JP2000346055A - Bearing - Google Patents

Bearing

Info

Publication number
JP2000346055A
JP2000346055A JP11157189A JP15718999A JP2000346055A JP 2000346055 A JP2000346055 A JP 2000346055A JP 11157189 A JP11157189 A JP 11157189A JP 15718999 A JP15718999 A JP 15718999A JP 2000346055 A JP2000346055 A JP 2000346055A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
pressure generating
air
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11157189A
Other languages
Japanese (ja)
Inventor
Kiyotaka Matsukawa
清喬 松川
Kozo Ishihara
耕三 石原
Ikuo Uemoto
育男 上本
Seiichi Yokohata
誠一 横畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kagaku Yakin Co Ltd
Original Assignee
Nippon Kagaku Yakin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kagaku Yakin Co Ltd filed Critical Nippon Kagaku Yakin Co Ltd
Priority to JP11157189A priority Critical patent/JP2000346055A/en
Publication of JP2000346055A publication Critical patent/JP2000346055A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/24Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/104Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure

Abstract

PROBLEM TO BE SOLVED: To prevent air entrainment to suppress sway of a shaft and elongate lifetime by providing an air entrainment preventing layer for preventing air entrainment into a dynamic pressure generating groove. SOLUTION: A center part 4 of a bearing 1 consists of an air entrainment preventing layer 5 and a dynamic pressure generating layer 6. The air entrainment preventing layer 5 has multiple air relief groove 7 provided adjacent to each of multiple V-shaped dynamic pressure generating grooves 8. The dynamic pressure generating layer 6 has multiple dynamic pressure generating grooves 8 and supporting surfaces 9 provided at a specified interval in a circumferential direction of an inner peripheral surface of the bearing 1. Pressure distributes such that the dynamic pressure becomes highest near the center of the dynamic pressure generating layer 6 at the time of rotation of a shaft or the bearing 1. Although air is entrained into the air relief groove 7 by rotation of the shaft or the bearing 1, the air is discharged outwards by dynamic pressure generated at the air relief groove 7. Air entrainment into the dynamic pressure generating grooves 8 causing sway of the shaft can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高速回転用モータ
に用いる軸受に関する。
The present invention relates to a bearing used for a high-speed rotation motor.

【0002】[0002]

【従来の技術】図35は、従来の動圧軸受の構造を示す
模式的な断面図である。51は軸受、52は上端部、5
3は下端部、57は動圧発生溝、58は支持面、そして
55は中央部である。動圧発生溝57はシャフトもしく
は軸受の回転に伴い、オイルに動圧を発生させる。そし
て、この動圧により回転時の負荷を受けることができる
ようになっている。
2. Description of the Related Art FIG. 35 is a schematic sectional view showing the structure of a conventional dynamic pressure bearing. 51 is a bearing, 52 is an upper end, 5
3 is a lower end, 57 is a dynamic pressure generating groove, 58 is a support surface, and 55 is a center. The dynamic pressure generating groove 57 generates a dynamic pressure in the oil as the shaft or the bearing rotates. Then, a load during rotation can be received by the dynamic pressure.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、動圧発
生溝57に空気を巻き込むと、オイルの正常な流れが阻
害され、軸振れが増加するという問題がある。そのた
め、例えば、特開昭63−1811号公報では、動圧発
生溝を構成するへリングボーン型グルーブの上端近傍と
下端近傍に少なくとも1本以上の円周状の溝を配設した
軸受が提案されている。これによれば、へリングボーン
型グルーブの中心部への空気の進入を防止することが可
能であるが、上記円周状の溝に気泡が進入した場合、気
泡同志が合体し大きくなり易く、また、円周状の溝の部
分には動圧が発生しないため、安定な動圧が発生せず、
軸振れの発生を防止できない場合がある。
However, when air is drawn into the dynamic pressure generating groove 57, there is a problem that the normal flow of oil is obstructed and the shaft runout increases. Therefore, for example, Japanese Patent Application Laid-Open No. 63-1811 proposes a bearing in which at least one or more circumferential grooves are arranged near the upper end and the lower end of a herringbone type groove constituting a dynamic pressure generating groove. Have been. According to this, it is possible to prevent air from entering the center of the herringbone groove, but when air bubbles enter the circumferential groove, the air bubbles are likely to unite and become large, In addition, since dynamic pressure does not occur in the circumferential groove portion, stable dynamic pressure does not occur,
In some cases, shaft run-out cannot be prevented.

【0004】本発明は、上記の課題を解決し、動圧発生
溝への空気の巻き込みを防止して、軸振れを抑制し、寿
命の長い軸受を提供することを目的とした。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to provide a bearing having a long life by preventing air from getting into the dynamic pressure generating groove, suppressing shaft runout.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の請求項1に記載の発明は、軸孔に遊挿され
たシャフトを支持する軸受において、上記軸受の内周面
の円周方向に所定間隔で設けられた複数の動圧発生溝を
有する動圧発生層と、上記軸受の少なくとも一方の端面
に隣接して設けられ、上記動圧発生溝への空気の巻き込
みを防止する空気巻き込み防止層を有することを特徴と
する。
According to a first aspect of the present invention, there is provided a bearing for supporting a shaft loosely inserted in a shaft hole. A dynamic pressure generating layer having a plurality of dynamic pressure generating grooves provided at predetermined intervals in a circumferential direction; and a dynamic pressure generating layer provided adjacent to at least one end face of the bearing to prevent air from getting into the dynamic pressure generating grooves. It has an air entrapment prevention layer.

