JP2000340736A - Semiconductor device, packaging structure thereof and manufacturing method of them - Google Patents

Semiconductor device, packaging structure thereof and manufacturing method of them

Info

Publication number
JP2000340736A
JP2000340736A JP11145870A JP14587099A JP2000340736A JP 2000340736 A JP2000340736 A JP 2000340736A JP 11145870 A JP11145870 A JP 11145870A JP 14587099 A JP14587099 A JP 14587099A JP 2000340736 A JP2000340736 A JP 2000340736A
Authority
JP
Japan
Prior art keywords
chip
semiconductor
semiconductor device
semiconductor chip
external connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11145870A
Other languages
Japanese (ja)
Inventor
Toshiharu Yanagida
敏治 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11145870A priority Critical patent/JP2000340736A/en
Publication of JP2000340736A publication Critical patent/JP2000340736A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device having a structure, where small- sized and thin laminated three-dimensional packaging of semiconductor device components can be realized with high reliability and high performance and with good workability and various demands such as imparting high performance, high reliability, small size, thin type and lightweight are realized, the packaging structure of the device and the manufacturing methods of these of the device and the structure. SOLUTION: External connection terminals 34 are provided on the peripheral parts of a surface, which faces the side of the chip 32 of a narrow chip occupancy area from among semiconductor chips 29 and 32 respectively subjected to flip-chip bonding to an intermediate substrate 28, of the substrate 28 and the substrate 28 is mounted on a printed wiring board 36 at the terminals 34 via solder ball electrodes 35 which is higher than the thickness of the chips 29 and 32.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置及びそ
の実装構造、並びにこれらの製造方法に関するものであ
る。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor device and a mounting structure thereof, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、デジタルビデオカメラ、デジタル
携帯電話、ノートブック型パーソナルコンピュータ等の
携帯用電子機器が広汎に普及してきており、これらの携
帯用電子機器に対する小型化、薄型化及び軽量化等の種
々の要求が一層高まってきている。
2. Description of the Related Art In recent years, portable electronic devices such as digital video cameras, digital portable telephones, and notebook personal computers have become widespread, and these portable electronic devices have been reduced in size, thickness, weight, etc. Are increasingly required.

【0003】携帯用電子機器の小型化、薄型化及び軽量
化等を一層進展させるためには、部品実装密度を向上さ
せることが重要な課題になっている。特に、半導体IC
等の半導体デバイスに関しても、従来のパッケージ型半
導体デバイスの代わりに、フリップチップ型の半導体デ
バイスを使用した高密度実装技術が開発され、実用化さ
れてきている。
In order to further reduce the size, thickness, and weight of portable electronic devices, it is important to increase the component mounting density. In particular, semiconductor ICs
For such semiconductor devices, a high-density mounting technology using a flip-chip type semiconductor device instead of a conventional package type semiconductor device has been developed and put into practical use.

【0004】フリップチップによる接続法の一つとし
て、半導体IC(集積回路)のAl電極パッド上にはん
だボールバンプを形成して、実装する方法がある。この
ようにはんだバンプを所定の電極上に形成する方法とし
ては、電解メッキを用いた方法があるが、この場合、下
地材料層の表面状態や電気抵抗のバラツキによって、成
膜されるはんだの厚みが影響を受け、ICチップ内で均
一に高さの揃ったはんだボールバンプの形成を行うこと
が難しい場合がある。
As one of the flip chip connection methods, there is a method of forming and mounting a solder ball bump on an Al electrode pad of a semiconductor IC (integrated circuit). As a method of forming the solder bump on the predetermined electrode as described above, there is a method using electrolytic plating. In this case, the thickness of the solder to be formed depends on the surface condition of the base material layer and the variation in electric resistance. In some cases, it is difficult to form solder ball bumps having a uniform height in an IC chip.

【0005】このようなはんだの高さバラツキを抑制で
きる製法としては、真空蒸着による成膜とフォトレジス
ト膜のリフトオフとを用いたパターン形成方法がある。
この方法によるはんだボールバンプの製造工程の一例を
図8について以下に説明する。
As a manufacturing method capable of suppressing such a variation in solder height, there is a pattern forming method using film formation by vacuum evaporation and lift-off of a photoresist film.
One example of the manufacturing process of the solder ball bump by this method will be described below with reference to FIG.

【0006】フリップチップICの接合部では、図8
(a)に示すように、シリコン等の半導体基体1上にA
l−Cu合金等の電極パッド2をスパッタリングやエッ
チングを用いて形成し、更にシリコン窒化膜やポリイミ
ド等によって表面保護膜3を全面に被覆した後、電極パ
ッド2上に開口部を形成して、BLM(Ball Limitting
Metal) 膜4と称せられるCr、Cu、Au等からなる
金属多層膜をスパッタ法で成膜する。
[0006] At the junction of the flip chip IC, FIG.
As shown in (a), A is formed on a semiconductor substrate 1 such as silicon.
An electrode pad 2 of l-Cu alloy or the like is formed by sputtering or etching, and a surface protective film 3 is further covered with a silicon nitride film or polyimide, and then an opening is formed on the electrode pad 2. BLM (Ball Limitting
Metal) A metal multilayer film made of Cr, Cu, Au, or the like, which is called a film 4, is formed by a sputtering method.

【0007】そして、図8(b)に示すように、このB
LM膜4の上に開口部5を有するレジストパターン6を
形成した後、図8(c)に示すように、ウエハ全面には
んだ蒸着膜13を成膜し、更に図8(d)に示すよう
に、レジストのリフトオフによって不要なはんだ膜を除
去することによって所望のパターン形成を行う。そし
て、図8(e)に示すように、熱処理を加えてはんだを
溶融させ、最終的にはんだボールバンプ14を形成す
る。
[0007] Then, as shown in FIG.
After forming a resist pattern 6 having an opening 5 on the LM film 4, as shown in FIG. 8C, a solder vapor-deposited film 13 is formed on the entire surface of the wafer, and further as shown in FIG. Next, a desired pattern is formed by removing an unnecessary solder film by lift-off of the resist. Then, as shown in FIG. 8E, heat treatment is applied to melt the solder, and finally the solder ball bumps 14 are formed.

【0008】このようにしてバンプを形成したデバイス
チップをプリント配線基板にフリップチップ実装するこ
とにより、従来のモールド樹脂でパッケージングされた
デバイスを実装した場合に比べて、マザー基板(プリン
ト配線基板)を小型化できるため、様々な電子機器の小
型、軽量化の実現に貢献している。
[0008] By mounting the device chip on which the bumps are formed in this way on a printed wiring board by flip chip mounting, a mother board (printed wiring board) is required as compared with a case where a device packaged with a conventional mold resin is mounted. Can contribute to the realization of various electronic devices that are smaller and lighter.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、例えば
ICカード、携帯電話、PDA(Personal Digital Ass
istant) 等を初めとする携帯電子機器については、デバ
イスの実装スペースはできる限り少なくしたいという要
求から、これまで主として目指してきた2次元的な小
型、省スペース化に加えて、高さ方向にも更なる薄型化
ができるような半導体デバイスの高密度な3次元実装技
術を確立することが切望されている。
However, for example, IC cards, mobile phones, PDAs (Personal Digital Assemblies)
(i.e. istant) and other portable electronic devices, in order to reduce the mounting space of the device as much as possible. There is an urgent need to establish a high-density three-dimensional packaging technology for semiconductor devices that can be further thinned.

【0010】こうしたなか、高さ方向にも積層して実装
したデバイス部品として、図9に示すように、1つのパ
ッケージ(即ち、共通のエポキシ樹脂7中)に2枚のI
Cチップ8及び9を重ねて搭載したものが一部実用化さ
れている。なお、図中の10はボンディングワイヤ、1
1及び12は導電パターン、15は中間基板、16はは
んだボールバンプ、17はプリント配線基板である。
[0010] Under these circumstances, as shown in FIG. 9, two I / Os are mounted in one package (that is, in the common epoxy resin 7) as device components stacked and mounted also in the height direction.
A part in which the C chips 8 and 9 are mounted on top of each other has been partially put to practical use. In the drawing, reference numeral 10 denotes a bonding wire, 1
1 and 12 are conductive patterns, 15 is an intermediate substrate, 16 is a solder ball bump, and 17 is a printed wiring board.

【0011】しかしながら、ワイヤ10によるワイヤボ
ンディングを接続手段に用いており、そのためにICチ
ップのパッケージ厚(部品実装高さ)が大きくなり、ま
た、接触を避けるためのワイヤの引き廻しにより実装面
積を余分にとってしまう等の問題があった。
However, the wire bonding using the wire 10 is used as the connection means, which increases the package thickness (component mounting height) of the IC chip, and reduces the mounting area by routing the wires to avoid contact. There was a problem such as extra storage.

【0012】また、特開平7−176684号公報に
は、中間基板(インターポーザー)の両面にICチップ
をそれぞれフリップチップ方式でマウントしてチップ周
囲をポッティングレジンで封止すると共に、中間基板の
周辺部には補強板(スティフナーベース)を取付け、こ
の補強板に設けたバンプ電極によってプリント配線基板
に対して実装する構造が示されている。
Japanese Patent Application Laid-Open No. 7-176684 discloses that an IC chip is mounted on both surfaces of an intermediate substrate (interposer) by a flip chip method, the periphery of the chip is sealed with a potting resin, and the periphery of the intermediate substrate is surrounded. A structure in which a reinforcing plate (stiffener base) is attached to the portion and mounted on a printed wiring board by bump electrodes provided on the reinforcing plate is shown.

【0013】しかし、このような実装構造は、ワイヤボ
ンディングを用いていないために、パッケージ厚及び実
装面積は比較的小さくなるものの、上記した如き補強板
を取付けなければならないため、その取付け精度や作業
性に問題がある上に、実装高さも増えてしまう。
However, such a mounting structure does not use wire bonding, so that the package thickness and the mounting area are relatively small. However, since the reinforcing plate must be mounted as described above, the mounting accuracy and workability are reduced. In addition to the problem of performance, the mounting height also increases.

【0014】本発明の目的は、半導体デバイス部品の小
型でかつ薄型の積層3次元実装を高い信頼性と高機能で
作業性良く実現でき、高性能、高信頼性、小型、薄型、
軽量化といった種々の要求を実現する半導体装置及びそ
の実装構造、並びにこれらの製造方法を提供することに
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to realize small and thin stacked three-dimensional mounting of semiconductor device components with high reliability, high functionality and good workability, and to achieve high performance, high reliability, small size and thinness.
It is an object of the present invention to provide a semiconductor device that realizes various requirements such as weight reduction, a mounting structure thereof, and a manufacturing method thereof.

