JP2001027224A - Dynamic pressure gas bearing - Google Patents

Dynamic pressure gas bearing

Info

Publication number
JP2001027224A
JP2001027224A JP11202036A JP20203699A JP2001027224A JP 2001027224 A JP2001027224 A JP 2001027224A JP 11202036 A JP11202036 A JP 11202036A JP 20203699 A JP20203699 A JP 20203699A JP 2001027224 A JP2001027224 A JP 2001027224A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
peripheral surface
shaft member
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11202036A
Other languages
Japanese (ja)
Inventor
Takatsugu Furubayashi
卓嗣 古林
Kazuo Okamura
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP11202036A priority Critical patent/JP2001027224A/en
Publication of JP2001027224A publication Critical patent/JP2001027224A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dynamic pressure type gas bearing excellent in whirl suppressing effect and manufactured with high accuracy at a low cost. SOLUTION: A bearing member 4 is disposed at the outer periphery of a shaft member 2 through a bearing clearance 3 to constitute a dynamic pressure type gas bearing 1 generating dynamic pressure of gas in the bearing clearance 3 during the relative rotation of the shaft member 2 and to support either one of the members in a contactless state to the other member. In this bearing, a wavy surface 5 formed of harmonic waveform is provided at the opposed face of the bearing member 4 to the bearing clearance, and the bearing member 4 is formed of sintered metal. Sealing treatment is applied to the wavy surface 5 to prevent the escape of pressure to pores.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軸部材と軸受部材
との間の軸受隙間に生じる気体の動圧により、軸部材ま
たは軸受部材を非接触支持する動圧気体軸受に関するも
ので、特にレーザビームプリンタのポリゴンミラーモー
タや磁気ディスクドライブ用のスピンドルモータなど、
高回転精度が要求される情報機器のスピンドル支持用と
して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrodynamic gas bearing for supporting a shaft member or a bearing member in a non-contact manner by a dynamic pressure of gas generated in a bearing gap between the shaft member and the bearing member. Polygon mirror motors for beam printers, spindle motors for magnetic disk drives, etc.
It is suitable for supporting spindles of information equipment requiring high rotational accuracy.

【0002】[0002]

【従来の技術】動圧気体軸受として最も基本的な真円形
軸受は、加工が容易であるという利点を有する一方で、
ある回転数以上になるとホワールと呼ばれる自励的な振
れ回り振動が生じて回転精度が著しく劣化するという不
具合を有する。特に軸受系を鉛直に配置して使用する場
合が多いポリゴンミラーモータのように、回転体(軸ま
たは軸受スリーブ)の自重等による偏心力が作用しない
条件下では、低回転領域から不安定なホワール現象が発
生する。従って、真円形軸受のポリゴンミラーモータ等
への適用は難しい。
2. Description of the Related Art The most basic circular bearing as a dynamic pressure gas bearing has an advantage that machining is easy.
When the number of rotations exceeds a certain value, a self-excited whirling vibration called "whirl" occurs, which causes a problem that the rotation accuracy is significantly deteriorated. In particular, under the condition that the eccentric force due to the weight of the rotating body (shaft or bearing sleeve) does not act, such as a polygon mirror motor that often uses a bearing system arranged vertically, an unstable whirl from a low rotation range. The phenomenon occurs. Therefore, it is difficult to apply a perfect circular bearing to a polygon mirror motor or the like.

【0003】その一方、上記ホワールを防止するため、
へリングボーン形の動圧溝を軸受スリーブの内周面や軸
の外周面に形成し(以下、「へリングボーン溝付き軸
受」と称する)、動圧溝によって軸受周辺の気体を軸受
すきまに引き込んで動圧を発生させる動圧気体軸受が従
来より知られている。このへリングボーン溝付き軸受で
は、回転体の偏心がない場合でもホワールを生じること
がなく、高回転領域まで安定して稼動させることができ
るが、10〜20本程度のへリングボーン溝をエッチング、
転造等によって数μmオーダの深さで形成する必要があ
り、製造コストが高くつくという問題がある。
On the other hand, in order to prevent the above whirling,
A herringbone-type dynamic pressure groove is formed on the inner peripheral surface of the bearing sleeve and the outer peripheral surface of the shaft (hereinafter, referred to as a "bearing with a herringbone groove"). 2. Description of the Related Art A hydrodynamic gas bearing that generates a dynamic pressure by being retracted is conventionally known. With this herringbone grooved bearing, whirling does not occur even when there is no eccentricity of the rotating body, and it can be operated stably up to the high rotation region, but about 10 to 20 herringbone grooves are etched. ,
It is necessary to form the sheet with a depth of the order of several μm by rolling or the like, which causes a problem that the manufacturing cost is high.

