前後
の制御燃焼を、NOx皆無燃焼として、水固定に重要な
過熱蒸気を増大します。用途によりCO2以外の有害燃
焼ガスの発生も考えられます。水はあらゆる物質を容易
に溶解混合しますが、公害物質を選択して水に溶解混合
排出するため、用途に合わせて、過熱蒸気になる過程で
給水等に、燃焼ガス水固定・無害排水を促進する物質
の、化学薬品や物質を混入して、公害物質を高圧高温の
化学反応乃至、0℃以下乃至成層圏以下の低温化学反応
・混合により、水に固定して排出し、公害物質排出0に
近付けます。出来るだけ高圧高温の雰囲気で、燃焼及び
熱交換する利点は、例えば初圧1kg/cm2・初温0
℃・圧力比60で、600℃の計算空気温度が得られる
ため、外気温度30℃前後の夏場を考えるとき、最先端
蒸気ガスタービン複合サイクル発電設備の、ガスタービ
ン排気温度を遥かに越える、外気熱エネルギが得られま
す。更に供給燃料4倍増を含めると、蒸気タービン側に
供給できる熱エネルギは、最先端発電設備ガスタービン
の、廃熱回収の10倍以上となるのに加えて、蒸気ガス
タービンの排気温度を0℃以下とした、冷熱の供給が可
能になります。従って、蒸気ガスタービンの熱効率を考
えられない程上昇して、総合熱効率80%以上を可能に
します。
【0011】従来技術ガスタービンの作動ガスとしての
燃焼ガスは、一般に空気の割合が非常に多く、理論混合
比の4倍前後の空気を含む。即ち、大量の熱エネルギを
消費して圧縮した空気の略80%を無駄使いし、加えて
燃焼温度の低減に使用して大損失となるため、燃焼器兼
熱交換器の外壁を導水管を含む螺旋状の溶接構造水冷外
壁又は、螺旋状の熔接構造水冷外壁単位組立構造又は、
螺旋状の水冷外壁単位組立構造として、小径多数蜂の巣
状に短小化・高圧化配置し、その内部に螺旋環状に導水
管を一組以上出来るだけ多数組設けて、熱交換伝熱面積
を増大して、熱交換による過熱蒸気変換により、燃焼用
として圧縮した空気の略100%を、燃焼に関与させて
有効利用可能にします。高圧化及び燃料蒸気供給手段の
最上流側のみ増設を容易にして、該燃料供給量の最大を
従来技術の4倍前後にして、燃焼ガス容積質量を増大し
ます。燃焼器兼熱交換器伝熱面積を大増大して、燃焼ガ
ス温度を限りなく過熱蒸気に変換して、高圧のNOx低
減困難な雰囲気での、900℃前後の制御燃焼を、超臨
界の過熱蒸気噴射撹拌燃焼を含めて、燃焼ガス容積質量
増大・NOx皆無を確実にします。過熱蒸気噴射燃焼蒸
気ガスタービン入口耐熱限界温度以下から、更に400
℃以下まで、単位容積を従来技術の略1/2前後とし
て、高圧低温燃焼ガスを、蒸気ガスタービンの過熱蒸気
圧力に合わせて、該中流内側から供給し、該過熱蒸気を
冷却しながら該質量を増大し、供給燃焼ガスの成層圏雰
囲気水接触水固定及び、単位容積質量の増大を図り、排
気熱交換器で廃熱回収により、凝縮水として燃焼ガス水
固定し、無害の水にして排水します。熱交換して得た超
臨界等の過熱蒸気を噴射するロケット等を含めて、蒸気
ガスタービンや蒸気タービンの出力を多種用途に使用し
ます。
【0012】該燃焼器兼熱交換器の設計事項としては、
最も小型用として使用する場合は、第11・12特例実
施例図17・図18のように、大径の1水冷外壁水冷内
壁導水管の燃焼器兼熱交換器として、水冷外壁内径に応
じてその中に、出来るだけ多数の略螺旋環状の導水管兼
蒸気管を設けて使用します。図1乃至図4の通常の高圧
用では、蜂の巣状に円筒型燃焼器兼熱交換器を設けるた
め、空き間ができますが、該空き間を図にない空き間型
燃焼器兼熱交換器としてもよく、その場合は、図13
(d)の水冷外壁燃焼器兼熱交換器を使用します。該熱
交換により、蒸気ガスタービン入口温度を、タービン耐
熱限界温度以下から400℃以下に、用途に合わせて限
りなく低下させ、燃焼用に圧縮した全圧縮空気を、理論
空燃比燃焼に近づけて、燃料燃焼質量を4倍前後まで増
大可能にして、燃料発熱量の大部分を過熱蒸気に変換し
て、超臨界の蒸気条件等を含めて、空気圧縮の10倍近
い圧力の上昇と、圧力比の高い雰囲気での、外気熱エネ
ルギ回収を含む熱交換により、最先端蒸気・ガスタービ
ン複合サイクル発電設備の、同一圧縮空気量ガスタービ
ンの、廃熱回収熱交換器で回収する場合の、10倍以上
の熱エネルギ回収使用を図り、総合熱効率80%前後及
び比出力を大上昇します。燃焼ガスと燃焼ガス温度がタ
ービン耐熱限界温度以下から、400℃以下となるよう
に熱交換して得た過熱蒸気により、蒸気ガスタービンを
駆動し、該過熱蒸気により、蒸気タービンや蒸気タービ
ン圧縮機等を駆動して、該回転動力や推力により、プロ
ペラや車輪や発電機や機械等を回転して、各種航空機や
自動車や船舶や機械等を駆動すると共に、用途により過
熱蒸気排気や燃焼ガス排気や圧縮空気の噴射推力によ
り、各種航空機や船舶等を浮揚推進する装置等を、夫夫
を制御する制御装置を含めて提供します。
【0013】又、空気を圧縮する場合と水を圧縮する場
合を比較するとき水蒸気が略1700分の1に凝縮され
た水を圧縮するのが遥かに有利であり、超臨界の蒸気条
件まで保有熱量(保有熱エネルギ量)を増大可能なのに
加えて、空気圧縮の10倍近い圧力の過熱蒸気として放
出すると、1700倍を遥かに越える大容積・大速度と
して、熱効率大上昇が得られるため、圧縮した空気の略
全部を、燃焼に有効利用する最良の方法が、増大供給燃
料の熱エネルギ略全部を含めて、最も効率良く過熱蒸気
に変換して、使用することである。従って超高性能の燃
焼器兼熱交換器を得るため、できるだけ高圧高温のNO
xを生成しない、900℃前後での制御燃焼及び、熱交
換して限りなく低温燃焼ガスにすることで、最も効率良
く熱交換すると共に、水素の燃焼ガスである超臨界など
の過熱蒸気を噴射して、撹拌冷却NOx皆無短時間完全
燃焼終了・出力増大するのが最良です。
【0014】同一発熱量の燃料から取り出す熱量(過熱
蒸気)を、蒸気ガスタービン入口温度400℃以下など
を含めて、外気熱エネルギも含めた最大にして、最も効
率良く膨大な過熱蒸気を得ると共に、蒸気ガスタービン
を駆動する燃焼ガス質量を最大に、該熱交換により駆動
燃焼ガス熱量を最小にして、最も熱効率良く蒸気ガスタ
ービンを駆動すると共に、燃焼ガス排気を大幅に低温の
排気熱量として、有害燃焼ガス排気を0にすると共に、
蒸気ガスタービンの過熱蒸気の使用量を低減して、窒素
ガスの排気にすることで排気温度を0℃以下として、排
気熱交換器により冷熱を回収して供給し、排気損失を大
低減した熱と電気と冷熱の供給設備としても使用しま
す。圧縮空気の必要な別用途にはバイパスを設けて使用
し、また通常使用の歯車装置に換えて、先の出願の磁気
摩擦動力伝達装置を適宜に、又は全面的に使用すること
で、あらゆる補機を含めて、最も効率良く動力を伝達す
る駆動装置として、全動翼を含む蒸気ガスタービン合体
機関サイクルの最高熱効率を、2倍乃至3倍前後に大上
昇を図ります。
【0015】
【発明の実施の形態】発明の実施の形態や実施例を、図
面を参照して説明するが、実施形態や実施例と、既説明
と、その構成が略同じ部分には、同一の名称又は符号を
付してその重複説明は省略し、特徴的な部分や説明不足
部分は、順次追加説明する。又、発明の意図する所及び
予想を具体的に明快に説明するため、数字で説明する部
分がありますが、数字に限定するものではありません。
又、この発明に使用する燃焼器兼熱交換器4は、小径多
数蜂の巣状に短小化配置して、内部に螺旋環状に導水管
1乃至蒸気管6を、1以上出来るだけ多数用途に合わせ
て設けて、熱交換器伝熱面積を拡大し、該燃焼ガスを、
蒸気ガスタービンの最上流側から供給される、過熱蒸気
圧力に応じて、中流側の内側から供給する構成としま
す。図1乃至図4・図13・図14の如く、水冷外壁2
6を1以上複数の導水管1を含む螺旋状の熔接構造又
は、螺旋状の溶接構造を含む水冷外壁単位52組立構造
とした、燃焼器兼熱交換器4として、比較的大きな圧力
比を設定して、燃料蒸気供給手段27を、夫夫の最上流
側に設ける等、多数とすることで燃料蒸気供給手段27
の増設を容易とし、熱交換速度の大上昇を図る蒸気ガス
タービンを構成し、熱交換して得た過熱蒸気で駆動する
蒸気タービン等を構成し、例えば図にない発電機兼電動
機等を設けて、熱と電気と冷熱の併給設備や、始動装置
としても兼用すると共に、各種運輸装置の駆動や機械の
駆動等多種用途に使用します。
【0016】図1・図2を参照して、全動翼・蒸気ガス
タービン合体機関中核部の実施例を説明する。全動翼の
発想は、自動車を手で押して移動する場合、ブレーキを
引いた状態で押すと非常に疲れますが、仕事量は0であ
り、ブレーキを解除して押すと容易に移動できます。従
って、圧縮機やタービンに静翼があると、エネルギの大
損失となるため、静翼を動翼に置換して全動翼として、
置換動翼を外側軸装置に結合し、従来動翼を内側軸装置
に結合して、互いに反対方向に回転する、内側軸装置と
外側軸装置を、導水管1などの冷却装置を有する磁気摩
擦動力伝達装置14により結合して、最も効率良く2軸
を2重反転駆動すると共に、周速を略半分づつ分担し
て、外径を略2倍にして流体通路を略4倍として、比出
力を大増大すると共に、熱効率の大上昇を図る。又は周
速を従来技術と略同じにして、動翼間相対速度を略2倍
にして、比出力及び熱効率の大上昇を図る。又は周速を
従来技術の略半分づつにして、許容応力が略4分の1
の、安価で静粛等、多様な設計(業務用または家庭用の
熱と電気と冷熱の併給設備等)を可能にしながら、熱効
率の大上昇を図るものです。又はCO2を含む有害燃焼
ガスの排気ガス0とするため、低温の燃焼ガスを蒸気ガ
スタービンの中流側に供給して、過熱蒸気を冷却して、
該凝縮水に有害燃焼ガスを固定して、外側タービン動翼
群に設けた毛細管放出手段(57)より、遠心力を利用
して放出し、有害排気ガス0とします。
【0017】図1の蒸気ガスタービン合体機関中核部の
第7実施例及び、図5乃至図8の蒸気タービン圧縮機の
実施例及び、図9乃至図12の蒸気ガスタービン合体機
関の実施形態を参照して説明します。図1全動翼圧縮機
右端の置換した外側圧縮機動翼群1段16より、通常の
如く空気を吸入して、偶数段の内側圧縮機動翼群17
と、奇数段の外側圧縮機動翼群16が協力して、全動翼
により効率良く空気を圧縮して、該圧縮空気15を、内
側軸装置を含む内側圧縮機動翼群17に設けた、冷却手
段55により該夫夫を冷却水により冷却し、該冷却水を
水噴射手段56より噴射して直接接触空気冷却し、外側
軸装置を含む外側圧縮機動翼群16に設けた、毛細管放
出手段57より該凝縮冷却水を、遠心力および毛細管現
象を利用して放出する、空気冷却により高圧低温の圧縮
空気15を供給します。高圧低温の圧縮空気15は、外
側圧縮機動翼群終段16より、環状の出口21を介し
て、環状の受け口22、環状の圧縮空気溜8より、小径
多数蜂の巣状に短小化配置して、内部に螺旋環状に導水
管乃至蒸気管を1以上出来るだけ多数、用途に合わせて
設けて、伝熱面積の増大した、燃焼器兼熱交換器4に供
給します。
【0018】供給された高圧低温の圧縮空気15は、図
にない公知の制御装置からの指令により、該夫夫の上流
側の、燃料蒸気供給手段27から供給される、最大で従
来技術の4倍前後の燃料と、超臨界を含む大量の過熱蒸
気噴射撹拌冷却燃焼により、900℃前後に燃焼制御短
時間完全燃焼終了して、高圧の雰囲気での非常に困難な
NOx皆無燃焼により、燃焼ガスCO2のみを成功させ
ます。略理論空燃比燃焼も含めて燃焼させて、燃焼ガス
温度が蒸気ガスタービン入口600℃以下から、用途に
より400℃以下となるように、燃焼器兼熱交換器4内
で限りなく熱交換しながら、用途に合わせた熱交換にし
て、導水管1の夫夫の水冷外壁26や、蒸気管6によ
り、燃焼ガス10を冷却熱交換し、NOx皆無燃焼で得
た燃焼ガス10を、夫夫の燃焼器兼熱交換器4より、環
状の燃焼ガス溜9を介して、圧縮機様の圧縮翼を設けた
環状の送出部18A・環状の送出部18Bより、全動翼
蒸気ガスタービンの最適の中間動翼段に内径側より供給
して、順次下流側に回転動力を追加発生させると共に、
過熱蒸気を燃焼ガス10により冷却して、凝縮水にCO
2を固定して有害排気ガス0に近付け、排気熱交換器5
8による熱交換により、更に凝縮水にCO2を固定して
有害排気ガス0にします。用途により排気温度0℃以下
として、凝縮水にCO2を固定して有害排気ガス0に
し、排気熱交換器58による熱交換により、冷熱の供給
を含めて排気します。
【0019】大部分の供給熱エネルギは過熱蒸気5に変
換して、夫夫の燃焼器兼熱交換器4の、蒸気管6及び制
御装置を含む蒸気加減弁7を介して、過熱蒸気の一部又
は自動車用等小型では全部を、全動翼蒸気ガスタービン
の最上流側の、過熱蒸気溜32・環状の噴口群24より
下流側環状の受け口23の、外側タービン動翼群1段1
9に噴射して、通常の如く順次下流側を駆動して、順次
大きな回転力を発生させ、順次下流側を駆動する過程
で、燃焼ガス10を内側タービン動翼群より供給しま
す。供給された燃焼ガス10は、内側タービン動翼群2
0の適宜のタービン翼に、冷却翼様に設けた燃焼ガス通
路より、燃焼ガス10を噴射する冷却翼30(霧吹きの
原理を応用した穴であれば限定しない)の、上流側冷却
を含む最適中間段で、燃焼ガス10と合流することで、
該燃焼ガスにより過熱蒸気を直接冷却して、過熱蒸気の
凝縮水に燃焼ガスを溶解固定して、外側軸装置を含む外
側タービン動翼群19に設けた、毛細管放出手段57よ
り毛細管現象及び遠心力により、外後方に放出して推進
力を得る等として、過熱蒸気使用量最低の場合は、排気
温度0℃以下を含めて窒素ガスを排気し、全動翼蒸気ガ
スタービンの熱効率を上昇して、冷熱の供給等に使用し
ます。全部の過熱蒸気を使用する蒸気ガスタービンで
は、排気熱交換器58により熱交換する過程で、燃焼ガ
スを過熱蒸気の凝縮水に溶解固定して排水し、窒素ガス
を排気ます。
【0020】蒸気加減弁7を介した過熱蒸気の大部分乃
至一部分は、図1図2図3図4図9過熱蒸気溜32又
は、図5乃至図8の全動翼を含む蒸気タービン圧縮機
の、蒸気タービンの最上流側より、外側タービン動翼群
1段19又は、内側タービン静翼又は、従来技術静翼に
噴射して、通常の如く順次下流側を駆動して、順次大き
な回転出力を発生させて、用途により蒸気タービンとし
ても使用し、又は図の各種圧縮機を強力に駆動します。
下流側に供給されて湿り蒸気乃至水滴となった過熱蒸気
は、外側タービン動翼群19より、遠心力により毛細管
放出手段57より、外周後方に噴射して推力を発生し、
又は動圧・重力により毛細管放出手段57より放出し、
成層圏飛行など排気損失大低減を可能に、蒸気タービン
を駆動します。即ち、用途により蒸気ガスタービンで
