JP2000325710A - Solid-liquid separation apparatus - Google Patents

Solid-liquid separation apparatus

Info

Publication number
JP2000325710A
JP2000325710A JP11144137A JP14413799A JP2000325710A JP 2000325710 A JP2000325710 A JP 2000325710A JP 11144137 A JP11144137 A JP 11144137A JP 14413799 A JP14413799 A JP 14413799A JP 2000325710 A JP2000325710 A JP 2000325710A
Authority
JP
Japan
Prior art keywords
water
filter
filtration
filter medium
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11144137A
Other languages
Japanese (ja)
Other versions
JP4176915B2 (en
JP2000325710A5 (en
Inventor
Kunio Ebie
邦雄 海老江
Tomoaki Miyanoshita
友明 宮ノ下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP14413799A priority Critical patent/JP4176915B2/en
Publication of JP2000325710A publication Critical patent/JP2000325710A/en
Publication of JP2000325710A5 publication Critical patent/JP2000325710A5/ja
Application granted granted Critical
Publication of JP4176915B2 publication Critical patent/JP4176915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtering Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid-liquid separation apparatus capable of carrying out efficient filtration with a relatively simple structure. SOLUTION: This solid-liquid separation apparatus comprises a filtration layer of an active alumina-based filtration material as a filtration layer of a filtration apparatus 24 for filtering water subjected to flocculation and precipitation. At the time of back washing, washing is carried out with an acidic water produced by adding an acid to back washing water from an acid storage tank 30. Consequently, the surface of the active alumina filtration material is slightly dissolved and the filtration material is activated to improve the effect for collecting flocculation flocs and to obtain filtered water with a high quality even immediately after the back washing. In this case, the pH of the acidic water is preferably 2.0-5.0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原水に凝集剤を添
加して凝集した後、ろ過処理を行う固液分離装置、特に
効果的な逆洗を行うものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-liquid separation apparatus for performing a filtration treatment after adding a coagulant to raw water and coagulating the raw water, and particularly to an apparatus for performing effective backwashing.

【0002】[0002]

【従来の技術】従来より、河川水などを原水として、上
水や工業用水を製造する場合や、あるいは各種排水を処
理する場合において、原水に凝集剤を添加して凝集した
後ろ過処理を行う固液分離装置が利用されている。
2. Description of the Related Art Conventionally, in the case of producing tap water or industrial water using river water or the like as raw water, or in the case of treating various wastewaters, a coagulant is added to the raw water to perform a filtration treatment after coagulation. A solid-liquid separation device is used.

【0003】すなわち、原水に凝集剤を添加混合して凝
集処理することにより、原水中の懸濁物質を凝集して大
径のフロックとする。そして、沈殿池において沈殿しや
すいフロックを除去した後、または直接ろ過器に導入
し、ここで固形物を分離し清澄な処理水を得ている。
[0003] That is, a flocculant is added to raw water and mixed to perform a flocculation treatment, whereby the suspended substances in the raw water are flocculated to form large-diameter flocs. Then, after removing the floc that easily precipitates in the sedimentation basin, or directly introducing into a filter, the solid matter is separated to obtain clear treated water.

【0004】[0004]

【発明が解決しようとする課題】ここで、凝集処理にお
いて、凝集剤注入率やpHを適切なものに維持しない
と、凝集が不十分なフロックがろ過器から流出すること
が知られている。そこで、凝集剤の注入率やpHを適切
に保つために、凝集フロックのゼータ電位が適切なもの
になるように、凝集剤の注入率やpHを制御することが
提案されている。しかし、原水水質が変動すると、必ず
しも最適な制御を常に行うことはできず、常に適切な凝
集処理を行うことは難しい。
Here, in the coagulation treatment, it is known that the floc with insufficient coagulation flows out of the filter unless the coagulant injection rate and pH are maintained at appropriate levels. Therefore, in order to keep the injection rate and pH of the flocculant appropriate, it has been proposed to control the injection rate and pH of the flocculant so that the zeta potential of the flocculated floc becomes appropriate. However, when the raw water quality fluctuates, it is not always possible to always perform optimal control, and it is difficult to always perform appropriate coagulation treatment.

【0005】そこで、凝集処理を補うために、ろ過器の
逆洗工程の最後に凝集剤を添加したり、ろ過器の前段ま
たはろ層内へ追加の凝集剤を添加して追加凝集を行うこ
となども提案されている。
[0005] Therefore, in order to supplement the flocculation treatment, a flocculant is added at the end of the backwashing step of the filter, or an additional flocculant is added to the previous stage of the filter or into the filter layer to perform additional flocculation. Etc. have also been proposed.

【0006】しかし、ろ過器の逆洗工程の最後に凝集剤
を加える場合、洗浄水に懸濁物質が含まれていると、僅
かではあるがフロックが形成される。このため、フロッ
クがろ過器の二次側(処理水側)に抑留され、ろ過再開
時における処理水の悪化を招くという問題がある。
However, when the flocculant is added at the end of the backwashing step of the filter, floc is formed to a small extent if the washing water contains suspended substances. For this reason, the floc is confined on the secondary side (treated water side) of the filter, and there is a problem that the treated water deteriorates when filtration is restarted.

【0007】また、ろ層内での追加凝集を行うために
は、設備が複雑になり、ろ過器自体が高価となってしま
うという問題がある。
Further, in order to perform additional coagulation in the filter layer, there is a problem that equipment becomes complicated and the filter itself becomes expensive.

【0008】本発明は、上記課題に鑑みなされたもので
あり、比較的簡単な構成で効果的なろ過処理を行うこと
ができる固液分離装置を提供することを目的とする。
[0008] The present invention has been made in view of the above problems, and has as its object to provide a solid-liquid separation device capable of performing effective filtration with a relatively simple configuration.

