JP2000323134A - Manufacture of hydrogen storage alloy negative electrode and electrode thereof - Google Patents

Manufacture of hydrogen storage alloy negative electrode and electrode thereof

Info

Publication number
JP2000323134A
JP2000323134A JP11132200A JP13220099A JP2000323134A JP 2000323134 A JP2000323134 A JP 2000323134A JP 11132200 A JP11132200 A JP 11132200A JP 13220099 A JP13220099 A JP 13220099A JP 2000323134 A JP2000323134 A JP 2000323134A
Authority
JP
Japan
Prior art keywords
powder
hydrogen storage
electrode
storage alloy
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11132200A
Other languages
Japanese (ja)
Inventor
Shunichiro Nishikawa
俊一郎 西川
Kazuya Hashimoto
和弥 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP11132200A priority Critical patent/JP2000323134A/en
Publication of JP2000323134A publication Critical patent/JP2000323134A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacturing method of electrode having a higher packing density and a negative electrode for battery using this for the negative electrode material in manufacturing the negative electrode for battery using a hydrogen storage alloy. SOLUTION: In the method of manufacturing a negative electrode for battery using a hydrogen storage alloy, a raw material using the powder, which has a gain diameter more than the sheet thickness of the hydrogen storage alloy in electrodes after formation is used at 5 wt.% among the hydrogen storage alloy powder to be used, is dispersed on a metal sheet, and it is rolled so as to be formed into an electrode having the predetermined thickness. An ideal electrode having a high charging density can be thereby manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金粉
末、特にニッケル水素電池用負極の製造方法およびこれ
を負極材料に用いた電池用負極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy powder, in particular, a negative electrode for a nickel hydride battery, and a battery negative electrode using the same as a negative electrode material.

【0002】[0002]

【従来の技術】近年、ニッケルカドミウム電池に代わる
二次電池としてニッケル水素電池が注目され、これに用
いられる水素吸蔵合金粉末の研究が行われているが、中
でもAB5型水素吸蔵合金粉末は電池用の負極材料とし
て優れた特性を備えており、多く利用されている。これ
は、例えばCe50%、La25%、Nd15%、残り
PrなどからなるミッシュメタルMmと、例えばMn、
Al、Co等を含むニッケル合金とを混合溶融したもの
で、例えば、Mm1.0Ni(5−x−y−z)Mnx
AlyCozのような型の金属間化合物である。これを
鋳造材の粉砕や回転ドラムに接触させる急冷凝固薄帯の
粉砕、ガスアトマイズなどの諸手法によって粉末化した
後、シート状に成形して二次電池用負極として使用す
る。
2. Description of the Related Art In recent years, nickel-metal hydride batteries have attracted attention as secondary batteries replacing nickel cadmium batteries, and hydrogen storage alloy powders used for these batteries have been studied. It has excellent characteristics as a negative electrode material and is widely used. This is because a misch metal Mm made of, for example, 50% Ce, 25% La, 15% Nd, remaining Pr, etc.
It is obtained by mixing and melting a nickel alloy containing Al, Co, etc., for example, Mm1.0Ni (5-xyz) Mnx
Intermetallic compounds of the type such as AlyCoz. This is pulverized by various methods such as pulverization of a cast material, pulverization of a rapidly solidified thin strip brought into contact with a rotating drum, gas atomization, and the like, and then is formed into a sheet and used as a negative electrode for a secondary battery.

【0003】[0003]

【発明が解決しようとする課題】水素吸蔵合金粉末を二
次電池に使用する場合に要求される性能は、水素の吸蔵
密度が大きいことと、水素の吸収・放出が迅速なこと、
及び吸収・放出の反復による水素吸蔵量の低下が少ない
ことである。水素吸蔵密度の大小は電池の電池における
エネルギー密度に関係し、吸収・放出の速度は電池の放
電効率や充電の際の電池内圧の上昇に関係し、水素吸蔵
量の低下は二次電池としての寿命に関係する。
The performance required when a hydrogen storage alloy powder is used for a secondary battery is that the hydrogen storage density is high, the hydrogen absorption and release are rapid,
And a decrease in the hydrogen storage amount due to repeated absorption and release is small. The magnitude of the hydrogen storage density is related to the energy density of the battery, the rate of absorption and release is related to the discharge efficiency of the battery and the increase in the internal pressure of the battery during charging, and the decrease in the hydrogen storage amount is Related to life.

