JP2000355756A - コーティング装置のチャンバ部品の作動温度を低下させるためのコーティング - Google Patents

コーティング装置のチャンバ部品の作動温度を低下させるためのコーティング

Info

Publication number
JP2000355756A
JP2000355756A JP2000115974A JP2000115974A JP2000355756A JP 2000355756 A JP2000355756 A JP 2000355756A JP 2000115974 A JP2000115974 A JP 2000115974A JP 2000115974 A JP2000115974 A JP 2000115974A JP 2000355756 A JP2000355756 A JP 2000355756A
Authority
JP
Japan
Prior art keywords
coating
layers
layer
pair
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000115974A
Other languages
English (en)
Other versions
JP4896287B2 (ja
JP2000355756A5 (ja
Inventor
William Randolph Stowell
ウィリアム・ランドルフ・ストウェル
John Frederick Ackerman
ジョン・フレデリック・アッカーマン
Jeffrey Allen Conner
ジェフリー・アレン・コナー
John Douglas Evans Sr
ジョン・ダグラス・エバンス,セニア
Antonio Frank Maricocchi
アントニオ・フランク・マリコッチ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2000355756A publication Critical patent/JP2000355756A/ja
Publication of JP2000355756A5 publication Critical patent/JP2000355756A5/ja
Application granted granted Critical
Publication of JP4896287B2 publication Critical patent/JP4896287B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/0825Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
    • G02B5/0833Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising inorganic materials only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