【0006】また、請求項2に記載の発明は、請求項1
に記載の発明において、上記空気巻き込み防止層が複数
の動圧発生溝の各々に隣接して設けられた複数の空気逃
がし溝を有することを特徴とする。
[0006] The invention described in claim 2 is the invention according to claim 1.
In the invention described in (1), the air entrapment prevention layer has a plurality of air release grooves provided adjacent to each of the plurality of dynamic pressure generation grooves.

【0007】また、請求項3に記載の発明は、請求項1
又は2に記載の発明において、上記空気巻き込み防止層
の表面開孔率αが10〜30%、上記動圧発生層の表面
開孔率βが0〜20%であり、かつ、α>βであること
を特徴とする。
[0007] The invention according to claim 3 provides the invention according to claim 1.
Or 2) the air entrapment prevention layer has a surface porosity α of 10 to 30%, the dynamic pressure generating layer has a surface porosity β of 0 to 20%, and α> β. There is a feature.

【0008】また、請求項4に記載の発明は、請求項3
に記載の発明において、上記空気巻き込み防止層が、上
記軸受の端面と動圧発生溝とを隔離する隔離層であるこ
とを特徴とする。
[0008] The invention described in claim 4 is the invention according to claim 3.
Wherein the air entrainment preventing layer is an isolation layer for isolating the end face of the bearing from the dynamic pressure generating groove.

【0009】また、請求項5に記載の発明は、請求項1
〜4のいずれかひとつに記載の発明において、2つの上
記空気巻き込み防止層を有し、該空気巻き込み防止層の
幅L1,L2の少なくとも一方が、動圧発生層の幅L3
に対し、0.02×L3〜L3の関係を満たし、かつ、
上記軸受の内径有効長Lと0.5L<L1+L2+L3
≦1.5Lの関係を満たすことを特徴とする。
The invention described in claim 5 is the first invention.
In the invention according to any one of the above-described embodiments, the air entrainment prevention layer has two air entrapment prevention layers, and at least one of the widths L1 and L2 of the air entrapment prevention layer is the width L3 of the dynamic pressure generation layer
Satisfies the relationship of 0.02 × L3 to L3, and
Effective inner diameter L of the above bearing and 0.5L <L1 + L2 + L3
≦ 1.5L.

【0010】また、請求項6に記載の発明は、請求項1
〜5のいずれかひとつに記載の発明において、上記動圧
発生溝の深さh3と、シャフトと内周面とのクリアラン
スcとが、0.5≦h3/c≦5の関係を満たすことを
特徴とする。
The invention described in claim 6 is the first invention.
In the invention described in any one of the above-described embodiments, the depth h3 of the dynamic pressure generating groove and the clearance c between the shaft and the inner peripheral surface satisfy a relationship of 0.5 ≦ h3 / c ≦ 5. Features.

【0011】また、請求項7に記載の発明は、請求項1
〜6のいずれかひとつに記載の発明において、上記動圧
発生層が、上記軸受の内周面の軸方向に設けられた少な
くとも1つのV字状の動圧発生溝を含むことを特徴とす
る。
[0011] The invention described in claim 7 is the first invention.
7. The invention according to any one of Items 6 to 6, wherein the dynamic pressure generating layer includes at least one V-shaped dynamic pressure generating groove provided in an axial direction of an inner peripheral surface of the bearing. .

【0012】また、請求項8に記載の発明は、請求項
1、2、3、5、6及び7のいずれかひとつに記載の発
明において、上下からの押圧により形成された上記空気
逃がし溝を有することを特徴とする。
According to an eighth aspect of the present invention, in the first aspect of the present invention, the air release groove formed by pressing from above and below is provided. It is characterized by having.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。 〈第1の実施形態〉図1,3は、本発明の第1の実施形
態に係る軸受の縦断面図である。軸受1は、その内周面
に上端部2、下端部3と中央部4とを有している。中央
部4は、空気巻き込み防止層5と動圧発生層6とからな
る。空気巻き込み防止層5は複数のV字状の動圧発生溝
8の各々に隣接して設けられた複数の空気逃がし溝7を
有している。動圧発生層6は、軸受の内周面の円周方向
に所定間隔で設けられた複数の動圧発生溝8と支持面9
を有している。シャフト(図示せず)もしくは軸受の回
転時において、動圧は動圧発生層6の中央付近で最も高
圧となるような圧力分布をとる。シャフトもしくは軸受
の回転により空気は空気逃がし溝7に巻き込まれるが、
空気逃がし溝7で発生する動圧により空気は外方に排出
される。したがって、軸振れの原因となる動圧発生溝8
への空気の巻き込みを防止することができる。なお、動
圧発生溝は、動圧発生層の中央部で高い動圧を発生でき
れば、V字状でも円弧状でも良い。
Embodiments of the present invention will be described below with reference to the drawings. <First Embodiment> FIGS. 1 and 3 are longitudinal sectional views of a bearing according to a first embodiment of the present invention. The bearing 1 has an upper end 2, a lower end 3, and a center 4 on an inner peripheral surface thereof. The central part 4 is composed of an air entrainment preventing layer 5 and a dynamic pressure generating layer 6. The air entrapment prevention layer 5 has a plurality of air escape grooves 7 provided adjacent to each of the plurality of V-shaped dynamic pressure generation grooves 8. The dynamic pressure generating layer 6 includes a plurality of dynamic pressure generating grooves 8 and support surfaces 9 provided at predetermined intervals in a circumferential direction of the inner peripheral surface of the bearing.
have. During rotation of the shaft (not shown) or the bearing, the dynamic pressure has a pressure distribution such that it becomes highest near the center of the dynamic pressure generating layer 6. The air is caught in the air escape groove 7 by the rotation of the shaft or the bearing,
The air is discharged outward by the dynamic pressure generated in the air release groove 7. Therefore, the dynamic pressure generating groove 8 causing the shaft runout
It is possible to prevent air from being trapped. The dynamic pressure generating groove may be V-shaped or arcuate as long as high dynamic pressure can be generated at the center of the dynamic pressure generating layer.