【0004】上述の水素の吸蔵密度の大きさ及び吸収・
放出の速さは、合金粉末の表面状態および充填密度に大
きく影響される。粉末の表面が清浄であれば、より迅速
に反応を行うことができるのみでなく、全ての合金が有
効に活用される。清浄度が低い粉末に水素を吸蔵できる
状態にするためには長時間かけて充放電を繰り返し、電
池の容量を高めることが必要になり、生産性を著しく妨
げる。そこで、電池の特性をより向上させると共に、生
産性を上げる方法として、粉末を酸処理して粉末表面の
酸化層を除くことが提案されている。また、個々の合金
特性が同等であっても充填密度を高くすることによって
反応に寄与する粉末量が増え、結果的に体積当たりの容
量や速度が増加する。シートの充填密度を向上させる方
法として金属シート上に粉末を散布した後、ローラによ
って圧延する方法が用いられている。
[0004] The size and absorption of the above-mentioned hydrogen storage density
The speed of release is greatly affected by the surface condition and packing density of the alloy powder. If the surface of the powder is clean, not only can the reaction be performed more quickly, but also all alloys can be effectively used. In order to store hydrogen in powder having low cleanliness, it is necessary to repeatedly charge and discharge over a long period of time to increase the capacity of the battery, which significantly hinders productivity. Therefore, as a method of further improving the characteristics of the battery and increasing the productivity, it has been proposed to remove the oxide layer on the surface of the powder by acid treatment of the powder. Further, even if the properties of the individual alloys are the same, the amount of powder contributing to the reaction is increased by increasing the packing density, and as a result, the capacity per volume and the speed are increased. As a method for improving the packing density of a sheet, a method of dispersing powder on a metal sheet and then rolling with a roller has been used.

【0005】上述の水素吸蔵量の低下は、充放電の繰り
返しによって粉末粒子が必要以上に細かく破砕されるこ
とが原因である。このような破砕は、粒子内部のミクロ
的な合金組成の不均一や、製造時の残留歪などが原因に
なって、水素を吸収・放出する際の体積の膨張・収縮が
一様に行なわれないことが一因となっている。そして破
砕面から酸化が進行して水素吸蔵能力が次第に失われて
ゆくのである。従って、電池の寿命を延ばすためには、
粉末粒子の合金組成がミクロ的に均一で、かつ歪が残存
していないことが条件になる。そのために、従来では鋳
造・粉砕工程の途中に高温で長時間の熱処理が行なわれ
ている。一方、急冷凝固薄帯やガスアトマイズ粉末の場
合は鋳造材に比べて、合金組成がかなり均一で、歪の残
存量も少なく、従って熱処理も鋳造材の場合よりも低い
温度、短い時間で良好な組織の粉末になる。
[0005] The decrease in the amount of hydrogen occlusion described above is due to the fact that powder particles are crushed more than necessary by repeated charge and discharge. In such crushing, the expansion and contraction of the volume when absorbing and releasing hydrogen is performed uniformly due to the unevenness of the microscopic alloy composition inside the particles and the residual strain during production. This is partly due to the absence. Then, oxidation proceeds from the crushed surface, and the hydrogen storage capacity is gradually lost. Therefore, to extend battery life,
The condition is that the alloy composition of the powder particles is microscopically uniform and no strain remains. Therefore, conventionally, a long-time heat treatment is performed at a high temperature during the casting / crushing process. On the other hand, in the case of a rapidly solidified ribbon or gas atomized powder, the alloy composition is considerably uniform and the amount of residual strain is smaller than that of the cast material. Powder.