は、燃焼ガスを凝縮水固定して遠心力により毛細管放出
手段57より、外周後方に噴射して推力を発生し、又は
動圧・重力により毛細管放出手段57より放出し、燃焼
ガスにより冷却して排気温度0℃前後の放出として、回
転力を得ると共に、該夫夫の排気を噴出して、右前方の
空気を左後方に強力に噴射して、回転力や浮揚推進力を
必要とする各種用途、例えばヘリコプターやジェット機
等の各種航空機や、各種船舶等の噴射推進に使用し、又
は、航空機と船舶の中間的なもの等を、浮揚噴射推進す
る用途に使用し、又は、図9過熱蒸気溜32及び噴口2
9を設けて、過熱蒸気を噴射するロケットとしても使用
し、又は、プロペラや車輪や発電機や機械等を回転駆動
する用途に使用して、圧力が従来空気圧縮機の10倍に
近い過熱蒸気により、熱効率及び推進効率及び浮揚推進
効率を大上昇する、公知の各種制御装置を有する、各種
全動翼を含む蒸気ガスタービン合体機関とします。
【0021】図1を参照して別の説明をする。燃焼器兼
熱交換器4の伝熱面積増大容易に小径多数蜂の巣状に短
小化配置して、内部に螺旋環状に導水管1乃至蒸気管6
を1以上出来るだけ多数、用途に合わせて設けて、軽量
高圧容器を容易にし、燃料蒸気供給手段27を、最大で
従来技術の4倍前後に、最上流側に設ける等、増設容易
に熱交換増大容易に設けます。中央左右に夫夫磁気摩擦
動力伝達装置14を設けて、夫夫内側軸装置に固着し
て、該外周に環状に設けた、外側圧縮機動翼群終段16
及び、外側タービン動翼群1段19を固着した、外側軸
装置を夫夫回転自在に外嵌して、夫夫互いに反対方向に
回転する2軸を、磁気摩擦動力伝達装置14により、夫
夫最適回転比で結合して、内側軸装置に内側圧縮機動翼
群終段17及び、内側タービン動翼群2段20を固着し
て、以後外側軸装置の外側圧縮機動翼群奇数終段16
に、外側圧縮機動翼群奇数段16を固着し、内側圧縮機
動翼群終段17に、内側圧縮機動翼群偶数段17を固着
する、というように交互に固着し、最も効率良く動力を
伝達するため、磁気摩擦動力伝達装置を含む駆動装置に
より、全動翼圧縮機を構成させます。そして前記外側軸
装置の外側タービン動翼群1段19に、外側タービン動
翼群奇数段19を固着し、内側タービン動翼群2段20
に、内側タービン動翼群偶数段20を固着するというよ
うに、交互に固着して、内側タービン動翼群偶数終段2
0を、内側軸装置に固着して、外側タービン動翼群奇数
終段19を、外側軸装置に固着して、内側軸装置に回転
自在に外嵌枢支して、全動翼蒸気ガスタービンを構成さ
せ、全動翼・蒸気ガスタービン合体機関の、中核部を構
成させます。
【0022】図2を参照して、バイパス付加全動翼・蒸
気ガスタービン合体機関中核部の、第8実施例を説明す
る。従来技術では、大量の熱エネルギを消費して燃焼用
として圧縮した空気の、80%近くを利用することな
く、無駄に(燃焼温度を逆に低下させて)排出して大損
失となるため、燃焼用として圧縮した空気を、燃焼に1
00%有効利用可能にすると共に、燃焼用以外に使用す
る圧縮空気15は、バイパス28を設けて、別途使用す
ることで、比出力を極限まで増大して、熱効率の大上昇
を図るものです。即ち、従来技術ガスタービンの、作動
ガスとしての燃焼ガスは、一般に空気の割合が非常に多
く、理論空燃比の4倍前後の空気を含むため、燃焼用圧
縮空気を100%燃焼に利用するためには、供給した熱
量の大部分を、過熱蒸気に変換利用することを必須とし
ます。そこでこの発明は、燃焼器兼熱交換器4を、小径
多数蜂の巣状に短小化配置して、内部に螺旋環状に導水
管乃至蒸気管6を、1以上出来るだけ多数設けて、伝熱
熱交換面積を増大し、高圧化容易・燃料蒸気供給増大容
易として、供給熱量の全部乃至大部分を、過熱蒸気に変
換可能にすると共に、該水冷外壁26を、少なくとも1
本以上複数の導水管1を含む、螺旋状の熔接構造又は、
溶接構造を含む、螺旋状導水管1の水冷外壁単位52の
組立て構造とし、圧力比の大上昇及び、超臨界を含む過
熱蒸気の噴射を可能にして、比出力を大増大すると共
に、燃焼用に圧縮した空気の略全部を、燃焼に有効使用
可能にし、圧縮空気の必要な別用途には、バイパスを設
けて別使用とし、回転力を必要とする用途には、出力軸
12を設けて回転動力を取り出し、空気圧縮の無駄を全
廃して熱効率の大幅上昇を図ります。
【0023】図2・図5乃至図12を参照して別の説明
をする。バイパス28を含む右端の全動翼圧縮機の、置
換した外側圧縮機動翼群1段16より、通常の如く空気
を吸入して、偶数段の内側圧縮機動翼群17と、奇数段
の外側圧縮機動翼群16が協力して、全動翼により効率
良く空気を圧縮して、圧縮空気の必要な別用途には、用
途に応じて適宜に設けた、バイパス28通路より最適供
給し、燃焼用の圧縮空気15は、内側軸装置を含む内側
圧縮機動翼群17に設けた、冷却手段55により該夫夫
を冷却水により冷却し、該冷却水を水噴射手段56より
噴射して、直接接触で空気冷却し、該凝縮冷却水を外側
圧縮機動翼群16を含む外側軸装置に設けた、毛細管放
出手段57より、遠心力及び毛細管現象を利用して放出
する、空気冷却により高圧低温の、圧縮空気15を供給
します。高圧低温の圧縮空気15は、外側圧縮機動翼群
終段16より、環状の出口21を介して、環状の受け口
22、環状の圧縮空気溜8より、小径多数蜂の巣状に高
圧化配置して、内部に螺旋環状に導水管乃至蒸気管6
を、1以上出来るだけ多数、用途に合わせて設けて、伝
熱面積の増大した、燃焼器兼熱交換器4に供給します。
【0024】供給された高圧低温の圧縮空気15は、図
にない公知の制御装置からの指令により、該夫夫の燃焼
器兼熱交換器4の上流側の、燃料蒸気供給手段27から
供給される、最大で従来技術の4倍前後の供給燃料と、
撹拌混合完全燃焼短時間終了+過熱蒸気噴射撹拌冷却燃
焼を、略理論空燃比900℃前後制御燃焼も含めて行
い、非常に困難な高圧低温の雰囲気でのNOx皆無燃焼
を、熱交換を含めて可能にし、用途により有害燃焼ガス
をCO2のみとします。熱交換伝熱面積の拡大した燃焼
器兼熱交換器4内で、燃焼制御900℃前後の燃焼とし
て熱交換すると共に、導水管1の夫夫の水冷外壁26
や、蒸気管6により、熱交換冷却してNOx皆無燃焼・
燃焼ガス温度を低下します。蒸気ガスタービン燃焼ガス
入口温度600℃以下又は、400℃以下となるよう
に、熱交換して得た燃焼ガス10は、夫夫の燃焼器兼熱
交換器4より、環状の燃焼ガス溜9を介して、圧縮機様
の圧縮翼を設けた、環状の送出部18A・環状の送出部
18Bより、全動翼蒸気ガスタービンの最適の内側ター
ビン動翼群中間段に、内径側より供給して、下流側に順
次噴射して、回転力を追加発生させると共に、過熱蒸気
を燃焼ガス10により再熱乃至冷却して、凝縮水にCO
2を固定して有害排気ガス0とし、用途により排気温度
0℃以下の、熱交換による冷熱の供給も含めて排気しま
す。
【0025】蒸気ガスタービンの入口温度600℃以下
又は400℃以下となるように、熱交換して得た大部分
の過熱蒸気5は、用途により夫夫の燃焼器兼熱交換器4
の、蒸気加減弁7を介して、図5乃至図8及び図10・
図11の如く、蒸気管6により過熱蒸気5を、全動翼を
含む蒸気タービン圧縮機の、蒸気タービン最上流側に供
給し、順次下流側を駆動して、大きな回転力を発生さ
せ、蒸気タービンとしても使用します。該全動翼を含む
蒸気タービンにより、全動翼を含む圧縮機を駆動して、
推力乃至回転力を発生し、蒸気ガスタービンを含めて従
来技術同様に、ターボシャフトエンジン及び、ターボプ
ロップエンジン及び、ターボジェットエンジン及び、タ
ーボファンエンジン及び、船舶浮揚推進装置等として、
各種中核部と共に、各種航空機及び各種船舶等に使用し
ます。同様に図9では、全動翼を含む蒸気ガスタービン
合体機関中核部と、導水管1を螺旋状円筒状に密集して
設けた、過熱蒸気溜32及び噴口29を、止め弁13・
13間で切離し可能にすることで、ロケットを構成しま
す。同様に図12では、図5乃至図8の全動翼を含む蒸
気タービン(圧縮機削除)を駆動して、該回転力及び中
核部回転力により、主としてプロペラや車輪や発電機や
機械等を、駆動する用途に使用し、推力・浮揚力を同時
利用してもよく、排気の熱利用等を図る、熱と電気と冷
熱の併給設備としても使用し、公知の各種制御装置を有
する、全動翼・蒸気ガスタービン合体機関とし、第7実
施例と同様に多数用途に使用します。
【0026】図2を参照して別の説明をする。小径多数
蜂の巣状に短小化配置して、内部に螺旋環状に導水管1
乃至蒸気管6を1以上出来るだけ多数、用途に合わせて
設けた、燃焼器兼熱交換器4を設けて、その内側の内側
軸装置中央左右の、磁気摩擦動力伝達装置14に、夫夫
の内側軸装置を連結して、該左右夫夫の内側軸装置に、
環状に設けた外側圧縮機動翼群終段16及び、外側ター
ビン動翼群1段19を固着した、外側軸装置を回転自在
に外嵌枢支して、夫夫互いに反対方向に回転する2軸
を、前記磁気摩擦動力伝達装置14により、最適回転比
で夫夫結合して、夫夫の内側軸装置に、内側圧縮機動翼
群終段17及び、内側タービン動翼群2段20を固着し
て、以後外側圧縮機動翼群奇数段16及び、内側圧縮機
動翼群偶数段17を交互に固着し、燃焼用以外に使用す
る圧縮空気用バイパスとして、外径を拡大したものを含
めて交互に固着し、外側圧縮機動翼群1段16に、外側
軸装置を固着し、内側軸装置に回転自在に外嵌枢支し
て、磁気摩擦動力伝達装置14により、最適の2重反転
回転比で結合されて、最も効率良く2軸を駆動する、全
動翼圧縮機を構成させます。また外側タービン動翼群1
段19には、外側タービン動翼群奇数段19を固着し、
内側タービン動翼群2段20に、内側タービン動翼群偶
数段20を固着するというように、交互に固着して、内
側タービン動翼群偶数終段20を、内側軸装置に固着し
て、外側タービン動翼群奇数終段19を、外側軸装置に
固着して、内側軸装置に回転自在に外嵌枢支し、磁気摩
擦動力伝達装置14により、同様に2重反転全動翼蒸気
ガスタービンを構成させて、バイパス付加全動翼・蒸気
ガスタービン合体機関の、中核部を構成します。
【0027】図3を参照して、蒸気ガスタービン合体機
関の中核部の、第9実施例を説明する。図1の第7実施
例との相違点は、全動翼・蒸気ガスタービン合体機関の
中核部を、蒸気ガスタービン合体機関の中核部として、
置換動翼を、従来技術の静翼に還元し、該夫夫の外側動
翼の毛細管放出手段57の、直接接触空気冷却による凝
縮冷却水の放出手段及び、過熱蒸気凝縮水の放出手段
を、遠心力の利用から動圧+重力利用に変換して、圧縮
機と蒸気ガスタービンに置換したところです。その他は
略同様に、右端の圧縮機静翼より通常の如く空気を吸入
して、偶数段の内側圧縮機動翼群17と奇数段の静翼が
協力して、空気を圧縮してその過程で、内側圧縮機動翼
群17に設けた、冷却手段55により該夫夫を冷却水に
より冷却し、該冷却水を水噴射手段56より噴射して、
直接接触空気冷却し、該凝縮冷却水をケーシング下部付
近に設けた、毛細管放出手段57より毛細管現象及び動
圧+重力を利用して放出する、空気冷却により圧縮し
た、高圧低温の圧縮空気15を供給します。
【0028】該高圧低温の圧縮空気15を、内側圧縮機
動翼群終段17より、環状の出口21を介して、環状の
受け口22・空気溜8より、小径多数蜂の巣状に短小化
配置して、その内部に螺旋環状に導水管1乃至蒸気管6
を、1以上出来るだけ多数、用途に合わせて設けた、燃
焼器兼熱交換器4に供給します。質量容積X速度(圧力
比)が仕事をし、高温は単位容積質量小=仕事量の減少
要因と考え、燃焼器兼熱交換器により、燃焼ガス熱エネ
ルギを限りなく過熱蒸気に変換して、超臨界を含む過熱
蒸気噴射撹拌完全燃焼短時間終了及び、NOx皆無燃焼
により、大量過熱蒸気噴射燃焼ガス容積質量を増大しな
がら、蒸気ガスタービン入口温度600℃乃至400℃
以下燃焼ガス冷却容積半減の、外気熱エネルギを含む
(6MPa600℃で排気温度0℃)、供給熱エネルギ
を限りなく過熱蒸気に変換して、例えば排気温度0℃以
下・有害排気ガス0の蒸気ガスタービンや蒸気タービン
を、駆動可能としたものです。従って図1の第7実施例
から第9実施例までの要素を、夫夫適宜に置換して、第
7実施例と同様に多種用途の、例えば車両の移動及び船
舶や航空機の推進用に使用します。
【0029】従来技術、蒸気・ガスタービン複合サイク
ル火力発電設備に近い、図3・図12を参照して、最先
端火力発電設備として使用する場合を、従来技術と比較
説明する。図3の蒸気ガスタービンを利用した第9実施
例で、発電機を駆動の場合、燃焼器兼熱交換器4を、小
径多数蜂の巣状に短小化配置して、内部に螺旋環状の導
水管1乃至蒸気管6を1以上設けて、熱交換面積を増大
し、圧力比60圧縮比18前後・外気温度0℃で、60
0℃の空気温度が得られるため、タービン入口温度を4
00℃前後にすれば、30℃前後の外気温度から回収出
来る、過熱蒸気熱エネルギも非常に大きくなります。更
に同一燃焼用圧縮空気量で、従来技術の最大で4倍前後
の燃料燃焼となり、圧力比を60以上に極限まで上昇し
た状態での、高圧の雰囲気で熱交換するため、同一圧縮
空気量での熱エネルギ回収量も、従来技術最先端蒸気・
ガスタービン複合サイクル火力発電設備の、廃熱回収熱
交換器の10倍以上となり、比較にならない程、大量の
熱エネルギ回収量になり、熱効率の大上昇にします。
【0030】更に、過熱蒸気を含む大幅に増大した燃焼
ガス質量容積として、小型大出力の蒸気ガスタービンが
得られるのに加えて、過熱蒸気使用量最低の蒸気ガスタ
ービンでは、過熱蒸気の凝縮水にCO2を溶解固定して
排水し、窒素ガス排気温度0℃以下の排気により、燃焼
ガス排気0及び排気損失大低減と、冷熱の供給を可能に
します。発生過熱蒸気の全部を使用する蒸気ガスタービ
ンでは、自動車用などの小型が可能になり、排気熱交換
器58により過熱蒸気の凝縮水に、CO2を溶解固定し
て排水し、燃焼ガス排気0にできるし、比較的高温の給
水3を供給出来ます。圧力比の比較についても、大量水
使用により圧縮空気温度の低下が容易なため、極限まで
圧力比を上昇して、熱効率を上昇できます。即ち、圧力
比が大きい雰囲気で熱交換するほど、蒸気ガスタービン
合体サイクルの熱効率が高くなり、燃焼ガス質量容積が
大きい程、蒸気ガスタービンが小型大出力になり、排気
熱量が少ない程、蒸気ガスタービンの熱効率が高くな
り、同一圧縮空気量から取り出す熱エネルギ量が多い
程、蒸気タービンの出力が大きくなるため、総合熱効率
を80%前後に上昇できます。
【0031】図4を参照して、バイパス付加蒸気ガスタ
ービン合体機関の中核部の、第10実施例を説明する。
図3の第9実施例との相違点は、第9実施例の蒸気ガス