【0015】[0015]

【課題を解決するための手段】即ち、本発明は、基体の
一方の面に第1の半導体チップが、その他方の面に第2
の半導体チップが互いに異なるチップ占有面積でそれぞ
れフェイスダウンボンディングされ、前記第1及び第2
の半導体チップのうちチップ占有面積の小さい側の前記
基体面の周辺部に、外部接続端子が設けられている半導
体装置に係り、また、この半導体装置が、前記第1又は
第2の半導体チップの厚みよりも高い電極を介し前記外
部接続端子において配線基板に接続されている、半導体
装置の実装構造に係るものである。
That is, according to the present invention, a first semiconductor chip is provided on one surface of a base and a second semiconductor chip is provided on the other surface.
Semiconductor chips are respectively face-down bonded in different chip occupation areas, and the first and second semiconductor chips are
The present invention relates to a semiconductor device in which external connection terminals are provided in a peripheral portion of the base surface on the side where the chip occupied area is smaller in the semiconductor chip of the first or second semiconductor chip. The present invention relates to a mounting structure of a semiconductor device which is connected to a wiring board at the external connection terminal via an electrode having a thickness greater than a thickness.

【0016】また、本発明は、基体の一方の面に第1の
半導体チップをフェイスダウンボンディングする工程
と、前記基体の他方の面の周辺部に外部接続端子を形成
する工程と、前記外部接続端子よりも内側位置にて前記
他方の面に前記第1の半導体チップよりもチップ占有面
積の小さい第2の半導体チップをフェイスダウンボンデ
ィングする工程とを有する、半導体装置の製造方法を提
供し、また、前記フェイスダウンボンディングの工程に
加えて、前記第1又は第2の半導体チップの厚みよりも
高い電極を介し前記第2の半導体チップを前記外部接続
端子において配線基板に接続する工程を更に有する、半
導体装置の実装構造の製造方法も提供するものである。
Further, the present invention provides a step of face-down bonding a first semiconductor chip to one surface of a base, a step of forming external connection terminals on a peripheral portion of the other surface of the base, And performing a face-down bonding of a second semiconductor chip having a smaller chip occupation area than the first semiconductor chip to the other surface at a position inside the terminal. And a step of connecting the second semiconductor chip to a wiring board at the external connection terminal via an electrode that is thicker than the thickness of the first or second semiconductor chip, in addition to the face-down bonding step. A method of manufacturing a semiconductor device mounting structure is also provided.

【0017】本発明の半導体装置及びその実装構造、並
びにこれらの製造方法によれば、基体の一方の面に第1
の半導体チップが、その他方の面に第2の半導体チップ
が互いに異なるチップ占有面積でそれぞれフェイスダウ
ンボンディングされ、前記第1及び第2の半導体チップ
のうちチップ占有面積の小さい側の前記基体面の周辺部
に、外部接続端子が設けられ(或いは、この外部接続端
子よりも内側位置に前記第1の半導体チップよりもチッ
プ占有面積の小さい前記第2の半導体チップがボンディ
ングされ)、また、前記第1又は第2の半導体チップの
厚みよりも高い電極を介し前記外部接続端子において配
線基板に実装されるので、ワイヤボンディングを用い
ず、フリップチップ方式でボンディングし、パッケージ
厚及び実装面積を小さくすることができる上に、上記の
外部接続端子に設けた電極を介して配線基板に直接実装
できるため、作業性が向上し、実装高さも減少させるこ
とができる。
According to the semiconductor device of the present invention, its mounting structure, and its manufacturing method, the first surface of the base is
The second semiconductor chip is face-down bonded to the other surface with a different chip occupation area from each other, and the base surface of the first and second semiconductor chips on the side where the chip occupation area is smaller. An external connection terminal is provided in a peripheral portion (or the second semiconductor chip having a smaller chip occupation area than the first semiconductor chip is bonded to a position inside the external connection terminal). Since the external connection terminal is mounted on the wiring board via an electrode higher than the thickness of the first or second semiconductor chip, bonding is performed by a flip chip method without using wire bonding to reduce the package thickness and the mounting area. Workability, and can be directly mounted on the wiring board via the electrodes provided on the external connection terminals. Improved, mounting height can also be reduced.

【0018】従って、半導体デバイス部品の小型でかつ
薄型の積層3次元実装を高い信頼性と高機能で作業性良
く実現でき、高性能、高信頼性、小型、薄型、軽量化と
いった種々の要求を実現することができる。
Accordingly, small and thin stacked three-dimensional mounting of semiconductor device components can be realized with high reliability, high functionality and good workability, and various demands for high performance, high reliability, small size, thinness, and light weight are required. Can be realized.

【0019】[0019]

【発明の実施の形態】本発明においては、前記基体とし
ての中間基板の一方の面に前記第1の半導体チップが、
その他方の面に前記第1の半導体チップよりもチップサ
イズの小さい前記第2の半導体チップがそれぞれフリッ
プチップボンディングされ、前記第2の半導体チップが
マウントされている前記中間基板の面の周辺部に、前記
外部接続端子が設けられているのがよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the first semiconductor chip is provided on one surface of an intermediate substrate as the base,
The second semiconductor chip having a smaller chip size than the first semiconductor chip is flip-chip bonded to the other surface, and the second semiconductor chip is mounted on a peripheral portion of a surface of the intermediate substrate on which the second semiconductor chip is mounted. Preferably, the external connection terminal is provided.

【0020】そして、前記第1及び第2の半導体チップ
において、突起電極(バンプ電極:これは導電性ペース
ト等でもよい:以下、同様)が形成されていない面側が
それぞれ薄型化加工され、特に、前記第1及び第2の半
導体チップが200μm以下の厚みに薄型化加工され、
前記基体が200μm以下の厚みを有しているのが望ま
しい。
In each of the first and second semiconductor chips, a surface on which no bump electrode (bump electrode: this may be a conductive paste or the like; the same applies hereinafter) is thinned. The first and second semiconductor chips are thinned to a thickness of 200 μm or less,
Preferably, the substrate has a thickness of 200 μm or less.

【0021】また、前記第1及び第2の半導体チップに
おいて、複数の突起電極間に、これら突起電極の高さよ
りも薄く樹脂が充填されていることが、突起電極の補強
のためには望ましい。
In the first and second semiconductor chips, it is preferable that a resin is filled between the plurality of projecting electrodes so as to be thinner than the height of the projecting electrodes in order to reinforce the projecting electrodes.

【0022】また、前記第1及び第2の半導体チップ
が、共同して高機能部品モジュールを構成しているのが
よく、例えば第1の半導体チップがロジック用、第2の
半導体チップがメモリー用としてそれぞれマウントさ
れ、互いに配線で接続されるのがよい。
It is preferable that the first and second semiconductor chips together form a high-performance component module. For example, the first semiconductor chip is for logic, and the second semiconductor chip is for memory. It is preferable that they are respectively mounted and connected to each other by wiring.

【0023】配線基板への実装において、前記半導体装
置又は前記第2の半導体チップが前記電極によって前記
配線基板に直接接続されているのが望ましい。この電極
としては、半導体装置側(又は配線基板側)に設けたバ
ンプ電極であってよい。
In mounting on the wiring board, it is preferable that the semiconductor device or the second semiconductor chip is directly connected to the wiring board by the electrode. This electrode may be a bump electrode provided on the semiconductor device side (or the wiring substrate side).

【0024】この場合も、前記第1及び第2の半導体チ
ップにおいて、突起電極が形成されていない面側がそれ
ぞれ薄型化加工され、特に前記第1及び第2の半導体チ
ップが200μm以下の厚みに薄型化加工され、前記基
体が200μm以下の厚みを有しており、また、前記外
部接続端子に設けられる前記電極が高さ300μm以下
の突起電極であるのがよい。
Also in this case, the surface of the first and second semiconductor chips on which the protruding electrodes are not formed is thinned, and the first and second semiconductor chips are particularly thinned to a thickness of 200 μm or less. Preferably, the base has a thickness of 200 μm or less, and the electrode provided on the external connection terminal is a protruding electrode having a height of 300 μm or less.

【0025】また、前記半導体装置又はその実装構造を
製造する方法において、前記第1及び第2の半導体チッ
プの各ウエハ段階において突起電極が形成されていない
面側をそれぞれ薄型化加工し、しかる後に前記各ウエハ
を前記第1及び第2の半導体チップにそれぞれダイシン
グするのがよく、特に、複数の前記突起電極間に、これ
ら突起電極の高さよりも薄く樹脂を充填して突起電極の
根元部を補強し、この状態で前記ダイシングを行うこと
が望ましい。この場合、複数の突起電極間に前記樹脂を
充填し、この状態で前記ウエハを200μm以下の厚み
に薄型化加工した後、前記ダイシングを行い、これによ
って得られた前記第1及び第2の半導体チップを200
μm以下の厚みの前記基体にそれぞれボンディングし、
更に前記外部接続端子において高さ300μm以下の突
起電極を介し、前記第2の半導体チップを前記配線基板
に接続するのがよい。
Further, in the method of manufacturing the semiconductor device or the mounting structure thereof, in the wafer stage of each of the first and second semiconductor chips, the surface side on which the protruding electrode is not formed is thinned. Each of the wafers is preferably diced into the first and second semiconductor chips. In particular, a resin is filled between the plurality of projecting electrodes so as to be thinner than the height of the projecting electrodes so that the base of the projecting electrodes is reduced. It is desirable to reinforce and perform the dicing in this state. In this case, the resin is filled between a plurality of projecting electrodes, the wafer is thinned to a thickness of 200 μm or less in this state, the dicing is performed, and the first and second semiconductors obtained by the dicing are processed. 200 chips
bonding to the substrate having a thickness of μm or less,
Further, it is preferable that the second semiconductor chip is connected to the wiring substrate via a protruding electrode having a height of 300 μm or less at the external connection terminal.

【0026】また、前記複数の突起電極の下地材となる
複数の突起電極材料層間に前記樹脂を充填した後、表面
を平坦化処理し、更に前記下地材上に第2の突起電極材
料層を固着して、前記複数の突起電極を形成することが
望ましい。
After the resin is filled between the plurality of protruding electrode material layers serving as a base material of the plurality of protruding electrodes, the surface is flattened, and a second protruding electrode material layer is further formed on the base material. It is desirable to form the plurality of protruding electrodes by fixing.

【0027】以上に述べた本発明の半導体装置及びその
実装構造、並びにこれらの製造方法における望ましい実
施の形態を次の(1)〜(3)にまとめて示す。
The preferred embodiments of the above-described semiconductor device of the present invention, the mounting structure thereof, and their manufacturing methods are summarized in the following (1) to (3).

