JP2001011512A - Detection of deteriorated position of monolithic refractory at furnace bottom part in blast furnace - Google Patents

Detection of deteriorated position of monolithic refractory at furnace bottom part in blast furnace

Info

Publication number
JP2001011512A
JP2001011512A JP11183770A JP18377099A JP2001011512A JP 2001011512 A JP2001011512 A JP 2001011512A JP 11183770 A JP11183770 A JP 11183770A JP 18377099 A JP18377099 A JP 18377099A JP 2001011512 A JP2001011512 A JP 2001011512A
Authority
JP
Japan
Prior art keywords
blast furnace
refractory
furnace
thermocouple
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11183770A
Other languages
Japanese (ja)
Inventor
Shinichi Matsumura
伸一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11183770A priority Critical patent/JP2001011512A/en
Publication of JP2001011512A publication Critical patent/JP2001011512A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Blast Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a detecting method of the deteriorated position of a monolithic refractory lined between a refractory brick and an iron shell at the side wall part of a furnace bottom in a blast furnace. SOLUTION: In the side wall part of the furnace bottom in the blast furnace constituted with the refractory brick, monolithic refractory and iron shell in order from the inside of the furnace, when detecting the temp. rising rates shown with two thermocouples at operational positions and at the same position in the blast furnace circumferential direction among plural thermocouples embedded at an interval in the blast furnace diameter direction of the refractory bricks, and when using dTi for the temp. rising rate shown with the thermocouple at the inside of the furnace and dTj for the temp. rising rate shown with the thermocouple at the monolithic refractory side, if these temp. rising rates of dTi and dTj satisfy dTi<dTj, it is decided that the monolithic refractory at the same position in the blast furnace circumferential direction is deteriorated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉炉底部不定形
耐火物の劣化個所の検知方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a deteriorated portion of an irregular shaped refractory in a blast furnace bottom.

【0002】[0002]

【従来の技術】従来、炉内側から耐火レンガ、不定形耐
火物および鉄皮から構成される高炉炉底側壁部におい
て、耐火レンガの温度が過度に上昇した場合、耐火レン
ガの冷却を行うため、鉄皮内の冷却水量の増加および水
温低下等の処置を実施している。
2. Description of the Related Art Conventionally, when the temperature of refractory bricks rises excessively at the bottom wall of a blast furnace made of refractory bricks, irregular refractories and iron shells from the inside of the furnace, the refractory bricks are cooled. Measures such as increasing the amount of cooling water in the steel shell and lowering the water temperature are being implemented.

【0003】しかしながら、耐火レンガと鉄皮との間に
ある不定形耐火物が劣化して、空気層の形成が顕著にな
り、空気層の断熱効果により、鉄皮での冷却能が低下
し、十分な冷却効果が得られないのが実状である。
[0003] However, the amorphous refractory between the refractory brick and the iron shell is deteriorated, and the formation of an air layer becomes remarkable, and the cooling ability of the iron shell is reduced due to the heat insulating effect of the air layer. In fact, a sufficient cooling effect cannot be obtained.

【0004】なお、不定形耐火物は、耐火レンガ側から
加熱され、鉄皮側から冷却され膨張・収縮の熱応力に常
に曝されているため、ひび割れ等の劣化し易い環境下に
ある。ひび割れ等が発生すると、初期に緻密な組織の不
定形耐火物に熱伝導性の低い空気が混入し、不定形耐火
物全体として熱伝導性が低下する。
[0004] In addition, since the amorphous refractory is heated from the refractory brick side, cooled from the steel shell side and constantly exposed to thermal stress of expansion and contraction, it is in an environment where cracks and the like are liable to deteriorate. When cracks or the like occur, air having low thermal conductivity is mixed into the amorphous refractory having a dense structure at the beginning, and the thermal conductivity of the entire amorphous refractory decreases.