タービン合体機関中核部の圧縮機に、バイパスを付加し
て、バイパス付加蒸気ガスタービン合体機関の中核部と
したものです。その他は第9実施例と同様に、置換動翼
を、従来技術の静翼に還元して、該夫夫の動翼の毛細管
放出手段57の、直接接触空気冷却による凝縮冷却水の
放出手段及び、過熱蒸気凝縮水の放出手段を、遠心力の
利用から動圧+重力利用に変換して、バイパス付加圧縮
機と蒸気ガスタービンを構成したところです。その他は
略同様に、燃焼器兼熱交換器4を、小径多数蜂の巣状に
短小化配置して、その内部に螺旋環状に、導水管1乃至
蒸気管6を1以上設けて、供給熱量を限りなく過熱蒸気
に変換して、超臨界を含む過熱蒸気噴射撹拌完全燃焼短
時間終了及び、燃焼ガス容積半減質量倍増NOx皆無燃
焼により、過熱蒸気を含む燃焼ガス質量容積を増大しな
がら、蒸気ガスタービンや蒸気タービン等を、駆動可能
としたもので、蒸気ガスタービンの排気温度0℃以下・
有害排気ガス0等とします。従って、図1の第7実施例
から第10実施例までの要素を、夫夫適宜に置換して、
第7実施例と同様に多種用途の、例えば車両の移動及
び、船舶や航空機の推進用に使用します。
【0032】図5を参照して、全動翼・蒸気タービン圧
縮機の第1実施例を説明する。各種蒸気ガスタービン合
体機関の中核部で、熱交換して得た過熱蒸気5により、
全動翼蒸気タービンを駆動して回転力を発生させて、左
端の出力軸12により回転動力として利用し、全動翼・
蒸気タービンとしても使用します。又、該回転力によ
り、図5の全動翼圧縮機を具備して回転させ、高圧縮空
気乃至高速気流を得るもので、回転力及び推力及び浮揚
力等を得るものです。従って、中核部で熱交換して得た
過熱蒸気5を、蒸気加減弁7より蒸気管6により、全動
翼蒸気タービンの最上流側に運搬して、該最上流側を駆
動すると共に順次下流側を駆動して、大きな回転動力を
発生させると共に、その過程で過熱蒸気の凝縮水を、外
側タービン動翼群19の毛細管放出手段57より放出
し、左端の磁気摩擦動力伝達装置14により、互いに反
対方向に回転する、外側タービン動翼群19及び外側軸
装置と、内側タービン動翼群20及び内側軸装置を、最
適回転比で結合します。更に、右端の圧縮機側磁気摩擦
動力伝達装置14により、内側圧縮機動翼群17及びタ
ービン外側軸装置と兼用の内側軸装置と、外側圧縮機動
翼群16及び外側軸装置を最適二重反転回転比で結合し
て、全動翼圧縮機を構成させて、全動翼蒸気タービン及
び全動翼蒸気タービン圧縮機の第1実施例とします。
【0033】図6を参照して、全動翼・蒸気タービン圧
縮機の第2実施例を説明する。各種蒸気ガスタービン合
体機関の中核部で、熱交換して得た過熱蒸気5を蒸気管
6により、内側軸装置右端中央より、全動翼蒸気タービ
ンの上流側に供給して、全動翼蒸気タービンを駆動し
て、回転力を発生させて、その過程で過熱蒸気の凝縮水
を、外側タービン動翼群19の毛細管放出手段57より
放出し、左端の出力軸12により、回転動力として利用
し、全動翼・蒸気タービンとしても使用します。又、該
回転力により、図6の全動翼圧縮機を設けて回転させ、
高圧縮空気乃至高速気流を得るもので、回転力及び推力
及び浮揚力等を得るものです。従って、熱交換して得た
過熱蒸気5を蒸気加減弁7より蒸気管6により、全動翼
蒸気タービンの最上流側に運搬して、該最上流側を駆動
すると共に順次下流側を駆動して、大きな回転動力を発
生させると共に、左端の磁気摩擦動力伝達装置14によ
り、互いに反対方向に回転する、外側タービン動翼群1
9及び外側軸装置と、内側タービン動翼群20及び内側
軸装置を、最適回転比で結合して、全動翼蒸気タービン
を構成させます。更に、右端の圧縮機側磁気摩擦動力伝
達装置14により、内側圧縮機動翼群17及び内側軸装
置と、外側圧縮機動翼群16及び外側軸装置を、最適二
重反転回転比で結合して、全動翼圧縮機を構成させて、
全動翼蒸気タービン及び全動翼蒸気タービン圧縮機の第
2実施例とします。
【0034】図7を参照して、蒸気タービン圧縮機の第
3実施例を説明する。各種蒸気ガスタービン合体機関の
中核部で、熱交換して得た過熱蒸気5により、蒸気ター
ビンを駆動して回転力を発生させて、出力軸12により
利用し、蒸気タービンとしても使用します。又、該回転
力により、図7の圧縮機を具備して回転させ、高圧縮空
気乃至高速気流を得るもので、回転力及び推力及び浮揚
力等を得るものです。従って、熱交換して得た過熱蒸気
5を、蒸気加減弁7より蒸気管6により、内側固定軸装
置の右端中央より、蒸気タービンの最上流側に運搬し
て、該最上流側を駆動すると共に順次下流側を駆動し
て、大きな回転動力を発生させると共に、通常とは逆
の、外側タービン動翼群19及び外側軸装置を回転させ
ることにより、過熱蒸気5の凝縮水を、遠心力により外
後方に噴射して、前記全動翼ガスタービンや、全動翼蒸
気タービンの第1・2実施例と同様に、成層圏飛行など
排気温度低下・排気圧力低下に対応し、圧縮空気流の質
量増大として推進力を増大し、左端の内側固定軸装置に
外嵌枢支して、該外側軸装置の左端を出力軸12とし
て、蒸気タービンを構成します。内側タービン静翼軸兼
内側固定軸装置の右端は、ケーシングの水平継ぎ手によ
り固定して、該ケーシングを、タービン外側軸装置と兼
用の内側軸装置及び、内側圧縮機動翼群17に外嵌枢支
して、圧縮機を構成させて、蒸気タービン圧縮機の第3
実施例とします。
【0035】図8を参照して、蒸気タービン圧縮機の第
4実施例を説明する。各種蒸気ガスタービン合体機関の
中核部で、熱交換して得た過熱蒸気5により、蒸気ター
ビンを駆動して、回転力を発生させて、出力軸12によ
り利用し、従来技術の蒸気タービンとしても使用しま
す。又、該回転力により、右側に圧縮機を具備して回転
させ、高圧縮空気乃至高速気流を得るもので、回転力及
び推力及び浮揚力等を得るものです。従って、熱交換し
て得た過熱蒸気5を、蒸気加減弁7より蒸気管6によ
り、公知技術蒸気タービンの、最上流側に運搬して、通
常どおりに該最上流側を駆動すると共に、順次下流側を
駆動して、大きな回転動力を発生させて、その過程で過
熱蒸気の凝縮水を、ケーシングの下部に設けた毛細管放
出手段57より、動圧及び重力により放出し、内側軸装
置の左端を出力軸12として、回転力を取り出す蒸気タ
ービンを構成します。即ち、内側タービン動翼群20及
び内側軸装置の外側に、水平継ぎ手で分解組立て可能な
ケーシングに、夫夫静翼を固定して外嵌枢支し、蒸気タ
ービンを構成します。同様に内側圧縮機動翼群17及び
内側軸装置の外側に、夫夫静翼を固定したケーシングを
外嵌枢支して、圧縮機を構成させて、蒸気タービン圧縮
機の第4実施例とします。
【0036】図13を参照して、燃焼器兼熱交換器4を
小径多数蜂の巣状に配置して短小化した、熱交換伝熱面
積の増大手段の熔接構造を説明すると、(a)(b)
(c)(d)に示すように、少なくとも1本以上の螺旋
状導水管1を含む水冷外壁26を、螺旋状の熔接構造と
して小径多数化することで、大きな圧力比の設定と、伝
熱面積の増大による熱交換速度の加速と、燃料蒸気供給
手段27の最上流側増設を容易にすると共に、蒸気ガス
タービン全体機関中核部を、合理的な円筒形状としま
す。即ち(a)(b)に示す実施例の如く、螺旋状に設
けた導水管1の半径方向外方に少し離して燃焼器外箱部
25を設けて、1本以上の導水管1を軸方向T字型等、
螺旋状に熔接して、大幅に高圧容器の、燃焼器兼熱交換
器4を可能にすると共に、燃焼器兼熱交換器4の、伝熱
面積増大も可能にします。又、(c)に示す実施例の如
く、螺旋状に設けた導水管1の半径方向外方に、燃焼器
外箱部25乃至水冷外壁26を設けて、一本以上の導水
管1を、軸方向螺旋状に熔接して、超臨界の蒸気条件以
下の大幅に高圧の、燃焼器兼熱交換器4の、伝熱面積増
大を可能にします。又、(d)に示す実施例の如く、螺
旋状に設けた導水管1の、半径方向略中央に、燃焼器外
箱部25を設けて、一本以上の導水管1を、軸方向螺旋
状に熔接して、超臨界の蒸気条件以下の及び比較的高圧
の圧力比の、燃焼器兼熱交換器4の、熱交換伝熱面積増
大を可能にします。
【0037】図13・図14を参照して、燃焼器兼熱交
換器4を小径多数として、蜂の巣状に配置して短小化し
た、伝熱面積の増大手段の、水冷外壁単位52を説明す
る。図14(a)(b)(c)に示すように、少なくと
も一本以上の螺旋状導水管1を含む、水冷外壁単位52
を、両端に鍔53を設けて、組立て可能な一単位とし
て、複数の水冷外壁単位52を連結して、大幅に高圧化
・短小化可能な、燃焼器兼熱交換器4の主要部としま
す。即ち図13・図14の(a)(b)(a)(b)に
示す実施例の如く、螺旋状に設けた少なくとも1本以上
の導水管1の、半径方向外方に少し離して、溶接構造を
含む燃焼器外箱部25を設けて、該両端に鍔53を夫夫
具備して、該鍔53に導水管1を夫夫開口して、該導水
管1を含む水冷外壁単位52を、連結可能にします。
又、(c)(d)(c)に示す実施例の如く、螺旋状に
設けた少なくとも1本以上の導水管1の、半径方向外方
又は、半径方向略中央に、溶接構造を含む燃焼器外箱部
25を設けて、該両端に鍔53を夫夫具備して、該鍔5
3に導水管1を夫夫開口して、導水管1を含む水冷外壁
単位52を、連結可能に構成し、超臨界の蒸気条件以下
の及び、比較的高圧の圧力比の、燃焼器兼熱交換器4
の、熱交換伝熱面積増大を可能にします。従って図13
・図14の水冷外壁を逆に内壁(図17・図18)とし
て、内側に設けてその外側より、導水管1により冷却す
るものを水冷内壁54とします。
【0038】図15・図16を参照して、磁気摩擦動力
伝達装置14を説明する。通常の変速や逆転を含む各種
動力伝達装置は、主として歯車装置を使用している。こ
のため、歯面に大きな荷重を含む、滑り歯面を必須とす
るため、潤滑油を必要とするのに加えて、摩擦熱損失も
非常に大きく、高速回転を含む大動力の伝達装置には、
使用不可という問題がある。このため、全動翼・蒸気ガ
スタービン合体機関を実用化するには、ころがり接触に
よる、超高速大動力伝達装置が必須となり、超高速大動
力伝達装置を可能にすると共に、潤滑油も不用にするた
めには、歯車装置の滑り歯面を皆無に近づけた、ころが
り接触による、動力伝達装置が必要となる。このため、
歯車のかみ合い高さを限りなく縮小した、低凹凸40と
し、回転方向35上流側及び下流側、又は上流側又は下
流側に、図15のように、棒磁石33又は電磁石34を
設けて、該磁石の強い吸引力を利用した、例えば図15
・図16の、各種着磁摩擦車37・37及び、各種磁着
摩擦車39・39等と、多様な組み合わせを含む、各種
磁気摩擦動力伝達装置14として、全面的に使用するの
が好ましい。即ち、転がり接触に近づけることにより、
摩擦熱損失を皆無に近づけて、超高速大動力伝達装置
や、潤滑油に換えて無公害の水冷却を可能にするもので
す。
【0039】図16を参照して、磁気摩擦動力伝達装置
14を説明する。各種歯車に換えて、各種着磁摩擦車3
7・37や各種磁着摩擦車39・39等を使用して、動
力伝達面31には低凹凸40として、例えば平歯車に換
えて平凹凸41車を、ハスバ歯車に換えてハスバ凹凸4
2車を、ヤマバ歯車に換えてヤマバ凹凸43車を設け
る。これにより磁気摩擦動力伝達装置14として、公知
の各種歯車式動力伝達装置と同様に、各種磁気摩擦動力
伝達装置14を構成して、使用します。
【0040】図17を参照して、全動翼蒸気ガスタービ
ン合体機関の中核部の、構造簡単で安価な第11特殊実
施例を説明する。図1の第7実施例との相違点は、全動
翼蒸気ガスタービン合体機関の中核部である、燃焼器兼
熱交換器4を一つの大径筒型中空の、燃焼器兼熱交換器
4として、図13・図14の水冷外壁を逆にして、図1
7・図18の水冷内壁54を筒型中空部に設けて、その
内部に螺旋環状に、導水管1乃至蒸気管6を1以上出来
るだけ多数、用途に合わせて設けた、燃焼器兼熱交換器
4として使用するところです。その他は同様に、質量容
積X速度(圧力比)が仕事をし、高温は単位容積質量小
=仕事量の減少要因と考え、燃焼器兼熱交換器4によ
り、外気温度を含む燃焼ガス熱エネルギを、限りなく過
熱蒸気に変換して、超臨界を含む過熱蒸気噴射撹拌完全
燃焼短時間終了及び、燃焼ガス容積半減質量倍増NOx
皆無燃焼により、過熱蒸気を含む燃焼ガス容積質量を増
大しながら、外気熱エネルギを含む、供給熱エネルギを
限りなく過熱蒸気に変換して、例えば構造簡単で安価な
蒸気ガスタービンや蒸気タービンを、駆動可能としたも
ので、蒸気ガスタービンの排気温度0℃以下・有害排気
ガス0等とします。従って図1の第7実施例から第11
特殊実施例までの要素を、夫夫適宜に置換して、第7実
施例と同様に多種用途の、例えば車両の移動及び船舶や
航空機の推進用に使用します。
【0041】図18を参照して、蒸気ガスタービン合体
機関の中核部の、構造簡単で安価な第12特殊実施例を
説明する。図17の第11特殊実施例との相違点は、全
動翼蒸気ガスタービン合体機関の中核部を、蒸気ガスタ
ービン合体機関の中核部として、置換動翼を、従来技術
の静翼に還元して、圧縮機と蒸気ガスタービンにしたと
ころです。その他は第11特殊実施例と同様に、燃焼器
兼熱交換器4を一つの大径筒型中空の、燃焼器兼熱交換
器として、図13・図14の水冷外壁を逆にして、図1
7・図18の水冷内壁54を筒型中空部に設けて、その
内部に螺旋環状に、導水管1乃至蒸気管6を1以上出来
るだけ多数、用途に合わせて設けた、燃焼器兼熱交換器
4として使用し、質量容積X速度(圧力比)が仕事を
し、高温は単位容積質量小=仕事量の減少要因と考え、
燃焼器兼熱交換器により、超臨界を含む過熱蒸気噴射撹
拌完全燃焼短時間終了及び、燃焼ガス容積半減質量倍増
NOx皆無燃焼により、過熱蒸気を含む燃焼ガス容積質
量を増大しながら、外気熱エネルギを含む、供給熱エネ
ルギを限りなく過熱蒸気に変換して、例えば構造簡単で
安価な蒸気ガスタービンや蒸気タービンを、駆動可能と
したもので、蒸気ガスタービンの排気温度0℃以下・有
害排気ガス0等とします。従って図1の第7実施例から
第12特殊実施例までの要素を、夫夫適宜に置換して、
第7実施例と同様に多種用途の、例えば車両の移動及び
船舶や航空機の推進用に使用します。
【0042】
【発明の効果】本発明は、全動翼を含む、各種蒸気ガス
タービン合体機関の中核部として、燃焼器兼熱交換器の
外壁を、導水管を含む螺旋状の熔接構造又は、溶接構造
を含む螺旋状の水冷外壁単位組立構造として、小径多数
蜂の巣状に短小化配置して、その内部に螺旋環状に導水
管乃至蒸気管を1以上出来るだけ多数設けたため、蒸気
ガスタービン合体機関の中核部の外形を、コンパクトに