【0028】(1)少なくとも厚み200μm以下の中
間(インターポーザ)基板の両面に、200μm以下の
厚みまで裏面が薄型化加工された、突起(バンプ)電極
突き半導体デバイスチップをフリップチップ実装し、更
にチップサイズの小さいデバイスが実装された側の該中
間基板の周辺部には外部接続端子を有していることが望
ましい。
(1) On both surfaces of at least an intermediate (interposer) substrate having a thickness of 200 μm or less, a semiconductor device chip having bumps (bumps) and having a back surface thinned to a thickness of 200 μm or less is flip-chip mounted. It is desirable to have external connection terminals in the peripheral portion of the intermediate substrate on the side where the small-sized device is mounted.

【0029】この場合、具体的には、LSI形成後のシ
リコンデバイスウエハに対して、機械研削(グライン
ド)、化学的機械研磨(ケミカルメカニカルポリッシ
ュ)、エッチング等の処理によって、裏面から厚さ20
0μm以下にまで薄型化加工した後にダイシングし、こ
れによって得られた2枚の薄型デバイスチップを、ポリ
イミド、ガラスエポキシ、アルミナ、セラミック等で作
製された厚さ200μm以下の薄型の中間(インターポ
ーザ)基板の両面にフリップチップ実装する。
In this case, specifically, the silicon device wafer after the LSI is formed is subjected to processing such as mechanical grinding (grinding), chemical mechanical polishing (chemical mechanical polishing), etching, or the like to have a thickness of 20 mm from the back surface.
Dicing after reducing the thickness to 0 μm or less, the resulting two thin device chips are thinned to 200 μm or less (interposer) substrate made of polyimide, glass epoxy, alumina, ceramic or the like. Flip chip mounting on both sides.

【0030】そして、この薄型デバイスチップを両面実
装した中間基板のどちらか一方の面、好ましくはチップ
サイズの小さいデバイスが実装されている側の面の周辺
部に外部接続端子を設けておくことにより、これを一つ
の部品モジュールとして、プリント配線基板に実装す
る。これによって、実装高さを増加することなく、また
デバイスチップ間の配線長が非常に短いために、配線部
のインダクタンスによる信号遅延を抑えた高速信号処理
が可能な、高機能半導体デバイスの高密度3次元実装を
実現できる。
By providing external connection terminals on one of the surfaces of the intermediate substrate on which both surfaces of the thin device chip are mounted, preferably on the peripheral portion of the surface on which the device having a small chip size is mounted. This is mounted on a printed wiring board as one component module. This makes it possible to perform high-speed signal processing without increasing the mounting height and because the wiring length between device chips is very short. Three-dimensional mounting can be realized.

【0031】(2)上記した薄型化加工された半導体デ
バイスチップが、LSIの電極部に突起(バンプ)電極
を形成した後に、少なくともウエハレベルでバンプ間を
樹脂で充填する工程を加え、その状態で更に半導体ウエ
ハを200μm以下の厚みまでウエハ裏面から薄型化加
工してから、チップにダイシングしたものであることが
望ましい。
(2) After forming the projection (bump) electrode on the electrode portion of the LSI, the semiconductor device chip subjected to the above-described thinning processing is subjected to a step of filling at least the space between the bumps with a resin at the wafer level. It is preferable that the semiconductor wafer is further thinned from the back surface of the semiconductor wafer to a thickness of 200 μm or less and then diced into chips.

【0032】これによって、薄型バンプ付きチップを中
間基板に実装する際に、バンプ接合部の信頼性を向上さ
せることができる。即ち、バンプ接合部の熱ストレス耐
性を向上させるために、バンプ形成後のウエハに対し
て、まずバンプの根元を補強する目的で樹脂コーティン
グ工程を加え、その後でウエハ裏面から薄型化加工を行
うことで、機械的強度の高い薄型のバンプ付きデバイス
ウエハを作製し、そこからダイシングした半導体デバイ
スチップを用いる。
This makes it possible to improve the reliability of the bump bonding portion when mounting the thin bumped chip on the intermediate substrate. That is, in order to improve the thermal stress resistance of the bump joint, a resin coating step is firstly performed on the wafer after bump formation in order to reinforce the base of the bump, and then a thinning process is performed from the back surface of the wafer. Then, a thin device wafer with bumps having high mechanical strength is manufactured, and a semiconductor device chip diced therefrom is used.

【0033】このように、強度の弱いバンプ接合部の根
元を補強するための樹脂コーティングをウエハ状態で行
うことにより、従来のチップ単位で基板実装後に行って
いた封止樹脂のアンダーフィル工程を省略することがで
き、生産性の高い製造プロセスによって、なおかつチッ
プに不良が生じた場合のリペア作業も容易にできる高信
頼性のバンプ付きデバイスチップを製造することができ
るようになる。
As described above, the resin coating for reinforcing the base of the low-strength bump bonding portion is performed in a wafer state, so that the sealing resin underfill step which has been performed after mounting the substrate on a chip-by-chip basis is omitted. A highly reliable device chip with bumps can be manufactured by a highly productive manufacturing process, and can also easily perform a repair operation when a chip is defective.

【0034】また、ウエハ表面にコーティングしたエポ
キシ系樹脂が薄型化加工された後のウエハの機械的強度
を補い、薄型化デバイスウエハ、ひいてはダイシングさ
れた薄型化デバイスチップのハンドリングや電気特性に
おける信頼性向上にも寄与する。
Further, the epoxy resin coated on the surface of the wafer supplements the mechanical strength of the wafer after the thinning processing, and the reliability and the handling and electrical characteristics of the thinned device wafer and thus the diced thinned device chip are improved. It also contributes to improvement.

【0035】こうして、電子機器の超小型化、超薄型化
を実現するために必要な半導体デバイス部品の製造にお
いて、機械的強度の高い薄型のバンプ付きデバイスチッ
プの積層3次元実装を、より高い信頼性で安定して行え
るようになる。
As described above, in the manufacture of semiconductor device parts necessary for realizing ultra-small and ultra-thin electronic devices, three-dimensional stacked mounting of thin device chips with bumps having high mechanical strength is required. It can be performed stably with reliability.

【0036】(3)半導体デバイス部品の実装におい
て、上記した薄型中間基板の外部接続端子に、少なくと
も高さ300μm以下の突起電極(アウターバンプ)を
形成して、プリント配線(マザー)基板に表面実装する
ことが望ましい。
(3) In mounting a semiconductor device component, a protruding electrode (outer bump) having a height of at most 300 μm or less is formed on the external connection terminal of the above-mentioned thin intermediate substrate, and is surface-mounted on a printed wiring (mother) substrate. It is desirable to do.

【0037】即ち、薄型デバイスチップを両面実装する
中間基板の外部接続端子に、高さ300μm以下の突起
電極を設けることにより、2枚のデバイスチップを搭載
した一つの部品モジュールとしてプリント配線(マザ
ー)基板に実装を行う際に、余分な空間を排除して最小
限の実装高さで、効率の良い高密度の3次元実装を実現
する。
That is, a protruding electrode having a height of 300 μm or less is provided on an external connection terminal of an intermediate substrate on which both surfaces of a thin device chip are mounted, so that a printed wiring (mother) is formed as one component module on which two device chips are mounted. When mounting on a substrate, an efficient high-density three-dimensional mounting is realized with a minimum mounting height by eliminating an extra space.

【0038】これにより、半導体デバイス部品を可能な
限り薄くして、基板実装高さを極力低く抑えること(超
薄型実装)ができるため、最終的な電子機器の製品セッ
トをより一層小型、軽薄化することができるようにな
る。
As a result, the semiconductor device parts can be made as thin as possible, and the mounting height of the substrate can be kept as low as possible (ultra-thin mounting), so that the final product set of electronic equipment can be made smaller and lighter. Will be able to

【0039】次に、本発明の好ましい実施の形態の例を
図面参照下に説明する。
Next, an example of a preferred embodiment of the present invention will be described with reference to the drawings.

【0040】例1 本実施の形態は、半導体デバイス部品の実装工程におい
て、機械研削(グラインド)と化学的機械研磨(ケミカ
ルメカニカルポリッシュ)を用いてデバイスウエハの裏
面を薄型化加工した後、2枚の薄型デバイスチップ(例
えばロジック用とメモリー用)をポリイミドからなる薄
型中間基板の両面にフリップチップ実装し、更にこれを
高機能部品モジュールとしてプリント配線基板に表面実
装した例である。これを図1〜図4について説明する。
Example 1 In the present embodiment, in the mounting process of a semiconductor device component, the back surface of a device wafer is thinned using mechanical grinding (grinding) and chemical mechanical polishing (chemical mechanical polishing), and then two This is an example in which thin device chips (for example, for logic and memory) are flip-chip mounted on both sides of a thin intermediate substrate made of polyimide, and are further mounted on a printed wiring board as high-performance component modules. This will be described with reference to FIGS.

【0041】この例においてサンプルとして使用したウ
エハは、図8に示したプロセスフローを経て最終的にボ
ールバンプ14が形成されたもの(図8(e)参照)と
同一である。具体的には、LSI用半導体基体1のAl
電極パッド2上のBLM(Ball Limitting Metal) 膜4
を下地として、ポリイミド膜3のパターン開口部に高さ
約100μmの高融点はんだのボールバンプ14が形成
された状態のものである。
The wafer used as a sample in this example is the same as the one on which the ball bumps 14 were finally formed through the process flow shown in FIG. 8 (see FIG. 8E). Specifically, Al of the semiconductor substrate 1 for LSI
BLM (Ball Limiting Metal) film 4 on electrode pad 2
With the base as a base, a ball bump 14 of a high melting point solder having a height of about 100 μm is formed in the pattern opening of the polyimide film 3.

【0042】次に、この半導体ウエハの薄型化加工に使
用する機械研削(グラインド)加工装置の一例を図2に
示す。上記のバンプ付きの半導体ウエハ22の表面(バ
ンプ側)に保護テープ23を貼った後、この機械研削装
置の回転台20上にウエハ22をセットし、一例とし
て、以下の条件でウエハの裏面を回転砥石18によって
研削(バックグラインド)加工した。なお、この時の研
削加工前のシリコンウエハ22の裏面は、図4(a)に
示すように、LSIを作り込むためのウエハ前工程やバ
ンプ形成工程の数多くのプロセス工程を経て、多くのキ
ズ19が不可避的に形成された状態にある(但し、上記
のボールバンプ14等は図示省略)。
Next, an example of a mechanical grinding (grinding) processing apparatus used for thinning the semiconductor wafer is shown in FIG. After a protective tape 23 is applied to the front surface (bump side) of the semiconductor wafer 22 with bumps, the wafer 22 is set on the turntable 20 of the mechanical grinding device. Grinding (back grinding) was performed by the rotating grindstone 18. As shown in FIG. 4A, the back surface of the silicon wafer 22 before grinding is subjected to many scratches through a number of process steps such as a wafer pre-process and a bump formation process for forming an LSI. 19 are inevitably formed (however, the ball bumps 14 and the like are not shown).