【0005】空気層を消失させるためには、劣化した不
定形耐火物の補修が必要であるが、的確に不定形耐火物
の劣化した個所を特定できないという問題がある。不定
形耐火物のの劣化した個所を特定できないため、高炉炉
底部の高炉周方向全体に渡る補修が必要となり、非効率
な補修工事になり、コストアップの問題に加えて、高炉
休止時間が長くなり、生産量の低下を招くという問題も
あり、改善が求められていた。
In order to eliminate the air layer, it is necessary to repair the deteriorated amorphous refractory, but there is a problem that the deteriorated portion of the amorphous refractory cannot be specified accurately. Since the deteriorated part of the irregular-shaped refractory cannot be identified, it is necessary to repair the entire bottom of the blast furnace in the circumferential direction of the blast furnace, resulting in inefficient repair work. Therefore, there is a problem that the production amount is reduced, and therefore, improvement is required.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、高炉
炉底側壁部の耐火レンガと鉄皮との間にある不定形耐火
物の劣化個所の検知方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for detecting a deteriorated portion of an irregular refractory between a refractory brick and a steel shell on a bottom wall of a blast furnace.

【0007】[0007]

【課題を解決するための手段】本発明者は、下記の知見
を得た。 (A)高炉炉底側壁部の耐火レンガ内に、高炉径方向に
3箇所以上の熱電対1組を、高炉周方向に複数箇所設置
し、高炉径方向の各熱電対の温度変化量をそれぞれの高
炉周方向で監視すると、高炉の耐火レンガの熱負荷が上
昇した場合、高炉径方向に設置した熱電対の温度は上昇
する。
The present inventors have obtained the following findings. (A) A pair of thermocouples at three or more locations in the blast furnace radial direction are installed at a plurality of locations in the blast furnace circumferential direction in the refractory brick on the bottom wall of the blast furnace, and the amount of temperature change of each thermocouple in the blast furnace radial direction is measured. When the thermal load of the refractory brick of the blast furnace rises, the temperature of the thermocouple installed in the blast furnace radial direction rises.

【0008】耐火レンガの熱負荷が上昇するという意味
は、炉内の温度上昇のみならず、耐火レンガの損耗ある
いは粘調層(溶銑が固まった層)等の剥離の場合も含
む。
[0008] The meaning that the heat load of the refractory brick increases includes not only the temperature rise in the furnace, but also the wear of the refractory brick or the peeling of the viscous layer (the layer in which the molten iron is solidified).

【0009】また、熱負荷が上昇した後、熱平衡に達す
るまでの初期過程において、単位時間当たりの温度変化
(以下、温度上昇速度ともいう)は、炉内側の熱電対の
方が大きくなる傾向にある。
[0009] Further, in the initial process from when the thermal load rises to when thermal equilibrium is reached, the temperature change per unit time (hereinafter also referred to as the temperature rise rate) tends to be larger for the thermocouple inside the furnace. is there.

【0010】(B)不定形耐火物中に空気層が生成した
場合も、高炉径方向に設置した熱電対の温度は上昇す
る。
(B) Even when an air layer is formed in the amorphous refractory, the temperature of the thermocouple installed in the radial direction of the blast furnace rises.

【0011】しかし、温度上昇速度は、炉内側の熱電対
の方が小さくなる傾向を示すことを新たに見出した。
However, it has been newly found that the temperature rise rate of the thermocouple inside the furnace tends to be smaller.

【0012】各熱電対の温度上昇速度が炉内側ほど小さ
くなる位置を高炉周方向で確認し、その高炉周方向位置
の不定形耐火物を優先的に補修することによって、補修
コストを低減でき、高炉休止時間も最小にすることが可
能となる。
[0012] By checking in the circumferential direction of the blast furnace a position where the temperature rise rate of each thermocouple becomes smaller toward the inside of the furnace, and repairing the irregular refractory at the position in the circumferential direction of the blast furnace preferentially, the repair cost can be reduced. The blast furnace downtime can also be minimized.

【0013】本発明は、以上の知見に基づいてなされた
もので、その要旨は、下記のとおりである。
The present invention has been made based on the above findings, and the gist thereof is as follows.