【0006】上述のような理由から、急冷凝固法やガス
アトマイズ法によって作製し、熱処理後酸処理を施した
粉末を理想密度まで圧延することが電池用水素吸蔵合金
電極の製造方法として最適である。しかし、単にロール
圧延するだけでは負極にした際に十分な合金密度には得
られないため、より充填密度の向上が可能な電極製造方
法の確立が必要とされていた。本発明者らは水素吸蔵合
金を用いた電池用負極の製造において、該電極の成形密
度を向上させるための詳細な実験を行った結果、使用す
る水素吸蔵合金粉末のうち成形後の電極における水素吸
蔵合金のシート厚以上の粒子径を有する粉末を使用する
ことによって、より充填密度の高い電極の製造が可能で
あることを発明した。
[0006] For the reasons described above, it is most suitable as a method for manufacturing a hydrogen storage alloy electrode for a battery to roll a powder produced by a rapid solidification method or a gas atomization method and subjected to an acid treatment after a heat treatment to an ideal density. However, it is not possible to obtain a sufficient alloy density when a negative electrode is formed simply by roll rolling, and thus it is necessary to establish an electrode manufacturing method capable of further improving the packing density. The present inventors conducted detailed experiments to improve the molding density of the electrode in the production of a negative electrode for a battery using a hydrogen storage alloy. The inventors have invented that it is possible to manufacture an electrode having a higher packing density by using a powder having a particle diameter greater than the sheet thickness of the storage alloy.

【0007】[0007]

【課題を解決するための手段】この発明の要旨とすると
ころは、水素吸蔵合金を用いた電池用負極の製造におい
て、使用する水素吸蔵合金粉末のうち成形後の電極にお
ける水素吸蔵合金のシート厚以上の粒子径を有する粉末
を5重量%以上使用し、これを圧延することによって、
より充填密度の高い理想的な電極の作製が可能となるこ
とである。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a negative electrode for a battery using a hydrogen-absorbing alloy, the thickness of the hydrogen-absorbing alloy sheet in the molded electrode of the hydrogen-absorbing alloy powder used. By using 5% by weight or more of the powder having the above particle diameter and rolling it,
An ideal electrode having a higher packing density can be manufactured.

【0008】以下、本発明について詳細に説明する。粉
末によるシートは圧延によって密度を高くすることがで
きるが、周囲を拘束せずにプレスをした場合、ある領域
まで達すると粉末の転がり等によるシートの延びを生じ
るために密度は上がらなくなる。一方、周囲を拘束した
場合バッチプレスとなるために生産性の低下が問題とな
る。しかし、周囲の拘束をしなくても使用する水素吸蔵
合金粉末のうち成形後の電極における水素吸蔵合金のシ
ート厚以上の直径を持つ粉末を使用することで、圧延後
のシート密度をより高くすることが可能である。これ
は、粗粒子がくさび的役割によってシートの延びを防止
すると同時に、粗粉末が粉砕されながら理想的な場所に
充填されているためと考えられる。
Hereinafter, the present invention will be described in detail. The density of the sheet made of powder can be increased by rolling. However, if pressing is performed without restricting the periphery, when the sheet reaches a certain area, the sheet will be stretched due to rolling of the powder and the density will not increase. On the other hand, when the periphery is restrained, a batch press is performed, and thus a problem of a decrease in productivity becomes a problem. However, by using a powder having a diameter equal to or greater than the sheet thickness of the hydrogen-absorbing alloy in the formed electrode among the hydrogen-absorbing alloy powders used without constraining the surroundings, the sheet density after rolling is increased. It is possible. It is considered that this is because the coarse particles prevent the sheet from being extended by the wedge-like role, and at the same time, the coarse powder is filled in an ideal place while being pulverized.