【0043】 砥石送り速度 :150μm/min 砥石回転数 :2500rpm 研削後のウエハ厚 :110μm(削り代:約510μ
m)
Grinding wheel feed speed: 150 μm / min Grinding wheel rotation speed: 2500 rpm Wafer thickness after grinding: 110 μm (shaving allowance: about 510 μm)
m)

【0044】この結果、図4(b)に示すように、ウエ
ハ裏面に形成されていたキズ19が研削除去されなが
ら、シリコンウエハが厚み110μmまで薄型化加工さ
れた。
As a result, as shown in FIG. 4B, the silicon wafer was thinned to a thickness of 110 μm while the flaws 19 formed on the back surface of the wafer were removed by grinding.

【0045】次に、この裏面研削加工後の薄型ウエハ2
2を、図3に示すような化学的機械研磨装置にセットし
て仕上げ処理した。即ち、保護テープ23を介してウエ
ハキャリア21に固定し、回転定盤24の研磨布25上
に研磨溶剤(スラリー)26を供給しながら、一例とし
て、以下の条件でウエハの裏面にポリッシュ研磨による
仕上げ処理を行った。
Next, the thin wafer 2 after the back grinding process is performed.
2 was set in a chemical mechanical polishing apparatus as shown in FIG. That is, while being fixed to the wafer carrier 21 via the protective tape 23 and supplying the polishing solvent (slurry) 26 onto the polishing cloth 25 of the rotary platen 24, for example, the back surface of the wafer is polished by polishing under the following conditions. Finishing treatment was performed.

【0046】 ウエハ回転速度 :80rpm テーブル回転速度 :80rpm 研磨圧力 :400g/cm2 揺動速度 :2mm/sec スラリー供給速度 :40ml/min 削り代 :10μmWafer rotation speed: 80 rpm Table rotation speed: 80 rpm Polishing pressure: 400 g / cm 2 Oscillation speed: 2 mm / sec Slurry supply speed: 40 ml / min Cutting allowance: 10 μm

【0047】この結果、ウエハ裏面に新たに形成されて
いた研削ダメージが除去されて、厚さ100μmまで薄
型化加工されたシリコンウエハの機械的強度を向上させ
ることができた。
As a result, grinding damage newly formed on the back surface of the wafer was removed, and the mechanical strength of the silicon wafer thinned to a thickness of 100 μm could be improved.

【0048】そして、この薄型化加工したウエハをダイ
シングすることにより、図1(a)に示すような薄型デ
バイスチップ29を作製する。なお、図1(a)では、
2種類のデバイスチップのうち、最初に実装する比較的
チップサイズの大きいロジック用デバイスを示してい
る。また、ロジック用デバイスの多ピン化に対応して、
バンプ電極14がチップ周辺部のみならずエリア上にも
配置されている場合を示している。
Then, by dicing this thinned wafer, a thin device chip 29 as shown in FIG. 1A is manufactured. In FIG. 1A,
A logic device having a relatively large chip size to be mounted first among two types of device chips is shown. Also, in response to the increase in the number of pins for logic devices,
This shows a case where the bump electrodes 14 are arranged not only on the periphery of the chip but also on the area.

【0049】次に、図1(b)に示すように、両面に配
線パターン30を形成した、ポリイミド等を基材とする
厚さ約100μmの薄型中間(インターポーザ)基板2
8に、ボールバンプ14を介してまず上記の薄型ロジッ
クデバイスチップ29をフリップチップ方式でボンディ
ングし、エポキシ系の封止樹脂27で固定(アンダーフ
ィル)して実装した。
Next, as shown in FIG. 1B, a thin intermediate (interposer) substrate 2 having a wiring pattern 30 formed on both sides and having a thickness of about 100 μm and made of polyimide or the like as a base material.
8, the thin logic device chip 29 was first bonded by flip-chip bonding via the ball bumps 14, and was fixed (underfilled) with an epoxy-based sealing resin 27 and mounted.

【0050】そして、このロジック用デバイスチップ2
9を実装した薄型中間基板28の反対側の面に対して、
図1(c)に示すように、ボールバンプ14を介して比
較的チップサイズの小さなメモリー用の薄型デバイスチ
ップ32をフリップチップ方式でボンディングし、エポ
キシ系の封止樹脂33で固定して実装した。更に、チッ
プサイズの小さい半導体チップ32の側において、中間
基板28の周辺部に配置した外部接続端子34に約30
0μmφの共晶はんだボール35を転写することによ
り、互いに電気的に接続された薄型デバイスチップ29
と32を両面実装した高機能部品モジュールを完成させ
た。
The logic device chip 2
9 on the opposite surface of the thin intermediate substrate 28 on which
As shown in FIG. 1C, a thin device chip 32 for a memory having a relatively small chip size is bonded by a flip-chip method via a ball bump 14, and is fixed and mounted with an epoxy-based sealing resin 33. . Further, on the side of the semiconductor chip 32 having a small chip size, about 30 terminals are connected to the external connection terminals 34 arranged around the intermediate substrate 28.
The thin device chips 29 electrically connected to each other by transferring the eutectic solder balls 35 of 0 μmφ.
And 32 were completed on both sides.

【0051】最後に、こうして作製した部品モジュール
を位置合わせの上で、図1(d)に示すように、プリン
ト配線(マザー)基板36の配線ランド37に表面実装
した結果、従来の構造よりも実装高さを抑えた高密度の
積層3次元実装を作業性良く実現することができた。
Lastly, as shown in FIG. 1D, the component module thus manufactured is surface-mounted on the wiring land 37 of the printed wiring (mother) board 36 as shown in FIG. High-density stacked three-dimensional mounting with a reduced mounting height was realized with good workability.

【0052】また、本例によって作製された半導体デバ
イスは、デバイスチップ間の配線の引き廻し長さが従来
のもの(平面実装やワイヤ接続による積層実装)に比べ
て極端に短くすることができるため、実装高さや実装面
積を抑え、小型及び軽量化を図れるのみならず、配線部
のインダクタンスによる信号遅延を抑えた高速信号処理
を可能とする、高信頼性、高機能な半導体デバイス部品
を提供することができた。
Further, in the semiconductor device manufactured according to the present embodiment, the wiring length between the device chips can be extremely reduced as compared with the conventional one (planar mounting or lamination mounting by wire connection). To provide a highly reliable and high-performance semiconductor device component that not only can reduce the mounting height and mounting area and can reduce the size and weight, but also can perform high-speed signal processing while suppressing the signal delay due to the inductance of the wiring portion. I was able to.

【0053】したがって、本例のように、本発明を適用
したデバイスを用いて組み立てられる最終的な電子機器
の製品セットは、ICカード、携帯電話、PDA(Pers
onalDigital Assistant) 、ノート型パソコン等を初め
とする携帯電子機器の更なる小型軽薄化と高機能化の実
現に大いに貢献することができた。
Therefore, as in the present example, the final product set of electronic equipment assembled using the device to which the present invention is applied is an IC card, a mobile phone, a PDA (Pers
onalDigital Assistant), and contributed greatly to the realization of further miniaturization, lightness and high functionality of portable electronic devices such as notebook computers.

【0054】例2 本実施の形態は、半導体デバイス部品の実装工程におい
て、LSIの電極にバンプを形成したデバイスウエハの
高融点はんだバンプの根元を樹脂で補強してから、エッ
チングを用いてウエハの裏面の薄型化加工を行った後、
2枚の薄型デバイスチップ(ロジック用とメモリー用)
をガラスエポキシからなる薄型中間基板の両面にフリッ
プチップ実装し、更にこれを高機能部品モジュールとし
てプリント配線基板に表面実装した例である。これを図
5〜図7について説明する。
Example 2 In the present embodiment, in the mounting process of the semiconductor device parts, the base of the high melting point solder bump of the device wafer in which bumps are formed on the electrodes of the LSI is reinforced with resin, and then the wafer is etched by etching. After thinning the back side,
Two thin device chips (for logic and memory)
Is mounted on both surfaces of a thin intermediate substrate made of glass epoxy by flip-chip bonding, and is further mounted on a printed circuit board as a high-performance component module. This will be described with reference to FIGS.

【0055】この例においてサンプルとして使用したシ
リコンウエハは、上述した例1と同様に、LSIを作り
込んだ後、フリップチップ実装用にバンプ電極14を予
め形成したものである。具体的には、図5(a)に示す
ように、図8に示したプロセスフローを経て、LSI用
半導体基体1のAl電極バッド2から再配線されたBL
M(Ball Limitting Metal) 膜4を下地として、ポリイ
ミドからなる表面保護膜47のパターン開口部に高さ約
100μmの高融点はんだのボールバンプ14が形成さ
れた状態のものである(図5(a)参照)。
The silicon wafer used as a sample in this example has a bump electrode 14 formed in advance for flip-chip mounting after an LSI has been fabricated as in Example 1 described above. Specifically, as shown in FIG. 5A, the BL re-wired from the Al electrode pad 2 of the LSI semiconductor substrate 1 through the process flow shown in FIG.
With the M (Ball Limiting Metal) film 4 as a base, a ball bump 14 of a high melting point solder having a height of about 100 μm is formed in a pattern opening of a surface protection film 47 made of polyimide (FIG. 5A )reference).

【0056】上述した例1では、この状態のウエハに対
して、薄型化加工を行ったが、本例では、図5(b)に
示すように、エポキシ系樹脂で代表される液状樹脂材料
をウエハ表面にスピンコートし、その後にキュアのため
に略150℃、3時間程度の熱処理を加えて、樹脂を硬
化させ、複数のボールバンプ14間をバンプ高さよりも
低く充填された硬化樹脂48によって固めた。
In Example 1 described above, the wafer in this state was thinned, but in this example, as shown in FIG. 5B, a liquid resin material represented by an epoxy resin was used. The surface of the wafer is spin-coated, and thereafter, heat treatment is performed at about 150 ° C. for about 3 hours for curing to cure the resin, and the space between the plurality of ball bumps 14 is filled with the cured resin 48 that is filled below the bump height. Hardened.

【0057】そして、図2で述べたように、この状態の
シリコンウエハ22の表面に保護テープ23を貼った
後、機械研削装置にウエハをセットし、一例として、以
下の条件でウエハの裏面を研削(バックグラインド)加
工した。なお、この時の研削加工前のシリコンウエハの
裏面も、図4(a)に示したようにLSIを作り込むた
めのウエハ前工程の数多くのプロセス工程とバンプ形成
のための幾つかの工程を経て、多くのキズ19が不可避
的に形成された状態にある。
Then, as described in FIG. 2, after the protective tape 23 is applied to the surface of the silicon wafer 22 in this state, the wafer is set in a mechanical grinding device. Grinding (back grinding) processing. At this time, the back surface of the silicon wafer before grinding is also subjected to a number of process steps of a wafer pre-process for forming an LSI and some processes for bump formation as shown in FIG. After that, many scratches 19 are inevitably formed.

【0058】 砥石送り速度 :150μm/min 砥石回転数 :2500rpm 研削後のウエハ厚 :150μm(削り代:約475μ
m)
Wheel feed speed: 150 μm / min Wheel rotation speed: 2500 rpm Wafer thickness after grinding: 150 μm (shaving allowance: about 475 μ)
m)

【0059】この結果、図4(b)に示したように、ウ
エハ裏面に形成されていたキズ19が研削除去されなが
らシリコンウエハが厚み150μmまで薄型化加工され
た。
As a result, as shown in FIG. 4B, the silicon wafer was thinned to a thickness of 150 μm while the flaws 19 formed on the back surface of the wafer were removed by grinding.

【0060】次に、この裏面研削加工後の薄型ウエハ
を、図7に示すスピンエッチング装置にセットする。即
ち、チャンバ40内において、N2 ガスをウエハ22と
メカニカルチャック41との間から外方へ放射状に噴出
させ、エアフィルムを形成した状態でウエハ22を支持
し、回転させながら、一例として、フッ酸と硝酸の混合
液を薬液供給部42からウエハ22上に供給し、以下の
条件でエッチングによるウエハ裏面の仕上げ処理を行っ
た。
Next, the thin wafer after the back grinding is set in a spin etching apparatus shown in FIG. That is, in the chamber 40, N 2 gas is radially ejected outward from between the wafer 22 and the mechanical chuck 41 to support the wafer 22 in a state where an air film is formed and rotate the wafer 22 as an example. A mixed solution of acid and nitric acid was supplied onto the wafer 22 from the chemical solution supply unit 42, and a finishing process of the back surface of the wafer was performed by etching under the following conditions.

【0061】 ウエハ回転速度 :2000rpm 薬液組成 :HF:HNO3 =1:9 薬液供給量 :40l/min ウエハ削り代 :50μmWafer rotation speed: 2000 rpm Chemical composition: HF: HNO 3 = 1: 9 Chemical supply amount: 40 l / min Wafer shaving allowance: 50 μm

【0062】この結果、図4(b)に示したように、ウ
エハ裏面に形成されていた研削ダメージが除去されて、
上述した例1と同様に、厚さ100μmまで薄型化加工
されたシリコンウエハの機械的強度を向上させることが
できた。
As a result, as shown in FIG. 4B, grinding damage formed on the back surface of the wafer is removed,
As in Example 1 described above, the mechanical strength of a silicon wafer thinned to a thickness of 100 μm could be improved.

【0063】そして、必要に応じて、図5(c)に示す
ように、高融点はんだバンプ14の表面のフラットニン
グを行い、バンプの高さを揃えるための前処理をした
後、図5(d)に示すように、共晶はんだボール45の
転写を行うことにより、バンプ根元の強度を樹脂48で
補強した高い信頼性を有する薄型デバイスウエハを完成
した。はんだボール45の転写は、下地がフラット化さ
れているために容易となり、また転写後の各はんだボー
ル間の高さは揃っていた。
Then, if necessary, as shown in FIG. 5C, the surface of the high melting point solder bump 14 is flattened, and a pretreatment for adjusting the bump height is performed. As shown in d), by transferring the eutectic solder balls 45, a highly reliable thin device wafer in which the strength at the base of the bumps was reinforced with the resin 48 was completed. The transfer of the solder balls 45 was facilitated by the flattened base, and the heights between the solder balls after the transfer were uniform.

【0064】更に、上記のようにこのバンプを樹脂補強
した状態で上記のように薄型加工したシリコンウエハ2
2を図5中の破線位置でダイシングすることにより、図
6(a)に示す薄型デバイスチップを作製できる。
Further, the silicon wafer 2 thinned as described above with the bumps reinforced with resin as described above.
2 is diced at the position indicated by the broken line in FIG. 5, the thin device chip shown in FIG. 6A can be manufactured.

【0065】なお、図6(a)では、2種類のデバイス
チップのうち、最初に実装する比較的チップサイズの大
きいロジック用デバイスの方を示している。また、ロジ
ック用デバイスの多ピン化に対応して、バンプ電極がチ
ップ周辺部のみならずエリア上に配置されている場合を
示している。
FIG. 6A shows a logic device having a relatively large chip size to be mounted first among the two types of device chips. In addition, a case is shown where bump electrodes are arranged not only in the peripheral part of the chip but also in the area in response to the increase in the number of pins of the logic device.

【0066】次に、図6(b)に示すように、両面に配
線パターンを形成した、ガラスエポキシ等を基材とする
厚さ約180μmの薄型(インターポーザ)基板28
に、ボールバンプ45によりまず上記の薄型ロジック用
デバイスチップ49をフリップチップ方式でボンディン
グし、実装した。この場合は、はんだボール45は樹脂
48で補強されているので、図1に示した如き樹脂のア
ンダーフィルは不要である。なお、基板28がポリイミ
ド基板のときには、厚さは約100μmにできる。
Next, as shown in FIG. 6B, a thin (interposer) substrate 28 having a wiring pattern formed on both sides and having a thickness of about 180 μm and made of glass epoxy or the like as a base material.
First, the thin logic device chip 49 described above was bonded by a flip chip method using a ball bump 45 and mounted. In this case, since the solder balls 45 are reinforced with the resin 48, the resin underfill as shown in FIG. 1 is not required. When the substrate 28 is a polyimide substrate, the thickness can be set to about 100 μm.

【0067】そして、このロジック用デバイスチップ4
9を実装した薄型中間基板28の反対側の面に対して、
図6(c)に示すように、ボールバンプ45により上記
のロジック用デバイスチップ49と同様にバンプ45の
根元を樹脂48で補強した、比較的チップサイズの小さ
なメモリー用の薄型デバイスチップ52をフリップチッ
プ方式でボンディングし、樹脂のアンダーフィルなしで
固定して実装した。更に、チップサイズの小さい半導体
チップ52の側において中間基板28の周辺部に配置し
た外部接続端子34に約300μmφの共晶はんだボー
ル35を転写することにより、互いに電気的に接続され
た薄型デバイスチップ49と52を両面実装した高機能
部品モジュールを完成させた。
The logic device chip 4
9 on the opposite surface of the thin intermediate substrate 28 on which
As shown in FIG. 6C, a thin device chip 52 for a memory having a relatively small chip size, in which the base of the bump 45 is reinforced with a resin 48 in the same manner as the device chip 49 for a logic by the ball bump 45, is flipped. Bonding was carried out by a chip method, and fixed and mounted without underfill of resin. Further, the thin device chips electrically connected to each other by transferring eutectic solder balls 35 of about 300 μmφ to the external connection terminals 34 arranged on the periphery of the intermediate substrate 28 on the side of the semiconductor chip 52 having a small chip size. A high-performance component module on which both sides 49 and 52 were mounted was completed.

【0068】なお、上記した例1では、中間基板28へ
の薄型デバイスチップのフリップチップ実装は、シリコ
ンチップ29、32と基板28とが封止樹脂27、33
によって固められており、デバイスチップに不良が生じ
た場合には、チップが実装されたモジュールをまるごと
廃棄するか、或いは中間基板28へのダメージを承知の
上で無理やり化学的・機械的な外力を加えてチップを剥
ぎ取るかの方法しかなく、不良部品の交換(リペア)作
業が実質的に困難となることがある。しかし、本例で
は、基板28とチップ49、52との間にギャップ50
が存在するため、不要部品の交換等のリワーク作業を容
易に行えるメリットも有する。
In the above-described example 1, flip chip mounting of a thin device chip on the intermediate substrate 28 is performed by bonding the silicon chips 29 and 32 and the substrate 28 with the sealing resins 27 and 33.
If the device chip becomes defective, the entire module on which the chip is mounted is discarded, or the chemical and mechanical external force is forcibly applied upon knowledge of the damage to the intermediate substrate 28. In addition, there is only a method of peeling off the chip, and the work of replacing (repairing) a defective component may be substantially difficult. However, in this example, a gap 50 is provided between the substrate 28 and the chips 49 and 52.
, There is also an advantage that rework work such as replacement of unnecessary parts can be easily performed.

【0069】最後に、こうして作製した部品モジュール
を位置合わせの上で図6(d)に示すように、プリント
配線(マザー)基板36の配線ランド37に表面実装し
た結果、従来の構造よりも実装高さを抑えた高密度の積
層3次元実装を作業性良く実現することができた。
Finally, as shown in FIG. 6D, the component module thus manufactured is surface-mounted on the wiring land 37 of the printed wiring (mother) board 36 as shown in FIG. High-density three-dimensional mounting with reduced height was achieved with good workability.

【0070】また、本例によって作製された半導体デバ
イスは、デバイスチップ間の配線の引き廻し長さが従来
のもの(平面実装やワイヤ接続による積層実装)に比べ
て極端に短くすることができるため、実装高さや実装面
積を抑え、小型及び軽量化を図れるのみならず、上述し
た例1と同様に、配線部のインダクタンスによる信号遅
延を抑えた高速信号処理を可能とする、高信頼性、高機
能な半導体デバイス部品を提供することができた。
Further, in the semiconductor device manufactured according to the present embodiment, the wiring length between the device chips can be extremely shortened as compared with the conventional device (planar mounting or stacked mounting by wire connection). In addition to reducing the mounting height and mounting area and reducing the size and weight, as in the above-described example 1, high reliability and high reliability that enable high-speed signal processing with reduced signal delay due to the inductance of the wiring portion are possible. Functional semiconductor device parts could be provided.

【0071】したがって、本例のように、本発明を適用
したデバイスを用いて組み立てられる最終的な電子機器
の製品セットは、ICカード、携帯電話、PDA(Pers
onalDigital Assistant) 、ノート型パソコン等を初め
とする携帯電子機器の更なる小型軽薄化と高機能化の実
現に大いに貢献することができた。
Therefore, as in this example, the final product set of electronic equipment assembled by using the device to which the present invention is applied is an IC card, a mobile phone, a PDA (Pers
onalDigital Assistant), and contributed greatly to the realization of further miniaturization, lightness and high functionality of portable electronic devices such as notebook computers.