【0009】[0009]

【課題を解決するための手段】本発明は、原水に凝集剤
を添加して凝集した後、ろ過処理を行う固液分離装置に
おいて、前記ろ過処理におけるろ材の少なくとも一部に
活性アルミナろ材を用いるとともに、逆洗水の少なくと
も一部に酸性水を用いることを特徴とする。
According to the present invention, there is provided a solid-liquid separation apparatus for performing a filtration treatment after adding a flocculant to raw water and coagulating the raw water, wherein an activated alumina filter material is used as at least a part of the filtration material in the filtration treatment. In addition, an acidic water is used as at least a part of the backwash water.

【0010】このように、本発明では、ろ材に活性アル
ミナろ材を用い、逆洗水に酸性水を用いる。そこで、逆
洗時に活性アルミナろ材の表面がわずかに溶け、ろ材表
面のゼータ電位が+になる。そこで、逆洗終了後にゼー
タ電位が−の凝集フロックがろ過器に供給された場合に
おいても、このフロックを活性アルミナろ材が効果的に
捕捉し、処理水の悪化を防止することができる。
As described above, in the present invention, an activated alumina filter medium is used as a filter medium, and acidic water is used as backwash water. Therefore, the surface of the activated alumina filter medium is slightly melted at the time of back washing, and the zeta potential of the filter medium surface becomes +. Therefore, even when flocculated floc having a zeta potential of-is supplied to the filter after the backwash, the activated alumina filter medium can effectively capture the floc and prevent deterioration of the treated water.

【0011】また、前記逆洗は、中性水による逆洗、酸
性水による逆洗、中性水による逆洗の三段階を含むこと
が好適である。このように、中性水による逆洗を最初行
うことで、ろ材に捕捉されていた懸濁物質を除去できる
ため、酸性水による逆洗においてアルミナろ材の処理を
効果的なものにできる。また、酸性逆洗の後に、中性水
でろ材をすすぐことで、酸性の処理水が流出することを
防止できる。さらに、中性水による逆洗を併せて利用す
ることにより、洗浄排水のpHをトータルとしては弱酸
性として、洗浄排水についてのpH調整などを不要とで
きる。
Preferably, the backwashing includes three steps of backwashing with neutral water, backwashing with acidic water, and backwashing with neutral water. As described above, by first performing the backwashing with neutral water, the suspended substances trapped in the filter medium can be removed, so that the treatment of the alumina filter medium in the backwashing with acidic water can be made effective. In addition, rinsing the filter medium with neutral water after acidic backwashing can prevent acidic treated water from flowing out. Further, by using the backwashing with neutral water in combination, the pH of the washing wastewater is made weakly acidic as a whole, and the pH adjustment of the washing wastewater can be made unnecessary.

【0012】また、前記酸性水のpHは、2.0〜5.
0であることが好適である。酸性水は、pHがあまり低
いとアルミナろ材の溶解が進みすぎ、消耗が激しくな
る。一方、pHが高いとアルミナが溶けず、表面の活性
化が行えない。そこで、pHは、2.0〜5.0の範囲
にあることが好ましく、4.0前後(3.5〜4.5の
範囲)とすることが特に好ましい。
The pH of the acidic water is from 2.0 to 5.0.
It is preferably 0. If the pH of the acidic water is too low, the dissolution of the alumina filter medium proceeds excessively, and the consumption becomes severe. On the other hand, if the pH is high, the alumina does not dissolve and the surface cannot be activated. Therefore, the pH is preferably in the range of 2.0 to 5.0, and particularly preferably around 4.0 (the range of 3.5 to 4.5).

【0013】また、前記ろ過処理におけるろ材は、活性
アルミナろ材の層と、その他の粒状ろ材の層とを少なく
とも含む多層構成になっていることが好適である。例え
ば、粒径の大きい活性アルミナを上方に、粒径の小さい
砂やガーネット等を下方に用いることにより、ろ過形態
をより体積ろ過とすることができ、ろ過経継時間を長く
することができる。また、砂などのろ材においても、酸
性水の逆洗によって、付着物を減少することができる。
It is preferable that the filter medium in the filtration treatment has a multilayer structure including at least a layer of an activated alumina filter medium and a layer of another granular filter medium. For example, by using activated alumina having a large particle size at the top and sand or garnet having a small particle size at the bottom, the filtration form can be made more volume-filtered and the filtration passage time can be extended. Further, even in a filter medium such as sand, the attached matter can be reduced by backwashing the acidic water.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)について、図面に基づいて説明する。
Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.

【0015】図1は、本実施形態に係る凝集分離装置の
全体構成を示す図である。河川水、湖沼水などの原水
は、まず混和槽10に流入される。この混和槽10に
は、凝集剤貯槽12からの凝集剤が凝集剤ポンプ14に
よって供給される。凝集剤は、PACなどの無機アルミ
ニウム凝集剤である。そして、混和槽10には、攪拌機
16が設けられており、原水と凝集剤が急速攪拌され
る。この混和槽10において、凝集剤が混和された凝集
剤混和水は、凝集槽18に流入する。この凝集槽18に
は、緩速攪拌機20が配置されており、凝集剤混和水が
緩速攪拌され、凝集フロックの合体、粗大化が図られ
る。
FIG. 1 is a diagram showing the overall configuration of the coagulation / separation apparatus according to this embodiment. Raw water, such as river water and lake water, flows into the mixing tank 10 first. A flocculant from a flocculant storage tank 12 is supplied to the mixing tank 10 by a flocculant pump 14. The flocculant is an inorganic aluminum flocculant such as PAC. The mixing tank 10 is provided with a stirrer 16 for rapidly stirring the raw water and the coagulant. In the mixing tank 10, the coagulant-mixed water mixed with the coagulant flows into the coagulation tank 18. The flocculation tank 18 is provided with a slow stirring machine 20, which slowly mixes the flocculant-mixed water so that the flocculated floc is united and coarsened.