【0014】図2は、第1の実施の形態の変形例であ
り、空気逃がし溝10と動圧発生溝8とを分離したもの
である。空気逃がし溝10と動圧発生溝8を分離するこ
とにより、動圧発生溝8への空気の巻き込み防止効果を
より高めることができる。なお、動圧発生溝は軸方向に
少なくとも1つ以上あることが好ましい。例えば、図4
〜9の別の変形例に示すようにV字状の動圧発生溝を複
数個設けても良い。。
FIG. 2 shows a modification of the first embodiment, in which the air escape groove 10 and the dynamic pressure generation groove 8 are separated. By separating the air escape groove 10 and the dynamic pressure generating groove 8, the effect of preventing air from getting into the dynamic pressure generating groove 8 can be further enhanced. It is preferable that there be at least one dynamic pressure generating groove in the axial direction. For example, FIG.
As shown in other modified examples of Nos. To 9, a plurality of V-shaped dynamic pressure generating grooves may be provided. .

【0015】次に、図10に、本実施の形態に係る軸受
の縦断面図である。ここで、L1,L2は動圧発生層の
両側の空気巻き込み防止層の幅、L3は動圧発生層の
幅、そしてLは内径有効長を示す。図11(a),
(b)は、L1/L3,L2/L3と軸受剛性との関係
を示すグラフである。L1又はL2が、0.02×L3
<L1,L2<L3の関係を満たせば軸受剛性は低下し
なかった。また、図12に、L1+L2+L3とLとの
関係を示すが、0.5L<L1+L2+L3≦1.5L
の関係を満たせば軸受剛性は低下しなかった。ここで、
軸受剛性が高いということは。偏心負荷による軸振れが
少ないことを示す。
Next, FIG. 10 is a longitudinal sectional view of the bearing according to the present embodiment. Here, L1 and L2 are the widths of the air entrapment preventing layers on both sides of the dynamic pressure generating layer, L3 is the width of the dynamic pressure generating layer, and L is the effective inner diameter. FIG. 11 (a),
(B) is a graph showing a relationship between L1 / L3, L2 / L3 and bearing rigidity. L1 or L2 is 0.02 × L3
If the relationship of <L1, L2 <L3 was satisfied, the bearing rigidity did not decrease. FIG. 12 shows the relationship between L1 + L2 + L3 and L, where 0.5L <L1 + L2 + L3 ≦ 1.5L
If the relationship was satisfied, the bearing stiffness did not decrease. here,
High bearing stiffness means. This shows that the shaft runout due to the eccentric load is small.

【0016】図13は、シャフトが遊挿された本実施の
形態に係る軸受の模式的な断面図である。そして、図1
4(a)は、図13の線XIVa−XIVaに沿った断
面図で、Cは空気巻き込み防止層における軸受とシャフ
トとのクリアランス、h1,h2は空気逃がし溝の深さ
を示す。また、図14(b)は、図13の線XIVb−
XIVbに沿った断面図で、Cは動圧発生層における軸
受とシャフトとのクリアランス、h3は動圧発生溝の深
さを示す。
FIG. 13 is a schematic sectional view of the bearing according to the present embodiment in which the shaft is loosely inserted. And FIG.
4 (a) is a cross-sectional view along the line XIVa-XIVa in FIG. 13, where C is the clearance between the bearing and the shaft in the air entrainment prevention layer, and h1 and h2 are the depths of the air escape grooves. FIG. 14B is a diagram showing a line XIVb− in FIG.
In the cross-sectional view along XIVb, C indicates the clearance between the bearing and the shaft in the dynamic pressure generating layer, and h3 indicates the depth of the dynamic pressure generating groove.

【0017】図15は、δ(=h3/c)と軸受剛性の
関係を示すグラフであり、δを0.5〜5の範囲に設定
することにより、必要十分な軸受剛性が得られる。
FIG. 15 is a graph showing the relationship between δ (= h3 / c) and bearing stiffness. By setting δ in the range of 0.5 to 5, necessary and sufficient bearing stiffness can be obtained.

【0018】また、本実施の形態の更に別の変形例とし
て、図16に示すように、動圧発生溝の幅を端面から中
央部に向かって、テーパ状に減少させても良い。ここ
で、空気逃がし溝7近傍の動圧発生溝の幅B1,B2
は、動圧発生溝8の中央部の幅B3より大きければ良
く、必ずしも同じである必要はない。
As still another modification of the present embodiment, as shown in FIG. 16, the width of the dynamic pressure generating groove may be tapered from the end face toward the center. Here, the width B1, B2 of the dynamic pressure generating groove near the air release groove 7
May be larger than the width B3 of the central portion of the dynamic pressure generating groove 8, and need not necessarily be the same.

【0019】また、動圧発生溝の深さを端面から中央部
に向かって減少させても良い。例えば図18に、図17
(b)における線XVIII−XVIIIに沿った縦断
面図を示す。ここで、空気逃がし溝7近傍の動圧発生溝
の深さh1,h2は、動圧発生溝8の深さh3より大き
ければ良く、必ずしも同じである必要はない。
Further, the depth of the dynamic pressure generating groove may be reduced from the end face toward the center. For example, FIG.
FIG. 7B is a vertical sectional view taken along line XVIII-XVIII in FIG. Here, the depths h1 and h2 of the dynamic pressure generating grooves near the air escape groove 7 need only be greater than the depth h3 of the dynamic pressure generating grooves 8, and need not necessarily be the same.