【0009】[0009]

【実施例】(実施例1)Mm1.0Ni3.5Co0.
7Al0.3(原子比)を構成するように配合した金属
原料をアルミナ坩堝中に収納し、高周波誘導によって溶
解した後、Arガスアトマイズによって粉末化した。こ
の粉末を金網によって180μm以下となるように調整
する。調整後の粉末90gと0.5重量%PVA(ポリ
ビニルアルコール)水溶液10gをビーカー内で十分に
混練してスラリーとする。平らな台に撥水性ビニールを
敷き、その上に上記スラリーを散布した後、さらに撥水
性シートをかけて、金属ロールによって0.2、0.
3、0.4、0.5mmの厚さに引き延ばす。出来上が
ったシートを乾燥させた後、φ20×20mmにカット
し、重量および厚さを計測する。計測後のシートを2t
/cm2 で圧延してAl80の4試料を得る。得られた
シートの重量、厚さ、直径を測定し、圧延後のシートの
充填密度を算出した。
(Example 1) Mm1.0Ni3.5Co0.
A metal raw material blended to form 7Al0.3 (atomic ratio) was housed in an alumina crucible, melted by high-frequency induction, and then powdered by Ar gas atomization. This powder is adjusted to 180 μm or less by a wire mesh. 90 g of the adjusted powder and 10 g of a 0.5% by weight PVA (polyvinyl alcohol) aqueous solution are sufficiently kneaded in a beaker to form a slurry. A water-repellent vinyl is spread on a flat base, and the above slurry is sprayed thereon. Then, a water-repellent sheet is further placed on the flat base, and 0.2,0.
Stretch to a thickness of 3, 0.4, 0.5 mm. After drying the completed sheet, it is cut into φ20 × 20 mm, and the weight and thickness are measured. 2t sheet after measurement
/ Cm 2 to obtain 4 samples of Al80. The weight, thickness, and diameter of the obtained sheet were measured, and the packing density of the sheet after rolling was calculated.

【0010】(実施例2)上記実施例1と同様に製造し
た粉末を金網によって90μm以下となるように調整す
る。調整後の粉末90gと0.5重量%PVA(ポリビ
ニルアルコール)水溶液10gをビーカー内で十分に混
練してスラリーとする。平らな台に撥水性ビニールを敷
き、その上に上記スラリーを散布した後、さらに撥水性
シートをかけて、金属ロールによって0.1、0.1
5、0.2、0.3、0.4、0.5mmの厚さに引き
延ばす。出来上がったシートを乾燥させた後、φ20×
20mmにカットし、重量および厚さを計測する。計測
後のシートを2t/cm2 で圧延してA90の6試料を
得る。得られたシートの重量、厚さ、直径を測定し、圧
延後のシートの充填密度を算出した。
(Embodiment 2) The powder produced in the same manner as in Embodiment 1 is adjusted to 90 μm or less by a wire mesh. 90 g of the adjusted powder and 10 g of a 0.5% by weight PVA (polyvinyl alcohol) aqueous solution are sufficiently kneaded in a beaker to form a slurry. Spread the water-repellent vinyl on a flat table, spray the above slurry on it, further cover the water-repellent sheet, and use a metal roll to 0.1, 0.1
Stretch to a thickness of 5, 0.2, 0.3, 0.4, 0.5 mm. After drying the finished sheet, φ20 ×
Cut to 20 mm and measure weight and thickness. The sheet after measurement is rolled at 2 t / cm 2 to obtain six samples of A90. The weight, thickness, and diameter of the obtained sheet were measured, and the packing density of the sheet after rolling was calculated.