【0004】[0004]

【発明が解決しようとする課題】以上の問題点に鑑み、
例えば特開平7−145812号公報で開示されるように、軸
部材の外周、または円筒部材の内周に複数周期の調和波
形からなる凹凸を周方向に形成した動圧気体軸受が提案
されている。この種の軸受は、動圧気体潤滑膜の圧縮性
を利用してホワールを防止することが可能であり、へリ
ングボーン溝付き軸受に比べて構造が簡単なため、製造
コストの低減が可能とされている。また、その製造方法
として、上記公報には、凸曲面を有する押圧部材を軸部
材または円筒部材に押付ける方法、押出し成形による方
法、樹脂材の射出成形による方法が挙げられている。
In view of the above problems,
For example, as disclosed in Japanese Patent Application Laid-Open No. 7-145812, there has been proposed a dynamic pressure gas bearing in which irregularities formed of a plurality of cycles of harmonic waveforms are formed in the circumferential direction on the outer periphery of a shaft member or the inner periphery of a cylindrical member. . This type of bearing can prevent whirl by utilizing the compressibility of the hydrodynamic gas lubricating film.Since its structure is simpler than that of a bearing with a herringbone groove, it can reduce manufacturing costs. Have been. In addition, as the manufacturing method, the above publication discloses a method of pressing a pressing member having a convex curved surface against a shaft member or a cylindrical member, a method by extrusion molding, and a method by injection molding of a resin material.

【0005】しかし、この種の軸受は、ホワール安定性
が調和波形の振幅の大小に極めて敏感に左右されるとい
う特性を有する。そのため、設計性能を実現するために
は、高い加工性が必要とされ、製造コストの低減には必
ずしも直結していない。
[0005] However, this type of bearing has the characteristic that the Whirl stability is very sensitive to the magnitude of the amplitude of the harmonic waveform. Therefore, in order to achieve design performance, high workability is required, which is not necessarily directly linked to reduction in manufacturing cost.

【0006】そこで、本発明は、ホワールの抑制効果に
優れ、安価にかつ高精度に製造可能な動圧型気体軸受の
提供を目的とするものである。
Accordingly, an object of the present invention is to provide a dynamic pressure type gas bearing which is excellent in the effect of suppressing whirl and can be manufactured at low cost and with high accuracy.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、軸部材の外周に軸受隙間を介して軸受
部材を配置してなり、軸部材と軸受部材との相対回転に
より、上記軸受隙間に気体の動圧を発生させて、何れか
一方の部材を他方の部材に対して非接触支持するものに
おいて、軸部材または軸受部材のうち、何れか一方の部
材の上記軸受隙間との対向面に調和波形からなる波状面
を設け、かつ波状面を有する部材を焼結金属で構成し
た。このように一方の部材の軸受隙間との対向面に調和
波形からなる波状面を形成すると、軸受隙間に気体の動
圧気体膜が形成され、一方の部材が他方の部材に対して
非接触支持される。動圧気体膜の圧縮性効果により、ホ
ワールの発生も防止される。特に波状面を有する部材を
焼結金属で形成することにより、焼結金属を、調和波形
に対応した形状の型に入れて圧迫すれば簡単に高精度の
波状面を形成することができ、低コスト化が可能とな
る。
In order to achieve the above object, according to the present invention, a bearing member is arranged on the outer periphery of a shaft member via a bearing gap, and the above-mentioned structure is realized by relative rotation between the shaft member and the bearing member. In a bearing that generates a gas dynamic pressure in a bearing gap to support one of the members in a non-contact manner with respect to the other member, the shaft gap or the bearing member may be provided with any one of the members and the bearing gap. A wave-like surface having a harmonic waveform was provided on the facing surface, and the member having the wave-like surface was made of sintered metal. When a wave-like surface having a harmonic waveform is formed on the surface of one member facing the bearing gap, a hydrodynamic gas film of gas is formed in the bearing gap, and one member is supported non-contact with the other member. Is done. The generation of whirl is also prevented by the compressive effect of the hydrodynamic gas film. In particular, by forming a member having a wavy surface with a sintered metal, a high-precision wavy surface can be easily formed by putting the sintered metal into a mold having a shape corresponding to a harmonic waveform and pressing it. Costs can be reduced.

【0008】波状面を軸受部材に設けると、金属粉末の
圧縮時に金属粉末とコアロッドとの間に相対的な運動を
付与することができ、これより波状面の粗大気孔を消滅
させることができる。従って、粗大気孔への圧力の逃げ
が防止され、ホワール安定性が高まる。
[0008] When the corrugated surface is provided on the bearing member, a relative motion can be imparted between the metal powder and the core rod when the metal powder is compressed, whereby coarse atmospheric holes on the corrugated surface can be eliminated. Therefore, escape of pressure to the coarse pores is prevented, and the stability of whirl is enhanced.

【0009】波状面に封孔処理を施すことにより、気孔
への圧力の逃げを防止することができ、ホワール安定性
のさらなる向上が図れられる。
By performing the sealing treatment on the corrugated surface, the escape of the pressure to the pores can be prevented, and the whirl stability can be further improved.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態を図1乃
至図11に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0011】図1に示すように、本発明にかかる動圧型
気体軸受1は、軸部材2、例えばポリゴンスキャナモー
タなどのスピンドルの外周部に、微小なジャーナル軸受
隙間3(各図においてその幅は誇張している)を介して
ほぼ円筒状の軸受スリーブ(軸受部材)4を配置して構
成される。軸部材2または軸受部材4のうちの何れか一
方の部材の軸受隙間3との対向面、例えば軸受部材4の
内周面には、図2に示すように調和波形からなる波状面
5が形成され、その一方で他方の部材の軸受隙間3との
対向面、例えば軸部材2の外周面は断面真円に形成され
る。波状面5は、軸受部材4の内周面の全体に形成する
他、軸方向に離隔した複数箇所に設けることもできる。
As shown in FIG. 1, a dynamic pressure type gas bearing 1 according to the present invention has a small journal bearing gap 3 (the width of which is A substantially cylindrical bearing sleeve (bearing member) 4 is arranged via an exaggerated). As shown in FIG. 2, a wavy surface 5 having a harmonic waveform is formed on a surface of one of the shaft member 2 and the bearing member 4 facing the bearing gap 3, for example, on the inner peripheral surface of the bearing member 4. On the other hand, the surface of the other member facing the bearing gap 3, for example, the outer peripheral surface of the shaft member 2 is formed in a perfect circular cross section. The corrugated surface 5 may be formed on the entire inner peripheral surface of the bearing member 4 or may be provided at a plurality of locations separated in the axial direction.