【0020】本実施の形態に係る軸受には、端部の外周
面に複数の凸部を有する冶具を上下から押圧することに
より、空気逃がし溝を形成しても良い。また、焼結含油
軸受けの場合には、粉末材料を圧縮成形時に、空気逃が
し溝を形成しても良い。
In the bearing according to the present embodiment, an air escape groove may be formed by pressing a jig having a plurality of convex portions on the outer peripheral surface of the end portion from above and below. In the case of a sintered oil-impregnated bearing, an air release groove may be formed during compression molding of a powder material.

【0021】〈第2の実施形態〉図19〜図21は、本
発明の第2の実施形態に係る軸受であって、焼結含油軸
受を示したものである。焼結含油軸受の場合、シャフト
もしくは軸受が回転すると、自己給油作用によりシャフ
トと軸受との間にオイルが給油されるが、シャフトの軸
振れ防止効果を高めるため、空気巻き込み防止部と動圧
発生部の表面開孔率を所定範囲に設定することが好まし
い。図22は、本実施の形態に係る軸受を用いた場合
の、動圧発生層の表面開孔率βを変化させた時の空気巻
き込み防止層の開孔率αと軸振れの関係を示したもので
ある。ここで、縦軸の軸振れは、空気巻き込み防止層が
なく、α及びβが10%である従来の軸受に対する相対
値で示したものであり、この値が大きいことは軸振れが
大きいことを意味する。αが10<α<30%の範囲
で、0<β<20%で、かつα>βであれば、軸振れを
抑制する効果が大であった。
<Second Embodiment> FIGS. 19 to 21 show a sintered oil-impregnated bearing according to a second embodiment of the present invention. In the case of a sintered oil-impregnated bearing, when the shaft or the bearing rotates, oil is supplied between the shaft and the bearing by the self-lubricating action. It is preferable to set the surface porosity of the portion to a predetermined range. FIG. 22 shows the relationship between the porosity α of the air entrapment prevention layer and the shaft runout when the surface porosity β of the dynamic pressure generating layer was changed when the bearing according to the present embodiment was used. Things. Here, the shaft runout on the vertical axis is a relative value with respect to a conventional bearing in which the air entrainment preventing layer is not provided and α and β are 10%. A large value indicates that the shaft runout is large. means. If α is in the range of 10 <α <30%, 0 <β <20%, and α> β, the effect of suppressing shaft runout is large.

【0022】本実施の形態では、動圧発生溝を軸受の両
端面から隔離して設け、その隔離層を空気巻き込み防止
層とし、かつ、空気巻き込み防止層の表面開孔率αを1
0〜30%、動圧発生層の表面開孔率βを0〜20%、
そして、α>βとした以外は、第1の実施形態と同様の
構造であり、かつ同様の方法で製造される。隔離層によ
りシャフトもしくは軸受の回転時に動圧発生溝と外部の
空気との直接接触を抑制できるため、動圧発生溝への空
気の巻き込みを防止できる。
In this embodiment, the dynamic pressure generating grooves are provided separately from both end faces of the bearing, the separating layer is used as an air entrapment prevention layer, and the surface porosity α of the air entrapment prevention layer is set to 1
0 to 30%, the surface porosity β of the dynamic pressure generating layer is 0 to 20%,
The structure is the same as that of the first embodiment except that α> β, and it is manufactured by the same method. Since the isolation layer can suppress direct contact between the dynamic pressure generating groove and external air when the shaft or the bearing rotates, it is possible to prevent air from getting into the dynamic pressure generating groove.

【0023】また、第2の実施形態のさらに別の変形例
として、図23に示すように軸方向に複数のV字状の動
圧発生溝8が分離して設けられても良く、また、図24
に示すように軸方向に複数のV字状の動圧発生溝8が互
い違いに分離して設けられても良く、さらに図25に示
すように大小のV字状の動圧発生溝8が交互に分離して
設けられても良い。いずれにおいても、動圧の高圧部の
領域を隔離層15の近傍まで伸ばすことが可能である。
As still another modification of the second embodiment, a plurality of V-shaped dynamic pressure generating grooves 8 may be provided separately in the axial direction as shown in FIG. FIG.
25, a plurality of V-shaped dynamic pressure generating grooves 8 may be provided alternately and separately in the axial direction. Further, as shown in FIG. May be provided separately. In any case, it is possible to extend the region of the high pressure part of the dynamic pressure to the vicinity of the isolation layer 15.

【0024】〈第3の実施の形態〉本実施の形態に係る
軸受は、空気巻き込み防止層5を動圧発生層6の片側に
のみ設けた以外は第1及び第2の実施の形態と同様の構
造をとり、同様の方法で製造される。図26〜図28に
その例を示す。これら軸受2個を、空気巻き込み防止層
5がそれぞれ上方、下方に位置するように配置しシャフ
トを遊挿することにより、第1及び第2の実施の形態と
同様の効果が得られる。
<Third Embodiment> A bearing according to the present embodiment is the same as the first and second embodiments except that the air entrainment preventing layer 5 is provided only on one side of the dynamic pressure generating layer 6. And manufactured in a similar manner. 26 to 28 show examples. By arranging these two bearings such that the air entrapment preventing layer 5 is located above and below, respectively, and inserting the shaft loosely, the same effects as in the first and second embodiments can be obtained.