できる大きな効果があります。更に伝熱面積を増大した
高圧容器の、燃焼器兼熱交換器として、燃料蒸気供給手
段も、最上流側に最大で従来技術の4倍増容易に加え
て、外気温度を含む供給熱量の大部分を、過熱蒸気に変
換できる効果があります。熱交換により蒸気ガスタービ
ンの入口温度を、600℃以下から400℃以下を可能
として、排気温度0℃以下を含めて、排気損失を0%前
後とする効果があります。
【0043】熱交換して得た、燃焼ガス及び膨大な過熱
蒸気により、大きな回転動力を得ると共に、燃焼用圧縮
空気の冷却水量を最大にして、圧縮空気温度を低下させ
て高圧低温の圧縮空気を得る大きな効果があります。燃
焼用圧縮空気量を従来技術と同一にした場合、最大で従
来ガスタービンの4倍前後の燃料による、理論空燃比燃
焼まで供給熱量を大増大して、900℃前後に燃焼制御
するため、膨大な過熱蒸気(水素の燃焼ガス)を高速噴
射して短時間完全燃焼終了出来る効果があり、加えてC
O2を水固定する材料を最大にして、環境を最良に出来
る効果があり、CO2等の有害排気ガスを0に近付ける
効果もあります。熱交換により燃焼ガス質量容積も増大
して、比出力が増大できる効果があります。燃焼用に圧
縮した空気量を100%燃焼に利用して、通常圧力比の
10倍近い圧力の、超臨界圧以下の過熱蒸気を大量高速
噴射できるため、燃焼温度を900℃前後に燃焼制御出
来る効果により、NOx皆無燃焼として有害排気ガスを
CO2に限定し、最も公害が少ない熱効率の良い、各種
蒸気ガスタービン合体サイクルとして、公害低減・熱効
率の大上昇に大きな効果があります。
【0044】蒸気ガスタービンの圧力比を、熱交換燃焼
ガス限りなき冷却により、極限まで上昇して蒸気ガスタ
ービンの熱効率を、極限まで上昇できる効果がありま
す。更に圧力比を極限まで上昇した状態で熱交換するた
め、超臨界の蒸気条件を含む、過熱蒸気エネルギの取り
出し量を最大して、排気温度を最低にして、総合比出力
及び熱効率を極限まで上昇できる効果があります。更
に、圧力比を極限まで上昇した状態で熱交換するため、
燃焼ガス蒸気ガスタービン入口温度を400℃以下とし
て、大量過熱蒸気噴射による蒸気ガスタービンの消費熱
量を最少に、燃焼ガス質量容積を最大にして、熱効率を
極限まで上昇できる効果があります。更に、圧力比を極
限まで上昇した状態で、限りなく熱交換した燃焼ガスを
使用するため、蒸気ガスタービンの排気温度を0℃以下
として、熱エネルギを極限まで有効利用できる効果があ
ります。又、各種磁気摩擦動力伝達装置を全面的に開発
使用することで、従来技術の各種動力伝達装置による、
摩擦損失を大幅に低減して、熱効率を更に上昇する効果
があります。従って、各種運輸機器や熱と電気と冷熱の
併給機器等として、多種多様に使用することで、CO2
を地球規模で低減するために、大きな効果があります。
【0045】本発明の最大の特徴は、蒸気ガスタービン
と蒸気タービンを分離可能としたため、最も一般的に世
界に普及している、最先端火力発電設備の熱効率を最大
にできるところです。即ち、最先端蒸気・ガスタービン
複合サイクル発電設備では、ガスタービンの廃熱を回収
して、蒸気タービンサイクルを駆動するため、蒸気ター
ビンサイクルに供給する熱量が僅少となります。そこで
本発明は、燃焼器兼熱交換器として、出来るだけ高圧の
雰囲気で、燃焼及び熱交換するため、例えば外気温度0
℃圧力比60で空気温度600℃と、略廃熱回収温度と
略同回収温度として、更に外気温度30℃前後として、
外気熱エネルギが大量に回収できるのに加えて、同一圧
縮空気量の燃料燃焼による供給熱エネルギも、4倍前後
に大幅アップするため、蒸気タービンサイクルに供給す
る過熱蒸気熱エネルギを、10倍以上にアップし、蒸気
ガスタービンの使用熱量を最小にして、総合熱効率を8
0%前後に大幅アップする効果があります。
【図面の簡単な説明】
【図1】蒸気ガスタービン合体機関中核部の第7実施例
を示す一部断面図。
【図2】蒸気ガスタービン合体機関中核部の第8実施例
を示す一部断面図。
【図3】蒸気ガスタービン合体機関中核部の第9実施例
を示す一部断面図。
【図4】蒸気ガスタービン合体機関中核部の第10実施
例を示す一部断面図。
【図5】蒸気タービン圧縮機の第1実施例を示す一部断
面図。
【図6】蒸気タービン圧縮機の第2実施例を示す一部断
面図。
【図7】蒸気タービン圧縮機の第3実施例を示す一部断
面図。
【図8】蒸気タービン圧縮機の第4実施例を示す一部断
面図。
【図9】蒸気ガスタービン合体機関の第1実施形態を示
す全体構成図。
【図10】蒸気ガスタービン合体機関の第2実施形態を
示す全体構成図。
【図11】蒸気ガスタービン合体機関の第3実施形態を
示す全体構成図。
【図12】蒸気ガスタービン合体機関の第4実施形態を
示す全体構成図。
【図13】燃焼器兼熱交換器の水冷外壁の螺旋状溶接構
造を示す断面図。
【図14】燃焼器兼熱交換器の螺旋状の水冷壁管単位を
説明するための断面図。
【図15】蒸気ガスタービン合体機関用磁気摩擦動力伝
達装置の概念図。
【図16】着磁摩擦車及び磁着摩擦車等の摩擦増大手段
を説明するための図。
【図17】蒸気ガスタービン合体機関中核部の第11特
殊実施例を示す一部断面図。
【図18】蒸気ガスタービン合体機関中核部の第12特
殊実施例を示す一部断面図。
【符号の説明】
1:導水管 2:給水ポンプ 3:給水 4:燃
焼器兼熱交換器 5:過熱蒸気 6:蒸気管
7:蒸気加減弁 8:環状の圧縮空気溜 9:環状
の燃焼ガス溜 10燃焼ガス 12:出力軸 1
3:止め弁 14:磁気摩擦動力伝達装置 15:
圧縮空気 16:外側圧縮機動翼群 17:内側圧縮機動翼群 19:外側タービン動翼群
20:内側タービン動翼群 21:環状の出口
22:環状の受け口 23:環状の受け口 24:環状の噴口群 25:燃焼器外箱部 26:
水冷外壁 27:燃料蒸気供給手段 28:バイパ
ス 29:噴口 30:冷却翼 31:動力伝達
面 32:過熱蒸気溜 33:棒磁石 34:電
磁石 35:回転方向 36:磁極 37:着磁
摩擦車 38:内着磁摩擦車 39:磁着摩擦車
40:低凹凸 41:平凹凸 42:ハスバ凹凸
43:ヤマバ凹凸 44:内磁着摩擦車 4
5:摩擦増大耐久手段 46:磁石部 47:ヨー
ク(着磁摩擦車用) 48:絶縁材料 52:水冷
外壁単位 53:鍔 54:水冷内壁 55:冷
却手段 56:水噴射手段 57:毛細管放出手段 58:排気熱交換器

Claims (163)

    【特許請求の範囲】
  1. 【請求項1】 水冷外壁を螺旋状の熔接構造として、内
    部に螺旋環状の導水管を1以上設けて、小径多数蜂の巣
    状に短小化配置した燃焼器兼熱交換器と、圧縮空気を該
    燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガス
    タービンとを有する蒸気ガスタービン合体機関。
  2. 【請求項2】 水冷外壁を螺旋状の熔接構造単位組立て
    構造として、内部に螺旋環状の導水管を1以上設けて、
    小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
    と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
    縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温
    度以下となるように熱交換して得た過熱蒸気で出力を得
    る全動翼蒸気ガスタービンとを有する蒸気ガスタービン
    合体機関。
  3. 【請求項3】 螺旋状の水冷外壁単位組立構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
    スと燃焼ガス温度がタービン耐熱限界温度以下となるよ
    うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガ
    スタービンとを有する蒸気ガスタービン合体機関。
  4. 【請求項4】 水冷外壁を螺旋状の熔接構造として、内
    部に螺旋環状に導水管を1以上設けて、小径多数蜂の巣
    状に短小化配置した燃焼器兼熱交換器と、圧縮空気を該
    燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃焼
    ガス温度がタービン耐熱限界温度以下となるように熱交
    換して得た過熱蒸気で出力を得る蒸気ガスタービンとを
    有する蒸気ガスタービン合体機関。
  5. 【請求項5】 水冷外壁を螺旋状の熔接構造単位組立て
    構造として、内部に螺旋環状に導水管を1以上設けて、
    小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
    と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る蒸
    気ガスタービンとを有する蒸気ガスタービン合体機関。
  6. 【請求項6】 螺旋状の水冷外壁単位組立構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
    焼ガス温度がタービン耐熱限界温度以下となるように熱
    交換して得た過熱蒸気で出力を得る蒸気ガスタービンと
    を有する蒸気ガスタービン合体機関。
  7. 【請求項7】 前記請求項4乃至請求項6に於いて、圧
    縮機、蒸気ガスタービンのいずれかが全動翼である蒸気
    ガスタービン合体機関。
  8. 【請求項8】 水冷外壁を螺旋状の熔接構造として、内
    部に螺旋環状の導水管を1以上設けて、小径多数蜂の巣
    状に短小化配置した燃焼器兼熱交換器と、圧縮空気を該
    燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガス
    タービンと、該過熱蒸気で出力を得る噴口(29)と、
    該噴口に過熱蒸気を供給する過熱蒸気溜(30)とを有
    する蒸気ガスタービン合体機関。
  9. 【請求項9】 水冷外壁を螺旋状の熔接構造単位組立て
    構造として、内部に螺旋環状の導水管を1以上設けて、
    小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
    と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
    縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温
    度以下となるように熱交換して得た過熱蒸気で出力を得
    る全動翼蒸気ガスタービンと、該過熱蒸気で出力を得る
    噴口(29)と、該噴口に過熱蒸気を供給する過熱蒸気
    溜(30)とを有する蒸気ガスタービン合体機関。
  10. 【請求項10】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
    気ガスタービンと、該過熱蒸気で出力を得る噴口(2
    9)と、該噴口に過熱蒸気を供給する過熱蒸気溜(3
    0)とを有する蒸気ガスタービン合体機関。
  11. 【請求項11】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
    焼ガス温度がタービン耐熱限界温度以下となるように熱
    交換して得た過熱蒸気で出力を得る蒸気ガスタービン
    と、該過熱蒸気で出力を得る噴口(29)と、該噴口に
    過熱蒸気を供給する過熱蒸気溜(30)とを有する蒸気
    ガスタービン合体機関。
  12. 【請求項12】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る蒸
    気ガスタービンと、該過熱蒸気で出力を得る噴口(2
    9)と、該噴口に過熱蒸気を供給する過熱蒸気溜(3
    0)とを有する蒸気ガスタービン合体機関。
  13. 【請求項13】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
    ンと、該過熱蒸気で出力を得る噴口(29)と、該噴口
    に過熱蒸気を供給する過熱蒸気溜(30)とを有する蒸
    気ガスタービン合体機関。
  14. 【請求項14】 前記請求項11乃至請求項13に於い
    て、圧縮機、蒸気ガスタービンのいずれかが全動翼であ
    る蒸気ガスタービン合体機関。
  15. 【請求項15】 前記請求項8乃至請求項14に於い
    て、圧縮機・蒸気ガスタービン・燃焼器兼熱交換器と、
    過熱蒸気溜(30)が、止め弁(13)間で分離するこ
    とを特徴とする蒸気ガスタービン合体機関。
  16. 【請求項16】 前記過熱蒸気溜(30)を、導水管
    (1)を円筒型螺旋状の、断面蜂の巣状に密集させたこ
    とを特徴とする蒸気ガスタービン合体機関。
  17. 【請求項17】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
    スと燃焼ガス温度がタービン耐熱限界温度以下となるよ
    うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガ
    スタービンと、該過熱蒸気で出力を得る全動翼蒸気ター
    ビンとを有する蒸気ガスタービン合体機関。
  18. 【請求項18】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
    圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界
    温度以下となるように熱交換して得た過熱蒸気で出力を
    得る全動翼蒸気ガスタービンと、該過熱蒸気で出力を得
    る全動翼蒸気タービンとを有する蒸気ガスタービン合体
    機関。
  19. 【請求項19】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
    気ガスタービンと、該過熱蒸気で出力を得る全動翼蒸気
    タービンとを有する蒸気ガスタービン合体機関。
  20. 【請求項20】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
    焼ガス温度がタービン耐熱限界温度以下となるように熱
    交換して得た過熱蒸気で出力を得る蒸気ガスタービン
    と、該過熱蒸気で出力を得る蒸気タービンとを有する蒸