【0012】ここで、軸受隙間3の幅hは、偏心が無い
場合には次式によって近似的に表わされる。
Here, the width h of the bearing gap 3 is approximately expressed by the following equation when there is no eccentricity.

【0013】h=c+aw・COS(Nwθ) … 但し、上式において、c、aw、Nwは定数で、cは平均
軸受半径隙間、aw は波の振幅、θは円周方向の位相、
Nwは波数を表わす(但し、Nw≧2とする。本実施形態
ではNw=3である)。
H = c + aw · COS (Nwθ) where c, aw and Nw are constants, c is the average bearing radius gap, aw is the wave amplitude, θ is the phase in the circumferential direction,
Nw represents a wave number (however, Nw ≧ 2; Nw = 3 in the present embodiment).

【0014】このように軸受隙間3を間に挟んだ対向二
面のうちの一方の面(本実施形態では軸受部材4の内周
面)に調和波形で構成した波状面5を設けることによ
り、両部材2、4の相対回転時には、軸受隙間3におい
てラジアル荷重を支持する動圧気体膜が形成され、これ
によって一方の部材が他方の部材に対して非接触支持さ
れる。軸部材2および軸受部材4の何れを回転側とする
かは任意に選択することができ、軸部材2を回転側、軸
受部材4を固定側とする他、軸部材2を固定側、軸受部
材4を回転側としてもよい。
As described above, by providing the wavy surface 5 having a harmonic waveform on one of the two opposing surfaces (in the present embodiment, the inner peripheral surface of the bearing member 4) sandwiching the bearing gap 3 therebetween. When the two members 2 and 4 rotate relative to each other, a dynamic pressure gas film that supports a radial load is formed in the bearing gap 3, whereby one member is supported non-contact with the other member. Which of the shaft member 2 and the bearing member 4 is the rotation side can be arbitrarily selected. In addition to the shaft member 2 being the rotation side, the bearing member 4 being the fixed side, the shaft member 2 is being the fixed side, the bearing member 4 may be the rotation side.

【0015】軸部材2および軸受部材4のうち、上記波
状面5を有する部材、例えば本実施形態においては軸受
部材4は、多孔質の焼結金属で成形される。この焼結金
属は、例えば銅系あるいは鉄系、またはその双方を主成
分とし、望ましくは銅を20〜95%使用した金属粉末を圧
縮成形した上で焼成することにより得られる。焼成後の
焼結金属素材6(図3参照)に対して、例えばサイジン
グ→回転サイジング→波状面成形工程を施すことによ
り、上記軸受部材4を製造することができる。
Among the shaft member 2 and the bearing member 4, the member having the above-mentioned corrugated surface 5, for example, in the present embodiment, the bearing member 4 is formed of a porous sintered metal. The sintered metal is obtained by, for example, compression-molding a metal powder mainly containing copper or iron, or both, and preferably using 20 to 95% of copper, followed by firing. The bearing member 4 can be manufactured by subjecting the sintered metal material 6 (see FIG. 3) after firing to, for example, a sizing → rotational sizing → wave-shaped surface forming step.

【0016】上記サイジング工程は、焼結金属素材6の
外周面と内周面のサイジングを行う工程で、円筒状の焼
結金属素材6の外周面を円筒状の内周面を有するダイに
圧入すると共に、焼結金属素材6の内周面にサイジング
ピンを圧入して行われる。また、上記回転サイジング工
程は、多角形のサイジングピンを円筒状の焼結金属素材
6の内周面に圧入し、これを回転させて当該内周面のサ
イジングを行う工程である。回転サイジングにより、焼
結金属素材6の内周面の開孔率を10%以下(望ましくは
5%以下)に調整することができる。
The sizing step is a step of sizing the outer peripheral surface and the inner peripheral surface of the sintered metal material 6, and press-fitting the outer peripheral surface of the cylindrical sintered metal material 6 into a die having a cylindrical inner peripheral surface. At the same time, a sizing pin is pressed into the inner peripheral surface of the sintered metal material 6. The rotation sizing step is a step of pressing a polygonal sizing pin into the inner peripheral surface of the cylindrical sintered metal material 6 and rotating the same to rotate the inner peripheral surface to size the inner peripheral surface. By rotating sizing, the porosity of the inner peripheral surface of the sintered metal material 6 can be adjusted to 10% or less (preferably 5% or less).