【0016】次に、凝集槽18からの緩速攪拌後の凝集
剤混和水は、傾斜板沈殿槽22に流入する。この傾斜板
沈殿槽22は、仕切板22aにより入口側と排出側に仕
切られており、入口側に槽深の深い沈殿部22bが形成
されている。そして、この沈殿部22bの下部は、沈殿
汚泥を貯留する汚泥貯留部分22cになっている。ま
た、排出側には多数の傾斜板22dが配置されて傾斜板
沈殿部22eが形成されている。凝集剤混和水は沈殿部
22bに流入され、ここで沈殿処理された後、仕切り板
22aの下を通過して、傾斜板沈殿部22eを上向流で
通過する。そして、この傾斜板沈殿部22eの傾斜板2
2dを通過する際にさらに沈殿処理がなされ、スラッジ
が槽底へ向けて沈殿する。傾斜板沈殿部22eの槽底
は、汚泥貯留部分22cに向けて深くなるように傾斜し
ているため、沈殿スラッジは重力により汚泥貯留部分2
2cに移動する。そして、傾斜板沈殿部22eを通過し
た上澄みが傾斜板沈殿槽22から排出される。なお、傾
斜板沈殿槽22の汚泥貯留部分22cに沈殿した汚泥
は、適宜引き抜かれ別途処分される。
Next, the coagulant-mixed water after the slow stirring from the coagulation tank 18 flows into the inclined plate sedimentation tank 22. The inclined plate sedimentation tank 22 is divided into an inlet side and a discharge side by a partition plate 22a, and a sedimentation part 22b having a deep tank depth is formed on the inlet side. And the lower part of this settling part 22b is the sludge storage part 22c which stores settling sludge. A large number of inclined plates 22d are arranged on the discharge side to form inclined plate settling portions 22e. The coagulant-mixed water flows into the sedimentation section 22b, where it is subjected to sedimentation treatment, passes under the partition plate 22a, and passes through the inclined plate sedimentation section 22e in an upward flow. Then, the inclined plate 2 of the inclined plate settling portion 22e
When passing through 2d, further sedimentation treatment is performed, and sludge sediments toward the tank bottom. Since the tank bottom of the inclined plate sedimentation part 22e is inclined so as to become deeper toward the sludge storage part 22c, the sedimentation sludge is removed by the gravity.
Move to 2c. Then, the supernatant passing through the inclined plate sedimentation section 22 e is discharged from the inclined plate sedimentation tank 22. Note that the sludge settled in the sludge storage portion 22c of the inclined plate settling tank 22 is appropriately extracted and separately disposed.

【0017】このような凝集沈殿処理により、傾斜板沈
殿槽22からの沈殿処理水は、懸濁固形物のかなりの部
分は除去されたものになっている。この沈殿処理水は、
ろ過器24に流入される。このろ過器24は、活性アル
ミナのろ層24bと、砂のろ層24aの二層のろ過層を
有する圧力式の急速ろ過器である。
By such a coagulating sedimentation treatment, the sedimentation treatment water from the inclined plate sedimentation tank 22 is one in which a considerable portion of suspended solids has been removed. This settling water is
It flows into the filter 24. The filter 24 is a pressure-type rapid filter having two filter layers of a filter layer 24b of activated alumina and a filter layer 24a of sand.

【0018】ここで、ろ層24bとして利用されている
活性アルミナは、例えばミリサイズの球状のものであ
り、活性アルミナ粒子はその内部に微細な細孔を有して
おり、これにより優れた吸着力を示す。例えば、半径2
0オングストローム前後の微細な細孔が0.4cc/g
程度存在するため、300m/g程度の大きな比面積
を有している。
Here, the activated alumina used as the filter layer 24b is, for example, a spherical one having a millimeter size, and the activated alumina particles have fine pores therein, thereby providing excellent adsorption. Show power. For example, radius 2
0.4 cc / g of fine pores around 0 Å
, It has a large specific area of about 300 m 2 / g.

【0019】また、ろ層24aについて、砂に代えガー
ネットなどを利用したり、砂及びガーネットを多層とす
ることも好適である。そして、このろ過器24のろ過処
理水は、処理水タンク26に貯留された後、配水され
る。
It is also preferable to use garnet or the like instead of sand for the filter layer 24a, or to use a multilayer of sand and garnet. The filtered water of the filter 24 is stored in a treated water tank 26 and then distributed.

【0020】また、この処理水タンク26内の処理水
は、逆洗ポンプ28によりろ過器24の底部に供給でき
るようになっている。そこで、ろ過器24に処理水を上
向流で供給し、ろ過器24内のろ層を逆洗できるように
なっている。
The treated water in the treated water tank 26 can be supplied to the bottom of the filter 24 by the backwash pump 28. Therefore, the treated water is supplied to the filter 24 in an upward flow so that the filter layer in the filter 24 can be backwashed.

【0021】ここで、この逆洗ポンプ28からろ過器2
4に至る逆洗水のラインには、酸貯槽30からの酸(酸
性溶液)が酸ポンプ32によって添加されるように構成
されている。そこで、酸ポンプ32を制御することによ
って、ろ過器24に供給される逆洗水には、適宜酸が添
加され、酸性水による逆洗が行われる。ここで、酸貯槽
30に貯留される酸としては、塩酸や硫酸が使用され
る。
The backwash pump 28 is connected to the filter 2
4 is configured so that the acid (acid solution) from the acid storage tank 30 is added by the acid pump 32 to the backwash water line 4. Therefore, by controlling the acid pump 32, an acid is appropriately added to the backwash water supplied to the filter 24, and the backwash with acidic water is performed. Here, as the acid stored in the acid storage tank 30, hydrochloric acid or sulfuric acid is used.