    気ガスタービン合体機関。
  21. 【請求項21】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る蒸
    気ガスタービンと、該過熱蒸気で出力を得る蒸気タービ
    ンとを有する蒸気ガスタービン合体機関。
  22. 【請求項22】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
    ンと、該過熱蒸気で出力を得る蒸気タービンとを有する
    蒸気ガスタービン合体機関。
  23. 【請求項23】 前記請求項20乃至請求項22に於い
    て、圧縮機、蒸気タービン、蒸気ガスタービンのいずれ
    か2以下が全動翼である蒸気ガスタービン合体機関。
  24. 【請求項24】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
    スと燃焼ガス温度がタービン耐熱限界温度以下となるよ
    うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガ
    スタービンと、該過熱蒸気で出力を得る全動翼蒸気ター
    ビン圧縮機と、該夫夫の推力により、航空機体を浮揚移
    動させるための装置とを有する蒸気ガスタービン合体機
    関。
  25. 【請求項25】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
    圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界
    温度以下となるように熱交換して得た過熱蒸気で出力を
    得る全動翼蒸気ガスタービンと、該過熱蒸気で出力を得
    る全動翼蒸気タービン圧縮機と、該夫夫の推力により、
    航空機体を浮揚移動させるための装置とを有する蒸気ガ
    スタービン合体機関。
  26. 【請求項26】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
    気ガスタービンと、該過熱蒸気で出力を得る全動翼蒸気
    タービン圧縮機と、該夫夫の推力により、航空機体を浮
    揚移動させるための装置とを有する蒸気ガスタービン合
    体機関。
  27. 【請求項27】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
    焼ガス温度がタービン耐熱限界温度以下となるように熱
    交換して得た過熱蒸気で出力を得る蒸気ガスタービン
    と、該過熱蒸気で出力を得る蒸気タービン圧縮機と、該
    夫夫の推力により、航空機体を浮揚移動させるための装
    置とを有する蒸気ガスタービン合体機関。
  28. 【請求項28】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る蒸
    気ガスタービンと、該過熱蒸気で出力を得る蒸気タービ
    ン圧縮機と、該夫夫の推力により、航空機体を浮揚移動
    させるための装置とを有する蒸気ガスタービン合体機
    関。
  29. 【請求項29】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
    ンと、該過熱蒸気で出力を得る蒸気タービン圧縮機と、
    該夫夫の推力により、航空機体を浮揚移動させるための
    装置とを有する蒸気ガスタービン合体機関。
  30. 【請求項30】 前記請求項27乃至請求項29に於い
    て、圧縮機、蒸気タービン圧縮機、蒸気ガスタービンの
    いずれか2以下が全動翼である蒸気ガスタービン合体機
    関。
  31. 【請求項31】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
    スと燃焼ガス温度がタービン耐熱限界温度以下となるよ
    うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガ
    スタービンと、該過熱蒸気で出力を得る全動翼蒸気ター
    ビン圧縮機と、該夫夫の力により、船舶を浮揚移動させ
    るための装置とを有する蒸気ガスタービン合体機関。
  32. 【請求項32】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
    圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界
    温度以下となるように熱交換して得た過熱蒸気で出力を
    得る全動翼蒸気ガスタービンと、該過熱蒸気で出力を得
    る全動翼蒸気タービン圧縮機と、該夫夫の力により、船
    舶を浮揚移動させるための装置とを有する蒸気ガスター
    ビン合体機関。
  33. 【請求項33】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
    気ガスタービンと、該過熱蒸気で出力を得る全動翼蒸気
    タービン圧縮機と、該夫夫の力により、船舶を浮揚移動
    させるための装置とを有する蒸気ガスタービン合体機
    関。
  34. 【請求項34】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
    焼ガス温度がタービン耐熱限界温度以下となるように熱
    交換して得た過熱蒸気で出力を得る蒸気ガスタービン
    と、該過熱蒸気で出力を得る蒸気タービン圧縮機と、該
    夫夫の力により、船舶を浮揚移動させるための装置とを
    有する蒸気ガスタービン合体機関。
  35. 【請求項35】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る蒸
    気ガスタービンと、該過熱蒸気で出力を得る蒸気タービ
    ン圧縮機と、該夫夫の力により、船舶を浮揚移動させる
    ための装置とを有する蒸気ガスタービン合体機関。
  36. 【請求項36】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
    ンと、該過熱蒸気で出力を得る蒸気タービン圧縮機と、
    該夫夫の力により、船舶を浮揚移動させるための装置と
    を有する蒸気ガスタービン合体機関。
  37. 【請求項37】 前記請求項34乃至請求項36に於い
    て、圧縮機、蒸気タービン圧縮機、蒸気ガスタービンの
    いずれか2以下が全動翼である蒸気ガスタービン合体機
    関。
  38. 【請求項38】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
    スと燃焼ガス温度がタービン耐熱限界温度以下となるよ
    うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガ
    スタービンと、該過熱蒸気で出力を得る全動翼蒸気ター
    ビンと、夫夫の出力と推力により、プロペラを回転させ
    て機体を浮揚移動させるための装置とを有する蒸気ガス
    タービン合体機関。
  39. 【請求項39】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
    圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界
    温度以下となるように熱交換して得た過熱蒸気で出力を
    得る全動翼蒸気ガスタービンと、該過熱蒸気で出力を得
    る全動翼蒸気タービンと、夫夫の出力と推力により、プ
    ロペラを回転させて機体を浮揚移動させるための装置と
    を有する蒸気ガスタービン合体機関。
  40. 【請求項40】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
    気ガスタービンと、該過熱蒸気で出力を得る全動翼蒸気
    タービンと、夫夫の出力と推力により、プロペラを回転
    させて機体を浮揚移動させるための装置とを有する蒸気
    ガスタービン合体機関。
  41. 【請求項41】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
    焼ガス温度がタービン耐熱限界温度以下となるように熱
    交換して得た過熱蒸気で出力を得る蒸気ガスタービン
    と、該過熱蒸気で出力を得る蒸気タービンと、夫夫の出
    力と推力により、プロペラを回転させて機体を浮揚移動
    させるための装置とを有する蒸気ガスタービン合体機
    関。
  42. 【請求項42】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る蒸
    気ガスタービンと、該過熱蒸気で出力を得る蒸気タービ
    ンと、夫夫の出力と推力により、プロペラを回転させて
    機体を浮揚移動させるための装置とを有する蒸気ガスタ
    ービン合体機関。
  43. 【請求項43】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
    ンと、該過熱蒸気で出力を得る蒸気タービンと、夫夫の
    出力と推力により、プロペラを回転させて機体を浮揚移
    動させるための装置とを有する蒸気ガスタービン合体機
    関。
  44. 【請求項44】 前記請求項41乃至請求項43に於い
    て、圧縮機、蒸気タービン、蒸気ガスタービンのいずれ
    か2以下が全動翼である蒸気ガスタービン合体機関。
  45. 【請求項45】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
    スと燃焼ガス温度がタービン耐熱限界温度以下となるよ
    うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガ
    スタービンと、該過熱蒸気で出力を得る全動翼蒸気ター
    ビンと、夫夫の出力と推力により、プロペラを回転させ
    て船体を浮揚移動させるための装置とを有する蒸気ガス
    タービン合体機関。
  46. 【請求項46】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
    圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界
    温度以下となるように熱交換して得た過熱蒸気で出力を
    得る全動翼蒸気ガスタービンと、該過熱蒸気で出力を得
    る全動翼蒸気タービンと、夫夫の出力と推力により、プ
    ロペラを回転させて船体を浮揚移動させるための装置と
    を有する蒸気ガスタービン合体機関。
  47. 【請求項47】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
    気ガスタービンと、該過熱蒸気で出力を得る全動翼蒸気
    タービンと、夫夫の出力と推力により、プロペラを回転
    させて船体を浮揚移動させるための装置とを有する蒸気
    ガスタービン合体機関。
  48. 【請求項48】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
    焼ガス温度がタービン耐熱限界温度以下となるように熱
    交換して得た過熱蒸気で出力を得る蒸気ガスタービン
    と、該過熱蒸気で出力を得る蒸気タービンと、夫夫の出
    力と推力により、プロペラを回転させて船体を浮揚移動
    させるための装置とを有する蒸気ガスタービン合体機
    関。
  49. 【請求項49】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る蒸
    気ガスタービンと、該過熱蒸気で出力を得る蒸気タービ
    ンと、夫夫の出力と推力により、プロペラを回転させて
    船体を浮揚移動させるための装置とを有する蒸気ガスタ
    ービン合体機関。
  50. 【請求項50】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
    ンと、該過熱蒸気で出力を得る蒸気タービンと、夫夫の
    出力と推力により、プロペラを回転させて船体を浮揚移
    動させるための装置とを有する蒸気ガスタービン合体機
    関。
  51. 【請求項51】 前記請求項48乃至請求項50に於い
    て、圧縮機、蒸気タービン、蒸気ガスタービンのいずれ
    か2以下が全動翼である蒸気ガスタービン合体機関。
  52. 【請求項52】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状にに短小化配置した燃焼器兼熱交換器と、圧縮空気
    を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼
    ガスと燃焼ガス温度がタービン耐熱限界温度以下となる
    ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
    ガスタービンと、該過熱蒸気で出力を得る全動翼蒸気タ
    ービンと、夫夫の出力により、車輪を回転させて移動す
    るための動力伝達装置とを有する蒸気ガスタービン合体
    機関。
  53. 【請求項53】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
    スと燃焼ガス温度がタービン耐熱限界温度以下となるよ
    うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガ
    スタービンと、該過熱蒸気で出力を得る全動翼蒸気ター
    ビンと、夫夫の出力により、車輪を回転させて移動可能
    にすると共に、該出力により発電・充電して電動機によ
    り車輪を回転させて移動可能にするための動力伝達装置
    とを有する蒸気ガスタービン合体機関。
  54. 【請求項54】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
    圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界
    温度以下となるように熱交換して得た過熱蒸気で出力を