【0017】波状面成形工程は、上記二種類のサイジン
グ加工を施した焼結金属素材6の内周面に完成品の波状
面5に対応した形状の成形型を加圧することにより、波
状面5を圧縮成形する工程である。この工程は、例えば
図3に示すように、コアロッド11、ダイ12、および
一対のパンチ13a、13bを有する成形装置により行われ
る。すなわち、コアロッド11(サイジングピン)の外
周面に、図4に示すように、上記調和波形の形状に対応
した凹凸形状の型部11aを形成し、コアロッド11の外
周面に上記焼結金属素材6を供給した上で焼結金属素材
6をダイ12およびパンチ13a、13bで加圧する。加圧
に伴い、焼結金属素材6は圧迫力を受けて変形し、内周
面の表層部分が塑性流動を起こしてコアロッド11外周
面の型部11aに食いつく。これにより、焼結金属素材6
の内周面がコアロッド11の型部11aの輪郭に対応した
調和波形の形状に成形される(図5参照)。
The corrugated surface forming step is performed by pressing a mold having a shape corresponding to the corrugated surface 5 of the finished product on the inner peripheral surface of the sintered metal material 6 subjected to the two types of sizing. Is a step of compression molding. This step is performed by, for example, a molding apparatus having a core rod 11, a die 12, and a pair of punches 13a and 13b, as shown in FIG. That is, as shown in FIG. 4, as shown in FIG. 4, a mold portion 11 a having an uneven shape corresponding to the shape of the harmonic waveform is formed on the outer peripheral surface of the core rod 11 (sizing pin), and the sintered metal material 6 is formed on the outer peripheral surface of the core rod 11. And press the sintered metal material 6 with the die 12 and the punches 13a and 13b. With the pressurization, the sintered metal material 6 is deformed by the compressive force, and the surface portion of the inner peripheral surface undergoes plastic flow and bites into the mold portion 11a on the outer peripheral surface of the core rod 11. Thereby, the sintered metal material 6
Is formed into a harmonic waveform shape corresponding to the contour of the mold portion 11a of the core rod 11 (see FIG. 5).

【0018】このように、波状面5を有する軸受部材4
を焼結金属で成形すると、上記圧縮成形を利用すること
により、安価にかつ高精度に波状面5を形成することが
できる。後述するように、波状面5の調和波形の振幅の
大小は、ホワール安定性に大きな影響を与えるが、圧縮
成形により高い加工精度が確保されるため、ホワール特
性に対して安定した品質を確保することができる。
Thus, the bearing member 4 having the wavy surface 5
Is formed of a sintered metal, the wavy surface 5 can be formed at low cost and with high accuracy by utilizing the compression molding. As will be described later, the magnitude of the amplitude of the harmonic waveform on the wavy surface 5 has a large effect on the whirl stability, but high processing accuracy is ensured by compression molding, so that stable quality with respect to whirl characteristics is ensured. be able to.

【0019】ところで、一般的な焼結金属の表面開孔率
は20%程度であり、開孔一個の面積は真円の面積に換
算して直径0.01〜0.02mmのものが多いが、なか
には0.1mmを超える気孔も存在する。こうした粗大気
孔には、軸受隙間3で発生した圧力が逃げ込み、ホワー
ルの安定効果が減じられるおそれもあるので、この種の
粗大気孔(真円換算で直径0.05mmを超えるもの)は
予め封孔しておくのが望ましい。
By the way, the surface porosity of a general sintered metal is about 20%, and the area of one hole is often 0.01 to 0.02 mm in diameter in terms of the area of a perfect circle. Some of the pores exceed 0.1 mm. Since the pressure generated in the bearing gap 3 may escape into such coarse pores and the stabilizing effect of the whirl may be reduced, such coarse pores (those having a diameter exceeding 0.05 mm in terms of a perfect circle) are previously sealed. It is desirable to keep.

【0020】封孔処理の具体的方法としては、例えば金
属粉末の圧縮成形時において、図6に示すフォーミング
金型25内に金属粉末30を充填した後、コアロッド2
9と金属粉末30との間に相対的な運動を付与する方法
が考えられる。粗大気孔の生成は、金属粉末30をフォ
ーミング金型25に充填する際にコアロッド29の表面
との摩擦で金属粉末30の流れが阻害され、金属粉末中
に空間が発生するいわゆるブリッジ現象が一つの要因と
して考えられる。従って、金属粉末30とコアロッド2
9との間に相対的な運動を付与すれば、コアロッド29
の表面との摩擦で滞留した金属粉末30を落下させるこ
とができ、これによりブリッジ現象を回避できると考え
られる。
As a specific method of the sealing treatment, for example, at the time of compression molding of the metal powder, after filling the metal powder 30 into the forming mold 25 shown in FIG.
A method of giving a relative motion between the metal powder 9 and the metal powder 30 is conceivable. The generation of the coarse air holes is caused by friction between the metal powder 30 and the surface of the core rod 29 when the metal powder 30 is filled into the forming mold 25, whereby the flow of the metal powder 30 is hindered and a so-called bridge phenomenon in which a space is generated in the metal powder is one of the causes. It is considered as a factor. Therefore, the metal powder 30 and the core rod 2
9 with respect to the core rod 29.
It is considered that the metal powder 30 staying due to friction with the surface of the metal powder can be dropped, thereby avoiding the bridging phenomenon.