【0072】なお、本例では、薄型化ウエハの仕上げ処
理として行うエッチングに、薬液を用いたウエットエッ
チングの例を示したが、プラズマ処理装置を用いたハロ
ゲン系ガスによるドライエッチング処理を行うことも可
能である。
In the present embodiment, an example of wet etching using a chemical solution is described as an example of etching performed as a finishing process for a thin wafer, but dry etching using a halogen-based gas using a plasma processing apparatus may be performed. It is possible.

【0073】以上、本発明を例示したが、本発明はこれ
らの例に何ら限定されるものではなく、また以上の例は
本発明の技術的思想に基づいて、サンプル構造や使用材
料、プロセス処理装置、プロセス処理条件等、発明の主
旨を逸脱しない範囲で適宜変形若しくは選択可能であ
る。
The present invention has been described above by way of example. However, the present invention is not limited to these examples, and the above examples are based on the technical idea of the present invention. Appropriate modifications or selections can be made without departing from the spirit of the invention, such as the apparatus and the processing conditions.

【0074】例えば、上述の例では、デバイスチップ
や、中間基板の実装手段(又はデバイスチップのプリン
ト配線基板上への実装手段)として、はんだボールバン
プを接合に用いた実装の例を示したが、それ以外にもA
uスタッドバンプ、異方性導電膜、導電性ペースト等の
接合手段を用いた部品実装への適用も可能である。
For example, in the above-described example, an example of mounting using solder ball bumps for bonding as a means for mounting a device chip or an intermediate substrate (or a means for mounting a device chip on a printed wiring board) has been described. , But also A
The present invention can be applied to component mounting using a joining means such as a u-stud bump, an anisotropic conductive film, or a conductive paste.

【0075】また、チップサイズの大きい半導体チップ
の側において中間基板の周辺部に外部接続端子を設け、
これを用いて、更に第2のプリント配線基板又は第3の
半導体チップを接続する等のように、設計変更してもよ
い。
Further, external connection terminals are provided on the periphery of the intermediate substrate on the side of the semiconductor chip having a large chip size,
Using this, the design may be further changed, such as connecting a second printed wiring board or a third semiconductor chip.

【0076】[0076]

【発明の作用効果】本発明は上述した如く、基体にそれ
ぞれフェイスダウンボンディングされた第1及び第2の
半導体チップのうちチップ占有面積の小さい側の前記基
体面の周辺部に外部接続端子が設けられ、また、前記第
1又は第2の半導体チップの厚みよりも高い電極を介し
前記外部接続端子において配線基板に実装されるので、
ワイヤボンディングを用いず、フェイスダウン方式でボ
ンディングし、パッケージ厚及び実装面積を小さくする
ことができる上に、上記の外部接続端子に設けた電極を
介して配線基板に直接実装できるため、作業性が向上
し、実装高さも減少させることができる。
As described above, according to the present invention, the external connection terminals are provided on the peripheral portion of the substrate surface on the side where the chip occupied area is smaller among the first and second semiconductor chips face-down bonded to the substrate. In addition, since the semiconductor device is mounted on the wiring board at the external connection terminal via an electrode that is thicker than the thickness of the first or second semiconductor chip,
It is possible to reduce the package thickness and the mounting area by performing face-down bonding without using wire bonding, and to mount directly on the wiring board via the electrodes provided on the external connection terminals, thus improving workability. It can be improved and the mounting height can be reduced.

【0077】従って、半導体デバイス部品の小型でかつ
薄型の積層3次元実装を高い信頼性と高機能で作業性良
く実現でき、高性能、高信頼性、小型、薄型、軽量化と
いった種々の要求を実現する半導体装置及びその実装構
造、並びにこれらの製造方法を提供することができる。
Accordingly, small and thin stacked three-dimensional mounting of semiconductor device parts can be realized with high reliability, high function and good workability, and various requirements such as high performance, high reliability, small size, thin shape, and light weight are required. A semiconductor device to be realized, a mounting structure thereof, and a manufacturing method thereof can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づく薄型高機能デバイス部品の実装
プロセス例をその工程順に示す概略断面図である。
FIG. 1 is a schematic sectional view showing an example of a mounting process of a thin high-performance device component based on the present invention in the order of steps.

【図2】本発明に適用したシリコンウエハの裏面の薄型
化加工に用いる機械研削装置(バックグランダー)の概
略図である。
FIG. 2 is a schematic diagram of a mechanical grinding apparatus (backgrounder) used for thinning the back surface of a silicon wafer applied to the present invention.

【図3】同、薄型化ウエハの仕上げ加工に用いるポリッ
シュ研磨装置の概略図である。
FIG. 3 is a schematic diagram of a polish polishing apparatus used for finishing the thinned wafer.

【図4】同、ウエハの裏面の加工の様子を示す概略断面
図である。
FIG. 4 is a schematic cross-sectional view showing how the back surface of the wafer is processed.

【図5】本発明に基づくバンプ形成後のデバイスウエハ
の樹脂補強プロセスを工程順に示す概略断面図である。
FIG. 5 is a schematic sectional view showing a resin reinforcing process of a device wafer after bump formation according to the present invention in the order of steps.

【図6】同、バンプの根元を樹脂補強した薄型高機能デ
バイス部品の実装プロセス例をその工程順に示す概略断
面図である。
FIG. 6 is a schematic cross-sectional view showing an example of a mounting process of a thin high-performance device component in which the base of a bump is resin-reinforced, in the order of the steps.

【図7】本発明に適用した薄型化ウエハの仕上げ加工に
用いるスピンエッチング装置の概略図である。
FIG. 7 is a schematic view of a spin etching apparatus used for finishing a thinned wafer applied to the present invention.

【図8】はんだボールバンプの製造プロセス例をその工
程順に示す概略断面図である。
FIG. 8 is a schematic cross-sectional view showing an example of a manufacturing process of a solder ball bump in the order of steps.

【図9】半導体チップを積層実装したデバイス部品の従
来例の概略断面図である。
FIG. 9 is a schematic sectional view of a conventional example of a device component in which semiconductor chips are stacked and mounted.

【符号の説明】[Explanation of symbols]

1…半導体基体(LSI)、2…Al電極パッド、3、
47…表面保護膜(ポリイミド)、4…BLM(Ball L
imitting Metal) 、6…フォトレジスト膜、13…蒸着
金属膜(はんだ)、14…高融点はんだボールバンプ、
18…砥石、19…ウエハ裏面キズ、21…ウエハキャ
リア、22…シリコンウエハ、23…表面保護テープ、
25…研磨布、26…研磨溶剤、27、33…封止樹
脂、28…薄型中間(インターポーザ)基板、29、3
2、49、52…薄型半導体デバイスチップ、30…配
線パターン、35、45…はんだボール、36…プリン
ト配線基板(マザー基板)、37…Cu配線ランド、4
8…エポキシ樹脂、50…ギャップ
1 ... semiconductor substrate (LSI), 2 ... Al electrode pad, 3,
47: Surface protective film (polyimide), 4: BLM (Ball L
imitting Metal), 6: photoresist film, 13: evaporated metal film (solder), 14: high melting point solder ball bump,
18 ... Whetstone, 19 ... Wafer back surface flaw, 21 ... Wafer carrier, 22 ... Silicon wafer, 23 ... Surface protection tape,
25: polishing cloth, 26: polishing solvent, 27, 33: sealing resin, 28: thin intermediate (interposer) substrate, 29, 3
2, 49, 52: Thin semiconductor device chip, 30: Wiring pattern, 35, 45: Solder ball, 36: Printed wiring board (mother board), 37: Cu wiring land, 4
8: epoxy resin, 50: gap

Claims (28)