【0022】また、酸添加混合後の逆洗水のpHは、
2.0〜5.0程度が好ましい。処理水のアルカリ度の
変動は非常に少ないため、処理水への酸添加量は、ほぼ
一定でかまわない。しかし、酸添加後の逆洗水のpHを
測定し、逆洗水のpHが所定の値、例えば、4.0程度
になるように、酸ポンプ32を制御することも好適であ
る。
The pH of the backwash water after the acid addition and mixing is as follows:
About 2.0 to 5.0 is preferable. Since the variation in alkalinity of the treated water is very small, the amount of acid added to the treated water may be almost constant. However, it is also preferable to measure the pH of the backwash water after adding the acid and control the acid pump 32 so that the pH of the backwash water becomes a predetermined value, for example, about 4.0.

【0023】「ゼータ電位の説明」ここで、ゼータ電位
について説明する。ゼータ電位は、固体と液体の界面を
横切って存在する電気的ポテンシャルを示すものであ
り、水中の懸濁物質についての表面荷電を示す。通常、
河川水等に含まれる懸濁物質(粘度成分や藻類等)は負
に帯電しており、懸濁物質が各々負に帯電していること
から電気的に反発し、凝集しにくい状態になっている。
凝集剤は、この電位の中和をまず行い反発力を弱め、そ
の後に集塊化つまり凝集を行う。従って、凝集フロック
のゼータ電位は中和点つまりゼロに近い方が望ましい。
通常、原水中の懸濁物質のゼータ電位は−20mV以下
で、凝集フロックのゼータ電位は−10mV以上となっ
ている。
"Explanation of Zeta Potential" Here, the zeta potential will be described. Zeta potential is a measure of the electrical potential that exists across the solid-liquid interface, and indicates the surface charge for suspended matter in water. Normal,
Suspended substances (viscosity components, algae, etc.) contained in river water etc. are negatively charged, and since the suspended substances are each negatively charged, they are repelled electrically and become hard to aggregate. I have.
The coagulant neutralizes this potential first to weaken the repulsion, and then agglomerates, that is, agglomerates. Therefore, it is desirable that the zeta potential of the aggregated floc be close to the neutralization point, that is, zero.
Usually, the zeta potential of the suspended substance in the raw water is -20 mV or less, and the zeta potential of the flocculated floc is -10 mV or more.

【0024】ここで、浄水処理で一般に用いられる凝集
沈殿・急速ろ過法において、急速ろ過器より、特にろ過
開始直後に微小なフロックが流出することが知られてい
る。この微小なフロックのゼータ電位は、−15mV以
下と低く、凝集が十分に行われていないことが知られて
いる。
Here, in the coagulation sedimentation / rapid filtration method generally used in the water purification treatment, it is known that a minute floc flows out of the rapid filter, particularly immediately after the start of filtration. It is known that the zeta potential of these minute flocs is as low as −15 mV or less, and aggregation is not sufficiently performed.

【0025】「逆洗処理の説明」通水を継続していく
と、次第にろ層に捕捉される懸濁物質が増加しろ材が飽
和して、ろ過器24はそれ以上懸濁物質を捕捉できなく
なる。これは、ろ過抵抗の上昇や、処理水濁度の上昇等
によって確認できる。しかし、通常はろ材が完全に飽和
する前に、洗浄によりろ材の再生を行う。洗浄のタイミ
ングは、経験的に得られる時間に基づくタイマー設定
や、ろ抗検知器によるろ過抵抗の設定により行われる。
通常の急速ろ過器の洗浄では、ろ過水を用いた逆流水洗
浄や、逆流水洗浄に表面洗浄あるいは空気洗浄を組み合
わせて行われるが、本実施形態では逆流水洗浄を行う。
[Explanation of the backwashing process] As the flow of water is continued, the suspended solids that are trapped in the filter layer gradually increase, the filter medium becomes saturated, and the filter 24 can further trap the suspended solids. Disappears. This can be confirmed by an increase in filtration resistance, an increase in turbidity of the treated water, and the like. However, the filter medium is usually regenerated by washing before the filter medium is completely saturated. The timing of the washing is set by setting a timer based on the time obtained empirically or by setting a filtration resistance by a filter detector.
In normal washing of a rapid filter, backflow water washing using filtered water or surface washing or air washing combined with backflow water washing is performed. In the present embodiment, backflow water washing is performed.

【0026】特に、本実施形態では、(i)まずろ過処
理水をそのままで逆流させる中性水による洗浄を行い、
(ii)次にろ過水に硫酸または塩酸を加え、逆流洗浄
に利用する逆洗水のpHを4.0前後として酸性水によ
る逆流洗浄を行い、(iii)最後に再びろ過処理水を
そのままで中性水による逆流させる洗浄を行う。
In particular, in the present embodiment, (i) first, washing with neutral water in which the filtered water is back-flowed as it is,
(Ii) Next, sulfuric acid or hydrochloric acid is added to the filtered water, and the backwashing water used for the backwashing is adjusted to have a pH of about 4.0, and backwashing with acidic water is performed. Perform backwashing with neutral water.

【0027】ここで、活性アルミナの表面が僅かに溶け
る条件は、pH4.0付近で、それより低いと溶解が急
激に起こり粒径の減少が著しくなり、それ以上だと溶解
があまり起こらず表面が活性化つまり活性アルミナろ材
表面のゼータ電位が高くならない。そこで、pH4.0
前後の逆洗水を用いて、逆洗を行う。なお、酸性水のp
Hは、少なくとも3.0〜5.0の範囲内にあることが
よく、3.5〜4.5の範囲内に制御することが好適で
ある。
Here, the condition that the surface of the activated alumina slightly dissolves is around pH 4.0. If it is lower than this, dissolution will occur rapidly and the particle size will decrease remarkably. Is activated, that is, the zeta potential on the surface of the activated alumina filter medium does not increase. Therefore, pH 4.0
The backwash is performed using the back and forth backwash water. In addition, p of acidic water
H is preferably at least in the range of 3.0 to 5.0, and is preferably controlled in the range of 3.5 to 4.5.