【0025】なお、第1〜第3の実施の形態において
は、1つの軸受について説明したが、複数の軸受を用い
てシャフトを支持しても良い。例えば、図2の構造を有
する図29の軸受部30を2個(図30)、そして3個
(図31)用いることも可能である。このように軸受部
を複数用いて軸受を構成しても、第1及び第2の実施形
態と同様の効果を有する。
In the first to third embodiments, one bearing has been described, but a plurality of bearings may be used to support the shaft. For example, it is also possible to use two (FIG. 30) and three (FIG. 31) bearing portions 30 of FIG. 29 having the structure of FIG. Thus, even if a bearing is configured by using a plurality of bearing portions, the same effect as in the first and second embodiments can be obtained.

【0026】図32と図33は、それぞれ第1の実施の
形態に係る図1の軸受、第2の実施形態に係る図10の
軸受、そして図34は図35の従来の軸受について、そ
れぞれ複数のサンプルを用いて、軸振れの寿命を調べた
結果を示すグラフである。従来の軸受は、100時間や
200時間から軸振れが急激に増大するのに対し、本発
明に係る軸受は、500時間を越えても軸振れは変化せ
ず、良好な空気巻き込み防止効果が得られた。
FIGS. 32 and 33 show the bearing of FIG. 1 according to the first embodiment, the bearing of FIG. 10 of the second embodiment, and FIG. 7 is a graph showing the results of examining the life of shaft runout using the sample of FIG. In the conventional bearing, the shaft runout rapidly increases from 100 hours and 200 hours, whereas in the bearing according to the present invention, the shaft runout does not change even after 500 hours, and a good air entrainment prevention effect is obtained. Was done.

【0027】[0027]

【発明の効果】本発明の請求項1に係る発明によれば、
動圧発生層と少なくとも一方の端面に隣接して空気巻き
込み防止層を設けたので、動圧発生溝への空気の巻き込
みを防止でき、軸振れが防止できるため、寿命の長い軸
受を提供できる。
According to the first aspect of the present invention,
Since the air entrainment preventing layer is provided adjacent to at least one end face of the dynamic pressure generating layer, the entrainment of air into the dynamic pressure generating groove can be prevented, and shaft runout can be prevented, so that a long-life bearing can be provided.

【0028】また、請求項2に係る発明によれば、空気
巻き込み防止層に動圧発生溝の各々に隣接して、複数の
空気逃がし溝を設けたので、巻き込んだ空気を空気逃が
し溝を通すことにより排出できるため、動圧発生溝への
空気の巻き込みを防止できる。
According to the second aspect of the present invention, a plurality of air escape grooves are provided in the air entrapment prevention layer adjacent to each of the dynamic pressure generating grooves, so that the entrapped air passes through the air escape grooves. As a result, it is possible to prevent air from getting into the dynamic pressure generating groove.

【0029】また、請求項3に係る発明によれば、空気
巻き込み防止層の表面開孔率αを10〜30%、動圧発
生層の表面開孔率βを0〜20%とし、さらにα>βと
したので、空気の巻き込みを防止できる。
According to the third aspect of the present invention, the surface porosity α of the air entrapment preventing layer is 10 to 30%, the surface porosity β of the dynamic pressure generating layer is 0 to 20%, and α > Β, air entrainment can be prevented.

【0030】また、請求項4に係る発明によれば、軸受
の端面と動圧発生溝との隔離層を空気巻き込み防止層と
したので、動圧発生溝と外部の空気との直接の接触が抑
制されるため、動圧発生溝への空気の混入を防止でき
る。
According to the fourth aspect of the present invention, since the separating layer between the end face of the bearing and the dynamic pressure generating groove is an air entrainment preventing layer, direct contact between the dynamic pressure generating groove and external air is prevented. Since it is suppressed, it is possible to prevent air from entering the dynamic pressure generating groove.

【0031】また、請求項5に係る発明によれば、空気
巻き込み防止層の幅L1,L2の少なくとも一方が、
0.02×L3〜L3であり、かつ、内径有効長Lと
0.5L<L1+L2+L3≦1.5Lの関係を満たす
ようにしたので、安定した回転が行なわれる。
According to the fifth aspect of the invention, at least one of the widths L1 and L2 of the air entrapment prevention layer is
Since 0.02 × L3 to L3 and the relationship of the inner diameter effective length L and 0.5L <L1 + L2 + L3 ≦ 1.5L is satisfied, stable rotation is performed.

【0032】また、請求項6に係る発明によれば、動圧
発生溝の深さh3と、軸材料と内径面とのクリアランス
cを、0.5≦h3/c≦5の関係を満たすようにした
ので、適度な動圧が発生でき、安定した回転が行なわれ
る。
According to the invention of claim 6, the depth h3 of the dynamic pressure generating groove and the clearance c between the shaft material and the inner diameter surface are set so as to satisfy the relationship of 0.5 ≦ h3 / c ≦ 5. Therefore, an appropriate dynamic pressure can be generated, and stable rotation can be performed.

【0033】また、請求項7に係る発明によれば、軸受
の内周面の軸方向に少なくとも1つの動圧発生溝を設け
たので、動圧の高圧部を空気巻き込み防止層の近傍まで
拡げることができる。
According to the seventh aspect of the present invention, since at least one dynamic pressure generating groove is provided in the axial direction of the inner peripheral surface of the bearing, the high pressure portion of the dynamic pressure is extended to the vicinity of the air entrainment preventing layer. be able to.

【0034】また、請求項8に係る発明によれば、空気
逃がし溝を上下からの押圧により形成でき、空気逃がし
溝を容易に加工できる。
According to the invention of claim 8, the air release groove can be formed by pressing from above and below, and the air release groove can be easily processed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施形態に係る軸受の縦断面
図である。
FIG. 1 is a longitudinal sectional view of a bearing according to a first embodiment of the present invention.