    得る全動翼蒸気ガスタービンと、該過熱蒸気で出力を得
    る全動翼蒸気タービンと、夫夫の出力により、車輪を回
    転させて移動するための動力伝達装置とを有する蒸気ガ
    スタービン合体機関。
  55. 【請求項55】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
    圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界
    温度以下となるように熱交換して得た過熱蒸気で出力を
    得る全動翼蒸気ガスタービンと、該過熱蒸気で出力を得
    る全動翼蒸気タービンと、夫夫の出力により、車輪を回
    転させて移動可能にすると共に、該出力により発電・充
    電して電動機により車輪を回転させて移動可能にするた
    めの動力伝達装置とを有する蒸気ガスタービン合体機
    関。
  56. 【請求項56】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
    気ガスタービンと、該過熱蒸気で出力を得る全動翼蒸気
    タービンと、夫夫の出力により、車輪を回転させて移動
    するための動力伝達装置とを有する蒸気ガスタービン合
    体機関。
  57. 【請求項57】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
    気ガスタービンと、該過熱蒸気で出力を得る全動翼蒸気
    タービンと、夫夫の出力により、車輪を回転させて移動
    可能にすると共に、該出力により発電・充電して電動機
    により車輪を回転させて移動可能にするための動力伝達
    装置とを有する蒸気ガスタービン合体機関。
  58. 【請求項58】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
    焼ガス温度がタービン耐熱限界温度以下となるように熱
    交換して得た過熱蒸気で出力を得る蒸気ガスタービン
    と、該過熱蒸気で出力を得る蒸気タービンと、夫夫の出
    力により、車輪を回転させて移動するための動力伝達装
    置とを有する蒸気ガスタービン合体機関。
  59. 【請求項59】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
    焼ガス温度がタービン耐熱限界温度以下となるように熱
    交換して得た過熱蒸気で出力を得る蒸気ガスタービン
    と、該過熱蒸気で出力を得る蒸気タービンと、夫夫の出
    力により、車輪を回転させて移動可能にすると共に、該
    出力により発電・充電して電動機により車輪を回転させ
    て移動可能にするための動力伝達装置とを有する蒸気ガ
    スタービン合体機関。
  60. 【請求項60】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る蒸
    気ガスタービンと、該過熱蒸気で出力を得る蒸気タービ
    ンと、夫夫の出力により、車輪を回転させて移動するた
    めの動力伝達装置とを有する蒸気ガスタービン合体機
    関。
  61. 【請求項61】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る蒸
    気ガスタービンと、該過熱蒸気で出力を得る蒸気タービ
    ンと、夫夫の出力により、車輪を回転させて移動可能に
    すると共に、該出力により発電・充電して電動機により
    車輪を回転させて移動可能にするための動力伝達装置と
    を有する蒸気ガスタービン合体機関。
  62. 【請求項62】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
    ンと、該過熱蒸気で出力を得る蒸気タービンと、夫夫の
    出力により、車輪を回転させて移動するための動力伝達
    装置とを有する蒸気ガスタービン合体機関。
  63. 【請求項63】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
    ンと、該過熱蒸気で出力を得る蒸気タービンと、夫夫の
    出力により、車輪を回転させて移動可能にすると共に、
    該出力により発電・充電して電動機により車輪を回転さ
    せて移動可能にするための動力伝達装置とを有する蒸気
    ガスタービン合体機関。
  64. 【請求項64】 前記請求項58乃至請求項63に於い
    て、圧縮機、蒸気タービン、蒸気ガスタービンのいずれ
    か2以下が全動翼である蒸気ガスタービン合体機関。
  65. 【請求項65】 前記請求項52乃至請求項64に於い
    て、鉄道レール(54)及び車輪(55)の動力伝達面
    (31)に低凹凸(40)を夫夫具備して、該車輪の進
    行方向前後のレール(54)との間に棒磁石(33)又
    は電磁石(34)を設けて、吸引する力を作用させたこ
    とを特徴とする蒸気ガスタービン合体機関。
  66. 【請求項66】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
    スと燃焼ガス温度がタービン耐熱限界温度以下となるよ
    うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガ
    スタービンと、該過熱蒸気で出力を得る全動翼蒸気ター
    ビンと、夫夫の出力により、プロペラを回転させて船体
    を移動させるための装置とを有する蒸気ガスタービン合
    体機関。
  67. 【請求項67】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
    圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界
    温度以下となるように熱交換して得た過熱蒸気で出力を
    得る全動翼蒸気ガスタービンと、該過熱蒸気で出力を得
    る全動翼蒸気タービンと、夫夫の出力により、プロペラ
    を回転させて船体を移動させるための装置とを有する蒸
    気ガスタービン合体機関。
  68. 【請求項68】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
    気ガスタービンと、該過熱蒸気で出力を得る全動翼蒸気
    タービンと、夫夫の出力により、プロペラを回転させて
    船体を移動させるための装置とを有する蒸気ガスタービ
    ン合体機関。
  69. 【請求項69】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
    焼ガス温度がタービン耐熱限界温度以下となるように熱
    交換して得た過熱蒸気で出力を得る蒸気ガスタービン
    と、該過熱蒸気で出力を得る蒸気タービンと、夫夫の出
    力により、プロペラを回転させて船体を移動させるため
    の装置とを有する蒸気ガスタービン合体機関。
  70. 【請求項70】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る蒸
    気ガスタービンと、該過熱蒸気で出力を得る蒸気タービ
    ンと、夫夫の出力により、プロペラを回転させて船体を
    移動させるための装置とを有する蒸気ガスタービン合体
    機関。
  71. 【請求項71】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
    ンと、該過熱蒸気で出力を得る蒸気タービンと、夫夫の
    出力により、プロペラを回転させて船体を移動させるた
    めの装置とを有する蒸気ガスタービン合体機関。
  72. 【請求項72】 前記請求項69乃至請求項71に於い
    て、圧縮機、蒸気タービン、蒸気ガスタービンのいずれ
    か2以下が全動翼である蒸気ガスタービン合体機関。
  73. 【請求項73】 前記請求項66乃至請求項72に於い
    て、前記過熱蒸気を含む排気噴口を船底に開口した蒸気
    ガスタービン合体機関。
  74. 【請求項74】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
    スと燃焼ガス温度がタービン耐熱限界温度以下となるよ
    うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガ
    スタービンと、該過熱蒸気で出力を得る全動翼蒸気ター
    ビンと、夫夫の出力により、機械を回転させて仕事をさ
    せるための装置とを有する蒸気ガスタービン合体機関。
  75. 【請求項75】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
    圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界
    温度以下となるように熱交換して得た過熱蒸気で出力を
    得る全動翼蒸気ガスタービンと、該過熱蒸気で出力を得
    る全動翼蒸気タービンと、夫夫の出力により、機械を回
    転させて仕事をさせるための装置とを有する蒸気ガスタ
    ービン合体機関。
  76. 【請求項76】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
    気ガスタービンと、該過熱蒸気で出力を得る全動翼蒸気
    タービンと、夫夫の出力により、機械を回転させて仕事
    をさせるための装置とを有する蒸気ガスタービン合体機
    関。
  77. 【請求項77】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
    焼ガス温度がタービン耐熱限界温度以下となるように熱
    交換して得た過熱蒸気で出力を得る蒸気ガスタービン
    と、該過熱蒸気で出力を得る蒸気タービンと、夫夫の出
    力により、機械を回転させて仕事をさせるための装置と
    を有する蒸気ガスタービン合体機関。
  78. 【請求項78】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る蒸
    気ガスタービンと、該過熱蒸気で出力を得る蒸気タービ
    ンと、夫夫の出力により、機械を回転させて仕事をさせ
    るための装置とを有する蒸気ガスタービン合体機関。
  79. 【請求項79】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
    ンと、該過熱蒸気で出力を得る蒸気タービンと、夫夫の
    出力により、機械を回転させて仕事をさせるための装置
    とを有する蒸気ガスタービン合体機関。
  80. 【請求項80】 前記請求項77乃至請求項79に於い
    て、圧縮機、蒸気タービン、蒸気ガスタービンのいずれ
    か2以下が全動翼である蒸気ガスタービン合体機関。
  81. 【請求項81】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
    スと燃焼ガス温度がタービン耐熱限界温度以下となるよ
    うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガ
    スタービン発電機と、該過熱蒸気で出力を得る全動翼蒸
    気タービン発電機と、夫夫のいずれかからの熱供給と、
    該夫夫の発電機からの電気を供給するための装置とを有
    する蒸気ガスタービン合体機関。
  82. 【請求項82】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
    スと燃焼ガス温度がタービン耐熱限界温度以下となるよ
    うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガ
    スタービン発電機と、該過熱蒸気で出力を得る全動翼蒸
    気タービン発電機と、該夫夫のいずれかからの熱及び冷
    熱の供給と、該夫夫からの電気を供給するための装置と
    を有する蒸気ガスタービン合体機関。
  83. 【請求項83】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
    スと燃焼ガス温度がタービン耐熱限界温度以下となるよ
    うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガ
    スタービン発電機と、該過熱蒸気で出力を得る全動翼蒸
    気タービン発電機と、夫夫からの電気を供給するための
    装置とを有する蒸気ガスタービン合体機関。
  84. 【請求項84】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
    圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界
    温度以下となるように熱交換して得た過熱蒸気で出力を
    得る全動翼蒸気ガスタービン発電機と、該過熱蒸気で出
    力を得る全動翼蒸気タービン発電機と、夫夫のいずれか
    からの熱供給と、該夫夫の発電機からの電気を供給する
    ための装置とを有する蒸気ガスタービン合体機関。
  85. 【請求項85】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
    圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界
    温度以下となるように熱交換して得た過熱蒸気で出力を
    得る全動翼蒸気ガスタービン発電機と、該過熱蒸気で出
    力を得る全動翼蒸気タービン発電機と、該夫夫のいずれ
    かからの熱及び冷熱の供給と、該夫夫からの電気を供給
    するための装置とを有する蒸気ガスタービン合体機関。
  86. 【請求項86】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
    圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界
    温度以下となるように熱交換して得た過熱蒸気で出力を
    得る全動翼蒸気ガスタービン発電機と、該過熱蒸気で出
    力を得る全動翼蒸気タービン発電機と、該夫夫からの電
    気を供給するための装置とを有する蒸気ガスタービン合
    体機関。
  87. 【請求項87】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
    気ガスタービン発電機と、該過熱蒸気で出力を得る全動
    翼蒸気タービン発電機と、夫夫のいずれかからの熱供給
    と、該夫夫からの電気を供給するための装置とを有する
    蒸気ガスタービン合体機関。
  88. 【請求項88】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
    気ガスタービン発電機と、該過熱蒸気で出力を得る全動
    翼蒸気タービン発電機と、該夫夫のいずれかからの熱及
    び冷熱の供給と、該夫夫からの電気を供給するための装
    置とを有する蒸気ガスタービン合体機関。
  89. 【請求項89】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
    気ガスタービン発電機と、該過熱蒸気で出力を得る全動
    翼蒸気タービン発電機と、該夫夫からの電気を供給する
    ための装置とを有する蒸気ガスタービン合体機関。
  90. 【請求項90】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
    焼ガス温度がタービン耐熱限界温度以下となるように熱
    交換して得た過熱蒸気で出力を得る蒸気ガスタービン発
    電機と、該過熱蒸気で出力を得る蒸気タービン発電機
    と、夫夫のいずれかからの熱供給と、該夫夫からの電気
    を供給するための装置とを有する蒸気ガスタービン合体
    機関。
  91. 【請求項91】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
    焼ガス温度がタービン耐熱限界温度以下となるように熱
    交換して得た過熱蒸気で出力を得る蒸気ガスタービン発
    電機と、該過熱蒸気で出力を得る蒸気タービン発電機
    と、該夫夫のいずれかからの熱及び冷熱供給と、該夫夫
    からの電気を供給するための装置とを有する蒸気ガスタ
    ービン合体機関。
  92. 【請求項92】 水冷外壁を螺旋状の熔接構造として、
    内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
    巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
    該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
    焼ガス温度がタービン耐熱限界温度以下となるように熱
    交換して得た過熱蒸気で出力を得る蒸気ガスタービン発
    電機と、該過熱蒸気で出力を得る蒸気タービン発電機
    と、該夫夫からの電気を供給するための装置とを有する
    蒸気ガスタービン合体機関。
  93. 【請求項93】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る蒸
    気ガスタービン発電機と、該過熱蒸気で出力を得る蒸気
    タービン発電機と、夫夫のいずれかからの熱供給と、該
    夫夫からの電気を供給するための装置とを有する蒸気ガ
    スタービン合体機関。
  94. 【請求項94】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る蒸
    気ガスタービン発電機と、該過熱蒸気で出力を得る蒸気
    タービン発電機と、該夫夫のいずれかからの熱及び冷熱
    の供給と、該夫夫からの電気を供給するための装置とを
    有する蒸気ガスタービン合体機関。
  95. 【請求項95】 水冷外壁を螺旋状の熔接構造単位組立
    て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る蒸
    気ガスタービン発電機と、該過熱蒸気で出力を得る蒸気
    タービン発電機と、該夫夫からの電気を供給するための
    装置とを有する蒸気ガスタービン合体機関。
  96. 【請求項96】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
    ン発電機と、該過熱蒸気で出力を得る蒸気タービン発電
    機と、夫夫のいずれかからの熱供給と、該夫夫からの電
    気を供給するための装置とを有する蒸気ガスタービン合
    体機関。
  97. 【請求項97】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
    ン発電機と、該過熱蒸気で出力を得る蒸気タービン発電
    機と、該夫夫のいずれかからの熱及び冷熱の供給と、該
    夫夫からの電気を供給するための装置とを有する蒸気ガ
    スタービン合体機関。
  98. 【請求項98】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
    ン発電機と、該過熱蒸気で出力を得る蒸気タービン発電
    機と、該夫夫からの電気を供給するための装置とを有す
    る蒸気ガスタービン合体機関。
  99. 【請求項99】 前記請求項90乃至請求項98に於い
    て、圧縮機、蒸気タービン、蒸気ガスタービンのいずれ
    か2以下が全動翼である蒸気ガスタービン合体機関。
  100. 【請求項100】 水冷外壁を螺旋状の熔接構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る排気温度
    0℃前後の全動翼蒸気ガスタービン発電機と、該過熱蒸
    気で出力を得る復水器付全動翼蒸気タービン発電機と、
    該夫夫からの電気を供給するための装置とを有する蒸気
    ガスタービン合体機関。
  101. 【請求項101】 水冷外壁を螺旋状の熔接構造単位組
    立て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
    圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限界
    温度以下となるように熱交換して得た過熱蒸気で出力を
    得る排気温度0℃前後の全動翼蒸気ガスタービン発電機
    と、該過熱蒸気で出力を得る復水器付全動翼蒸気タービ
    ン発電機と、該夫夫からの電気を供給するための装置と
    を有する蒸気ガスタービン合体機関。
  102. 【請求項102】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
    焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
    るように熱交換して得た過熱蒸気で出力を得る排気温度
    0℃前後の全動翼蒸気ガスタービン発電機と、該過熱蒸
    気で出力を得る復水器付全動翼蒸気タービン発電機と、
    該夫夫からの電気を供給するための装置とを有する蒸気
    ガスタービン合体機関。
  103. 【請求項103】 水冷外壁を螺旋状の熔接構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る排気温度0℃前
    後の蒸気ガスタービン発電機と、該過熱蒸気で出力を得
    る復水器付蒸気タービン発電機と、該夫夫からの電気を
    供給するための装置とを有する蒸気ガスタービン合体機
    関。
  104. 【請求項104】 水冷外壁を螺旋状の熔接構造単位組
    立て構造として、内部に螺旋環状に導水管を1以上設け
    て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
    と、燃焼ガスと燃焼ガス温度がタービン耐熱限界温度以
    下となるように熱交換して得た過熱蒸気で出力を得る排
    気温度0℃前後の蒸気ガスタービン発電機と、該過熱蒸
    気で出力を得る復水器付蒸気タービン発電機と、該夫夫
    からの電気を供給するための装置とを有する蒸気ガスタ
    ービン合体機関。
  105. 【請求項105】 螺旋状の水冷外壁単位組立構造とし
    て、内部に螺旋環状に導水管を1以上設けて、小径多数
    蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
    気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
    と燃焼ガス温度がタービン耐熱限界温度以下となるよう
    に熱交換して得た過熱蒸気で出力を得る排気温度0℃前
    後の蒸気ガスタービン発電機と、該過熱蒸気で出力を得
    る復水器付蒸気タービン発電機と、該夫夫からの電気を
    供給するための装置とを有する蒸気ガスタービン合体機
    関。
  106. 【請求項106】 前記請求項103乃至請求項105
    に於いて、圧縮機、蒸気タービン、蒸気ガスタービンの
    いずれか2以下が全動翼である蒸気ガスタービン合体機
    関。
  107. 【請求項107】 前記全動翼蒸気ガスタービンの燃焼
    器兼熱交換器は、超臨界以下の過熱蒸気を噴射して、撹
    拌燃焼によりNOxを低減することを特徴とする蒸気ガ
    スタービン合体機関。
  108. 【請求項108】 前記蒸気ガスタービンの燃焼器兼熱
    交換器は、超臨界以下の過熱蒸気を噴射して、撹拌燃焼
    によりNOxを低減することを特徴とする蒸気ガスター
    ビン合体機関。
  109. 【請求項109】 前記全動翼蒸気ガスタービンは、排
    気温度を0℃に近づけることを特徴とする蒸気ガスター
    ビン合体機関。
  110. 【請求項110】 前記蒸気ガスタービンは、排気温度
    を0℃に近づけることを特徴とする蒸気ガスタービン合
    体機関。
  111. 【請求項111】 前記小径多数蜂の巣状に短小化配置
    して、内部に螺旋環状に導水管を1以上設けた燃焼器兼
    熱交換器を、大径単数として配置したことを特徴とする
    蒸気ガスタービン合体機関。
  112. 【請求項112】 前記蒸気タービンは、超臨界の蒸気
    条件以下の過熱蒸気を使用する請求項1乃至請求項11
    1のいずれかに記載の蒸気ガスタービン合体機関。
  113. 【請求項113】 前記全動翼蒸気ガスタービンの内側
    軸装置と外側軸装置を最適回転比で結合した磁気摩擦動
    力伝達装置(14)を具備したことを特徴とする蒸気ガ
    スタービン合体機関。
  114. 【請求項114】 前記全動翼圧縮機の内側軸装置と外
    側軸装置を最適回転比で結合した磁気摩擦動力伝達装置
    (14)を具備したことを特徴とする蒸気ガスタービン
    合体機関。
  115. 【請求項115】 前記磁気摩擦動力伝達装置(14)
    は冷却装置を有することを特徴とする蒸気ガスタービン
    合体機関。
  116. 【請求項116】 前記圧縮空気を燃焼器兼熱交換器に
    供給する全動翼圧縮機に、バイパスを設けたことを特徴
    とする蒸気ガスタービン合体機関。
  117. 【請求項117】 前記圧縮空気を燃焼器兼熱交換器に
    供給する圧縮機に、バイパスを設けたことを特徴とする
    蒸気ガスタービン合体機関。
  118. 【請求項118】 前記全動翼蒸気ガスタービンの内側
    軸装置と外側軸装置を2重反転させる磁気摩擦動力伝達
    装置14に冷却装置を設けたことを特徴とする蒸気ガス
    タービン合体機関。
  119. 【請求項119】 前記全動翼圧縮機の内側軸装置と外
    側軸装置を2重反転させる磁気摩擦動力伝達装置14に
    冷却装置を設けたことを特徴とする蒸気ガスタービン合
    体機関。
  120. 【請求項120】 前記全動翼蒸気タービンを、内側軸
    装置に内側タービン動翼群(20)を設け、外側軸装置
    に外側タービン動翼群(19)を設けて、互いに反転す
    る2軸を磁気摩擦動力伝達装置により結合して全動翼蒸
    気タービンを構成して、内側軸装置の中心より過熱蒸気
    (5)を供給して、該全動翼蒸気タービンを駆動するこ
    とを特徴とする蒸気ガスタービン合体機関。
  121. 【請求項121】 前記全動翼蒸気タービン圧縮機を、
    内側軸装置に内側タービン動翼群(20)を設け、外側
    軸装置に外側タービン動翼群(19)及び内側圧縮機動
    翼群(17)を設けて内側軸装置と兼用して、互いに反
    転する2軸を磁気摩擦動力伝達装置により結合して全動
    翼蒸気タービンを構成し、内側圧縮機動翼群(17)の
    外側に外側軸装置及び外側圧縮機動翼群(16)を設け
    て、互いに反転する該外側軸装置と内側軸装置を磁気摩
    擦動力伝達装置により結合して全動翼圧縮機を構成させ
    て、内側軸装置の中心より過熱蒸気(5)を供給して、
    該全動翼蒸気タービン圧縮機を駆動する装置を設けたこ
    とを特徴とする蒸気ガスタービン合体機関。
  122. 【請求項122】 前記全動翼蒸気タービン圧縮機を、
    内側軸装置に内側タービン動翼群(20)を設け、外側
    軸装置に外側タービン動翼群(19)を設けて互いに反
    転する2軸を磁気摩擦動力伝達装置により結合して全動
    翼蒸気タービンを構成し、該前方内側軸装置に内側圧縮
    機動翼群(17)を設け、該外側に外側軸装置及び外側
    圧縮機動翼群(16)を設けて、互いに反転する該外側
    軸装置と内側軸装置を磁気摩擦動力伝達装置により結合
    して全動翼圧縮機を構成させて、内側軸装置の中心より
    過熱蒸気(5)を供給して、該全動翼蒸気タービン圧縮
    機として駆動する装置を設けたことを特徴とする蒸気ガ
    スタービン合体機関。
  123. 【請求項123】 前記蒸気タービンを、内側固定軸装
    置に内側タービン静翼を設け、外側軸装置に外側タービ
    ン動翼群(19)を設けて、内側軸装置の中心より過熱
    蒸気(5)を供給して駆動可能に、蒸気タービンを構成
    したことを特徴とする蒸気ガスタービン合体機関。
  124. 【請求項124】 前記蒸気タービン圧縮機を、内側固
    定軸装置に内側タービン静翼を設け、外側軸装置に外側
    タービン動翼群(19)を設けて内側軸装置の中心より
    過熱蒸気(5)を供給して駆動可能に蒸気タービンを構
    成し、該外側軸装置に内側圧縮機動翼群(17)を設け
    て内側軸装置と兼用して、該内側圧縮機動翼群(17)
    の外側にケーシング及び静翼を設けて圧縮機を構成させ
    て、蒸気タービン圧縮機として設けたことを特徴とする
    蒸気ガスタービン合体機関。
  125. 【請求項125】 前記蒸気タービン圧縮機を、内側軸
    装置に内側タービン動翼群(20)を設け、外側軸装置
    に静翼を設けて、該上流側より過熱蒸気(5)を噴射供
    給して駆動可能に蒸気タービンを構成し、前方内側軸装
    置に内側圧縮機動翼群(17)を設けて、該内側圧縮機
    動翼群(17)の外側にケーシング及び静翼を設けて圧
    縮機を構成させて、蒸気タービン圧縮機として設けたこ
    とを特徴とする蒸気ガスタービン合体機関。
  126. 【請求項126】 前記全動翼蒸気タービン圧縮機を、
    全動翼圧縮機を除去することで、全動翼蒸気タービンと
    して設けたことを特徴とする蒸気ガスタービン合体機
    関。
  127. 【請求項127】 前記蒸気タービン圧縮機を、圧縮機
    を除去することで、蒸気タービンとして設けたことを特
    徴とする蒸気ガスタービン合体機関。
  128. 【請求項128】 前記水冷外壁を螺旋状の熔接構造と
    して内部に螺旋環状の導水管を1以上設けて小径多数蜂
    の巣状に短小化配置した燃焼器兼熱交換器としていたも
    のを変更し、水冷外壁及び水冷内壁(54)を螺旋状の
    熔接構造として内部に螺旋環状の導水管を1以上設けた
    一つの燃焼器兼熱交換器としたことを特徴とする蒸気ガ
    スタービン合体機関。
  129. 【請求項129】 前記水冷外壁を螺旋状の熔接構造単
    位組立て構造として内部に螺旋環状の導水管を1以上設
    けて小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
    器としていたものを変更し、水冷外壁及び水冷内壁(5
    4)を螺旋状の熔接構造単位組立て構造として内部に螺
    旋環状の導水管を1以上設けた一つの燃焼器兼熱交換器
    としたことを特徴とする蒸気ガスタービン合体機関。
  130. 【請求項130】 前記螺旋状の水冷外壁単位組立て構
    造として内部に螺旋環状の導水管を1以上設けて小径多
    数蜂の巣状に短小化配置した燃焼器兼熱交換器としてい
    たものを変更し、螺旋状の水冷外壁(26)単位組立て
    構造及び水冷内壁(54)単位組立て構造として内部に
    螺旋環状の導水管を1以上設けた一つの燃焼器兼熱交換
    器としたことを特徴とする蒸気ガスタービン合体機関。
  131. 【請求項131】 前記全動翼蒸気ガスタービンは、水
    滴となった過熱蒸気(5)を遠心力により外後方に噴射
    して推進力とすることを特徴とする蒸気ガスタービン合
    体機関。
  132. 【請求項132】 前記全動翼蒸気タービンは、水滴と
    なった過熱蒸気(5)を遠心力により外後方に噴射して
    推進力とすることを特徴とする蒸気ガスタービン合体機
    関。
  133. 【請求項133】 前記外側に動翼を設けた蒸気タービ
    ンは、水滴となった過熱蒸気(5)を遠心力により外後
    方に噴射して推進力とすることを特徴とする蒸気ガスタ
    ービン合体機関。
  134. 【請求項134】 前記燃焼器兼熱交換器は、燃料蒸気
    噴射手段(27)から、過熱蒸気を噴射して燃焼ガスを
    過熱蒸気に固定することを特徴とする蒸気ガスタービン
    合体機関。
  135. 【請求項135】 前記燃焼器兼熱交換器は、燃料蒸気
    噴射手段(27)から、超臨界の過熱蒸気乃至水のいず
    れかを噴射して、燃焼ガスを過熱蒸気に固定することを
    特徴とする蒸気ガスタービン合体機関。
  136. 【請求項136】 前記燃焼器兼熱交換器は、超臨界の
    過熱蒸気乃至水のいずれかを噴射して、燃焼ガスを過熱
    蒸気に固定することを特徴とする蒸気ガスタービン合体
    機関。
  137. 【請求項137】 前記燃焼器兼熱交換器は、燃料蒸気
    噴射手段(27)から、燃焼ガス水固定を促進する物質
    を含む、超臨界の過熱蒸気乃至水のいずれかを噴射して
    燃焼ガスを過熱蒸気に固定することを特徴とする蒸気ガ
    スタービン合体機関。
  138. 【請求項138】 前記燃焼器兼熱交換器は、燃焼ガス
    水固定を促進する物質を含む、超臨界の過熱蒸気乃至水
    のいずれかを噴射して、燃焼ガスを過熱蒸気に固定する
    ことを特徴とする蒸気ガスタービン合体機関。
  139. 【請求項139】 前記過熱蒸気に固定する燃焼ガス
    は、主としてCO2であることを特徴とする蒸気ガスタ
    ービン合体機関。
  140. 【請求項140】 前記過熱蒸気に固定する燃焼ガス
    は、主として有害燃焼ガスであることを特徴とする蒸気
    ガスタービン合体機関。
  141. 【請求項141】 前記全動翼蒸気ガスタービンは、過
    熱蒸気を低温燃焼ガスにより冷却して、有害燃焼ガスを
    水固定混合排出することを特徴とする蒸気ガスタービン
    合体機関。
  142. 【請求項142】 前記蒸気ガスタービンは、過熱蒸気
    を低温燃焼ガスにより冷却して、有害燃焼ガスを水固定
    混合排出することを特徴とする蒸気ガスタービン合体機
    関。
  143. 【請求項143】 前記全動翼蒸気ガスタービンは、過
    熱蒸気及び燃焼ガスを排気熱交換器(58)で冷却し
    て、有害燃焼ガスを水固定混合排出することを特徴とす
    る蒸気ガスタービン合体機関。
  144. 【請求項144】 前記蒸気ガスタービンは、過熱蒸気
    及び燃焼ガスを排気熱交換器(58)で冷却して、有害
    燃焼ガスを水固定混合排出することを特徴とする蒸気ガ
    スタービン合体機関。
  145. 【請求項145】 前記水に固定する燃焼ガスは、無害
    に近付けて排水することを特徴とする蒸気ガスタービン
    合体機関。
  146. 【請求項146】 前記蒸気ガスタービンは、冷熱を供
    給することを特徴とする蒸気ガスタービン合体機関。
  147. 【請求項147】 前記蒸気ガスタービンの全動翼圧縮
    機は、内側軸装置を含む内側圧縮機動翼群に冷却手段
    (55)を設けていることを特徴とする蒸気ガスタービ
    ン合体機関。
  148. 【請求項148】 前記蒸気ガスタービンの圧縮機は、
    内側軸装置を含む内側圧縮機動翼群に冷却手段(55)
    を設けていることを特徴とする蒸気ガスタービン合体機
    関。
  149. 【請求項149】 前記蒸気ガスタービンの全動翼圧縮
    機は、内側軸装置を含む内側圧縮機動翼群に冷却手段
    (55)及び水噴射手段(56)を設けていることを特
    徴とする蒸気ガスタービン合体機関。
  150. 【請求項150】 前記蒸気ガスタービンの圧縮機は、
    内側軸装置を含む内側圧縮機動翼群に冷却手段(55)
    及び水噴射手段(56)を設けていることを特徴とする
    蒸気ガスタービン合体機関。
  151. 【請求項151】 前記蒸気ガスタービンの全動翼圧縮
    機は、外側軸装置を含む外側圧縮機動翼群に毛細管放出
    手段(57)を設けていることを特徴とする蒸気ガスタ
    ービン合体機関。
  152. 【請求項152】 前記蒸気ガスタービンの圧縮機は、
    圧縮機静翼を含むケーシングに毛細管放出手段(57)
    を設けていることを特徴とする蒸気ガスタービン合体機
    関。
  153. 【請求項153】 前記全動翼蒸気ガスタービンは、外
    側タービン動翼群を含む外側軸装置に毛細管放出手段
    (57)を設けていることを特徴とする蒸気ガスタービ
    ン合体機関。
  154. 【請求項154】 前記蒸気ガスタービンは、外側ター
    ビン静翼を含むケーシングに毛細管放出手段(57)を
    設けていることを特徴とする蒸気ガスタービン合体機
    関。
  155. 【請求項155】 前記全動翼蒸気ガスタービンは、外
    側タービン動翼群を含む外側軸装置に毛細管放出手段
    (57)を設けて、燃焼ガスを含む水を放出することを
    特徴とする蒸気ガスタービン合体機関。
  156. 【請求項156】 前記蒸気ガスタービンは、外側ター
    ビン静翼を含むケーシングに毛細管放出手段(57)を
    設けて、燃焼ガスを含む水を放出することを特徴とする
    蒸気ガスタービン合体機関。
  157. 【請求項157】 前記全動翼蒸気ガスタービンは、排
    気温度を0℃以下としたことを特徴とする蒸気ガスター
    ビン合体機関。
  158. 【請求項158】 前記蒸気ガスタービンは、排気温度
    を0℃以下としたことを特徴とする蒸気ガスタービン合
    体機関。
  159. 【請求項159】 前記燃焼器兼熱交換器は、燃焼ガス
    水固定を促進するため、熱交換して限りなく燃焼ガス温
    度を低下し、燃焼ガスを過熱蒸気に固定することを特徴
    とする蒸気ガスタービン合体機関。
  160. 【請求項160】 前記全動翼蒸気ガスタービンは、該
    入口燃焼ガス温度を600℃以下としたことを特徴とす
    る蒸気ガスタービン合体機関。
  161. 【請求項161】 前記蒸気ガスタービンは、該入口燃
    焼ガス温度を600℃以下としたことを特徴とする蒸気
    ガスタービン合体機関。
  162. 【請求項162】 前記全動翼蒸気ガスタービンは、該
    入口燃焼ガス温度を400℃以下としたことを特徴とす
    る蒸気ガスタービン合体機関。
  163. 【請求項163】 前記蒸気ガスタービンは、該入口燃
    焼ガス温度を400℃以下としたことを特徴とする蒸気
    ガスタービン合体機関。
JP2000043706A 1999-04-26 2000-02-22 各種蒸気ガスタービン合体機関 Pending JP2001012210A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000043706A JP2001012210A (ja) 1999-04-26 2000-02-22 各種蒸気ガスタービン合体機関

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11117404A JP2000038904A (ja) 1998-05-18 1999-04-26 各種蒸気ガスタ―ビン合体機関装置
JP11-117404 1999-04-26
JP2000043706A JP2001012210A (ja) 1999-04-26 2000-02-22 各種蒸気ガスタービン合体機関

Publications (1)

Publication Number Publication Date
JP2001012210A true JP2001012210A (ja) 2001-01-16

Family

ID=26455524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000043706A Pending JP2001012210A (ja) 1999-04-26 2000-02-22 各種蒸気ガスタービン合体機関

Country Status (1)

Country Link
JP (1) JP2001012210A (ja)

Similar Documents

Publication Publication Date Title
Wilson et al. The design of high-efficiency turbomachinery and gas turbines, with a new preface
AU696828B2 (en) Improved method and apparatus for power generation
US6446425B1 (en) Ramjet engine for power generation
WO1998000628A1 (fr) Turbine a vapeur et a gaz combinees
US11231236B2 (en) Rotary regenerator
JP2001295611A (ja) 蒸気ガスタービン合体機関
WO2000019082A9 (en) Ramjet engine with axial air supply fan
JP2001012210A (ja) 各種蒸気ガスタービン合体機関
JP2001295612A (ja) 各種蒸気ガスタービン合体機関
JP2001012209A (ja) 蒸気ガスタービン合体機関装置
JP2000038927A (ja) 各種蒸気ガスタ―ビン合体機関
JP2000038903A (ja) 制御装置を有する蒸気ガスタ―ビン合体機関
JP2000038902A (ja) 蒸気ガスタ―ビン合体機関機器
JP2000038904A (ja) 各種蒸気ガスタ―ビン合体機関装置
US20210293181A1 (en) A system and a method for power generation
JPH11107778A (ja) 蒸気ガスタービン合体機関運輸発電機器
JP2000038928A (ja) 蒸気ガスタ―ビン合体機関
RU2363604C1 (ru) Газотурбовоз и силовая установка газотурбовоза
JP2002195002A (ja) 各種蒸気ガスタービン合体機関
JP2001295664A (ja) 各種蒸気ガスタービン合体機関
JP2003286804A (ja) 各種全動翼蒸気ガスタービン合体機関
JP2003286809A (ja) 各種全動翼蒸気ガスタービン合体機関
JP2004100678A (ja) 各種全動翼蒸気ガスタービン合体機関
RU2605994C2 (ru) Двигатель внутреннего сгорания
JP2002303152A (ja) 各種全動翼蒸気ガスタービン合体機関