【0028】これによって、活性アルミナろ材の表面が
わずかに溶け、表面のゼータ電位は+30mV〜+60
mV程度にまで回復する。逆洗前の活性アルミナろ材表
面はフロックで覆われており、そのゼータ電位は、−1
0mV〜−5mV程度になっており、フロックの捕捉能
力が弱い。ところが、酸性水の逆洗によって、ゼータ電
位が+となり、フロック捕捉能力が回復する。これによ
って、逆洗直後においてもフロックを十分捕捉すること
ができ、逆洗後の処理水の悪化を防止することができ
る。
As a result, the surface of the activated alumina filter medium is slightly melted, and the zeta potential of the surface is from +30 mV to +60 mV.
It recovers to about mV. The surface of the activated alumina filter medium before backwashing is covered with floc, and its zeta potential is -1.
It is about 0 mV to -5 mV, and the ability to capture flocs is weak. However, the backwashing of the acidic water causes the zeta potential to become positive, and the floc trapping ability is restored. As a result, flocs can be sufficiently captured even immediately after backwashing, and the deterioration of treated water after backwashing can be prevented.

【0029】また、最初のろ過水による洗浄によって、
除去しやすい懸濁物質を除去し、ろ材に捕捉されている
懸濁質を減少することができ、酸性水による洗浄の効果
を高めることができる。また、最後のろ過水による洗浄
によって、ろ材をすすぐことができ、ろ材の表面状態を
正常のものに戻すことができる。また、ろ過再開の際に
酸性液がろ過水として排出されることを防止することが
できる。
Also, by the first washing with the filtered water,
Suspended substances that are easily removed can be removed, the suspended matter trapped in the filter medium can be reduced, and the effect of washing with acidic water can be enhanced. Further, by the final washing with the filtered water, the filter medium can be rinsed, and the surface condition of the filter medium can be returned to a normal state. Further, it is possible to prevent the acidic liquid from being discharged as filtered water when the filtration is restarted.

【0030】さらに、中性水による逆洗を併せて利用す
ることにより、洗浄排水のpHをトータルとしては弱酸
性として、洗浄排水につてのpH調整などが不要にな
る。
Further, by using the backwashing with neutral water in combination, the pH of the washing wastewater is made weakly acidic as a whole, and it becomes unnecessary to adjust the pH of the washing wastewater.

【0031】ところで、適切なpHで洗浄を行った場合
でも、徐々に粒径は減少し、ある粒径以下になると沈降
速度が逆洗速度よりも著しく小さくなり、逆洗によって
排水と一緒にろ過池から排出されてしまう。従って活性
アルミナろ材の補給が必要となる。しかし、酸性水のp
Hなどを適切なものとしていれば、その補給のペース
は、それほど大きくなく、半年毎に5%程度の補給で十
分である。
By the way, even when washing is carried out at an appropriate pH, the particle size gradually decreases, and when the particle size becomes smaller than a certain value, the sedimentation speed becomes significantly smaller than the backwashing speed. It is discharged from the pond. Therefore, it is necessary to supply the activated alumina filter medium. However, acid water p
If H is appropriate, the replenishment pace is not so large, and about 5% replenishment every six months is sufficient.

【0032】なお、本実施形態の装置においても、逆洗
時に空気洗浄を併用したり、ろ過器への流入水へ追加の
凝集剤を添加してもよい。また、凝集剤としてはアルミ
系のものが好ましいが、鉄系の凝集剤や高分子凝集剤を
利用することもでき、複数の凝集剤を併用することも好
適である。さらに、凝集沈殿汚泥を酸処理し、これを凝
集助剤として混和槽に返送してもよい。また、ろ過器と
して、急速ろ過器ではなく、重力式のろ過器など他の形
式のろ過器を採用することもできる。
In the apparatus of the present embodiment, air washing may be used at the time of back washing, or an additional flocculant may be added to the water flowing into the filter. As the coagulant, an aluminum-based coagulant is preferable, but an iron-based coagulant or a polymer coagulant can also be used, and it is also preferable to use a plurality of coagulants in combination. Further, the coagulated sediment sludge may be treated with an acid and returned to the mixing tank as a coagulation aid. Further, instead of a quick filter, another type of filter such as a gravity type filter may be used as the filter.

【0033】[0033]

【実施例】図1の装置を用いて、実験を行った。実験条
件を以下に示す。
EXAMPLE An experiment was conducted using the apparatus shown in FIG. The experimental conditions are shown below.

【0034】「実験条件」 ・原水流量:23.6m/h ・混和槽10:滞留時間4分 ・傾斜板沈殿槽22:滞留時間40分、上昇速度5cm
/min ・ろ過器24仕様:φ500mm×H4000mm(ろ
過面積0.196m) ・ろ過速度(LV:空塔速度):5m/h(120m/
d) ・ろ層24bのろ材:活性アルミナ(比重1.5、有効
径1.0mm、均等係数1.4、ろ層高400mm) ・ろ層24aのろ材:ケイ砂(比重2.5、有効径0.
6mm、均等係数1.4、ろ層高300mm) ・通水時間:48時間(タイマーにより洗浄開始) ・原水濁度:8〜30度 ・原水pH:7.2〜7.5 ・ろ過処理水pH:6.9〜7.3 ・凝集剤:PAC(ポリ塩化アルミニウム)10〜30
mg/l ・目標処理水濁度:0.1度未満 ・洗浄条件:(i)水逆洗 LV=40m/h×4分、
(ii)酸性水逆洗 LV=40m/h×3分、(ii
i)水逆洗 LV=40m/h×3分(すすぎ) ・逆洗水:中性水はろ過処理水(pH6.9〜7.
3)、酸性水は硫酸にてpH4.0に調整した。
"Experimental conditions" Raw water flow rate: 23.6 m 3 / h Mixing tank 10: residence time 4 minutes Inclined plate sedimentation tank 22: residence time 40 minutes, rising speed 5 cm
/ Min ・ Filter 24 specifications: φ500mm × H4000mm (filtration area 0.196m 2 ) ・ Filtration speed (LV: superficial tower speed): 5m / h (120m /
d) Filter medium of filter layer 24b: activated alumina (specific gravity 1.5, effective diameter 1.0mm, uniformity coefficient 1.4, filter layer height 400mm) Filter medium of filter layer 24a: silica sand (specific gravity 2.5, effective Diameter 0.
(6 mm, coefficient of uniformity 1.4, filtration layer height 300 mm) ・ Water flow time: 48 hours (washing started by timer) ・ Natural water turbidity: 8 to 30 degrees ・ Raw water pH: 7.2 to 7.5 ・ Filtration treated water pH: 6.9-7.3 ・ Aggregating agent: PAC (polyaluminum chloride) 10-30
mg / l ・ Target treatment water turbidity: less than 0.1 ° ・ Cleaning conditions: (i) water backwash LV = 40m / h × 4 minutes,
(Ii) Backwashing with acidic water LV = 40 m / h × 3 minutes, (ii)
i) Water backwash LV = 40m / h × 3 minutes (rinse) ・ Backwash water: neutral water is filtered water (pH 6.9-7.
3) The acidic water was adjusted to pH 4.0 with sulfuric acid.