【図2】 図1の軸受の変形例を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing a modified example of the bearing of FIG.

【図3】 図1の軸受の変形例を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing a modified example of the bearing of FIG. 1;

【図4】 図1の軸受の変形例を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a modified example of the bearing of FIG.

【図5】 図1の軸受の変形例を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing a modified example of the bearing of FIG. 1;

【図6】 図1の軸受の変形例を示す縦断面図である。FIG. 6 is a longitudinal sectional view showing a modified example of the bearing of FIG. 1;

【図7】 図1の軸受の変形例を示す縦断面図である。FIG. 7 is a longitudinal sectional view showing a modified example of the bearing of FIG. 1;

【図8】 図1の軸受の変形例を示す縦断面図である。FIG. 8 is a longitudinal sectional view showing a modified example of the bearing of FIG. 1;

【図9】 図1の軸受の変形例を示す縦断面図である。FIG. 9 is a longitudinal sectional view showing a modification of the bearing of FIG. 1;

【図10】 本発明の第1の実施形態に係る軸受におけ
る、動圧発生層の幅L3、空気巻き込み防止層の幅L
1,L2、そして内径有効長Lを示す縦断面図である。
FIG. 10 shows a width L3 of the dynamic pressure generation layer and a width L of the air entrapment prevention layer in the bearing according to the first embodiment of the present invention.
1, L2, and a longitudinal sectional view showing an effective inner diameter L.

【図11】 a.図10の軸受における、L1/L3及
びL2/L3と軸受剛性との関係を示すグラフである。
b.図11の軸受における、L1/L3及びL2/L3
と軸受剛性との関係を示すグラフである。
FIG. 11: a. 11 is a graph showing a relationship between L1 / L3 and L2 / L3 and bearing stiffness in the bearing of FIG.
b. L1 / L3 and L2 / L3 in the bearing of FIG.
6 is a graph showing the relationship between the bearing rigidity.

【図12】 図10の軸受における、(L1+L2+L
3)/Lと軸受剛性との関係を示すグラフである。
12 (L1 + L2 + L) in the bearing of FIG.
3) A graph showing the relationship between / L and bearing rigidity.

【図13】 シャフトが遊挿された本発明の第1の実施
形態に係る軸受の構造を示す模式断面図である。
FIG. 13 is a schematic cross-sectional view showing the structure of the bearing according to the first embodiment of the present invention in which the shaft is loosely inserted.

【図14】 図14における軸受の縦断面図であり、
(a)は線XIVa−XIVaに沿った断面図、(b)
は線XIVb−XIVbに沿った断面図である。
14 is a longitudinal sectional view of the bearing in FIG. 14,
(A) is a cross-sectional view along line XIVa-XIVa, (b)
Is a cross-sectional view along the line XIVb-XIVb.

【図15】 本発明の第1の実施形態に係る軸受におけ
る、h3(動圧発生溝の深さ)/c(クリアランス)と
軸受剛性との関係を示すグラフである。
FIG. 15 is a graph showing a relationship between h3 (depth of the dynamic pressure generation groove) / c (clearance) and bearing rigidity in the bearing according to the first embodiment of the present invention.

【図16】 本発明の第1の実施形態に係る軸受の変形
例の断面図であり、(a)はその縦断面図、(b)は
(a)の拡大図である。
FIGS. 16A and 16B are cross-sectional views of a modified example of the bearing according to the first embodiment of the present invention, wherein FIG. 16A is a longitudinal cross-sectional view and FIG. 16B is an enlarged view of FIG.

【図17】 本発明の第1の実施形態に係る軸受の変形
例の断面図であり、(a)は縦断面図、(b)は(a)
の拡大図である。
FIG. 17 is a cross-sectional view of a modified example of the bearing according to the first embodiment of the present invention, where (a) is a longitudinal cross-sectional view and (b) is (a).
FIG.

【図18】 図17bの線XVIII−XVIIIに沿
った断面図である。
FIG. 18 is a sectional view taken along lines XVIII-XVIII of FIG. 17b.

【図19】 本発明の第2の実施形態に係る軸受の構造
を示す縦断面図である。
FIG. 19 is a longitudinal sectional view showing a structure of a bearing according to a second embodiment of the present invention.

【図20】 図19の軸受の変形例を示す縦断面図であ
る。
20 is a longitudinal sectional view showing a modified example of the bearing of FIG.

【図21】 図19の軸受の変形例を示す縦断面図であ
る。
FIG. 21 is a longitudinal sectional view showing a modification of the bearing of FIG. 19;

【図22】 本発明の第2の実施形態に係る軸受の、動
圧発生層の表面開孔率βを変化させた時の、空気巻き込
み防止層の表面開口率αと軸振れの関係を示すグラフで
ある。
FIG. 22 shows the relationship between the surface aperture ratio α of the air entrapment preventing layer and the shaft runout when the surface aperture ratio β of the dynamic pressure generating layer is changed in the bearing according to the second embodiment of the present invention. It is a graph.

【図23】 図19の軸受の変形例を示す縦断面図であ
る。
FIG. 23 is a longitudinal sectional view showing a modified example of the bearing of FIG. 19;

【図24】 図19の軸受の変形例を示す縦断面図であ
る。
FIG. 24 is a longitudinal sectional view showing a modified example of the bearing of FIG. 19;

【図25】 図19の軸受の変形例を示す縦断面図であ
る。
FIG. 25 is a longitudinal sectional view showing a modified example of the bearing of FIG. 19;

【図26】 本発明の第3の実施形態に係る軸受の構造
を示す縦断面図である。
FIG. 26 is a longitudinal sectional view showing a structure of a bearing according to a third embodiment of the present invention.

【図27】 図26の軸受の変形例を示す縦断面図であ
る。
FIG. 27 is a longitudinal sectional view showing a modified example of the bearing of FIG. 26.

【図28】 図26の軸受の変形例を示す縦断面図であ
る。
FIG. 28 is a longitudinal sectional view showing a modified example of the bearing of FIG. 26.

【図29】 図1の軸受の変形例を示す縦断面図であ
る。
FIG. 29 is a longitudinal sectional view showing a modified example of the bearing of FIG. 1;

【図30】 図1の軸受の変形例を示す縦断面図であ
る。
FIG. 30 is a longitudinal sectional view showing a modification of the bearing of FIG. 1;

【図31】 図1の軸受の変形例を示す縦断面図であ
る。
FIG. 31 is a longitudinal sectional view showing a modified example of the bearing of FIG. 1;

【図32】 図1の軸受の軸振れの時間変化の結果を示
すグラフである。
FIG. 32 is a graph showing a result of a time change of shaft runout of the bearing of FIG. 1;

【図33】 図10の軸受の軸振れの時間変化の結果を
示すグラフである。
FIG. 33 is a graph showing a result of a time change of shaft runout of the bearing of FIG. 10;

【図34】 従来の軸受の軸触れの時間変化の結果を示
すグラフである。
FIG. 34 is a graph showing a result of a time change of a conventional bearing in contact with a shaft.

【図35】 従来の軸受の構造を示す縦断面図である。FIG. 35 is a longitudinal sectional view showing the structure of a conventional bearing.

【符号の説明】[Explanation of symbols]

1,21,32,33 軸受、2 上端部、3 下端部、
4 中央部、5 空気巻き込み防止層、6 動圧発生
層、8 動圧発生溝、9 支持面、7,10,11,12,
13 空気逃がし溝、15 隔離層、16 連絡溝、2
0 シャフト、30 軸受部。
1, 21, 32, 33 bearing, 2 upper end, 3 lower end,
4 central part, 5 air entrapment prevention layer, 6 dynamic pressure generation layer, 8 dynamic pressure generation groove, 9 support surface, 7, 10, 11, 12,
13 air escape groove, 15 isolation layer, 16 communication groove, 2
0 shaft, 30 bearing part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上本 育男 大阪府寝屋川市大成町12番32号 日本科学 冶金株式会社内 (72)発明者 横畑 誠一 大阪府寝屋川市大成町12番32号 日本科学 冶金株式会社内 Fターム(参考) 3J011 AA20 BA02 CA02 DA01 PA10 QA20 RA03 SB19 5H605 AA04 BB05 CC04 EB06 GG21 5H607 AA04 BB01 CC01 GG01 GG15 KK10  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Ikuo Uemoto 12-32 Taiseicho, Neyagawa-shi, Osaka Japan Science Metallurgy Co., Ltd. (72) Seiichi Yokohata 12-32 Taiseicho, Neyagawa-shi, Osaka Japanese science F term (reference) in Metallurgy Co., Ltd. 3J011 AA20 BA02 CA02 DA01 PA10 QA20 RA03 SB19 5H605 AA04 BB05 CC04 EB06 GG21 5H607 AA04 BB01 CC01 GG01 GG15 KK10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 軸孔に遊挿されたシャフトを支持する軸
受において、上記軸受の内周面の円周方向に所定間隔で
設けられた複数の動圧発生溝を有する動圧発生層と、上
記軸受の少なくとも一方の端面に隣接して設けられ、上
記動圧発生溝への空気の巻き込みを防止する空気巻き込
み防止層を有する軸受。
1. A bearing for supporting a shaft loosely inserted in a shaft hole, comprising: a dynamic pressure generating layer having a plurality of dynamic pressure generating grooves provided at predetermined intervals in a circumferential direction of an inner peripheral surface of the bearing; A bearing having an air entrapment prevention layer provided adjacent to at least one end face of the bearing and for preventing air from being entrained in the dynamic pressure generating groove.
【請求項2】 上記空気巻き込み防止層が上記複数の動
圧発生溝の各々に隣接して設けられた複数の空気逃がし
溝を有する請求項1記載の軸受。
2. The bearing according to claim 1, wherein said air entrapment prevention layer has a plurality of air release grooves provided adjacent to each of said plurality of dynamic pressure generation grooves.
【請求項3】 上記軸受が焼結含油軸受であって、上記
空気巻き込み防止層の表面開孔率αが10〜30%、上
記動圧発生層の表面開孔率βが0〜20%であり、か
つ、α>βである請求項1又は2に記載の軸受。
3. The bearing is a sintered oil-impregnated bearing, wherein the air entrapment preventing layer has a surface porosity α of 10 to 30%, and the dynamic pressure generating layer has a surface porosity β of 0 to 20%. The bearing according to claim 1, wherein α> β.
【請求項4】 上記空気巻き込み防止層が、上記軸受の
端面と動圧発生溝とを隔離する隔離層である請求項3記
載の軸受。
4. The bearing according to claim 3, wherein the air entrainment preventing layer is an isolation layer that isolates the end face of the bearing from the dynamic pressure generating groove.
【請求項5】 2つの上記空気巻き込み防止層を有し、
該空気巻き込み防止層の幅L1,L2の少なくとも一方
が、動圧発生層の幅L3に対し、0.02×L3〜L3
の関係を満たし、かつ、上記軸受の内径有効長Lと0.
5L<L1+L2+L3≦1.5Lの関係を満たす請求
項1〜4のいずれかひとつに記載の軸受。
5. It has two said air entrapment prevention layers,
At least one of the widths L1 and L2 of the air entrapment prevention layer is 0.02 × L3 to L3
Is satisfied, and the effective inner diameter L of the bearing is equal to 0.
The bearing according to any one of claims 1 to 4, wherein a relationship of 5L <L1 + L2 + L3 ≦ 1.5L is satisfied.
【請求項6】 上記動圧発生溝の深さh3と、シャフト
と内周面とのクリアランスcとが、0.5≦h3/c≦
5の関係を満たす請求項1〜5のいずれかひとつに記載
の軸受。
6. The depth h3 of the dynamic pressure generating groove and the clearance c between the shaft and the inner peripheral surface are 0.5 ≦ h3 / c ≦
The bearing according to any one of claims 1 to 5, which satisfies the relationship of (5).
【請求項7】 上記動圧発生層が、上記軸受の内周面の
軸方向に設けられた少なくとも1つの動圧発生溝を含む
請求項1〜6のいずれかひとつに記載の軸受。
7. The bearing according to claim 1, wherein the dynamic pressure generating layer includes at least one dynamic pressure generating groove provided in an axial direction on an inner peripheral surface of the bearing.
【請求項8】 上下からの押圧により形成された上記空
気逃がし溝を有する請求項1、2、3、5、6及び7の
いずれかひとつに記載の軸受。
8. The bearing according to claim 1, further comprising the air release groove formed by pressing from above and below.
JP11157189A 1999-06-03 1999-06-03 Bearing Pending JP2000346055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11157189A JP2000346055A (en) 1999-06-03 1999-06-03 Bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11157189A JP2000346055A (en) 1999-06-03 1999-06-03 Bearing