【0021】具体的には、先ず同図(a)に示すように
下パンチ28にコアロッド29を挿通し、ロッド先端を
ダイ26の内部空間に突出させた状態で、ダイ26の内
部空間に金属粉末30を充填する。
Specifically, first, a core rod 29 is inserted into the lower punch 28 as shown in FIG. The powder 30 is filled.

【0022】金属粉末30の充填後、同図(b)に示す
ようにコアロッド29を上昇させてその上端を上パンチ
27に挿入する。コアロッド29の上昇によりダイ26
の内部空間でコアロッド29の表面との摩擦で滞留した
金属粉末30が落下するので、ブリッジ現象を未然に防
止することができる。
After the metal powder 30 is filled, the core rod 29 is raised and its upper end is inserted into the upper punch 27 as shown in FIG. The die 26 is raised by the rise of the core rod 29.
The metal powder 30 staying in the inner space of the core rod 29 due to friction with the surface of the core rod 29 falls, so that the bridging phenomenon can be prevented.

【0023】次に同図(c)に示すようにコアロッド2
9によりガイドされた上パンチ27を下降させてダイ2
6内に圧入し、金属粉末30を圧縮して圧粉体31を成
形する。その後、同図(d)に示すように上パンチ27
を上昇させると共にダイ26を下パンチ28まで下降さ
せ、さらに、同図(e)に示すようにコアロッド29を
下パンチ28及びダイ26まで下降させて圧粉体31を
取出す。取出した圧粉体31を焼成して上記焼結金属素
材6が得られる。
Next, as shown in FIG.
The upper punch 27 guided by
6, and the metal powder 30 is compressed to form a green compact 31. Thereafter, as shown in FIG.
And the die 26 is lowered to the lower punch 28, and the core rod 29 is further lowered to the lower punch 28 and the die 26 as shown in FIG. The green compact 6 is obtained by firing the compact 31 taken out.

【0024】なお、上述の方法以外に、例えば金属粉末
30の充填前にコアロッド29をその上端面が下パンチ
28の上端面と面一になる位置に配置しておき、その上
でダイ26の内部空間に金属粉末30を充填し、その
後、コアロッド29をダイ26の金属粉末30内で上昇
させても、同様にコアロッド29と金属粉末30との間
で相対的な運動を付与することができる。他の方法とし
て、ダイ26の内部空間に金属粉末30を充填した後、
金属粉末30内にコアロッド29を挿通した状態でコア
ロッド29に振動を付与することによっても、コアロッ
ド29と金属粉末30との間で相対的な運動を付与する
ことができる。
In addition to the above-mentioned method, for example, before filling the metal powder 30, the core rod 29 is arranged at a position where the upper end surface thereof is flush with the upper end surface of the lower punch 28, and the die 26 Even if the inner space is filled with the metal powder 30 and then the core rod 29 is raised in the metal powder 30 of the die 26, the relative movement between the core rod 29 and the metal powder 30 can be similarly provided. . As another method, after filling the metal powder 30 into the internal space of the die 26,
By applying vibration to the core rod 29 in a state where the core rod 29 is inserted into the metal powder 30, relative movement between the core rod 29 and the metal powder 30 can also be provided.

【0025】この他、上述の回転サイジング工程でも粗
大気孔を消滅させ得るので、当該工程を経ることによっ
ても封孔処理を行うことができる。
In addition, since the coarse air holes can be eliminated even in the above-described rotational sizing step, the sealing treatment can be performed through this step.

【0026】図7は、図2とは逆に軸受部材4の内周面
を真円に、これに対向する軸部材2の外周面を調和波形
で構成された波状面5’とした動圧気体軸受1’の実施
形態であり、この実施形態によっても図2の実施形態の
場合と同様の効果が奏される。この場合の波状面成形工
程は、図3および図4に示すコアロッド11を使用せ
ず、成形型(ダイ12)の内周面に波形に対応した型部
を形成し、この型部に中実円筒状の焼結金属素材6の外
周面を押し当てることによって行うことができ、これよ
り図8に示すように、外周面に波状面5’を有する軸部
材2’を製作することができる。これ以外の製造方法
は、基本的に図2の場合と同様であり、例えば金属粉末
の圧縮成形、焼成、サイジング、回転サイジングの各工
程を経て上記波状面成形工程が行われる。h、c、a
w、およびNwの各値間には、上記式と同様の関係がな
りたつ。なお、図7では図2に示された部材に対応する
部材に同一参照番号を付し、さらに(’)を付して表し
ている。
FIG. 7 shows a dynamic pressure in which the inner peripheral surface of the bearing member 4 is a perfect circle and the outer peripheral surface of the shaft member 2 opposed thereto is a wavy surface 5 'formed with a harmonic waveform. This is an embodiment of the gas bearing 1 ', and the same effect as that of the embodiment of FIG. In this case, the corrugated surface forming step does not use the core rod 11 shown in FIGS. 3 and 4, but forms a mold portion corresponding to the waveform on the inner peripheral surface of the mold (die 12), and forms a solid portion on the mold portion. This can be performed by pressing the outer peripheral surface of the cylindrical sintered metal material 6, whereby the shaft member 2 ′ having the corrugated surface 5 ′ on the outer peripheral surface can be manufactured as shown in FIG. Other manufacturing methods are basically the same as those in FIG. 2. For example, the corrugated surface forming step is performed through the steps of compression molding, firing, sizing, and rotation sizing of metal powder. h, c, a
The same relationship as the above equation is established between the values of w and Nw. In FIG. 7, members corresponding to the members shown in FIG. 2 are denoted by the same reference numerals, and further denoted by (′).

【0027】以上のように、本発明においては、軸受部
材4の内周面、および軸部材2の外周面の何れに波状面
5、5’を設ける場合も製造することができるが、軸受
部材4の内周面を波状面5とする場合(図2)の方が、
コアロッド29と金属粉30との相対運動による封孔処
理(図6の工程)が可能となる点で、より圧力の逃げの
少ない、ホワール安定性に優れた動圧型気体軸受の提供
が可能となる。
As described above, according to the present invention, it is possible to manufacture either the inner peripheral surface of the bearing member 4 or the outer peripheral surface of the shaft member 2 with the corrugated surfaces 5, 5 '. In the case where the inner peripheral surface of 4 is a wavy surface 5 (FIG. 2),
Since the sealing process (the process of FIG. 6) by the relative motion between the core rod 29 and the metal powder 30 becomes possible, it is possible to provide a dynamic pressure type gas bearing with less pressure relief and excellent whirl stability. .

【0028】図10は、本発明の効果を実証するために
行った解析結果を示すものである。解析対象は、回転駆
動される軸部材2を固定側の軸受部材4に嵌合した系を
鉛直に配置したものとし、比較対象として図9に示すへ
リングボーン溝付き軸受を準備した。図9中、agは溝
部33の周方向の幅、arは、溝部33間の背の部分
(丘部)34の周方向の幅、βgは溝角度、δgは溝の深
さを表わす。へリングボーン溝付き軸受としては、軸受
部材40の内周面にへリングボーン溝を設けたもの(S
MR型)と、軸部材20の外周面にへリングボーン溝を
設けたもの(GMR型)の二種類を用意した。同様に、
本発明にかかる動圧気体軸受(以下、波形軸受と称す
る)としては、軸受部材4の内周面に波状面5を有する
もの(WI型:図2参照)と、軸部材2の外周面に波状
面5を有するもの(WII型:図7参照)の二種類を用意
した。
FIG. 10 shows the results of analysis performed to verify the effect of the present invention. The analysis target was a system in which the shaft member 2 to be rotationally driven was fitted to the bearing member 4 on the fixed side, and the system was arranged vertically. A bearing with a herringbone groove shown in FIG. 9 was prepared as a comparison target. In FIG. 9, ag represents the circumferential width of the groove 33, ar represents the circumferential width of the back portion (hill) 34 between the grooves 33, βg represents the groove angle, and δg represents the depth of the groove. As the bearing with a herringbone groove, a bearing member in which a herringbone groove is provided on the inner peripheral surface of the bearing member 40 (S
Two types were prepared, an MR type) and a type in which a herringbone groove was provided on the outer peripheral surface of the shaft member 20 (GMR type). Similarly,
A hydrodynamic gas bearing (hereinafter referred to as a wave bearing) according to the present invention has a wavy surface 5 on the inner peripheral surface of a bearing member 4 (WI type: see FIG. 2), and a hydrodynamic gas bearing on the outer peripheral surface of the shaft member 2. Two types having a wavy surface 5 (WII type: see FIG. 7) were prepared.

【0029】この解析では、波形軸受およびへリングホ
ーン溝付き軸受の軸受幅bと軸受径r(図1および図9
参照)の比[b/(2r)]を1に設定した。また、波
形軸受では、波数をNw=3、平均軸受半径隙間cで無
次元化された波の振幅(aw/c)を0.4に設定し、
へリングボーン溝付き軸受では、無次元化された溝深さ
(δg/c)を1.3、ag:ar=1、βg=25°に設
定している。図10のベアリング数Λは無次元化された
物理量であり、回転数に正比例し、平均軸受半径隙間c
の2乗に反比例する。図10に示したベアリング数(Λ
=1〜15)は通常の軸受隙間と回転数で得られる程度
のものである。図10の安定限界質量パラメータMc
は、無次元化された回転軸の安定限界質量である。回転
数、す なわちベアリング数を固定してこの質量パラメ
ータを徐々に増加させていくと、不安定なホワールが発
生し始める限界の質量パラメータが存在する。図10に
よれば、波形軸受ではWI形、WII型の何れでもΛ=1
〜15の範囲でへリングボーン溝付き軸受のGMR型よ
り安定限界質量パラメータは低いものの、SMR型より
は優れた安定性を示している。
In this analysis, the bearing width b and the bearing diameter r of the wave bearing and the bearing with the herring horn groove (FIGS. 1 and 9)
The ratio [b / (2r)] was set to 1. In the case of a wave bearing, the wave number is set to Nw = 3, and the amplitude (aw / c) of the dimensionless wave at the average bearing gap c is set to 0.4.
In the herringbone grooved bearing, the dimensionless groove depth (δg / c) is set to 1.3, ag: ar = 1, and βg = 25 °. The bearing number の in FIG. 10 is a dimensionless physical quantity, which is directly proportional to the rotation speed, and
Is inversely proportional to the square of The number of bearings shown in FIG.
= 1 to 15) are those that can be obtained with a normal bearing clearance and rotation speed. The stability limit mass parameter Mc of FIG.
Is the stability limit mass of the dimensionless rotating shaft. When the rotational speed, that is, the number of bearings is fixed and this mass parameter is gradually increased, there is a limit mass parameter at which unstable whirl begins to occur. According to FIG. 10, in the case of the WI type and the WII type in the wave bearing, Λ = 1.
Although the stability limit mass parameter of the herringbone grooved bearing is lower than that of the GMR type in the range of 1515, the stability is superior to that of the SMR type.

【0030】図11に、加工精度が軸受のホワール安定
性におよぼす効果を解析した結果を示す。ベアリング数
はΛ=5としている。表中のMcは安定限界質量パラメ
ータ、変化率はaw/c=0.4(波形軸受)、または
δg/c=1.3(へリングボーン溝付き軸受)を基準
としたMcの変化率である。図11によると、波形軸 受
は−0.1のaw/cの変化で安定限界が約40〜50
%減少し、+0.1の 変化で約55〜75%増加す
る。一方、へリングボーン溝付き軸受では、±0.1の
δg/cの変化に対し、±10%未満の変化しか認めら
れない。aw/c、δg/cの±0.1の変化は、平均軸
受半径隙間cが例えば5μmの場合、±0.5μmにす
ぎない変化量である。このように、波形軸受のホワール
安定性は調和波形の振幅に極めて敏感であり、波形軸受
の設計性能を実現するためには高い加工精度が要求され
ることが理解される。
FIG. 11 shows the result of analyzing the effect of machining accuracy on the whirl stability of the bearing. The number of bearings is set to Λ = 5. Mc in the table is the stability limit mass parameter, and the rate of change is the rate of change of Mc based on aw / c = 0.4 (corrugated bearing) or δg / c = 1.3 (bearing with herringbone groove). is there. According to FIG. 11, the waveform bearing has a stability limit of about 40 to 50 with an aw / c change of -0.1.
% And a +0.1 change increases about 55-75%. On the other hand, in the herringbone grooved bearing, a change of less than ± 10% is recognized with respect to a change of δg / c of ± 0.1. The variation of aw / c and δg / c of ± 0.1 is a variation of only ± 0.5 μm when the average bearing gap c is, for example, 5 μm. As described above, it is understood that the whirl stability of the waveform bearing is extremely sensitive to the amplitude of the harmonic waveform, and high machining accuracy is required to realize the design performance of the waveform bearing.

【0031】[0031]

【発明の効果】本発明によれば、不安定なホワール振動
を効果的に抑止することができ、しかも低コストにかつ
高精度に製造可能な動圧型気体軸受を提供することがで
きる。
According to the present invention, it is possible to provide a dynamic pressure type gas bearing which can effectively suppress unstable whirl vibration and can be manufactured at low cost and with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる動圧型気体軸受の軸方向の断面
図である。
FIG. 1 is an axial sectional view of a dynamic pressure type gas bearing according to the present invention.

【図2】軸受部材の内周面に波状面を設けた実施形態を
示すA−A線(図1)での断面図である。
FIG. 2 is a cross-sectional view taken along line AA (FIG. 1) showing an embodiment in which a wavy surface is provided on the inner peripheral surface of the bearing member.

【図3】波状面成形工程を示す断面図である。FIG. 3 is a sectional view showing a corrugated surface forming step.

【図4】図3に示すコアロッドの断面図である。FIG. 4 is a sectional view of the core rod shown in FIG. 3;

【図5】(a)図は内周面に波状面を設けた軸受部材の
側面図、(b)図はその横断面図である。
FIG. 5A is a side view of a bearing member provided with a wavy surface on an inner peripheral surface, and FIG. 5B is a cross-sectional view thereof.

【図6】金属粉末の圧縮成形工程を示す断面図である。FIG. 6 is a cross-sectional view illustrating a compression molding step of the metal powder.

【図7】軸部材の外周面に波状面を設けた実施形態を示
すA−A線(図1)での断面図である。
FIG. 7 is a cross-sectional view taken along line AA (FIG. 1) showing an embodiment in which a corrugated surface is provided on the outer peripheral surface of the shaft member.

【図8】(a)図は外周面に波状面を設けた軸部材の側
面図、(b)図はその横断面図である。
8A is a side view of a shaft member provided with a corrugated surface on an outer peripheral surface, and FIG. 8B is a cross-sectional view thereof.

【図9】比較例として用いたへリングボーン溝付き軸受
の軸方向の断面図である。
FIG. 9 is an axial sectional view of a bearing with a herringbone groove used as a comparative example.

【図10】ベアリング数Λと安定限界質量パラメータM
cの解析結果を示す図である。
FIG. 10: Number of bearings Λ and stability limit mass parameter M
It is a figure showing the analysis result of c.

【図11】加工精度と軸受のホワール安定性との関係を
測定した結果を示す図である。
FIG. 11 is a diagram showing a result of measuring a relationship between processing accuracy and whirl stability of a bearing.