【0035】「実験結果」このように、濁度8〜30度
の原水に凝集剤としてPACを10〜30mg/L添加
し、凝集沈殿処理を行った後、活性アルミナろ材・砂
(ケイ砂)の二層のろ層からなる急速ろ過器24にてろ
過処理を行い処理水を得た。
[Experimental Results] As described above, PAC as a coagulant was added to raw water having a turbidity of 8 to 30 ° C. in an amount of 10 to 30 mg / L to perform coagulation and sedimentation, and then activated alumina filter medium and sand (silica sand) The filtration treatment was performed with a rapid filter 24 comprising two filtration layers to obtain treated water.

【0036】そして、48時間の通水継続毎にろ材の逆
洗を行った。この逆洗は、(i)中性水、(ii)酸性
水、(iii)中性水という3段階の逆洗である。ま
た、この時生成される洗浄排水のpHは、中性のろ過処
理水の場合が約7.0、酸性水を用いた逆洗排水が約
4.5で、水量比が中性水:酸性水=7:3であるた
め、洗浄排水全体でのpHは、6.0前後となる。従っ
て、この条件においては、排水処理において、特にアル
カリ剤の添加を行う必要はなかった。
Then, the filter medium was backwashed every 48 hours of passing water. This backwash is a three-stage backwash of (i) neutral water, (ii) acidic water, and (iii) neutral water. The pH of the washing wastewater generated at this time is about 7.0 in the case of neutral filtration treatment water, about 4.5 in the case of backwashing wastewater using acidic water, and the water volume ratio is neutral water: acidic water. Since water = 7: 3, the pH of the entire washing drainage is around 6.0. Therefore, under these conditions, it was not necessary to particularly add an alkali agent in the wastewater treatment.

【0037】ここで、再生直後の活性アルミナろ材のゼ
ータ電位は、+30mV〜+60mVであった。LV5
m/hで30分通水後のゼータ電位は+20mV〜+3
0mV、通水90分後のゼータ電位は+10mV〜+2
0mV、そして洗浄前の通水48時間後のゼータ電位
は、活性アルミナろ材表面がフロックで覆われているた
め−10mV〜−5mVとなっている。
Here, the zeta potential of the activated alumina filter medium immediately after regeneration was +30 mV to +60 mV. LV5
The zeta potential after passing water for 30 minutes at m / h is +20 mV to +3.
0 mV, the zeta potential after 90 minutes of passing water is +10 mV to +2
The zeta potential at 0 mV and 48 hours after passing water before washing is -10 mV to -5 mV because the activated alumina filter medium surface is covered with floc.

【0038】一方、洗浄終了後から通水時間90分間に
おいて、ろ過処理水に流出する微小なフロックのゼータ
電位−15mV〜−25mVで、明らかに荷電中和の点
で凝集条件が十分ではなかった。しかしながら、ろ材自
体のゼータ電位が+であることにより中和され、ろ材表
面に吸着される。それ以降は、処理水に含まれる凝集剤
の作用により、ろ材表面がコーティングされるため、未
凝集のフロックの流出を抑止することができ、常に良好
なろ過処理が可能となった。
On the other hand, after the completion of the washing, the zeta potential of the fine flocs flowing out into the filtered water was -15 mV to -25 mV during a water flowing time of 90 minutes, and the coagulation conditions were clearly insufficient in terms of charge neutralization. . However, since the zeta potential of the filter medium itself is +, it is neutralized and adsorbed on the surface of the filter medium. After that, the surface of the filter medium is coated by the action of the coagulant contained in the treated water, so that the outflow of unagglomerated flocs can be suppressed, and good filtration treatment can always be performed.

【0039】また、処理の継続に従い、ろ材の粒径は徐
々に減少するので、活性アルミナろ材の補給が必要とな
る。しかし、その補給のペースは、1年間で5〜10%
程度であり、実際には、定期的に5%程度ずつ補給すれ
ばろ過器としての性能を維持できることがわかった。ま
た、1年間で10%の場合、6ヶ月に一回補給を行えば
よい。
In addition, as the particle size of the filter medium gradually decreases as the treatment is continued, it is necessary to replenish the activated alumina filter medium. However, the replenishment pace is 5-10% in one year
Actually, it was found that the performance as a filter can be maintained by periodically replenishing about 5% each. In the case of 10% in one year, replenishment may be performed once every six months.