【0011】(実施例3)上記実施例1と同様に製造し
た粉末を金網によって45μm以下となるように調整す
る。調整後の粉末90gと0.5重量%PVA(ポリビ
ニルアルコール)水溶液10gをビーカー内で十分に混
練してスラリーとする。平らな台に撥水性ビニールを敷
き、その上に上記スラリーを散布した後、さらに撥水性
シートをかけて、金属ロールによって0.05、0.0
6、0.1、0.15、0.2、0.3、0.4、0.
5mmの厚さに引き延ばす。出来上がったシートを乾燥
させた後、φ20×20mmにカットし、重量および厚
さを計測する。計測後のシートを2t/cm2 で圧延し
てA45の8試料を得る。得られたシートの重量、厚
さ、直径を測定し、圧延後のシートの充填密度を算出し
た。
(Embodiment 3) The powder produced in the same manner as in Embodiment 1 is adjusted to be 45 μm or less by a wire mesh. 90 g of the adjusted powder and 10 g of a 0.5% by weight PVA (polyvinyl alcohol) aqueous solution are sufficiently kneaded in a beaker to form a slurry. Spread the water-repellent vinyl on a flat base, spray the above slurry on it, apply a water-repellent sheet on it, and apply 0.05, 0.0
6, 0.1, 0.15, 0.2, 0.3, 0.4, 0.
Stretch to a thickness of 5 mm. After drying the completed sheet, it is cut into φ20 × 20 mm, and the weight and thickness are measured. The sheet after measurement is rolled at 2 t / cm 2 to obtain eight samples of A45. The weight, thickness, and diameter of the obtained sheet were measured, and the packing density of the sheet after rolling was calculated.

【0012】(実施例4)Mm1.0Ni3.5Co
0.7Al0.3(原子比)を構成するように配合した
金属原料をアルミナ坩堝中に収納し、高周波誘導によっ
て溶解した後、そのまま坩堝中で凝固させて合金を作製
した。得られた合金をボールミルによって粉砕した後、
金網によって180μm以下となるように調整する。調
整後の粉末90gと0.5重量%PVA(ポリビニルア
ルコール)水溶液10gをビーカー内で十分に混練して
スラリーとする。平らな台に撥水性ビニールを敷き、そ
の上に上記スラリーを散布した後、さらに撥水性シート
をかけて、金属ロールによって0.2、0.3、0.
4、0.5mmの厚さに引き延ばす。出来上がったシー
トを乾燥させた後、φ20×20mmにカットし、重量
および厚さを計測する。計測後のシートを2t/cm2
で圧延してC180の4試料を得る。得られたシートの
重量、厚さ、直径を測定し、圧延後のシートの充填密度
を算出した。以上、実施例1〜4の結果を表1及び表2
に示す。
(Example 4) Mm1.0Ni3.5Co
A metal raw material mixed to constitute 0.7Al0.3 (atomic ratio) was accommodated in an alumina crucible, melted by high-frequency induction, and then solidified in the crucible to produce an alloy. After crushing the obtained alloy with a ball mill,
It is adjusted to 180 μm or less by a wire mesh. 90 g of the adjusted powder and 10 g of a 0.5% by weight PVA (polyvinyl alcohol) aqueous solution are sufficiently kneaded in a beaker to form a slurry. Water-repellent vinyl is spread on a flat base, and the above slurry is sprayed thereon. Then, a water-repellent sheet is further applied, and 0.2, 0.3, 0.
4. Stretch to a thickness of 0.5 mm. After drying the completed sheet, it is cut into φ20 × 20 mm, and the weight and thickness are measured. 2t / cm 2 for the sheet after measurement
To obtain four samples of C180. The weight, thickness, and diameter of the obtained sheet were measured, and the packing density of the sheet after rolling was calculated. As described above, the results of Examples 1 to 4 are shown in Tables 1 and 2.
Shown in

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】散布、乾燥させた粉末シートの厚みは圧延
することによって、どの試料においてもより薄くなっ
た。表2の圧延後のシート厚みとシート密度の関係を図
1に示す。どの試料においても一定の厚みまでは密度に
変化は見られないが、厚みが薄くなると急激に密度が上
昇する領域が存在している。またその領域は使用する粉
末の粒子径が大きいほど厚く、細かい粉末を使用するほ
ど薄くなる傾向がある。
The thickness of the sprayed and dried powder sheet was reduced in all samples by rolling. FIG. 1 shows the relationship between the sheet thickness and the sheet density after rolling in Table 2. In any of the samples, the density does not change up to a certain thickness, but there is a region where the density rapidly increases as the thickness decreases. Also, the region tends to be thicker as the particle size of the powder used is larger, and thinner as the finer powder is used.