【符号の説明】[Explanation of symbols]

1 動圧型気体軸受 1’動圧型気体軸受 2 軸部材 2’ 軸部材 3 軸受隙間 3’ 軸受隙間 4 軸受部材 4’ 軸受部材 5 波状面 5’ 波状面 DESCRIPTION OF SYMBOLS 1 Dynamic pressure type gas bearing 1 'Dynamic pressure type gas bearing 2 Shaft member 2' Shaft member 3 Bearing gap 3 'Bearing gap 4 Bearing member 4' Bearing member 5 Wavy surface 5 'Wavy surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 軸部材の外周に軸受隙間を介して軸受部
材を配置してなり、軸部材と軸受部材との相対回転によ
り、上記軸受隙間に気体の動圧を発生させて、何れか一
方の部材を他方の部材に対して非接触支持するものにお
いて、 軸部材または軸受部材のうち、何れか一方の部材の上記
軸受隙間との対向面に調和波形からなる波状面を設け、
かつ波状面を有する部材を焼結金属で構成したことを特
徴とする動圧気体軸受。
1. A bearing member is disposed on the outer periphery of a shaft member via a bearing gap, and a relative rotation between the shaft member and the bearing member generates a gas dynamic pressure in the bearing gap, so that any one of the bearing members is provided. In a member that supports the member in a non-contact manner with respect to the other member, a wave-like surface having a harmonic waveform is provided on a surface of one of the shaft member and the bearing member facing the bearing gap,
A hydrodynamic gas bearing characterized in that a member having a wavy surface is made of sintered metal.
【請求項2】 波状面が軸受部材に設けられている請求
項1記載の動圧気体軸受。
2. The hydrodynamic gas bearing according to claim 1, wherein the wavy surface is provided on the bearing member.
【請求項3】 波状面に封孔処理を施した請求項1記載
の動圧気体軸受。
3. The hydrodynamic gas bearing according to claim 1, wherein the corrugated surface is subjected to a sealing treatment.
JP11202036A 1999-07-15 1999-07-15 Dynamic pressure gas bearing Withdrawn JP2001027224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11202036A JP2001027224A (en) 1999-07-15 1999-07-15 Dynamic pressure gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11202036A JP2001027224A (en) 1999-07-15 1999-07-15 Dynamic pressure gas bearing

Publications (1)

Publication Number Publication Date
JP2001027224A true JP2001027224A (en) 2001-01-30

Family

ID=16450882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11202036A Withdrawn JP2001027224A (en) 1999-07-15 1999-07-15 Dynamic pressure gas bearing

Country Status (1)

Country Link
JP (1) JP2001027224A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276649A (en) * 2001-03-15 2002-09-25 Ntn Corp Dynamic pressure type bearing unit
CN103016514A (en) * 2012-12-25 2013-04-03 浙江大学 Sliding bearing with non-circular shaft neck
CN103486135A (en) * 2013-09-23 2014-01-01 湖大海捷(湖南)工程技术研究有限公司 Hybrid bearing component with throttling structure
CN103498872A (en) * 2013-09-23 2014-01-08 湖大海捷(湖南)工程技术研究有限公司 Hybrid bearing of which oil outlets having function of balancing main shaft and components thereof
JP2016160976A (en) * 2015-02-27 2016-09-05 株式会社デンソー Rotating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276649A (en) * 2001-03-15 2002-09-25 Ntn Corp Dynamic pressure type bearing unit
CN103016514A (en) * 2012-12-25 2013-04-03 浙江大学 Sliding bearing with non-circular shaft neck
CN103486135A (en) * 2013-09-23 2014-01-01 湖大海捷(湖南)工程技术研究有限公司 Hybrid bearing component with throttling structure
CN103498872A (en) * 2013-09-23 2014-01-08 湖大海捷(湖南)工程技术研究有限公司 Hybrid bearing of which oil outlets having function of balancing main shaft and components thereof
JP2016160976A (en) * 2015-02-27 2016-09-05 株式会社デンソー Rotating device

Similar Documents

Publication Publication Date Title
JP3962168B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP3954695B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
US20090297077A1 (en) Fluid dynamic pressure bearing and production method for the same
JP4602497B2 (en) Bearing device and spindle motor assembly using the same
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
US7251891B2 (en) Production method for sintered bearing member, fluid dynamic pressure bearing device, and spindle motor
JP2001027224A (en) Dynamic pressure gas bearing
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
JP3607478B2 (en) Dynamic pressure type porous oil-impregnated bearing
JPH1068418A (en) Sintered oil implegnated dynamic pressure bearing
CN1961160B (en) Hydrodynamic bearing device
JPH10113832A (en) Manufacture of dynamic pressure fluid beaking
JP2850135B2 (en) Manufacturing method of hydrodynamic groove bearing
JP4327038B2 (en) Spindle motor
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JPS6343611B2 (en)
JP2016180427A (en) Bearing member of fluid dynamic pressure bearing device and manufacturing method thereof
JP4052730B2 (en) Manufacturing method of bearing device, bearing device, and motor using the same
JP2006125461A (en) Dynamic pressure bearing manufacturing method
JP3307182B2 (en) Sintered bearing and manufacturing method thereof
JP2007100803A (en) Method for manufacturing oil impregnated sintered bearing, and sizing pin to be used for the method
JP3602318B2 (en) Manufacturing method of hydrodynamic porous oil-impregnated bearing
JPH11190344A (en) Manufacture of dynamic pressure type sintered oil retaining bearing
JP3797465B2 (en) Manufacturing method of bearing
JP2004360863A (en) Dynamic-pressure bearing manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003