【0040】図2に、本実施形態の活性アルミナろ材を
有し、酸性水による逆洗を行うろ過器24(実施例)
と、アンスラサイト・砂の二層のろ層を有し酸性水によ
る逆洗を行わないろ過器(比較例)との比較を示す。実
施例のろ過器24では、洗浄が終了し、通水開始直後か
らろ過水の濁度は、0.05度以下となっているが、比
較例のろ過器では、通水開始から30分までは0.1度
以上となっている。
FIG. 2 shows a filter 24 having the activated alumina filter medium of the present embodiment and performing backwashing with acidic water (Example).
And a filter (comparative example) having two filter layers of anthracite and sand and having no backwashing with acidic water. In the filter 24 of the embodiment, the washing is completed, and the turbidity of the filtered water is 0.05 degrees or less immediately after the start of the passage of water. Is 0.1 degrees or more.

【0041】また、6ヶ月間通水を行ったろ材につい
て、コアサンプルを取り出して、ろ材への付着物量を調
査した結果、ろ材1L当たりの付着物量(乾燥重量)は
実施例ろ過器24では4.0g/L、比較例のろ過器で
は23.0g/Lとなっていた。
Further, a core sample was taken out of the filter medium which had been subjected to water passage for 6 months, and the amount of deposits on the filter medium was examined. As a result, the amount of deposits (dry weight) per liter of the filter medium was 4 2.0 g / L, and 23.0 g / L for the filter of the comparative example.

【0042】酸性水洗浄を行っていることにより、実施
例のろ過器24では、付着物質の量が非常に少なく、洗
浄が十分に行われているが、酸性水洗浄を行っていない
比較例のろ過器では、多くの付着物があり、洗浄が不十
分であることが分かった。このように、ろ材への付着物
が多いと、ろ過抵抗が増え、ろ過継続時間が短縮し、水
回収率も減少する。
Since the acidic water washing is performed, the amount of the adhered substance is very small and the washing is sufficiently performed in the filter 24 of the embodiment, but the filter of the comparative example in which the acidic water washing is not performed is performed. The filter was found to have many deposits and insufficient cleaning. As described above, when there is a large amount of deposits on the filter medium, the filtration resistance increases, the filtration continuation time is shortened, and the water recovery rate also decreases.

【0043】なお、ろ材として活性アルミナろ材を使用
しても、酸性水による洗浄を行わなかった場合には、上
述のような効果的なろ過は行えない。また、活性アルミ
ナろ材を使用しないろ過器で酸性水による洗浄を行った
場合、ろ材への付着物の減少については、ある程度効果
がある。しかし、上述のような洗浄後における良好なろ
過処理水を得ることはできない。
Even if an activated alumina filter medium is used as the filter medium, the effective filtration as described above cannot be performed unless washing with acidic water is performed. Further, when washing with acidic water is performed using a filter that does not use an activated alumina filter medium, there is a certain effect in reducing the amount of deposits on the filter medium. However, good filtered water after washing as described above cannot be obtained.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
酸性水による逆洗によって、活性アルミナの表層が活性
化され、凝集不良による微小なフロックのろ過池からの
流出を低減することが可能となる。また、活性アルミナ
のろ材と砂などの他のろ材の槽からなる複層ろ過器を採
用した場合においても、酸性洗浄を行うことにより、砂
やガーネットに関しても再生が十分になされ、ろ材の寿
命が延長することができる。
As described above, according to the present invention,
By backwashing with acidic water, the surface layer of activated alumina is activated, and it is possible to reduce the outflow of minute flocs from the filtration pond due to poor coagulation. In addition, even when a multi-layer filter consisting of a filter medium of activated alumina and a tank of another filter medium such as sand is adopted, by performing acidic washing, sand and garnet can be sufficiently regenerated and the life of the filter medium can be extended. Can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施形態の装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of an apparatus according to an embodiment.

【図2】 実施形態の装置における処理の効果を説明す
る図である。
FIG. 2 is a diagram illustrating effects of processing in the apparatus according to the embodiment.

【符号の説明】[Explanation of symbols]

10 混和槽、18 凝集槽、22 傾斜板沈殿槽、2
4 ろ過器、30 酸貯槽、32 酸ポンプ。
10 mixing tank, 18 coagulation tank, 22 inclined plate sedimentation tank, 2
4 Filter, 30 acid storage tank, 32 acid pump.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 36/04 B01D 39/06 39/06 C02F 1/28 F C02F 1/28 1/52 Z 1/52 B01D 29/08 520A 530D 540A 29/38 520A Fターム(参考) 4D019 AA03 BA06 BB12 BC03 4D024 AA05 BA13 BB01 DA07 DB02 DB03 DB21 4D062 BA04 BB05 CA14 DA04 EA14 EA32 EA35 FA12 FA15 4D066 AB07 BB01 FA02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 36/04 B01D 39/06 39/06 C02F 1/28 F C02F 1/28 1/52 Z 1/52 B01D 29/08 520A 530D 540A 29/38 520A F term (reference) 4D019 AA03 BA06 BB12 BC03 4D024 AA05 BA13 BB01 DA07 DB02 DB03 DB21 4D062 BA04 BB05 CA14 DA04 EA14 EA32 EA35 FA12 FA15 4D066 AB07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原水に凝集剤を添加して凝集した後、ろ
過処理を行う固液分離装置において、 前記ろ過処理におけるろ材の少なくとも一部に活性アル
ミナろ材を用いるとともに、逆洗水の少なくとも一部に
酸性水を用いることを特徴とする固液分離装置。
1. A solid-liquid separation device for performing a filtration treatment after adding a flocculant to raw water and coagulating the raw water, wherein an activated alumina filter material is used for at least a part of the filtration material in the filtration treatment, and at least one of the backwash water is used. A solid-liquid separator characterized by using acidic water for the part.
【請求項2】 請求項1に記載の装置において、 前記逆洗は、中性水による逆洗、酸性水による逆洗、中
性水による逆洗の三段階を含むことを特徴とする固液分
離装置。
2. The apparatus according to claim 1, wherein the backwashing includes three steps of backwashing with neutral water, backwashing with acidic water, and backwashing with neutral water. Separation device.
【請求項3】 請求項2に記載の装置において、 前記酸性水のpHは、2.0〜5.0であることを特徴
とする固液分離装置。
3. The apparatus according to claim 2, wherein the acidic water has a pH of 2.0 to 5.0.
【請求項4】 請求項1〜3のいずれか1つのに記載の
装置において、 前記ろ過処理におけるろ材は、活性アルミナろ材の層
と、その他の粒状ろ材の層とを少なくとも含む多層構成
になっていることを特徴とする固液分離装置。
4. The apparatus according to claim 1, wherein the filter medium in the filtration treatment has a multilayer structure including at least a layer of an activated alumina filter medium and a layer of another granular filter medium. A solid-liquid separator.
JP14413799A 1999-05-24 1999-05-24 Solid-liquid separator Expired - Fee Related JP4176915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14413799A JP4176915B2 (en) 1999-05-24 1999-05-24 Solid-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14413799A JP4176915B2 (en) 1999-05-24 1999-05-24 Solid-liquid separator