【特許請求の範囲】[Claims] 【請求項1】 基体の一方の面に第1の半導体チップ
が、その他方の面に第2の半導体チップが互いに異なる
チップ占有面積でそれぞれフェイスダウンボンディング
され、前記第1及び第2の半導体チップのうちチップ占
有面積の小さい側の前記基体面の周辺部に、外部接続端
子が設けられている半導体装置。
A first semiconductor chip on one surface of the base and a second semiconductor chip on the other surface, respectively, face-down bonded with different chip occupancy areas, and the first and second semiconductor chips The semiconductor device according to claim 1, wherein an external connection terminal is provided in a peripheral portion of said base surface on a side having a smaller chip occupation area.
【請求項2】 中間基板の一方の面に前記第1の半導体
チップが、その他方の面に前記第1の半導体チップより
もチップサイズの小さい前記第2の半導体チップがそれ
ぞれフリップチップボンディングされ、前記第2の半導
体チップがマウントされている前記中間基板の面の周辺
部に、前記外部接続端子が設けられている、請求項1に
記載した半導体装置。
2. The first semiconductor chip is flip-chip bonded to one surface of the intermediate substrate, and the second semiconductor chip smaller in chip size than the first semiconductor chip is flip-chip bonded to the other surface. The semiconductor device according to claim 1, wherein the external connection terminal is provided in a peripheral portion of a surface of the intermediate substrate on which the second semiconductor chip is mounted.
【請求項3】 前記第1及び第2の半導体チップにおい
て、突起電極が形成されていない面側がそれぞれ薄型化
加工されている、請求項1に記載した半導体装置。
3. The semiconductor device according to claim 1, wherein the surface of the first and second semiconductor chips on which the protruding electrodes are not formed is thinned.
【請求項4】 前記第1及び第2の半導体チップが20
0μm以下の厚みに薄型化加工され、前記基体が200
μm以下の厚みを有している、請求項3に記載した半導
体装置。
4. The semiconductor device according to claim 1, wherein said first and second semiconductor chips are 20
0 μm or less, and the substrate is
4. The semiconductor device according to claim 3, having a thickness of not more than μm.
【請求項5】 前記第1及び第2の半導体チップにおい
て、複数の突起電極間に、これら突起電極の高さよりも
薄く樹脂が充填されている、請求項1に記載した半導体
装置。
5. The semiconductor device according to claim 1, wherein, in the first and second semiconductor chips, a resin is filled between the plurality of projecting electrodes so as to be thinner than the height of the projecting electrodes.
【請求項6】 前記第1及び第2の半導体チップが共同
して高機能部品モジュールを構成している、請求項1に
記載した半導体装置。
6. The semiconductor device according to claim 1, wherein said first and second semiconductor chips cooperate to form a high-performance component module.
【請求項7】 基体の一方の面に第1の半導体チップ
が、その他方の面に第2の半導体チップが互いに異なる
チップ占有面積でそれぞれフェイスダウンボンディング
され、前記第1及び第2の半導体チップのうちチップ占
有面積の小さい側の前記基体面の周辺部に、外部接続端
子が設けられている半導体装置が、 前記第1又は第2の半導体チップの厚みよりも高い電極
を介し前記外部接続端子において配線基板に接続されて
いる、半導体装置の実装構造。
7. A first semiconductor chip on one surface of a base and a second semiconductor chip on the other surface thereof are face-down bonded with different chip occupying areas, respectively, so that the first and second semiconductor chips are bonded. A semiconductor device provided with an external connection terminal in a peripheral portion of the base surface on a side where a chip occupied area is small, wherein the external connection terminal is provided via an electrode thicker than the first or second semiconductor chip 2. A mounting structure of a semiconductor device, which is connected to a wiring board.
【請求項8】 前記半導体装置が前記電極によって前記
配線基板に直接接続されている、請求項7に記載した半
導体装置の実装構造。
8. The mounting structure of a semiconductor device according to claim 7, wherein said semiconductor device is directly connected to said wiring board by said electrode.
【請求項9】 中間基板の一方の面に第1の半導体チッ
プが、その他方の面に前記第1の半導体チップよりもチ
ップサイズの小さい第2の半導体チップがそれぞれフリ
ップチップボンディングされ、前記第2の半導体チップ
がマウントされている前記中間基板の面の周辺部に、前
記外部接続端子が設けられている、請求項7に記載した
半導体装置の実装構造。
9. A first semiconductor chip is flip-chip bonded to one surface of the intermediate substrate, and a second semiconductor chip smaller in chip size than the first semiconductor chip is flip-chip bonded to the other surface. The mounting structure of a semiconductor device according to claim 7, wherein the external connection terminal is provided in a peripheral portion of a surface of the intermediate substrate on which the second semiconductor chip is mounted.
【請求項10】 前記第1及び第2の半導体チップにお
いて、突起電極が形成されていない面側がそれぞれ薄型
化加工されている、請求項7に記載した半導体装置の実
装構造。
10. The mounting structure of a semiconductor device according to claim 7, wherein the first and second semiconductor chips are each processed to be thin on a surface side on which no protruding electrodes are formed.
【請求項11】 前記第1及び第2の半導体チップが2
00μm以下の厚みに薄型化加工され、前記基体が20
0μm以下の厚みを有しており、前記外部接続端子に設
けられる前記電極が高さ300μm以下の突起電極であ
る、請求項10に記載した半導体装置の実装構造。
11. The semiconductor device according to claim 1, wherein said first and second semiconductor chips are two or more.
The substrate is thinned to a thickness of not more than
The mounting structure of a semiconductor device according to claim 10, having a thickness of 0 μm or less, and wherein the electrode provided on the external connection terminal is a projection electrode having a height of 300 μm or less.
【請求項12】 前記第1及び第2の半導体チップにお
いて、複数の突起電極間に、これら突起電極の高さより
も薄く樹脂が充填されている、請求項7に記載した半導
体装置の実装構造。
12. The mounting structure of a semiconductor device according to claim 7, wherein the first and second semiconductor chips are filled with a resin between the plurality of protruding electrodes so as to be thinner than the height of the protruding electrodes.
【請求項13】 前記第1及び第2の半導体チップが共
同して高機能部品モジュールを構成している、請求項7
に記載した半導体装置の実装構造。
13. The high-performance component module according to claim 7, wherein said first and second semiconductor chips cooperate to form a high-performance component module.
3. The mounting structure of the semiconductor device described in 1.
【請求項14】 基体の一方の面に第1の半導体チップ
をフェイスダウンボンディングする工程と、前記基体の
他方の面の周辺部に外部接続端子を形成する工程と、前
記外部接続端子よりも内側位置にて前記他方の面に前記
第1の半導体チップよりもチップ占有面積の小さい第2
の半導体チップをフェイスダウンボンディングする工程
とを有する半導体装置の製造方法。
14. A step of performing face-down bonding of a first semiconductor chip to one surface of a base, a step of forming external connection terminals on a peripheral portion of the other surface of the base, and an inner side of the external connection terminals. A second chip having a smaller chip occupation area than the first semiconductor chip on the other surface at a position;
Performing a face-down bonding of the semiconductor chip.
【請求項15】 中間基板の一方の面に前記第1の半導
体チップを、その他方の面に前記第2の半導体チップを
それぞれフリップチップボンディングする、請求項14
に記載した半導体装置の製造方法。
15. The flip chip bonding of the first semiconductor chip to one surface of the intermediate substrate and the second semiconductor chip to the other surface of the intermediate substrate.
3. The method for manufacturing a semiconductor device according to item 1.
【請求項16】 前記第1及び第2の半導体チップの各
ウエハ段階において突起電極が形成されていない面側を
それぞれ薄型化加工し、しかる後に前記各ウエハを前記
第1及び第2の半導体チップにそれぞれダイシングす
る、請求項14に記載した半導体装置の製造方法。
16. At each wafer stage of the first and second semiconductor chips, a surface of the first and second semiconductor chips on which the protruding electrodes are not formed is thinned, and then the respective wafers are removed from the first and second semiconductor chips. 15. The method of manufacturing a semiconductor device according to claim 14, wherein dicing is performed on each of the semiconductor devices.
【請求項17】 複数の前記突起電極間に、これら突起
電極の高さよりも薄く樹脂を充填し、この状態で前記ダ
イシングを行う、請求項16に記載した半導体装置の製
造方法。
17. The method of manufacturing a semiconductor device according to claim 16, wherein a resin is filled between the plurality of projecting electrodes so as to be thinner than the height of the projecting electrodes, and the dicing is performed in this state.
【請求項18】 前記複数の突起電極間に前記樹脂を充
填し、この状態で前記各ウエハを200μm以下の厚み
に薄型化加工した後、前記ダイシングを行い、これによ
って得られた前記第1及び第2の半導体チップを200
μm以下の厚みの前記基体にそれぞれボンディングす
る、請求項17に記載した半導体装置の製造方法。
18. Filling the resin between the plurality of protruding electrodes, thinning each of the wafers to a thickness of 200 μm or less in this state, and then performing the dicing to obtain the first and second wafers. 200 second semiconductor chips
18. The method of manufacturing a semiconductor device according to claim 17, wherein the bonding is performed to each of the substrates having a thickness of not more than μm.
【請求項19】 前記複数の突起電極の下地材となる複
数の突起電極材料層間に前記樹脂を充填した後、表面を
平坦化処理し、更に前記下地材上に第2の突起電極材料
層を固着して、前記複数の突起電極を形成する、請求項
17に記載した半導体装置の製造方法。
19. After filling the resin between a plurality of protruding electrode material layers serving as a base material for the plurality of protruding electrodes, the surface is flattened, and a second protruding electrode material layer is further formed on the base material. The method of manufacturing a semiconductor device according to claim 17, wherein the plurality of protruding electrodes are formed by being fixed.
【請求項20】 前記第1及び第2の半導体チップを共
同させて高機能部品モジュールを構成する、請求項14
に記載した半導体装置の製造方法。
20. The high-performance component module according to claim 14, wherein said first and second semiconductor chips are combined.
3. The method for manufacturing a semiconductor device according to item 1.
【請求項21】 基体の一方の面に第1の半導体チップ
をフェイスダウンボンディングする工程と、前記基体の
他方の面の周辺部に外部接続端子を形成する工程と、前
記外部接続端子よりも内側位置にて前記他方の面に前記
第1の半導体チップよりもチップ占有面積の小さい第2
の半導体チップをフェイスダウンボンディングする工程
と、前記第1又は第2の半導体チップの厚みよりも高い
電極を介し前記第2の半導体チップを前記外部接続端子
において配線基板に接続する工程とを有する、半導体装
置の実装構造の製造方法。
21. A step of face-down bonding a first semiconductor chip to one surface of a base, a step of forming an external connection terminal on a peripheral portion of the other surface of the base, and an inner side of the external connection terminal. A second chip having a smaller chip occupation area than the first semiconductor chip on the other surface at a position;
Face-down bonding the semiconductor chip, and connecting the second semiconductor chip to a wiring substrate at the external connection terminal via an electrode that is thicker than the thickness of the first or second semiconductor chip. A method for manufacturing a mounting structure of a semiconductor device.
【請求項22】 前記第2の半導体チップを前記電極に
よって前記配線基板に直接接続する、請求項21に記載
した半導体装置の実装構造の製造方法。
22. The method according to claim 21, wherein the second semiconductor chip is directly connected to the wiring board by the electrode.
【請求項23】 中間基板の一方の面に前記第1の半導
体チップを、その他方の面に前記第2の半導体チップを
それぞれフリップチップボンディングする、請求項21
に記載した半導体装置の実装構造の製造方法。
23. The method according to claim 21, wherein the first semiconductor chip is flip-chip bonded to one surface of the intermediate substrate, and the second semiconductor chip is flip-chip bonded to the other surface.
3. A method for manufacturing a semiconductor device mounting structure according to claim 1.
【請求項24】 前記第1及び第2の半導体チップの各
ウエハ段階において突起電極が形成されていない面側を
それぞれ薄型化加工し、しかる後に前記各ウエハを前記
第1及び第2の半導体チップにそれぞれダイシングす
る、請求項21に記載した半導体装置の実装構造の製造
方法。
24. At each wafer stage of the first and second semiconductor chips, a surface side on which no protruding electrodes are formed is thinned, and then the respective wafers are removed from the first and second semiconductor chips. 22. The method of manufacturing a semiconductor device mounting structure according to claim 21, wherein each of the semiconductor devices is diced.
【請求項25】 複数の前記突起電極間に、これら突起
電極の高さよりも薄く樹脂を充填し、この状態で前記ダ
イシングを行う、請求項24に記載した半導体装置の実
装構造の製造方法。
25. The method according to claim 24, wherein a resin is filled between the plurality of projecting electrodes so as to be thinner than the height of the projecting electrodes, and the dicing is performed in this state.
【請求項26】 前記複数の突起電極間に前記樹脂を充
填し、この状態で前記各ウエハを200μm以下の厚み
に薄型化加工した後、前記ダイシングを行い、これによ
って得られた前記第1及び第2の前記半導体チップを2
00μm以下の厚みの前記基体にそれぞれボンディング
し、更に前記外部接続端子において高さ300μm以下
の突起電極を介し前記第2の半導体チップを前記配線基
板に接続する、請求項25に記載した半導体装置の実装
構造の製造方法。
26. Filling the resin between the plurality of protruding electrodes, thinning each of the wafers to a thickness of 200 μm or less in this state, and then performing the dicing, thereby obtaining the first and second wafers. The second semiconductor chip 2
26. The semiconductor device according to claim 25, wherein the second semiconductor chip is bonded to the wiring substrate via a protruding electrode having a height of 300 μm or less at the external connection terminal at the external connection terminal. Manufacturing method of mounting structure.
【請求項27】 前記複数の突起電極の下地材となる複
数の突起電極材料層間に前記樹脂を充填した後、表面を
平坦化処理し、更に前記下地材上に第2の突起電極材料
層を固着して、前記複数の突起電極を形成する、請求項
25に記載した半導体装置の実装構造の製造方法。
27. After the resin is filled between a plurality of protruding electrode material layers serving as a base material of the plurality of protruding electrodes, a surface is flattened, and a second protruding electrode material layer is further formed on the base material. 26. The method of manufacturing a semiconductor device mounting structure according to claim 25, wherein the plurality of projecting electrodes are fixedly formed.
【請求項28】 前記第1及び第2の半導体チップを共
同させて高機能部品モジュールを構成する、請求項21
に記載した半導体装置の実装構造の製造方法。
28. The high-performance component module according to claim 21, wherein said first and second semiconductor chips are combined.
3. A method for manufacturing a semiconductor device mounting structure according to claim 1.
JP11145870A 1999-05-26 1999-05-26 Semiconductor device, packaging structure thereof and manufacturing method of them Pending JP2000340736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11145870A JP2000340736A (en) 1999-05-26 1999-05-26 Semiconductor device, packaging structure thereof and manufacturing method of them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11145870A JP2000340736A (en) 1999-05-26 1999-05-26 Semiconductor device, packaging structure thereof and manufacturing method of them