【0016】図2に使用した粉末の粒度分布を測定し、
圧延後のシート厚み以上の粒径を持つ粉末の割合に対す
る圧延後のシート密度の関係を示す。また、この圧延後
のシート厚み以上の粒径を有する粉末の割合を5%以上
にすることによって、充填密度向上の効果が得られた。
さらに、上記粉末の製造方法としてアトマイズ法を用い
て製造した粉末を使用した場合、鋳造材を粉砕して作製
した粉末を使用した場合に比較して、より高い充填密度
を得ることが可能であった。
The particle size distribution of the powder used in FIG.
The relationship of the sheet density after rolling with respect to the ratio of the powder which has a particle size more than the sheet thickness after rolling is shown. The effect of improving the packing density was obtained by setting the proportion of the powder having a particle size equal to or greater than the thickness of the sheet after rolling to 5% or more.
Furthermore, when a powder produced by using the atomizing method is used as a method for producing the powder, a higher packing density can be obtained as compared with a case where a powder produced by pulverizing a cast material is used. Was.

【0017】[0017]

【発明の効果】以上述べたように、散布した粉末を圧延
してシートを作製する場合、使用する粉末に圧延後のシ
ート厚み以上の粒径を有する粉末を5%以上を使用する
ことによって、高い充填密度を持つシートを製造するこ
とが出来る。また、この方法により製造した電極は、粉
末の粒径を規定しない通常の製造方法に対して粉末密度
が向上、つまりエネルギー密度が高くなるために、より
高容量の電池を製造することができる。
As described above, when a sheet is produced by rolling the sprayed powder, a powder having a particle size equal to or greater than the thickness of the sheet after rolling is used in an amount of 5% or more. Sheets with high packing density can be manufactured. In addition, the electrode manufactured by this method has an improved powder density, that is, an increased energy density, compared to a normal manufacturing method in which the particle size of the powder is not specified, so that a higher capacity battery can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧延後のシート厚みと密度との関係を示す図、FIG. 1 is a diagram showing the relationship between sheet thickness and density after rolling;

【図2】圧延後シート厚み以上の粒径を有する粉末の割
合と密度との関係を示す図である。
FIG. 2 is a view showing a relationship between a ratio of a powder having a particle size equal to or larger than a sheet thickness after rolling and a density.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K017 AA04 BA03 BB01 BB12 CA01 CA07 DA01 EB00 EK01 FA03 5H003 AA02 BA00 BA05 BB02 BC01 BC04 BD02 BD04 5H016 AA02 BB05 BB08 CC03 EE01 HH01 HH13  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K017 AA04 BA03 BB01 BB12 CA01 CA07 DA01 EB00 EK01 FA03 5H003 AA02 BA00 BA05 BB02 BC01 BC04 BD02 BD04 5H016 AA02 BB05 BB08 CC03 EE01 HH01 HH13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を用いた電池用負極の製造
において、該電極に使用する水素吸蔵合金粉末のうち成
形後の電極における水素吸蔵合金シート厚以上の粒子径
を有する粉末を5重量%以上使用した原料を金属シート
上に散布した後、圧延により所定厚さの電極に成形する
ことを特徴とする水素吸蔵合金用負極の製造方法。
In the manufacture of a negative electrode for a battery using a hydrogen storage alloy, 5% by weight of a powder having a particle diameter equal to or greater than the thickness of the hydrogen storage alloy sheet in the electrode after molding is used among the hydrogen storage alloy powder used for the electrode. A method for producing a negative electrode for a hydrogen storage alloy, comprising spraying the used raw material on a metal sheet and forming the electrode into a predetermined thickness by rolling.
【請求項2】 請求項1記載の製造方法において、該水
素吸蔵合金粉末にガスアトマイズ法により製造した球状
粉末を用いることを特徴とする水素吸蔵合金用電極の製
造方法。
2. The method for producing an electrode for a hydrogen storage alloy according to claim 1, wherein a spherical powder produced by a gas atomization method is used as the hydrogen storage alloy powder.
【請求項3】 請求項1または2記載の製造方法によっ
て製造した水素吸蔵合金用負極。
3. A negative electrode for a hydrogen storage alloy produced by the production method according to claim 1.
JP11132200A 1999-05-13 1999-05-13 Manufacture of hydrogen storage alloy negative electrode and electrode thereof Pending JP2000323134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11132200A JP2000323134A (en) 1999-05-13 1999-05-13 Manufacture of hydrogen storage alloy negative electrode and electrode thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11132200A JP2000323134A (en) 1999-05-13 1999-05-13 Manufacture of hydrogen storage alloy negative electrode and electrode thereof