Publications (3)

Publication Number Publication Date
JP2000325710A true JP2000325710A (en) 2000-11-28
JP2000325710A5 JP2000325710A5 (en) 2006-03-30
JP4176915B2 JP4176915B2 (en) 2008-11-05

Family

ID=15355091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14413799A Expired - Fee Related JP4176915B2 (en) 1999-05-24 1999-05-24 Solid-liquid separator

Country Status (1)

Country Link
JP (1) JP4176915B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207163A (en) * 2007-02-27 2008-09-11 Nippon Solid Co Ltd Treatment method for muddy water
JP2009090253A (en) * 2007-10-11 2009-04-30 Japan Organo Co Ltd Filter
JP2009090227A (en) * 2007-10-10 2009-04-30 Japan Organo Co Ltd Flocculation filtering treatment method/device
JP2013132599A (en) * 2011-12-27 2013-07-08 Nippon Steel & Sumikin Eco-Tech Corp Method for biological treatment of organic waste water
KR101527005B1 (en) * 2014-10-06 2015-06-09 주식회사 에코빅 A pollutant purification apparatus
CN104998466A (en) * 2015-08-20 2015-10-28 崔学烈 Light filtration medium for water treatment and preparation method and application thereof
CN105983273A (en) * 2015-02-17 2016-10-05 刘朝南 Active suspension filtering material and preparation method thereof
JP2018199097A (en) * 2017-05-25 2018-12-20 株式会社 イージーエス Water treatment method and water treatment apparatus
CN111434368A (en) * 2019-01-15 2020-07-21 株式会社迪思科 Waste liquid treatment device
CN114053774A (en) * 2022-01-18 2022-02-18 山东省烟台地质工程勘察院 Hydraulic ring geological sample separating device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207163A (en) * 2007-02-27 2008-09-11 Nippon Solid Co Ltd Treatment method for muddy water
JP2009090227A (en) * 2007-10-10 2009-04-30 Japan Organo Co Ltd Flocculation filtering treatment method/device
JP2009090253A (en) * 2007-10-11 2009-04-30 Japan Organo Co Ltd Filter
JP2013132599A (en) * 2011-12-27 2013-07-08 Nippon Steel & Sumikin Eco-Tech Corp Method for biological treatment of organic waste water
KR101527005B1 (en) * 2014-10-06 2015-06-09 주식회사 에코빅 A pollutant purification apparatus
CN105983273A (en) * 2015-02-17 2016-10-05 刘朝南 Active suspension filtering material and preparation method thereof
CN105983273B (en) * 2015-02-17 2018-05-01 刘朝南 A kind of activity suspended filter material and preparation method thereof
CN104998466A (en) * 2015-08-20 2015-10-28 崔学烈 Light filtration medium for water treatment and preparation method and application thereof
JP2018199097A (en) * 2017-05-25 2018-12-20 株式会社 イージーエス Water treatment method and water treatment apparatus
JP7089345B2 (en) 2017-05-25 2022-06-22 株式会社 イージーエス Water treatment method and water treatment equipment
CN111434368A (en) * 2019-01-15 2020-07-21 株式会社迪思科 Waste liquid treatment device
CN111434368B (en) * 2019-01-15 2023-08-18 株式会社迪思科 Waste liquid treatment device
CN114053774A (en) * 2022-01-18 2022-02-18 山东省烟台地质工程勘察院 Hydraulic ring geological sample separating device

Also Published As

Publication number Publication date
JP4176915B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
KR100999369B1 (en) Apparatus of water treatment with coagulation, flocculation, sedimentation and filtration for wastewater treatment
JP4223870B2 (en) Water purification method
JP5489982B2 (en) Pretreatment method for separation by reverse osmosis membrane of treated water
JP2011230038A (en) Water treatment apparatus
JP4176915B2 (en) Solid-liquid separator
JP2003340208A (en) Water cleaning method and apparatus therefor
JP4359025B2 (en) Muddy water treatment method
JP5211432B2 (en) Method for treating water containing suspended matter and chromaticity components
JP4800462B2 (en) Filtration method
JP4800463B2 (en) Filtration device
JP7142540B2 (en) Water purification method and water purification device
JP2002119808A (en) Method and device for filtering by precoat membrane
JP3905663B2 (en) Solid-liquid separator and flocculation condition determination method
JP4800461B2 (en) Backwashing method in filtration equipment
JP2002113470A (en) Method and apparatus for high speed filtration/ separation of solid-suspended water
JP2002085907A (en) Flocculating and settling apparatus
JP2001347295A (en) Apparatus for cleaning seawater containing floating substance
JP7316156B2 (en) Water purification method and water purification device
TWI298313B (en) Apparatus and method for removal of particles in water
JP2003334562A (en) Water cleaning method and device therefor
JPH05309207A (en) Clarifying system for water in pond
JPH11253704A (en) Flocculator and operation method thereof
WO2021117542A1 (en) Water softener
JP2005111404A (en) Flocculating/filtering method
JP2001038109A (en) Back washing method in filter device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees