JP2000508446A - 文字列の識別方法 - Google Patents
文字列の識別方法Info
- Publication number
- JP2000508446A JP2000508446A JP9535826A JP53582697A JP2000508446A JP 2000508446 A JP2000508446 A JP 2000508446A JP 9535826 A JP9535826 A JP 9535826A JP 53582697 A JP53582697 A JP 53582697A JP 2000508446 A JP2000508446 A JP 2000508446A
- Authority
- JP
- Japan
- Prior art keywords
- line
- frame
- width
- character
- raster image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000013598 vector Substances 0.000 claims abstract description 21
- 238000001514 detection method Methods 0.000 claims description 4
- 238000000611 regression analysis Methods 0.000 claims description 3
- 238000000638 solvent extraction Methods 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/14—Image acquisition
- G06V30/148—Segmentation of character regions
- G06V30/153—Segmentation of character regions using recognition of characters or words
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Character Discrimination (AREA)
- Character Input (AREA)
- Image Analysis (AREA)
Abstract
(57)【要約】
手書きおよび/または連結した文字列、例えば郵便番号の識別方法が記載されている。この方法は、ラスタ画像を特徴ベクトルの一次元シーケンスに導入することによって、HMM識別器を使用して文字列の識別を切れ目なしで行うことができる。特徴分割に対するとくに有利な実施例が記載されている。
Description
【発明の詳細な説明】
文字列の識別方法
本発明は、文字列の識別方法に関する。
文字列の機械識別は重要であり、昔から郵便配送での郵便番号の自動識別に使
用している。
高い識別能力は、個別の文字が識別されるときに達成される(例えば[1])
。従って文字列の識別に対しては通常、文字列の光学的走査から得られた画像を
セグメント化によって個別文字ごとに部分領域に分割する(例えば[2]、[3
]、[4])。これにより識別問題を個別文字の識別に帰する。このようなセグ
メント化はとりわけ手書き文字および/または連続した文字列の場合は困難であ
り、コストがかかる。
手書き語の識別からすでに、セグメント化を省略して、識別を特徴ベクトルの
シーケンスに基づいてHMM(Hidden Markov Model)識別器を使用して行うこ
とがすでに公知である[6]。前記の特徴ベクトルは、文字画像からの細い切り
出し部のそれぞれの特性を表す。
このようなHMM識別器を使用するのに特に重要なことは、特徴ベクトルの特
徴を抽出することである。ここで特徴を抽出するために、[7]では面倒な輪郭
部分の投影技術を用いて、フレームの大きさが所定の
大きさに固定されている場合に上側とした側の長さを形態差として検出する。
本発明の課題は、HMM識別器を文字列の識別に使用するのに有利な方法を提
供することである。
本発明は、請求項1に記載されている。従属請求項には本発明の有利な構成お
よび改善実施例が記載されている。
本発明は、手書き文字および/または連結した文字列、とりわけ手書き郵便番
号の識別も可能にする。特徴ベクトルに対する特徴の抽出はとりわけ有利には文
字列の特殊性を考慮する。
本発明を以下、有利な実施例に基づき図面を参照して説明する。
文字列の一部として文字2’が実線で、また連続文字のライン部分Fが示され
ている。理想的には実線はラスタ内に占有されたラスタ点(ピクセル)の連続に
よって、または少数のラスタ点によって多角形表示の支持点として与えられる。
光学的走査の際に得られたラスタ画像から、公知の方法、例えばラスタ画像の輪
郭表示[5]を介してライン表示、または理想的には細い多角形近似ラインを得
る。光学的走査により得られるラスタ画像は通常は複数のピクセルを含む線幅を
有する。ライン表示は同じピクセルライン幅のピクセル列の形態で行われる。こ
のような骨格化のためには複数の方法が公知技術から公知である。さらにそれ自
体公知のラスタ画像またはラスタ画像表示の前処理ステップ、例えば回転等のル
ーチンを行うこともできる。文字列のライン表示から次に、骨格ラインの垂直最
小値および最大値に基づいて上側ラインと下側ラインが文字列画像の書体ライン
として推定される。垂直最小値および最大値の検出は有利には、ステップごとに
水平にシフトされる窓によって行われる。この窓の窓幅は文字幅よりも大きく、
例えば文字幅の約2倍である。これは、各窓位置ごとに垂直最大値と最小値を検
出し、最大値と最小値に対する両方の値シーケンスから回帰分析によって上側ラ
インと下側ラインに対する各勾配を推定するためである。従って上側ラインと下
側ラインは必ずしも平行ではない。中央ラインは上側ラインと下側ラインの真ん
中のラインとすることも、または別の線形回帰法を用いて垂直最大値と最小値の
値シーケンスの結合から推定することもできる。ここで水平は通常のように文字
を書く方向であり、垂直は書く方向に対して直角になる。文字幅は有利にはそれ
自体公知のように元のラスタ画像またはその輪郭表示から推定することができる
。既知の予想文字数を有する文字列では、文字幅を単純に文字列長の端数として
仮定することもできる。
ライン表示された文字列の画像は次に水平に相互に重なった細いフレームRn-2
,Rn-1,Rn,Rn+1...に分割される。フレーム幅RWは単に例えば文字幅ZWの25
%−40%、約1/3である。1つのフレームは3つすべてのスクリプトライン
の上に延在しており、それ自体がさらにスクリプトラインの1つを含む3つの領
域に分割されている。この領域は垂直方向に重なっている。上側ラインOLを含
む上側領域BOと、下側ラインを含む下側領域BU(図では両方とも点線で示さ
れている)はそれぞれ垂直方向に中央ラインの反対側で包括されたスクリプトラ
インを越えている。これは識別のために場合によっては重要な弧をさらに検出す
るためである。フレームBOとBUがラインOLないしULを越えて垂直に伸長
することにより、広がった線の考慮範囲を調整することができる。中央ラインM
Lを含む中央領域BMは後で説明するように有利には特徴検出を補充するために
、中央ラインの上側と下側で2つの部分領域BMOとBMUに分けられている。
フレーム位置は図の下に配置されたスケールにマークされたようにそれぞれス
テップSWごとに水平に相互にずらされている。フレーム幅RWに対して小さな
ステップ幅によって、隣接するフレームが水平方向に重なり合う。フレームの水
平方向列は、ステップごとSWのフレームの水平方向シフトと同値である。
各フレーム位置において、コンポーネントの特性を有する特徴ベクトルが形成
される。このコンポーネントは、フレーム部分にある文字列のライン表示のライ
ン部分を特徴付ける。ここで3つの領域BO,BM,
BUは別個に処理される。ライン部分の特徴的パラメータとしてライン部分の配
向が利用される。ここで有利には、4つの量子化方向、すなわち水平、垂直、並
びにその間にある、45°左および右に傾いた2つの対角方向(スクリプト方向
に対して0°、45°、90°、135°に相応する)がベクトル成分として設
定される。従って各領域には4つのベクトル成分が配属される。有利にはそれぞ
れ2つの別のベクトル成分を、中央領域MBを2つに分割することにより形成さ
れた部分領域BMOとBMUに配属する。これら部分領域では対角ライン成分だ
けを検出すればよい。このことによって簡単かつ効果的に、個々のもっじの対称
特性を利用することができる。これにより全体で16ベクトル成分が得られ、こ
れらのベクトル成分が1つのフレーム位置に対する特徴ベクトルVを形成する。
ベクトル成分を占有する値を量的に検出するために有利には、所定の方向におけ
るライン部分の発生をバイナリで検出するだけではなく、種々の方向ごとに部分
を累積した長さ成分も検出する。ここではライン表示を順次連続するピクセル列
の形態で行うのが適当である。なぜなら、それぞれ水平、垂直または対角に隣接
するピクセルを直接、該当する方向に対する絶対値として計数することができる
からである。多角形表示の場合は、2つの量子化された方向の間で配向されたラ
イン部分を有利には成分としてこの2つの方向に数え
入れる。このようにして検出され、累積された長さ成分はさらに領域の大きさに
正規化することができる。
水平方向に順次連続するフレーム位置ごとの特徴ベクトルシーケンスはベクト
ルシーケンスとしてHMM識別器に供給される。識別方法はとくに有利には手書
きおよび/または連結した郵便番号の識別に使用することができる。本発明の方
法は有利には、許容文字列の辞書の低減と関連して、個別文字識別器の先行使用
により適用される。
【手続補正書】特許法第184条の8第1項
【提出日】1998年3月5日(1998.3.5)
【補正内容】
請求の範囲
1. 文字列の識別方法であって、
文字列のラスタ画像を形成し、
文字列のライン表示をラスタ画像から導出し、
スクリプトラインを推定し、
ライン表示を水平方向に重なり合うフレームに分割し、
該フレームを再び、垂直に重なり合う複数の領域に分割し、
前記領域に延在するライン部分の特徴を特徴ベクトルのコンポーネントとして
、当該領域に対して別個に各フレーム内で検出し、
水平方向に順次連続するフレームの特徴ベクトルをHMM識別器にベクトルシ
ーケンスとして供給する方法において、
スクリプトラインとして、上側ライン、下側ラインおよび中央ラインをライン
表示から推定し、
ライン表示の垂直方向に重なり合う領域として、
・上側スクリプトラインを含む領域、
・下側スクリプトラインを含む領域、および
・中央スクリプトラインを含む領域を選択し、
隣接する領域を、中央スクリプトラインを含む領域に加えて、中央ラインの上
側部分と中央ラインの下側分とに分割し、当該部分は垂直方向に重なり合い、
当該部分において、この部分に延在するライン部分の対角特徴だけをそれぞれ
検出する、
ことを特徴とする方法。
2. フレームの水平方向幅は個別文字の幅の25%から40%に選択する、
請求項1記載の方法。
3. 上側ラインおよび下側ラインをライン表示の垂直最大値および最小値か
ら回帰分析を用いて直線として検出する、請求項1または2記載の方法。
4. 特徴ベクトルのコンポーネントとして、量子化された種々のライン方向
を個々の領域において用いる、請求項1から3までのいずれか1項記載の方法。
5. 量子化されたライン方向として、垂直、水平および対角のライン経過を
用いる、請求項4記載の方法。
6. 個別文字の幅を文字列のラスタ画像から導出する、請求項1から5まで
のいずれか1項記載の方法。
─────────────────────────────────────────────────────
フロントページの続き
(72)発明者 フォルカー シュタムパ
ドイツ連邦共和国 D―56567 ノイヴィ
ート アウフ デム アッカー 1
Claims (1)
- 【特許請求の範囲】 1. 文字列の識別方法において、 文字列のラスタ画像を形成し、 ラスタ画像から文字列のライン表示を導出し、 文字列のライン表示に対して上側ライン、下側ラインおよび中央ラインをスク リプトラインとして推定し、 ライン表示を水平方向に重なり合うフレームに分割し、 該フレームをさらに、それぞれ1つのスクリプトラインを含む複数の領域に分 割し、当該領域は垂直方向に重なり合い、 各フレーム内で、前記領域に対して分離した、当該領域に延在するライン部分 の特徴を当該フレームに対する特徴ベクトルのコンポーネントとして検出し、 水平方向に順次連続するフレームの特徴ベクトルをベクトルシーケンスとして HMM識別器に供給する、ことを特徴とする識別方法。 2. フレームの水平方向幅は個別文字の幅の25%から40%の間に選択さ れる、請求項1記載の方法。 3. 上側ラインおよび下側ラインを、ライン表示の垂直最大値および最小値 から回帰分析を用いて直線として検出する、請求項1または2記載の方法。 4. 特徴ベクトルのコンポーネントとして、個々の領域における量子化され た種々のライン方向を用いる、請求項1から3までのいずれか1項記載の方法。 5. 量子化されたライン方向として、垂直、水平および対角のライン経過を 用いる、請求項4記載の方法。 6. 中央ラインを含む領域から、中央ラインの上側ないし下側にある2つの 部分領域に対して付加的に別個の対角ライン方向を特徴ベクトルのコンポーネン トとして用いる、請求項5記載の方法。 7. 個別文字の幅は文字列のラスタ画像から導出する、請求項1から6まで のいずれか1項記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19614285A DE19614285C2 (de) | 1996-04-11 | 1996-04-11 | Verfahren zur Erkennung von Ziffernfolgen |
DE19614285.7 | 1996-04-11 | ||
PCT/EP1997/001676 WO1997038393A1 (de) | 1996-04-11 | 1997-04-03 | Verfahren zur erkennung von ziffernfolgen mittels eines gleitenden rahmens |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000508446A true JP2000508446A (ja) | 2000-07-04 |
Family
ID=7790975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9535826A Pending JP2000508446A (ja) | 1996-04-11 | 1997-04-03 | 文字列の識別方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6453054B1 (ja) |
EP (1) | EP0892965B1 (ja) |
JP (1) | JP2000508446A (ja) |
DE (2) | DE19614285C2 (ja) |
WO (1) | WO1997038393A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7903877B2 (en) | 2007-03-06 | 2011-03-08 | Microsoft Corporation | Radical-based HMM modeling for handwritten East Asian characters |
US8340428B2 (en) | 2008-04-02 | 2012-12-25 | Xerox Corporation | Unsupervised writer style adaptation for handwritten word spotting |
DE102008061995A1 (de) | 2008-12-12 | 2010-06-17 | Siemens Aktiengesellschaft | Anordnung und Verfahren zur Anzeige einer Meldung an einen Straßenverkehrsteilnehmer |
FR2953083B1 (fr) | 2009-11-24 | 2011-12-23 | Sagem Comm | Module de telephonie mobile et procede de determination d'une cellule comme appropriee. |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5485531A (en) * | 1987-12-17 | 1996-01-16 | Fuji Electric Co., Ltd. | Character-feature extraction device |
US5216725A (en) * | 1990-10-31 | 1993-06-01 | Environmental Research Institute Of Michigan | Apparatus and method for separating handwritten characters by line and word |
US5491758A (en) * | 1993-01-27 | 1996-02-13 | International Business Machines Corporation | Automatic handwriting recognition using both static and dynamic parameters |
EP0693739A3 (en) * | 1994-07-13 | 1997-06-11 | Yashima Denki Kk | Method and apparatus capable of storing and reproducing handwriting |
US5933525A (en) * | 1996-04-10 | 1999-08-03 | Bbn Corporation | Language-independent and segmentation-free optical character recognition system and method |
-
1996
- 1996-04-11 DE DE19614285A patent/DE19614285C2/de not_active Expired - Fee Related
-
1997
- 1997-04-03 DE DE59700560T patent/DE59700560D1/de not_active Expired - Fee Related
- 1997-04-03 WO PCT/EP1997/001676 patent/WO1997038393A1/de active IP Right Grant
- 1997-04-03 US US09/171,104 patent/US6453054B1/en not_active Expired - Lifetime
- 1997-04-03 JP JP9535826A patent/JP2000508446A/ja active Pending
- 1997-04-03 EP EP97920617A patent/EP0892965B1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE19614285C2 (de) | 1998-11-12 |
EP0892965A1 (de) | 1999-01-27 |
US6453054B1 (en) | 2002-09-17 |
WO1997038393A1 (de) | 1997-10-16 |
DE19614285A1 (de) | 1997-10-16 |
DE59700560D1 (de) | 1999-11-18 |
EP0892965B1 (de) | 1999-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5613016A (en) | Area discrimination system for text image | |
EP0543593B1 (en) | Method for determining boundaries of words in text | |
US5778103A (en) | OCR image pre-processor | |
EP0543594A2 (en) | A method for deriving wordshapes for subsequent comparison | |
JPH0519753B2 (ja) | ||
JP2608571B2 (ja) | 入力走査画像データのベクトル化のための装置及び方法 | |
JP2003529114A (ja) | 光学スキャナとそのためのソフトウエア | |
EP0241259A2 (en) | Optical character recognition by detecting geographical features | |
Pal et al. | Multi-skew detection of Indian script documents | |
JP2001014421A (ja) | バーコード読み取り装置 | |
JP2000508446A (ja) | 文字列の識別方法 | |
US5548664A (en) | Automatic determination of blank pages and binary images' bounding boxes | |
US5369715A (en) | Optical character recognition system | |
JP4228592B2 (ja) | 文字認識装置 | |
JPH02116987A (ja) | 文字認識装置 | |
JP2917427B2 (ja) | 図面読取装置 | |
JP3409992B2 (ja) | 白黒反転領域識別装置、及びその装置を使用した表認識装置 | |
JP4439054B2 (ja) | 文字認識装置及び文字枠線の検出方法 | |
JP2995818B2 (ja) | 文字切り出し方法 | |
JP3710164B2 (ja) | 画像処理装置及び方法 | |
JPH11316797A (ja) | 文書画像の領域識別方法および装置 | |
JP3277977B2 (ja) | 文字認識方法 | |
JPH06223224A (ja) | 行切出し方法 | |
JPH08123904A (ja) | 書体種類処理装置 | |
JPH09307752A (ja) | 画像分割方法、画像分割装置、文字認識装置 |