Publications (1)

Publication Number Publication Date
JP2000323134A true JP2000323134A (en) 2000-11-24

Family

ID=15075746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11132200A Pending JP2000323134A (en) 1999-05-13 1999-05-13 Manufacture of hydrogen storage alloy negative electrode and electrode thereof

Country Status (1)

Country Link
JP (1) JP2000323134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400624A (en) * 2013-07-13 2013-11-20 大丰市大奇金属磨料有限公司 Metal lead ball for shielding radiation and manufacturing method of metal lead ball

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400624A (en) * 2013-07-13 2013-11-20 大丰市大奇金属磨料有限公司 Metal lead ball for shielding radiation and manufacturing method of metal lead ball

Similar Documents

Publication Publication Date Title
JP2980328B2 (en) Hydrogen storage alloy for battery, method for producing the same, and nickel-metal hydride secondary battery
JP2004095469A (en) Negative electrode material for nonaqueous electrolyte secondary battery and manufacturing method of same
JP2000323134A (en) Manufacture of hydrogen storage alloy negative electrode and electrode thereof
JP3279994B2 (en) Hydrogen storage alloy powder and negative electrode for alkaline storage battery
JP4743997B2 (en) Hydrogen storage alloy electrode
JP3079890B2 (en) Hydrogen storage alloy powder and nickel-hydrogen battery
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode
JP2002231235A (en) Molding for carbon powder-containing nickel-hydrogen battery and method of manufacturing the same
JP2001126724A (en) Method for manufacturing hydrogen-occlusion alloy powder
JPH04126361A (en) Manufacture of hydrogen absorbing alloy powder for storage battery and hydrogen absorbing electrode
JP3149783B2 (en) Processing method of hydrogen storage alloy powder
JP2000169903A (en) Manufacture of hydrogen storage alloy powder
JP3414148B2 (en) Hydrogen storage alloy powder and hydrogen storage electrode for Ni-H secondary battery
JP2000017302A (en) Hydrogen storage alloy sintered compact and hydrogen storage alloy sintered compact porous negative electrode
JP3315880B2 (en) Method for producing hydrogen storage alloy powder
JP2000345253A (en) Production of hydrogen storage alloy and hydrogen storage alloy electrode
JP2001303101A (en) Hydrogen storage alloy powder having high magnetization and excellent in initial charging and discharging characteristics
JPH02253558A (en) Manufacture of hydrogen storage electrode
JP4504507B2 (en) Hydrogen storage alloy and method for producing the same
JP2924382B2 (en) Method for producing hydrogen storage alloy and alkaline storage battery using the alloy
JP3013412B2 (en) Negative electrode for metal hydride battery and method for producing the same
JP2001196057A (en) METHOD OF PREPARING HYDROGEN STORAGE ALLOY POWDER AND NEGATIVE ELECTRODE FOR Ni-HYDROGEN BATTERY USING SUCH POWDER
JPH10265810A (en) Hydrogen occlusion alloy powder, its production and electrode consisting thereof
JP2002231248A (en) Molding for paraffin-contained nickel-hydrogen battery and method of manufacturing the same
JP2001196058A (en) HYDROGEN STORAGE ALLOY POWDER, ITS PREPARATION AND NEGATIVE ELECTRODE FOR Ni-HYDROGEN BATTERY

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817