(57)【要約】 【課題】 PVD装置のコーティングチャンバのような
高温環境で使用する部品(10)。 【解決手段】 部品(10)上の反射コーティング(1
4)は、熱放射を反射することによって部品(10)へ
の放射熱伝達に対するバリヤーとして機能する。このコ
ーティング(14)は少なくとも一対の反射層(16、
18、20、22)を含んでおり、各層(16、18、
20、22)は、500〜3000ナノメートル(nm)
の電磁波長に対して本質的に透明な材料で形成されてい
る。また、この対(16、18、20、22)の最外層
(18、22)の材料は、この対(16、18、20、
22)の他の層(16、20)の材料より屈折率が高
い。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、コーティング装置
のコーティングチャンバ部品のように高温に曝される部
品用のコーティングに係る。特に、本発明は、コーティ
ング装置のコーティングチャンバ部品がコーティングプ
ロセス中に受ける最高温度を低下させるための前記部品
用の反射コーティングに関する。
【0002】
【従来の技術】物理蒸着(PVD)は、材料が気化した
後比較的冷たい基材上に凝結するような温度にその材料
を真空中で加熱することを伴う公知の薄膜形成技術であ
る。さまざまな理由から、ガスタービンエンジン部品用
の金属およびセラミックコーティングはPVDによって
析出させることが多い。たとえば、断熱皮膜(TBC)
系のセラミックトップコート層に望ましい柱状結晶粒構
造を生成するのに電子ビーム物理蒸着(EBPVD)が
用いられている。セラミック材料として好ましいことが
多いのはイットリア安定化ジルコニア(YSZ)であ
り、これは後に部品上に凝結することになるYSZ蒸気
を生成するために約4000〜約4300Kに加熱しな
ければならない。
【0003】ガスタービンエンジン部品は、通常、PV
Dによるコーティングの間に1700°F(約927
℃)を超える温度になる。コーティングサイクル中に温
度の均一性を制御するという要件が厳格である結果とし
て、通常、プロセス要件を満たすのに充分な温度とコー
ティング蒸気均一性を維持することができる「作業ゾー
ン」をPVDコーティングチャンバ内に設けている。コ
ートしようとする部品は、複雑な工具や取付具を用いて
コーティングチャンバの作業ゾーン内に維持しその中で
取り扱わなければならない。その結果、この工具・取付
具はPVDコーティングを受ける部品と同じ高温に曝さ
れ、したがってこの工具・取付具をPVDコーティング
チャンバの高温コーティング環境に耐え得る材料から製
造する必要が生じる。顕著な例は、柱状結晶粒構造をも
つセラミック層をEBPVDにより析出させるために部
品を回転させるのに必要なギヤである。
【0004】この工具・取付具を形成するには高温材料
が使われているが、繰り返し高温に曝露され、それに伴
う熱サイクルにかけられる結果として、これらの部品は
物理的に劣化し、日常的に交換する必要が生じる。PV
D部品、工具および取付具の複雑さおよび高温性能に関
連したコストのため、これらの交換頻度を減らすことが
できれば望ましいであろう。
【0005】
【発明の要約】本発明は、一般に、PVD装置の高温コ
ーティングチャンバのようなコーティングチャンバ内で
使用する部品を提供する。特に、本発明は、PVD装置
の作業ゾーン内で繰り返し高温に耐えなければならない
コーティングチャンバ部品用の熱反射コーティングに関
する。この反射コーティングは、コーティングチャンバ
内の熱放射、特に周囲のチャンバ環境から部品への放射
熱伝達が最大となる波長の熱放射を反射することによっ
て、その部品への放射熱伝達に対するバリヤー(障壁)
として機能する。
【0006】本発明の熱反射コーティングは少なくとも
一対の反射層をもっており、その各々の層は500〜3
000ナノメートル(nm)の電磁波長に対して本質的に
透明な材料で形成されている。また、前記対の最外層の
材料はその対の第二の層の材料より屈折率が高い。本発
明のコーティングは、鋼でできたPVDコーティングチ
ャンバ部品の平均反射率を約380〜約1500nmの電
磁波長範囲にわたって約70%から90%超まで増大さ
せることが示されている。この波長範囲は、溶融セラミ
ック材料が放出する熱放射(近赤外)のスペクトル内に
あり、したがってセラミック材料の析出中の過熱の原因
となるものである。したがって、本発明の熱反射コーテ
ィングによってコーティングチャンバ部品の作動温度を
大きく低下させることができる。また、部品内の熱勾配
も低下する。この熱勾配は、特に部品の一部のみがコー
ティングチャンバの作業ゾーン内にあると起こるもので
ある。
【0007】上記のことから、本発明の利点には、PV
Dコーティング装置のコーティングチャンバ内で使用す
る重要な部品、工具および取付具の寿命を改善できる能
力が含まれることが分かる。その結果、コーティング装
置の作動コストが低下する。本発明の反射コーティング
は5000nm未満の厚みで存在すればこれらの利点を達
成することができ、したがって、寸法や公差の大きな問
題を引き起こすことなく標準的な工具や取付具にこのコ
ーティングを設けることが可能になる。また、本発明の
反射コーティングは非常に硬く耐久性であり、取扱いに
起因する損傷の問題が低減することも見出されている。
最後に、PVD金属およびセラミックコーティングは本
発明の反射コーティングにあまり強く接着しないので、
不注意に部品上に析出されたPVDコーティングは容易
に除去することができる。
【0008】本発明のその他の目的および利点は以下の
詳細な説明から理解されよう。
【0009】
【発明の実施の形態】本発明は、一般に、高温コーティ
ングチャンバ、特に超合金物品に金属やセラミックのコ
ーティングを設けるためのPVDコーティングチャンバ
で使用する部品、工具および取付具などに関する。PV
Dコーティング装置に関して本発明の利点を説明する
が、本発明は部品が繰り返し高温に曝されることになる
装置に広く適用可能である。
【0010】PVDコーティングおよびそれに必要な工
具・取付具は業界で公知である。PVDコーティング装
置の部品10、たとえばギヤ、工具または取付具の表面
部分を図1に断面で示す。典型的なPVDコーティング
チャンバの作業ゾーン内で使用するために部品10は約
1000°Fを超える温度に耐えることができる材料で
形成するのが好ましい。この目的に適した材料として
は、ハステロイ(HASTELLOY)X(登録商標)のようなN
i基超合金を始めとするニッケル基合金がある。作業ゾ
ーン外のコーティングチャンバ部品は、ステンレス鋼や
銅およびその合金を始めとする低温材料で形成してもよ
い。図1の部品10は、スパッタリングやイオンプラズ
マ析出のような方法で基材12の表面上に付着させた多
層コーティング系14を有するものとして示してある。
本発明によると、このコーティング系14は、コーティ
ングチャンバの熱源ならびにコーティングプロセス中に
高温になる結果として赤外線を放出するチャンバ内のそ
の他の表面により放出された赤外線の反射を促進する。
顕著な例は、EBPVDによりYSZの断熱皮膜を形成
する際に存在するジルコニアの溶融プールである。
【0011】図1に示したコーティング系14(特別な
縮尺ではない)はセラミック材料の4つの層16、1
8、20、22をもっているが、これらは以後対の層1
6/18および20/22として論ずる。本発明の範囲
内で任意の数の対の層を用いることができる。対となっ
た層を用いることの意味は、目的とする波長に対して透
明であるが部品10により反射される波長の相増強を達
成するのに異なる屈折率を有する2種の材料の光学的構
成干渉効果に基づいている。当業者には分かるように、
相増強には各対の層16/18と20/22が異なる屈
折率をもっている必要があり、放射源に最も近い層(た
とえば、対の層16/18の層18、および対の層20
/22の層22)がより高い屈折率をもつ必要がある。
また、所与の対の層は反射される波長およびそれぞれの
屈折率に基づいて次の1/4波長式に従う異なる厚みを
もつのが好ましい。 t=λ/4n ここで、tはコーティング層に必要とされる厚み(ナノ
メートル)であり、λは目的とする波長(ナノメート
ル)であり、nはコーティング層材料の屈折率である。
【0012】図1に示した4つの層からなるコーティン
グ系14は性能(反射率)とプロセスおよびコスト要件
とのバランスをとるという利点があるが、所望の光学的
効果は追加の対の層によって増大することができる。た
とえば、コーティング系14に適した層の数は約16〜
50の範囲であると考えられ、性能の点から32個の層
(16個の対)が好ましい。層16、18、20、22
に適したセラミック材料としては、耐火性フッ化物、お
よびシリカ(SiO2)、アルミナ(Al23)、チタ
ニア(TiO2)、タンタラ(Ta25)、ジルコニア
(ZrO2)、トリア(ThO2 )および酸化ニオブ
(Nb25)のような金属酸化物があるが、他の酸化物
も使用できる。これらの材料は本発明の目的にとって高
屈折率材料または低屈折率材料に分類することができ
る。たとえば、スパッタリングした耐火性フッ化物、シ
リカおよびアルミナは屈折率が比較的に低く、通常約
1.25〜約1.7の範囲であるが、チタニア、タンタ
ラ、ジルコニアおよび酸化ニオブは屈折率がそれより高
く、通常約2〜約2.3の範囲である。コーティング系
14の層16、18、20、22として好ましい材料は
高温性能の点から酸化物であるが、他の材料も部品10
の最高使用温度での熱安定性、目的とする波長に対する
透明性の要件を満たし、コーティング系14に望まれる
反射率と適合する屈折率を与えるものであれば使用する
ことができる。
【0013】上記1/4波長式に基づき、コーティング
系14に適した厚みは使用する材料とコーティング系1
4を形成する層の数に依存する。また、上記式から、屈
折率の低いコーティング層(たとえば16と20)は、
屈折率の高いコーティング層(たとえば18と22)よ
り厚くなければならない。特に、目的とする所定の波長
を反射しようとする対の層の場合、低屈折率層(たとえ
ば16と20)は、その対の高屈折率層より、それらの
屈折率に反比例する係数だけ厚いのが好ましい。ひとつ
の例では、層16と20がシリカであり、層18と22
がチタニアである。シリカとチタニアの屈折率がそれぞ
れ約1.5と2.2であることより、約700〜130
0nmの波長の放射線を反射しようとする場合には、シリ
カ層16と20に適した厚みは約117〜217nmであ
り、チタニア層18と22に適した厚みは約80〜14
8nmである。したがって、このコーティング系14の全
体の厚みは約394〜734nmの範囲となる。より一般
的にいうと、本発明の多層反射コーティング系はコーテ
ィングの全体の厚みが5000nm未満で本発明の利点を
達成することができ、適切な厚み範囲は約100〜約4
000nmである。
【0014】本発明の特に適切な具体例として、シリカ
層とチタニア層が交互に対になった32個の層のコーテ
ィング系を開発した。このコーティング系を、PVDコ
ーティング作業の代表的な条件下でHS188コバルト
基合金試片の熱放射特性を測定する試験中に評価した。
図4に、EBPVDによるYSZの析出中の典型的な電
磁放射線スペクトルを示す。この析出中ジルコニアイン
ゴットは約4000〜約4300Kの温度に加熱した。
図4から明らかなように、放射は主として0.2〜2マ
イクロメートル(200〜2000nm)の範囲である。
【0015】32層のコーティング系と比較するため、
コートしてない研磨したHS188試片も評価した。図
3のデータによると、コートしてない試片の反射率は最
小が500nm未満の波長であり、次第に増大し、200
0nmで約77%、3000nmで約80%であり、これを
380〜1500nmの範囲で計算して平均すると約70
%の反射率であった。この380〜1500nmの範囲
は、図4から明らかなように、EBPVDによるYSZ
の析出中にかなりの量の黒体電磁放射エネルギーが放出
される一般的な範囲である。熱放射は一般に約780〜
約1×106nm(1mm)の赤外範囲であるので、コート
してない試片の反射率はEBPVDによるYSZの析出
中に優勢な熱放射(780〜約2000nm)に対して比
較的低かった。コートしてない部品のこの範囲での低い
反射率は、PVDコーティング作業中に起こる部品の放
射加熱の量を促進するであろう。実際、HS188部品
の表面は酸化され、その結果反射率が40%に近くな
り、したがって部品の作動温度はさらに高くなるであろ
う。
【0016】本発明の教示に従ってコートした32層の
試片では、奇数番号の層(たとえば図1の層16と1
8)がシリカであり、偶数番号の層(たとえば図1の層
20と22)がチタニアであった。この試片の個々の層
の厚みを次に示す。層番号 材 料 厚 み (nm) 1 SiO2 187.27 2 TiO2 138.00 3 SiO2 344.10 4 TiO2 119.81 5 SiO2 197.91 6 TiO2 120.25 7 SiO2 166.05 8 TiO2 91.16 9 SiO2 153.74 10 TiO2 73.03 11 SiO2 85.10 12 TiO2 71.10 13 SiO2 131.15 14 TiO2 121.40 15 SiO2 134.27 16 TiO2 184.65 17 SiO2 26.22 18 TiO2 136.39 19 SiO2 22.37 20 TiO2 79.27 21 SiO2 111.99 22 TiO2 68.03 23 SiO2 47.77 24 TiO2 58.36 25 SiO2 147.85 26 TiO2 107.91 27 SiO2 95.29 28 TiO2 51.64 29 SiO2 91.91 30 TiO2 39.22 31 SiO2 323.08 32 TiO2 61.57 上記のことから、シリカ層の厚みは約22.37〜約3
44.10nmの範囲であり、合計の厚みは約2266nm
であったことが分かる。チタニア層の厚みは約39.2
2〜約184.65nmの範囲であり、合計の厚みは約1
522nmであった。コーティングの全体の厚みは約37
88nmであり、シリカとチタニアに起因し得るコーテ
ィングの全体の厚みはそれらのそれぞれの屈折率に反比
例していた。1/4波長式に基づいて、個々の層の異な
る厚みは反射させたい波長の範囲を網羅しようとしたも
のであり、各対のシリカ層は通常それと対のチタニア層
より厚いことが理解できる。個々の対の層に対するシリ
カ/チタニアの厚み比はシリカとチタニアの屈折率
(1.5/2.2)の逆数に限定されなかった。代わり
に、厚みの比は約0.19〜約5.25までの範囲であ
ることが分かる。この違いの原因は、複雑な反射コーテ
ィングの場合、高調波を抑制するために極めて薄い層
(たとえば層17と19)を含ませ、その結果広い周波
数範囲にわたって全体性能を高めたためである。ここで
使用した「複雑な」という用語は、コーティング層に対
する異なる屈折率、層の異なる材料特性、およびコーテ
ィングに対して意図された要求用途に関連していうもの
とする。
【0017】図2から分かるように、本発明に従ってコ
ートされたHS188試片の反射率は、熱放射スペクト
ルの下端で、図3のコートされてない部品と比較してか
なり高く、計算した380〜1500nmの平均反射率は
約90%であった。この範囲におけるコートされた試片
の反射率は高いので、PVDコーティング作業中のHS
188部品で起こる放射加熱の量が大きく低減するであ
ろう。上記の結果に基づいて、本発明のコーティング系
はまた約1500nm未満の波長で鋼の比較的低い反射率
を補償することが理解される。
【0018】好ましい態様に関して本発明を説明して来
たが、他の適切なコーティングおよび基材材料を代わり
に使用したり、またはコーティング層を析出するのに各
種方法を利用したりすることによって、他の形態も当業
者ならば適用できることは明らかである。したがって、
本発明の範囲は特許請求の範囲によってのみ定められ
る。
【図面の簡単な説明】
【図1】本発明の反射コーティングを有するコーティン
グチャンバ部品の一部の断面図。
【図2】図1の反射コーティングを有する鋼試片の反射
率を波長に対してプロットしたグラフ。
【図3】従来のコートしてない鋼試片の反射率を波長に
対してプロットしたグラフ。
【図4】PVDによるイットリア安定化ジルコニアの析
出中の典型的な黒体放射を示すグラフ。
【符号の説明】
10 部品 12 基材 14 コーティング系 16 低屈折率セラミック層 18 高屈折率セラミック層 20 低屈折率セラミック層 22 高屈折率セラミック層
───────────────────────────────────────────────────── フロントページの続き (72)発明者 ジョン・フレデリック・アッカーマン アメリカ合衆国、ワイオミング州、ララミ ー、パロミノ・ドライブ、1514番 (72)発明者 ジェフリー・アレン・コナー アメリカ合衆国、オハイオ州、ハミルト ン、ジューンベリー・コート、6206番 (72)発明者 ジョン・ダグラス・エバンス,セニア アメリカ合衆国、オハイオ州、スプリング フィールド、ジョンソン・ロード、3970番 (72)発明者 アントニオ・フランク・マリコッチ アメリカ合衆国、オハイオ州、ラブラン ド、サイテイション・コート、101番

Claims (20)

    【特許請求の範囲】
  1. 【請求項1】 コーティング装置のコーティングチャン
    バ部品(10)であって、該部品(10)はその表面上
    に熱反射コーティング(14)をもっており、該コーテ
    ィング(14)は、所定波長の赤外線に対して実質的に
    透明な材料で形成された少なくとも一対の隣接する層
    (16、18)を含んでおり、この対の層(16、1
    8)の最外層(18)は同じ対の層(16、18)の最
    内層(16)より屈折率が高い材料で形成されており、
    該対の層(16、18)の最内層(16)は同じ対の層
    (16、18)の最外層(18)より厚い、前記コーテ
    ィングチャンバ部品(10)。
  2. 【請求項2】 コーティング(14)を有する部品(1
    0)が約380〜約1500ナノメートルの電磁波長に
    対して少なくとも90%の平均反射率をもっている、請
    求項1記載のコーティングチャンバ部品(10)。
  3. 【請求項3】 前記対の層(16、18)の最外層(1
    8)がチタニア、タンタラ、ジルコニアおよび酸化ニオ
    ブより成る群の中から選択される材料で形成されてお
    り、前記対の層(16、18)の最内層(16)が耐火
    性フッ化物、シリカおよびアルミナより成る群の中から
    選択される材料で形成されている、請求項1記載のコー
    ティングチャンバ部品(10)。
  4. 【請求項4】 前記対の層(16、18)の最内層(1
    6)が前記対の層(16、18)の最外層(18)より
    それらの屈折率に反比例する係数だけ厚い、請求項1記
    載のコーティングチャンバ部品(10)。
  5. 【請求項5】 コーティング(14)が約100〜約4
    000ナノメートルの厚みをもっている、請求項1記載
    のコーティングチャンバ部品(10)。
  6. 【請求項6】 前記対の層(16、18)の最内層(1
    6)が約1.25〜約1.7の屈折率をもっており、前
    記対の層(16、18)の最外層(18)が約2.0〜
    約2.3の屈折率をもっている、請求項1記載のコーテ
    ィングチャンバ部品(10)。
  7. 【請求項7】 前記対の層(16、18)の材料が50
    0〜3000ナノメートルの電磁波長に対して実質的に
    透明である、請求項1記載のコーティングチャンバ部品
    (10)。
  8. 【請求項8】 コーティング(14)が500〜300
    0ナノメートルの波長の赤外線に対して実質的に透明な
    2種の材料からなる16〜50個の交互層(16、1
    8、20、22)を含んでいる、請求項1記載のコーテ
    ィングチャンバ部品(10)。
  9. 【請求項9】 コーティング(14)が前記材料で形成
    された第二の対の隣接する層(20、22)を含んでお
    り、この第二の対の隣接する層(20、22)の最外層
    (22)が第二の対の隣接する層(20、22)の最内
    層(20)より屈折率が高い材料で形成されており、該
    第二の対の隣接する層(20、22)の最内層(20)
    が第二の対の隣接する層(20、22)の最外層(2
    2)より薄くなっていてコーティング(14)内の光学
    的高調波を抑制している、請求項1記載のコーティング
    チャンバ部品(10)。
  10. 【請求項10】 コーティング(14)が16個のシリ
    カの層(16、20)と16個のチタニアの層(18、
    22)を交互に含んでおり、コーティング(14)の最
    内層(16)がシリカであり、コーティング(14)の
    最外層(22)がチタニアであり、シリカの層(16、
    20)の厚みがコーティング(14)の最内層(16)
    からコーティング(14)の最外層(22)に隣接する
    シリカ層(20)に向かってそれぞれ約187.27n
    m、344.10nm、197.91nm、166.05n
    m、153.74nm、85.10nm、131.15nm、
    134.27nm、26.22nm、22.37nm、11
    1.99nm、47.77nm、147.85nm、95.2
    9nm、91.91nm、および323.08nmであり、チ
    タニアの層(18、22)の厚みがコーティング(1
    4)の最内層(16)に隣接するチタニア層(18)か
    らコーティング(14)の最外層(22)に向かってそ
    れぞれ約138.00nm、119.81nm、120.2
    5nm、91.16nm、73.03nm、71.10nm、1
    21.40nm、184.65nm、136.39nm、7
    9.27nm、68.03nm、58.36nm、107.9
    1nm、51.64nm、39.22nm、および61.57
    nmである、請求項1記載のコーティングチャンバ部品
    (10)。
  11. 【請求項11】 部品(10)がコーティング装置内で
    コートされる物品を取り扱うよう構成されている、請求
    項1記載のコーティングチャンバ部品(10)。
  12. 【請求項12】 さらに、部品(10)を装着するコー
    ティングチャンバを有する物理蒸着装置を含んでいる、
    請求項1記載のコーティングチャンバ部品(10)。
  13. 【請求項13】 コーティング装置のコーティングチャ
    ンバ部品(10)であって、該部品(10)はその表面
    上に熱反射コーティング(14)をもっており、該コー
    ティング(14)は複数の層(16、18、20、2
    2)を含んでおり、第一の材料の層(16、20)が第
    二の材料の層(18、22)と交互になっていて第一と
    第二の材料の層の隣接する対(16と18、20と2
    2)を規定しており、第一と第二の材料は所定波長の赤
    外線に対して実質的に透明であり、第二の材料は第一の
    材料より屈折率が高く、前記対の層(16、18、2
    0、22)の各対の最内層(16、20)は第一の材料
    で形成され、前記対の層(16、18、20、22)の
    各対の最外層(18、22)は第二の材料で形成され、
    前記対の層(16、18、20、22)のほとんどの対
    の最内層(16、20)は、前記対の層(16、18、
    20、22)の最外層(18、22)より、それぞれの
    材料の屈折率にほぼ反比例する係数だけ厚くなってお
    り、前記対の層(16、18、20、22)の少なくと
    も1つの対の最内層(16、20)は前記対の層(1
    6、18、20、22)の前記少なくとも1つの対の最
    外層(18、22)より薄くなっていてコーティング
    (14)内の光学的高調波を抑制している、前記コーテ
    ィングチャンバ部品(10)。
  14. 【請求項14】 物理蒸着装置であって、 該装置でコートされる物品を取り扱うよう構成されてい
    る部品(10)と、 該部品(10)の表面上の熱反射コーティング(14)
    であり、該コーティング(14)は500〜3000ナ
    ノメートルの電磁波長に対して実質的に透明な金属酸化
    物で形成された少なくとも一対の隣接する層(16、1
    8)を含んでおり、この対の層(16、18)の最外層
    (18)は同じ対の層(16、18)の最内層(16)
    より屈折率が高く、前記対の層(16、18)の最内層
    (16)が同じ対の層(16、18)の最外層(18)
    よりそれらの屈折率に反比例する係数だけ厚くなってい
    る、前記熱反射コーティング(14)とを含んでなる前
    記物理蒸着装置。
  15. 【請求項15】 コーティング(14)を有する部品
    (10)が約380〜約1500ナノメートルの電磁波
    長に対して少なくとも90%の反射率をもっている、請
    求項14記載の物理蒸着装置。
  16. 【請求項16】 コーティング(14)が約100〜約
    4000nmの厚みをもっている、請求項14記載の物理
    蒸着装置。
  17. 【請求項17】 コーティング(14)が部品(10)
    の表面に隣接して第一の層(16)を、この第一の層
    (16)の上に第二の層(18)を、この第二の層(1
    8)の上に第三の層(20)を、そして第三の層(2
    0)の上に第四の層(22)をもっており、第一と第三
    の層(16、20)がシリカで形成され、第二と第四の
    層(18、22)がチタニアで形成されている、請求項
    14記載の物理蒸着装置。
  18. 【請求項18】 コーティング(14)が500〜30
    00ナノメートルの波長の赤外線に対して実質的に透明
    な材料からなる16〜50個の層(16、18、20、
    22)を含んでいる、請求項14記載の物理蒸着装置。
  19. 【請求項19】 コーティング(14)が前記材料で形
    成された第二の対の隣接する層(20、22)を含んで
    おり、この第二の対の隣接する層(20、22)の最外
    層(22)が第二の対の隣接する層(20、22)の最
    内層(20)より屈折率が高い材料で形成されており、
    該第二の対の隣接する層(20、22)の最内層(2
    0)が第二の対の隣接する層(20、22)の最外層
    (22)より薄くなっており、該第二の対の隣接する層
    (20、22)の最内層(20)がコーティング(1
    4)内の光学的高調波を抑制する機能を果たす、請求項
    14記載の物理蒸着装置。
  20. 【請求項20】 コーティング(14)が16個のシリ
    カの層(16、20)と16個のチタニアの層(18、
    22)を交互に含んでおり、コーティング(14)の最
    内層(16)がシリカであり、コーティング(14)の
    最外層(22)がチタニアであり、シリカの層(16、
    20)の厚みがコーティング(14)の最内層(16)
    からコーティング(14)の最外層(22)に隣接する
    シリカ層(20)に向かってそれぞれ約187.27n
    m、344.10nm、197.91nm、166.05n
    m、153.74nm、85.10nm、131.15nm、
    134.27nm、26.22nm、22.37nm、11
    1.99nm、47.77nm、147.85nm、95.2
    9nm、91.91nm、および323.08nmであり、チ
    タニアの層(18、22)の厚みがコーティング(1
    4)の最内層(16)に隣接するチタニア層(18)か
    らコーティング(14)の最外層(22)に向かってそ
    れぞれ約138.00nm、119.81nm、120.2
    5nm、91.16nm、73.03nm、71.10nm、1
    21.40nm、184.65nm、136.39nm、7
    9.27nm、68.03nm、58.36nm、107.9
    1nm、51.64nm、39.22nm、および61.57
    nmである、請求項14記載の物理蒸着装置。
JP2000115974A 1999-04-19 2000-04-18 コーティング装置のチャンバ部品の作動温度を低下させるためのコーティング Expired - Fee Related JP4896287B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/293,965 US6181727B1 (en) 1999-04-19 1999-04-19 Coating for reducing operating temperatures of chamber components of a coating apparatus
US09/293965 1999-04-19