Publications (1)

Publication Number Publication Date
JP2000340736A true JP2000340736A (en) 2000-12-08

Family

ID=15394970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11145870A Pending JP2000340736A (en) 1999-05-26 1999-05-26 Semiconductor device, packaging structure thereof and manufacturing method of them

Country Status (1)

Country Link
JP (1) JP2000340736A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1137067A2 (en) * 2000-03-20 2001-09-26 Agere Systems Guardian Corporation Multi-chip ball grid array ic packages
WO2002073693A1 (en) * 2001-03-09 2002-09-19 Sony Corporation Semiconductor device
WO2003012868A1 (en) * 2001-07-31 2003-02-13 Sony Corporation Semiconductor device and its manufacturing method
US6673651B2 (en) 1999-07-01 2004-01-06 Oki Electric Industry Co., Ltd. Method of manufacturing semiconductor device including semiconductor elements mounted on base plate
EP1547141A2 (en) * 2002-09-17 2005-06-29 Chippac, Inc. Semiconductor multi-package module having wire bond interconnection between stacked packages
JP2009260373A (en) * 2009-07-27 2009-11-05 Fujitsu Microelectronics Ltd Semiconductor device, its method for manufacturing, and semiconductor substrate
US7638363B2 (en) 2002-09-17 2009-12-29 Chippac, Inc. Semiconductor multi-package module having package stacked over ball grid array package and having wire bond interconnect between stacked packages
US7682873B2 (en) 2002-09-17 2010-03-23 Chippac, Inc. Semiconductor multi-package module having package stacked over die-down flip chip ball grid array package and having wire bond interconnect between stacked packages
US7732254B2 (en) 2002-09-17 2010-06-08 Chippac, Inc. Semiconductor multi-package module having package stacked over die-up flip chip ball grid array package and having wire bond interconnect between stacked packages
JP2011082293A (en) * 2009-10-06 2011-04-21 Shinko Electric Ind Co Ltd Interposer mounted wiring board, and electronic component device
US8143100B2 (en) 2002-09-17 2012-03-27 Chippac, Inc. Method of fabricating a semiconductor multi-package module having wire bond interconnect between stacked packages

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555278A (en) * 1991-08-23 1993-03-05 Sony Corp Semiconductor device
JPH09219421A (en) * 1996-02-14 1997-08-19 Hitachi Ltd Manufacture of semiconductor electronic component and wafer
JPH09232503A (en) * 1996-02-21 1997-09-05 Hitachi Ltd Three-dimensional laminate module
JPH10233466A (en) * 1997-02-19 1998-09-02 Sony Corp Semiconductor device
JPH10284544A (en) * 1997-04-10 1998-10-23 Hitachi Ltd Semiconductor device and producing method therefor
JPH11312712A (en) * 1998-04-30 1999-11-09 Oki Electric Ind Co Ltd Semiconductor device and its manufacture
JP2000232198A (en) * 1999-02-09 2000-08-22 Seiko Epson Corp Semiconductor integrated circuit device and its manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555278A (en) * 1991-08-23 1993-03-05 Sony Corp Semiconductor device
JPH09219421A (en) * 1996-02-14 1997-08-19 Hitachi Ltd Manufacture of semiconductor electronic component and wafer
JPH09232503A (en) * 1996-02-21 1997-09-05 Hitachi Ltd Three-dimensional laminate module
JPH10233466A (en) * 1997-02-19 1998-09-02 Sony Corp Semiconductor device
JPH10284544A (en) * 1997-04-10 1998-10-23 Hitachi Ltd Semiconductor device and producing method therefor
JPH11312712A (en) * 1998-04-30 1999-11-09 Oki Electric Ind Co Ltd Semiconductor device and its manufacture
JP2000232198A (en) * 1999-02-09 2000-08-22 Seiko Epson Corp Semiconductor integrated circuit device and its manufacture

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723832B2 (en) 1999-07-01 2010-05-25 Oki Semiconductor Co., Ltd. Semiconductor device including semiconductor elements mounted on base plate
US7592690B2 (en) 1999-07-01 2009-09-22 Oki Semiconductor Co., Ltd. Semiconductor device including semiconductor elements mounted on base plate
US8008129B2 (en) 1999-07-01 2011-08-30 Oki Semiconductor Co., Ltd. Method of making semiconductor device packaged by sealing resin member
US6673651B2 (en) 1999-07-01 2004-01-06 Oki Electric Industry Co., Ltd. Method of manufacturing semiconductor device including semiconductor elements mounted on base plate
US7427810B2 (en) 1999-07-01 2008-09-23 Oki Electric Industry Co., Ltd. Semiconductor device including semiconductor element mounted on another semiconductor element
EP1137067A2 (en) * 2000-03-20 2001-09-26 Agere Systems Guardian Corporation Multi-chip ball grid array ic packages
EP1137067A3 (en) * 2000-03-20 2007-09-26 Agere Systems Guardian Corporation Multi-chip ball grid array ic packages
WO2002073693A1 (en) * 2001-03-09 2002-09-19 Sony Corporation Semiconductor device
US7071028B2 (en) 2001-07-31 2006-07-04 Sony Corporation Semiconductor device and its manufacturing method
KR100865426B1 (en) * 2001-07-31 2008-10-24 소니 가부시끼 가이샤 Semiconductor device and its manufacturing method
WO2003012868A1 (en) * 2001-07-31 2003-02-13 Sony Corporation Semiconductor device and its manufacturing method
EP1547141A2 (en) * 2002-09-17 2005-06-29 Chippac, Inc. Semiconductor multi-package module having wire bond interconnection between stacked packages
JP2005539403A (en) * 2002-09-17 2005-12-22 チップパック,インク. Semiconductor multi-package module having wire bond interconnections between stacked packages
EP1547141A4 (en) * 2002-09-17 2010-02-24 Chippac Inc Semiconductor multi-package module having wire bond interconnection between stacked packages
US7682873B2 (en) 2002-09-17 2010-03-23 Chippac, Inc. Semiconductor multi-package module having package stacked over die-down flip chip ball grid array package and having wire bond interconnect between stacked packages
US7732254B2 (en) 2002-09-17 2010-06-08 Chippac, Inc. Semiconductor multi-package module having package stacked over die-up flip chip ball grid array package and having wire bond interconnect between stacked packages
US7638363B2 (en) 2002-09-17 2009-12-29 Chippac, Inc. Semiconductor multi-package module having package stacked over ball grid array package and having wire bond interconnect between stacked packages
JP4800625B2 (en) * 2002-09-17 2011-10-26 スタッツ・チップパック・インコーポレイテッド Semiconductor multi-package module having wire bond interconnection between stacked packages and method of forming the same
US8143100B2 (en) 2002-09-17 2012-03-27 Chippac, Inc. Method of fabricating a semiconductor multi-package module having wire bond interconnect between stacked packages
JP2009260373A (en) * 2009-07-27 2009-11-05 Fujitsu Microelectronics Ltd Semiconductor device, its method for manufacturing, and semiconductor substrate
JP2011082293A (en) * 2009-10-06 2011-04-21 Shinko Electric Ind Co Ltd Interposer mounted wiring board, and electronic component device

Similar Documents

Publication Publication Date Title
US6504241B1 (en) Stackable semiconductor device and method for manufacturing the same
JP4547728B2 (en) Semiconductor device and manufacturing method thereof
US7329598B2 (en) Method of manufacturing a semiconductor device
US6251705B1 (en) Low profile integrated circuit packages
JP5563814B2 (en) Semiconductor device and manufacturing method thereof
KR20020005749A (en) Module with built-in electronic elements and method of manufacture thereof
JP2001144204A (en) Semiconductor device and manufacture thereof
JP2000077449A (en) Solder bumps and manufacture therefor
JP2000340736A (en) Semiconductor device, packaging structure thereof and manufacturing method of them
US20050001301A1 (en) Semiconductor device, electronic device, electronic equipment, and method of manufacturing semiconductor device
JP2002299546A (en) Chip-like electronic component, manufacturing method therefor, pseudo wafer used for manufacturing and manufacturing method therefor
JP2002110714A (en) Chip-integrating board, its manufacturing method, chip- like electronic component, its manufacturing method, and electronic equipment and its manufacturing method
JP2001274182A (en) Method of manufacturing electronic component
JP3084021B1 (en) Electronic component manufacturing method
CN115148611B (en) 2.5D packaging structure and preparation method
US6472734B2 (en) Stacked semiconductor device and method for manufacturing the same
JP2001085606A (en) Semiconductor device
JP2000124177A (en) Manufacture of semiconductor device
JP4135284B2 (en) Semiconductor module and electronic circuit device
JP3651362B2 (en) Manufacturing method of semiconductor device
JP2002222901A (en) Method of mounting semiconductor device, mounting structure thereof, semiconductor device and manufacturing method thereof
JP2000307037A (en) Method and device for mounting semiconductor device part
JP3975592B2 (en) Semiconductor device and manufacturing method thereof
US20230317653A1 (en) Hybrid bonding a die to a substrate with vias connecting metal pads on both sides of the die
JP4103255B2 (en) Semiconductor device chip and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226