【0014】炉内側から順に耐火レンガ、不定形耐火物
および鉄皮で構成される高炉炉底側壁部において、高炉
周方向の同一位置で前記耐火レンガの高炉径方向に間隔
をおいて埋め込まれた複数の熱電対の内、任意位置の2
個の熱電対が示す温度上昇速度を、炉内側の熱電対が示
す温度上昇速度をdTi、不定形耐火物側の熱電対が示
す温度上昇速度をdTjとして、これらのdTi、dT
jの温度上昇速度がdTi<dTjを満足するとき、高
炉周方向の同一位置の不定形耐火物が劣化していると判
定することを特徴とする高炉炉底部不定形耐火物の劣化
個所の検知方法。
In the bottom wall of the blast furnace, which is composed of a refractory brick, an amorphous refractory and a steel shell in order from the inside of the furnace, the refractory bricks are embedded at the same position in the blast furnace circumferential direction at intervals in the blast furnace radial direction. 2 of arbitrary positions among multiple thermocouples
The temperature rising rate of the thermocouples on the inside of the furnace is dTi, and the temperature rising rate of the thermocouple on the amorphous refractory side is dTj.
When the temperature rise rate of j satisfies dTi <dTj, it is determined that the amorphous refractory at the same position in the circumferential direction of the blast furnace is deteriorated. Method.

【0015】[0015]

【発明の実施の形態】2箇所以上の熱電対1組(以下、
熱電対組ともいう)を高炉径方向の高炉炉底側壁部の耐
火レンガに設置し、高炉周方向に複数組の熱電対を設置
する。
BEST MODE FOR CARRYING OUT THE INVENTION One set of thermocouples at two or more locations
A thermocouple set is also installed on the refractory brick on the bottom wall of the blast furnace in the blast furnace radial direction, and a plurality of thermocouples are installed in the circumferential direction of the blast furnace.

【0016】熱電対の埋め込み方法と高炉炉底部不定形
耐火物の劣化検知方法とを概念図を用いて以下に説明す
る。
A method for embedding a thermocouple and a method for detecting the deterioration of the irregular shaped refractory at the bottom of a blast furnace will be described below with reference to conceptual diagrams.

【0017】図1は、炉内側から耐火レンガ1、不定形
耐火物2および鉄皮3から構成される高炉炉底側壁部に
おいて、耐火レンガに、高炉径方向にn箇所、熱電対1
〜nを設置し、鉄皮外面からの距離と各点での温度Tl
〜Tn、および温度変化をしたときの温度上昇速度dT
l〜dTnを示す概念図である。
FIG. 1 shows a blast furnace bottom wall composed of a refractory brick 1, an irregular refractory 2 and a steel shell 3 from the inside of the furnace.
To n, the distance from the outer surface of the steel shell and the temperature Tl at each point.
~ Tn, and the temperature rise rate dT when the temperature changes
It is a conceptual diagram which shows l-dTn.

【0018】耐火レンガ1の熱負荷が上昇した際に、高
炉径方向にn箇所の各熱電対4の温度Tl〜Tnは上昇
する。
When the thermal load on the refractory brick 1 rises, the temperatures Tl to Tn of each of the n thermocouples 4 in the radial direction of the blast furnace rise.

【0019】図1の点線に示すように、耐火レンガ1の
熱負荷が上昇して熱平衡に達する初期過程で、各熱電対
4の温度変化速度dTl〜dTnは、dTl>dT2>
−−>dTn−1>dTnとなる。なお、図中の↑印の
長さは、温度上昇速度の高低を概念的に示したものであ
る。
As shown by the dotted line in FIG. 1, in the initial process in which the thermal load of the refractory brick 1 rises and reaches thermal equilibrium, the temperature change rates dTl to dTn of each thermocouple 4 are dTl>dT2>.
--->dTn-1> dTn. It should be noted that the length of the triangle in the figure conceptually indicates the level of the temperature rise rate.

【0020】不定形耐火物中に空気層が生成した場合
も、各熱電対の温度Tl〜Tnは上昇傾向となるが、各
熱電対の温度変化速度は上記と異なる傾向を示す。
When an air layer is formed in the amorphous refractory, the temperatures Tl to Tn of the thermocouples also tend to increase, but the temperature change rates of the thermocouples differ from the above.

【0021】図1の一点鎖線に示すように、熱平衡に達
する初期過程で、各熱電対4の温度上昇速度は炉内側が
低く、各熱電対の温度変化速度dTl〜dTnは、dT
l<dT2<−−<dTn−1<dTnとなる。
As shown by the dashed line in FIG. 1, in the initial stage of reaching thermal equilibrium, the temperature rise rate of each thermocouple 4 is low inside the furnace, and the temperature change rate dTl to dTn of each thermocouple is dTl.
1 <dT2 <−− <dTn−1 <dTn.

【0022】図1の点線と一点鎖線で示した熱平衡に達
する初期過程での各熱電対4の温度上昇速度の変化傾向
を把握することにより、不定形耐火物2の劣化(不定形
耐火物中の空気層の有無)の高炉周方向の個所を推定で
きる。
By grasping the changing tendency of the temperature rising rate of each thermocouple 4 in the initial process of reaching the thermal equilibrium indicated by the dotted line and the dashed line in FIG. Of the blast furnace in the circumferential direction can be estimated.

【0023】すなわち、耐火レンガの高炉径方向に間隔
をおいて埋め込まれた上記n個の熱電対の内、任意位置
の2個の熱電対が示す温度上昇速度を、炉内側の熱電対
が示す温度上昇速度をdTi、不定形耐火物側の熱電対
が示す温度上昇速度をdTjとして、これらのdTi、
dTjの温度上昇速度がdTi<dTjを満足すると
き、高炉周方向の同一位置の不定形耐火物が劣化してい
ると判定することができる。
That is, of the n thermocouples embedded in the blast furnace at intervals in the blast furnace radial direction of the refractory brick, the thermocouple inside the furnace indicates the temperature rise rate indicated by the two thermocouples at an arbitrary position. Assuming that the temperature rise rate is dTi and the temperature rise rate indicated by the thermocouple on the amorphous refractory side is dTj, these dTi,
When the temperature rise rate of dTj satisfies dTi <dTj, it can be determined that the amorphous refractory at the same position in the circumferential direction of the blast furnace has deteriorated.

【0024】例えば、炉内側の熱電対1が示す温度上昇
速度をdTiとすれば、熱電対2〜nの内の不定形耐火
物側の任意の熱電対が示す温度上昇速度dTjに相当す
る。
For example, assuming that the temperature rise rate indicated by the thermocouple 1 inside the furnace is dTi, it corresponds to the temperature rise rate dTj indicated by any thermocouple on the amorphous refractory side among the thermocouples 2 to n.

【0025】炉内側の熱電対2が示す温度上昇速度をd
Tiとすれば、熱電対3〜nの内の不定形耐火物側の任
意の熱電対が示す温度上昇速度dTjに相当する。
The temperature rise rate indicated by the thermocouple 2 inside the furnace is represented by d
If it is Ti, it corresponds to the temperature rise rate dTj indicated by any thermocouple on the amorphous refractory side among the thermocouples 3 to n.

【0026】熱電対の設置数は、必要以上に熱電対を設
置しても煩雑になるばかりかメンテナンス上からも問題
であるため、2〜10程度が望ましい。
The number of thermocouples to be installed is preferably about 2 to 10 because it is not only complicated to install thermocouples more than necessary, but also a problem in terms of maintenance.

【0027】高炉周方向の熱電対組の設置個所は、多い
ほどきめこまかな不定形耐火物の補修が可能となるが、
前記の高炉径方向と同様に、必要以上に熱電対を設置し
ても煩雑になるばかりかメンテナンス上からも問題であ
るため、8〜15個所程度が望ましい。
The more the thermocouple sets are installed in the circumferential direction of the blast furnace, the more precise repair of irregular shaped refractories becomes possible.
Similar to the blast furnace radial direction, even if thermocouples are installed more than necessary, it is not only complicated but also a problem from the viewpoint of maintenance.

【0028】高炉径方向での熱電対の設置間隔は、等間
隔が望ましい。高炉周方向の熱電対組の設置間隔も等間
隔が望ましい。
The installation intervals of the thermocouples in the radial direction of the blast furnace are preferably equal. It is desirable that the installation intervals of the thermocouple sets in the circumferential direction of the blast furnace are also equal.

【0029】[0029]

【実施例】図2および図3は、高炉周方向の2個所にお
ける同一高炉で炉内温度を上昇した際の耐火レンガ内の
温度推移および温度変化速度の推移を示すグラフであ
る。
2 and 3 are graphs showing the transition of the temperature inside the refractory brick and the transition of the temperature change rate when the temperature inside the furnace is increased in the same blast furnace at two locations in the circumferential direction of the blast furnace.

【0030】なお、高炉周方向の2個所(以下、Aおよ
びBの場所と区別する)とも耐火レンガ内に、高炉径方
向に3個の熱電対(炉内側から番号1、2および3の熱
電対)を設置し、それぞれの熱電対で温度T1、T2お
よびT3を測定し、各熱電対の温度上昇速度dT1、d
T2およびdT3(℃/h)を計算で求めた。
At the two locations in the circumferential direction of the blast furnace (hereinafter referred to as locations A and B), three thermocouples (numbers 1, 2 and 3 from the inside of the furnace) were placed in the refractory brick in the radial direction of the blast furnace. Pairs), and measure the temperatures T1, T2, and T3 with the respective thermocouples, and measure the temperature rise rates dT1, dT of the respective thermocouples.
T2 and dT3 (° C./h) were calculated.

【0031】図2は、高炉炉内の温度が上昇した際の高
炉周方向のあるAの場所の各温度、および温度上昇速度
(℃/h)を示すグラフの一例である。
FIG. 2 is an example of a graph showing each temperature at a certain location A in the blast furnace circumferential direction when the temperature in the blast furnace rises, and the temperature rise rate (° C./h).

【0032】同図に示すように、炉内の温度が上昇し耐
火レンガの熱負荷が上昇すると熱平衡に達する初期過程
(図中の囲み部分)で、Aの場所の各熱電対の温度変化
速度dT1、dT2およびdT3は、dTl>dT2>
dT3となった。
As shown in the figure, when the temperature in the furnace rises and the thermal load on the refractory brick rises, the temperature change rate of each thermocouple at the location A in the initial process (encircled portion in the figure) when thermal equilibrium is reached. dT1, dT2 and dT3 are dTl>dT2>
dT3.

【0033】この結果は、不定形耐火物の劣化によるも
のでないと判断した。図3は、高炉炉内の温度上昇した
際の高炉周方向のあるBの場所の各温度、および温度上
昇速度(℃/h)を示すグラフの一例である。
It was determined that this result was not due to deterioration of the amorphous refractory. FIG. 3 is an example of a graph showing each temperature at a certain location B in the circumferential direction of the blast furnace when the temperature inside the blast furnace rises, and the temperature rising rate (° C./h).

【0034】同図に示すように、炉内の温度上昇し耐火
レンガの熱負荷が上昇すると熱平衡に達する初期過程
(図中の囲み部分)で、Bの場所の各熱電対の温度変化
速度dT1、dT2およびdT3は、dTl<dT2<
dT3となった。
As shown in the figure, when the temperature in the furnace rises and the thermal load on the refractory bricks rises, the temperature change rate dT1 of each thermocouple at the location B in the initial process (encircled portion in the figure) when thermal equilibrium is reached. , DT2 and dT3 are: dTl <dT2 <
dT3.

【0035】高炉周方向のAおよびBの場所の各温度が
上昇し、定常状態になった後に、高炉休止を行い、Aお
よびBの場所の不定形耐火物の補修を行った。
After the temperatures at the locations A and B in the circumferential direction of the blast furnace increased and the temperature became steady, the blast furnace was stopped, and the irregular refractories at the locations A and B were repaired.

【0036】しかし、Aの場所では、不定形耐火物に空
気層が認められず補修する必要がないことが判明した。
一方、Bの場所では、不定形耐火物に空気層が確認さ
れ、補修を実施した。
However, at the location A, it was found that no air layer was found in the irregular-shaped refractory, and it was not necessary to repair it.
On the other hand, at the location B, an air layer was confirmed on the irregular-shaped refractory, and repair was performed.

【0037】高炉立ち上げ後、Bの場所での耐火レンガ
の各温度は低下していることが認められた。この結果か
ら、不定形耐火物が正常に機能し、鉄皮からの冷却が効
果を発揮していることが判明した。
After the start of the blast furnace, it was observed that the temperature of the refractory brick at the location B decreased. From this result, it was found that the amorphous refractory functioned normally and that cooling from the steel shell was effective.

【0038】図4は、耐火レンガの温度一定操業下、本
発明の実施前後での補修に必要な不定形耐火物の月平均
使用量の推移を示すグラフである。
FIG. 4 is a graph showing the transition of the monthly average usage of irregular-shaped refractories required for repair before and after the implementation of the present invention under a constant temperature operation of refractory bricks.

【0039】本発明の実施の月(矢印で指し示している
月)から不定形耐火物の使用量を半減できた。また、図
示していないが不定形耐火物の補修に係る高炉休止時間
も半減できた。
From the month when the present invention was carried out (the month indicated by the arrow), the amount of the amorphous refractories used could be reduced by half. Although not shown, the blast furnace downtime for repairing irregular-shaped refractories was reduced by half.

【0040】[0040]

【発明の効果】本発明により、高炉炉底側壁部の耐火レ
ンガと鉄皮との間にある不定形耐火物の劣化個所の検知
し特定することができる。この結果、コストアップや生
産量の低下等の問題を改善することができる。
According to the present invention, it is possible to detect and specify a deteriorated portion of an irregular refractory between a refractory brick and a steel shell on a bottom wall of a blast furnace furnace. As a result, problems such as an increase in cost and a decrease in production volume can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炉内側から耐火レンガ1、不定形耐火物2およ
び鉄皮3から構成される高炉炉底側壁部において、耐火
レンガに、高炉径方向にn箇所、熱電対1〜nを設置
し、鉄皮外面からの距離と各点での温度Tl〜Tn、お
よび温度変化をしたときの温度上昇速度dTl〜dTn
を示す概念図である。
FIG. 1 shows a thermoblast brick in which n thermocouples 1 to n are arranged in the blast furnace radial direction at the bottom wall portion of a blast furnace composed of a refractory brick 1, an amorphous refractory 2 and a steel shell 3 from the inside of the furnace. , The distance from the outer surface of the steel shell, the temperature Tl to Tn at each point, and the temperature rise rate dTl to dTn when the temperature is changed
FIG.

【図2】高炉炉内の温度上昇した際の高炉周方向のある
Aの場所の各温度、および温度上昇速度を示すグラフの
一例である。
FIG. 2 is an example of a graph showing each temperature at a certain location A in the blast furnace circumferential direction when the temperature inside the blast furnace rises, and a temperature rise rate.

【図3】高炉炉内の温度上昇した際の高炉周方向のある
Bの場所の各温度、および温度上昇速度を示すグラフの
一例である。
FIG. 3 is an example of a graph showing each temperature at a certain location B in the blast furnace circumferential direction when the temperature inside the blast furnace rises, and a temperature rise rate.

【図4】耐火レンガの温度一定操業下、本発明の実施前
後での補修に必要な不定形耐火物の月平均使用量の推移
を示すグラフである。
FIG. 4 is a graph showing the transition of the monthly average usage of irregular-shaped refractories required for repair before and after implementation of the present invention under constant temperature operation of refractory bricks.

【符号の説明】[Explanation of symbols]

1:耐火レンガ、 2:不定形耐火物、 3:鉄皮、 4:熱電対。 1: refractory brick, 2: refractory, 3: iron shell, 4: thermocouple.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉内側から順に耐火レンガ、不定形耐火
物および鉄皮で構成される高炉炉底側壁部において、高
炉周方向の同一位置で前記耐火レンガの高炉径方向に間
隔をおいて埋め込まれた複数の熱電対の内、任意位置の
2個の熱電対が示す温度上昇速度を、炉内側の熱電対が
示す温度上昇速度をdTi、不定形耐火物側の熱電対が
示す温度上昇速度をdTjとして、これらのdTi、d
Tjの温度上昇速度がdTi<dTjを満足するとき、
高炉周方向の同一位置の不定形耐火物が劣化していると
判定することを特徴とする高炉炉底部不定形耐火物の劣
化個所の検知方法。
1. In a blast furnace bottom wall portion composed of a refractory brick, an irregular refractory and a steel shell in order from the inside of the furnace, the refractory bricks are embedded at the same position in the blast furnace circumferential direction at intervals in the blast furnace radial direction. Among the plurality of thermocouples, the temperature rise rate indicated by two thermocouples at an arbitrary position is the temperature rise rate indicated by the thermocouple inside the furnace, and the temperature rise rate indicated by the thermocouple on the amorphous refractory side is dTi. Let dTj be dTi, dTi
When the temperature rise rate of Tj satisfies dTi <dTj,
A method for detecting a deteriorated portion of an amorphous refractory at the bottom of a blast furnace, wherein it is determined that the amorphous refractory at the same position in the circumferential direction of the blast furnace is deteriorated.
JP11183770A 1999-06-29 1999-06-29 Detection of deteriorated position of monolithic refractory at furnace bottom part in blast furnace Withdrawn JP2001011512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11183770A JP2001011512A (en) 1999-06-29 1999-06-29 Detection of deteriorated position of monolithic refractory at furnace bottom part in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11183770A JP2001011512A (en) 1999-06-29 1999-06-29 Detection of deteriorated position of monolithic refractory at furnace bottom part in blast furnace

Publications (1)

Publication Number Publication Date
JP2001011512A true JP2001011512A (en) 2001-01-16

Family

ID=16141664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11183770A Withdrawn JP2001011512A (en) 1999-06-29 1999-06-29 Detection of deteriorated position of monolithic refractory at furnace bottom part in blast furnace

Country Status (1)

Country Link
JP (1) JP2001011512A (en)

Similar Documents

Publication Publication Date Title
JP4752021B2 (en) Reduced blast operation method of blast furnace
US6330269B1 (en) Heat exchange pipe with extruded fins
JP4119620B2 (en) In-furnace situation estimation method for blast furnace
JP2001011512A (en) Detection of deteriorated position of monolithic refractory at furnace bottom part in blast furnace
JP2008127619A (en) Method for deciding whether repair of refractory in molten iron ladle is needed or not
JP5854200B2 (en) Blast furnace operation method
EP2211133B1 (en) Tuyere structure of smelting furnace
RU2286523C2 (en) Method of control of refractory wearing out
JP2669279B2 (en) Blast furnace operation method
JP2875413B2 (en) Molten metal container
JP2008223121A (en) Method for repairing furnace wall surface at upper part of blast furnace shaft
JPH07278627A (en) Cooling piping for bottom of blast furnace and method for cooling bottom of blast furnace
JP3385831B2 (en) Estimation method of hearth erosion line and hearth structure
JP3740108B2 (en) Blast furnace hearth structure
JP2002060821A (en) Structure for furnace wall in blast furnace and method for operating blast furnace
JP2004059956A (en) Method for preventing wearing of blast furnace brick
JP3745538B2 (en) Blast furnace operation method
JP4038153B2 (en) Blast furnace bottom cooling method
JPH0586411A (en) Method for assuming eroded line in furnace bottom of blast furnace
JP4238141B2 (en) Method of inserting cooling member into blast furnace
JPH09209011A (en) Method for restraining erosion of sidewall brick of furnace bottom of blast furnace
JPH09209008A (en) Method for protecting furnace bottom part of blast furnace
KR100851188B1 (en) method for prolonging of blast furnace stave campaign life
WO2019163607A1 (en) Operating method for metal refining furnace
JPH0967607A (en) Method for monitoring furnace bottom of blast furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905