Publications (1)

Publication Number Publication Date
JP2000346055A true JP2000346055A (en) 2000-12-12

Family

ID=15644157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11157189A Pending JP2000346055A (en) 1999-06-03 1999-06-03 Bearing

Country Status (1)

Country Link
JP (1) JP2000346055A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234161A (en) * 2005-01-28 2006-09-07 Victor Co Of Japan Ltd Sintered alloy dynamic bearing and motor having the same
JP2007074839A (en) * 2005-09-08 2007-03-22 Fujitsu Ltd Motor having dynamic pressure bearing and disk unit equipped therewith
CN103244560A (en) * 2013-05-16 2013-08-14 哈尔滨耦合动力工程技术中心有限公司 Dynamic-static pressure air-floating bearing with zooming-structure molded lines
WO2016035613A1 (en) * 2014-09-01 2016-03-10 Ntn株式会社 Fluid dynamic bearing device, and bearing member shaft member for use in same
KR101817732B1 (en) 2016-05-30 2018-02-21 주식회사동서산업롤 Industrial rubber roll groove is formed on the surface
CN103244560B (en) * 2013-05-16 2018-08-31 哈尔滨耦合动力工程技术中心有限公司 Pantograph structure molded line dynamic and static pressure air-bearing
US11209047B1 (en) * 2020-07-14 2021-12-28 John Wun-Chang Shih Liquid guiding structure for fluid dynamic pressure bearing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234161A (en) * 2005-01-28 2006-09-07 Victor Co Of Japan Ltd Sintered alloy dynamic bearing and motor having the same
JP4628246B2 (en) * 2005-01-28 2011-02-09 アルファナテクノロジー株式会社 Motor with sintered alloy dynamic pressure bearing
JP2007074839A (en) * 2005-09-08 2007-03-22 Fujitsu Ltd Motor having dynamic pressure bearing and disk unit equipped therewith
CN103244560A (en) * 2013-05-16 2013-08-14 哈尔滨耦合动力工程技术中心有限公司 Dynamic-static pressure air-floating bearing with zooming-structure molded lines
CN103244560B (en) * 2013-05-16 2018-08-31 哈尔滨耦合动力工程技术中心有限公司 Pantograph structure molded line dynamic and static pressure air-bearing
WO2016035613A1 (en) * 2014-09-01 2016-03-10 Ntn株式会社 Fluid dynamic bearing device, and bearing member shaft member for use in same
KR101817732B1 (en) 2016-05-30 2018-02-21 주식회사동서산업롤 Industrial rubber roll groove is formed on the surface
US11209047B1 (en) * 2020-07-14 2021-12-28 John Wun-Chang Shih Liquid guiding structure for fluid dynamic pressure bearing

Similar Documents

Publication Publication Date Title
JP2002155946A (en) Shaft support member
US5129738A (en) Bearing device
JPH1047352A (en) Rolling bearing and rolling element therefor
JP2006183807A (en) Bearing device
JP2000346055A (en) Bearing
JP2008002650A (en) Dynamic-pressure bearing unit, its manufacturing method, and spindle motor
JP2000346056A (en) Thrust dynamic pressure bearing
JP2004293684A (en) Thrust bearing
JP3686630B2 (en) Hydrodynamic bearing device
JP4920238B2 (en) Tapered roller bearing
JPH11223219A (en) Sliding bearing
JPH11182551A (en) Manufacture of hydrodynamic porous oil retaining bearing
JP4338281B2 (en) Hydrodynamic bearing device
JP3620814B2 (en) Porous composite bearing
JP3693749B2 (en) Thrust dynamic pressure bearing
JP5251432B2 (en) Rolling bearing
JP3602325B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP2000170749A (en) Thrust dynamic pressure bearing
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
KR0179518B1 (en) Kinetic pressure bearing for spindle motor
JPS58131427A (en) Journal bearing
JP4327038B2 (en) Spindle motor
JP2001027224A (en) Dynamic pressure gas bearing
JPH11303858A (en) Porous hydrodynamic bearing
JP4052730B2 (en) Manufacturing method of bearing device, bearing device, and motor using the same