Publications (3)

Publication Number Publication Date
JP2000355756A true JP2000355756A (ja) 2000-12-26
JP2000355756A5 JP2000355756A5 (ja) 2007-06-07
JP4896287B2 JP4896287B2 (ja) 2012-03-14

Family

ID=23131315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000115974A Expired - Fee Related JP4896287B2 (ja) 1999-04-19 2000-04-18 コーティング装置のチャンバ部品の作動温度を低下させるためのコーティング

Country Status (6)

Country Link
US (1) US6181727B1 (ja)
EP (1) EP1091017B1 (ja)
JP (1) JP4896287B2 (ja)
BR (1) BR0001637A (ja)
DE (1) DE60041527D1 (ja)
SG (1) SG84588A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337508B1 (ko) * 2005-12-13 2013-12-06 센스어레이 코포레이션 프로세싱 상태들 감지 시스템 및 프로세스 상태 측정 디바이스 형성 방법
US8604361B2 (en) 2005-12-13 2013-12-10 Kla-Tencor Corporation Component package for maintaining safe operating temperature of components
US9165846B2 (en) 2002-01-24 2015-10-20 Kla-Tencor Corporation Process condition sensing wafer and data analysis system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103092A1 (fr) * 2001-06-14 2002-12-27 Shin-Etsu Handotai Co., Ltd. Dispositif permettant la production d'un monocristal semi-conducteur et procede permettant de produire un monocristal semi-conducteur au moyen de ce dispositif
US20050100757A1 (en) * 2003-11-12 2005-05-12 General Electric Company Thermal barrier coating having a heat radiation absorbing topcoat
PL1979677T3 (pl) * 2006-01-27 2013-02-28 Fosbel Intellectual Ltd Ulepszenia trwałości i działania końcówek pochodni
US9677180B2 (en) * 2010-12-30 2017-06-13 Rolls-Royce Corporation Engine hot section component and method for making the same
EP3105509B1 (en) 2014-02-07 2020-08-05 United Technologies Corporation Combustor comprising multi-layer coated panel and method of fabricating an article having multi-layered coating
KR102496476B1 (ko) * 2015-11-19 2023-02-06 삼성전자주식회사 전자기파 반사체 및 이를 포함하는 광학소자
US20180016919A1 (en) * 2016-07-12 2018-01-18 Delavan Inc Thermal barrier coatings with enhanced reflectivity

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186875A (ja) * 1987-01-29 1988-08-02 Tadahiro Omi 表面反応成膜装置
GB9400323D0 (en) * 1994-01-10 1994-03-09 Pilkington Glass Ltd Coatings on glass
JP3362552B2 (ja) * 1995-03-10 2003-01-07 東京エレクトロン株式会社 成膜処理装置
JP3341619B2 (ja) * 1997-03-04 2002-11-05 東京エレクトロン株式会社 成膜装置
US6021152A (en) * 1997-07-11 2000-02-01 Asm America, Inc. Reflective surface for CVD reactor walls
KR100286325B1 (ko) * 1997-11-27 2001-05-02 김영환 화학기상증착 장비의 가열장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9165846B2 (en) 2002-01-24 2015-10-20 Kla-Tencor Corporation Process condition sensing wafer and data analysis system
KR101337508B1 (ko) * 2005-12-13 2013-12-06 센스어레이 코포레이션 프로세싱 상태들 감지 시스템 및 프로세스 상태 측정 디바이스 형성 방법
US8604361B2 (en) 2005-12-13 2013-12-10 Kla-Tencor Corporation Component package for maintaining safe operating temperature of components

Also Published As

Publication number Publication date
EP1091017B1 (en) 2009-02-11
JP4896287B2 (ja) 2012-03-14
EP1091017A2 (en) 2001-04-11
DE60041527D1 (de) 2009-03-26
US6181727B1 (en) 2001-01-30
SG84588A1 (en) 2001-11-20
BR0001637A (pt) 2000-10-31
EP1091017A3 (en) 2003-07-02

Similar Documents

Publication Publication Date Title
JP2629693B2 (ja) エキシマレーザ用ミラー
US5998003A (en) Multilayer nanostructured ceramic thermal barrier coatings
CA2059046C (en) Aluminium surfaces
JP7495922B2 (ja) 反射光学素子
US7933064B2 (en) Reflector for an infrared radiating element
JP5800893B2 (ja) Mo/Si多層プラズマアシスト蒸着
JP2005538028A (ja) 被覆物
CN101119941A (zh) 用于光学涂层的可空气氧化的防划痕防护层
JP4896287B2 (ja) コーティング装置のチャンバ部品の作動温度を低下させるためのコーティング
Hu et al. Optical coatings of durability based on transition metal nitrides
JP4885343B2 (ja) 溶接作業用加熱装置並びに方法
JP2020523642A (ja) 高反射鏡のための銀コーティング積層体の反射帯域幅の拡大
JP4713461B2 (ja) アルミニウム及びアルミニウム酸化物の少なくとも一方を有し、ルチル構造を具えるチタン酸化物透明被膜
WO2015116761A1 (en) Uv and duv expanded cold mirrors
JP2019502158A (ja) 応力補償型反射性コーティングを備える鏡
Guenther et al. Corrosion-resistant front surface aluminum mirror coatings
JP2019523448A (ja) 応力平衡化コーティングを備える光学素子
Ristau et al. Thin Film Optical Coatings
JP2575286B2 (ja) 熱遮蔽材料
Wang et al. Optics Ag-mirror with high volume fraction-SiCp/Al composite–titanium alloy–PbO system glass metal plus dielectric multi-layer films
Bartzsch et al. Precision optical and antireflection multilayer and gradient coatings containing reactively sputtered oxides, nitrides and fluorides
JP3610777B2 (ja) 赤外域用反射防止膜及び透過窓
JPH0754641B2 (ja) 反射鏡及びその製造方法
JPS62143002A (ja) 誘電体多層膜無反射コ−テイング
Bastien et al. Inhomogeneous Metal/Dielectric Selective Solar Absorbers

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100727

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100819

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100827

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110506

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees