JP3414148B2 - Hydrogen storage alloy powder and hydrogen storage electrode for Ni-H secondary battery - Google Patents

Hydrogen storage alloy powder and hydrogen storage electrode for Ni-H secondary battery

Info

Publication number
JP3414148B2
JP3414148B2 JP23062296A JP23062296A JP3414148B2 JP 3414148 B2 JP3414148 B2 JP 3414148B2 JP 23062296 A JP23062296 A JP 23062296A JP 23062296 A JP23062296 A JP 23062296A JP 3414148 B2 JP3414148 B2 JP 3414148B2
Authority
JP
Japan
Prior art keywords
powder
hydrogen storage
electrode
alloy
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23062296A
Other languages
Japanese (ja)
Other versions
JPH1074508A (en
Inventor
幸輝 竹下
秀哉 上仲
辰夫 永田
教之 禰▲宜▼
光一 神代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23062296A priority Critical patent/JP3414148B2/en
Publication of JPH1074508A publication Critical patent/JPH1074508A/en
Application granted granted Critical
Publication of JP3414148B2 publication Critical patent/JP3414148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はニッケル−水素(Ni
−H)二次電池に適した水素吸蔵合金粉末および水素吸
蔵電極に関する。
TECHNICAL FIELD The present invention relates to nickel-hydrogen (Ni
-H) A hydrogen storage alloy powder and a hydrogen storage electrode suitable for a secondary battery.

【0002】[0002]

【従来の技術】化石燃料による大気汚染、温暖化等の地
球環境問題から、化石燃料に変わるクリーンな燃料とし
て水素が注目されている。これは、水素が水を原料とし
ていること、燃焼生成物が水であること、さらに電力・
熱・動力へのエネルギー変換システムに適用し得る材料
であるからである。
2. Description of the Related Art Hydrogen has attracted attention as a clean fuel that can replace fossil fuels due to global environmental problems such as air pollution and global warming caused by fossil fuels. This is because hydrogen uses water as a raw material, combustion products are water, and
This is because it is a material that can be applied to an energy conversion system for heat and power.

【0003】この水素を貯蔵する材料として水素吸蔵合
金が知られており、水素の貯蔵、ヒートポンプ、アクチ
ュエーター等への応用開発がなされてきた。近年では、
水素吸蔵合金を負極に用い、水素の吸蔵・放出で充電・
放電を行うアルカリ二次電池であるNi−H二次電池が実
用化された。
A hydrogen storage alloy is known as a material for storing hydrogen, and has been applied and developed to hydrogen storage, heat pumps, actuators and the like. in recent years,
Using a hydrogen storage alloy for the negative electrode, charging and discharging hydrogen
A Ni-H secondary battery, which is an alkaline secondary battery for discharging, has been put into practical use.

【0004】水素吸蔵合金を用いた電極は、水素吸蔵合
金粉末を少量の結着剤(有機バインダー)と共にペース
ト化し、この合金粉末ペーストを多孔性金属からなる電
極基板 (集電体) にロール圧延機を利用して圧着させて
シート化することにより一般に作製される。
An electrode using a hydrogen storage alloy is formed by forming a hydrogen storage alloy powder into a paste together with a small amount of a binder (organic binder), and rolling the alloy powder paste onto an electrode substrate (current collector) made of a porous metal. It is generally produced by pressing it into a sheet using a machine.

【0005】従来の小型アルカリ二次電池の主流であっ
たNi−Cd二次電池に比べて、Ni−H二次電池は電池容量
およびエネルギー密度を高くすることができ、機器のポ
ータブル化・一層の小型化に伴う高容量化のニーズに対
応し易い。さらに、Cdの公害面および資源上の問題もあ
って、Ni−H二次電池の需要はここ数年大きく伸びてお
り、電気自動車への適用も実用化されつつある。
Compared with the Ni-Cd secondary battery, which has been the mainstream of conventional small alkaline secondary batteries, the Ni-H secondary battery can increase the battery capacity and energy density, and makes the device portable and even more portable. It is easy to meet the needs for higher capacity due to the miniaturization. Furthermore, due to the pollution and resource problems of Cd, the demand for Ni-H secondary batteries has increased significantly in the last few years, and their application to electric vehicles is being put to practical use.

【0006】Ni−H二次電池用水素吸蔵合金として検討
されてきた主な合金系は、Mg系、LaNi5 やMmNi5 等のA
5 型希土類系、ZrV2 等で代表されるAB2 型ラーベ
ス相系、TiNiやTi2Ni で代表されるAB/A2 B系 (チ
タン系) 等である。実用化が進んでいるのはAB5 型と
AB2 型の水素吸蔵合金である。一般に、高率放電特性
や初期活性化の点ではAB5 型の方が優れており、単位
重量当たりの容量の点ではAB2 型が優れていると言わ
れている。
The major alloy systems that have been investigated as hydrogen storage alloys for Ni-H secondary batteries are Mg-based alloys, such as LaNi 5 and MmNi 5
Examples thereof include B 5 type rare earth type, AB 2 type Laves phase type represented by ZrV 2 and the like, AB / A 2 B type (titanium type) represented by TiNi and Ti 2 Ni. AB 5 type and AB 2 type hydrogen storage alloys are being put to practical use. It is generally said that the AB 5 type is superior in terms of high rate discharge characteristics and initial activation, and the AB 2 type is superior in terms of capacity per unit weight.

【0007】Ni−H二次電池の量産開始から数年が経過
し、その高容量化が進んでいるが、機器メーカーからの
より一層の高容量化の要望と、近年の高容量リチウムイ
オン電池の登場によって、Ni−H二次電池の高容量化の
必要性はますます高くなっている。
It has been several years since the mass production of Ni-H secondary batteries has started, and their capacities have been increasing. However, the demand for higher capacities from equipment manufacturers and the recent high capacity lithium ion batteries have been increasing. With the advent of, the need for higher capacity Ni-H secondary batteries is increasing.

【0008】高容量化の手段として、体積が限られた電
極当たりの水素吸蔵合金の充填率を高くすることは、容
量向上に直接結びつく。この観点から、球形の水素吸蔵
合金を用いて負極への合金の充填率を向上させること
が、特開平3−116655号公報などに提案されている。こ
のような球形の水素吸蔵合金粉末は、ガスアトマイズ法
や回転電極法等により製造することができる。
As a means for increasing the capacity, increasing the filling rate of the hydrogen storage alloy per electrode having a limited volume directly leads to the capacity improvement. From this viewpoint, it has been proposed, for example, in Japanese Patent Laid-Open No. 3-116655 to improve the filling rate of the alloy into the negative electrode by using a spherical hydrogen storage alloy. Such a spherical hydrogen storage alloy powder can be produced by a gas atomizing method, a rotating electrode method, or the like.

【0009】また、特開平8−17433 号公報に記載され
ているように、有機バインダーを使用せずに水素吸蔵合
金を焼結させる焼結式電極では、充填密度を 5.3〜5.
8 g/mlに高めることができる。しかし、バインダ
ーを使用せずに水素吸蔵電極を作製するのは容易ではな
く、生産コストが高くなるという問題がある。
Further, as described in JP-A-8-17433, in a sintered electrode in which a hydrogen storage alloy is sintered without using an organic binder, the packing density is 5.3 to 5.
It can be increased to 8 g / ml. However, it is not easy to manufacture a hydrogen storage electrode without using a binder, and there is a problem that the production cost increases.

【0010】[0010]

【発明が解決しようとする課題】前述したように、水素
吸蔵合金の球形粉を用いると、充填率の高い電極を作製
することができるが、その作製過程に問題があることが
判明した。即ち、球形であるが故に、合金間の接触が点
接触となり、接触面積が小さいため、摩擦が少ない。そ
のため、電極作製過程で合金粉末ペーストをロール圧延
機により基板に圧着する工程において滑りが発生し、圧
延が円滑に進まない。
As described above, when spherical powder of hydrogen storage alloy is used, an electrode having a high filling rate can be manufactured, but it has been found that there is a problem in the manufacturing process. That is, because of the spherical shape, the contact between the alloys becomes point contact, and the contact area is small, so there is little friction. Therefore, slippage occurs in the process of pressing the alloy powder paste onto the substrate by the roll rolling machine during the electrode manufacturing process, and the rolling does not proceed smoothly.

【0011】図1(a) に示すように、鋳造した水素吸蔵
合金 (インゴット) を粉砕して得た不規則形状の粉砕粉
では、粉末同士の滑りがないため、圧延は円滑に進行
し、厚みと充填密度が一定した圧着ペーストを形成する
ことができる。
As shown in FIG. 1 (a), the irregularly-shaped crushed powder obtained by crushing a cast hydrogen storage alloy (ingot) does not slip between the powders, so that the rolling proceeds smoothly, It is possible to form a pressure-bonding paste having a uniform thickness and packing density.

【0012】これに対し、球形粉を使用すると、図1
(b) に示すように、粉末同士の滑りのために圧延ロール
にうまく噛み込まれず、たるみや幅広がりが発生し、そ
の状況が常に変化するため、基板に圧着させたペースト
に厚みの不均一や合金粉末の疎密変化 (充填率の変化)
が生ずる。
On the other hand, if spherical powder is used, the result shown in FIG.
As shown in (b), the rolling rolls do not bite well due to the slippage of the powder, causing slackness and widening, and the situation constantly changes.Therefore, the thickness of the paste pressed onto the substrate is uneven. And alloy powder sparse / dense change (change in filling rate)
Occurs.

【0013】そのため、電極の厚みや合金の充填率が不
均一となり、所定品質の電極を安定して作製することが
困難となる。その結果、得られた電極を負極としてNi−
H二次電池を構成したときに所定の容量が得られなかっ
たり、充電時に内圧の上昇が発生したり、低温での高率
放電特性が悪いといった問題を生ずる。
Therefore, the thickness of the electrode and the filling rate of the alloy become non-uniform, which makes it difficult to stably manufacture an electrode of a predetermined quality. As a result, the obtained electrode was used as a negative electrode for Ni-
There are problems that a predetermined capacity cannot be obtained when the H secondary battery is constructed, an internal pressure rises during charging, and high rate discharge characteristics at low temperatures are poor.

【0014】特開平7−105943号公報および特開平8−
45505 号公報には、高率放電特性を改善する目的で、水
素吸蔵合金の球形粉に粉砕粉を混合するか、或いは球形
粉を部分焼結させて、合金の接触面積を増大させること
が記載されている。しかし、このような粉砕粉との混合
や一部焼結といった手段では、球形粉をそのまま使用す
る場合に比べて、合金の充填率が低下するので、電池の
容量向上には限界がある。
JP-A-7-105943 and JP-A-8-
45505 discloses that the contact area of the alloy is increased by mixing pulverized powder with spherical powder of hydrogen storage alloy or by partially sintering the spherical powder for the purpose of improving high rate discharge characteristics. Has been done. However, by such means as mixing with pulverized powder or partial sintering, the filling rate of the alloy is reduced as compared with the case where spherical powder is used as it is, so there is a limit to improving the capacity of the battery.

【0015】本発明の課題は、高充填が可能な球形粉の
水素吸蔵合金を用いて、上述した問題点のない、高容量
のNi−H二次電池を安定して、しかも生産コストを増大
させずに作製できる、水素吸蔵合金粉末と水素吸蔵電極
を提供することである。
An object of the present invention is to stabilize a high-capacity Ni-H secondary battery, which does not have the above-mentioned problems, by using a spherical powdery hydrogen-absorbing alloy capable of being highly filled, and to increase the production cost. It is to provide a hydrogen storage alloy powder and a hydrogen storage electrode that can be produced without performing the above.

【0016】[0016]

【課題を解決するための手段】本発明者らは、球形の水
素吸蔵合金粉末の粒度分布を規定し、特に平均径よりか
なり大きい粗粒子を一定範囲内の量で共存させ、かつ微
粒子も一定量以上存在させることにより、高充填でき、
かつ球形粉であっても圧延時の滑りが抑制されて、充填
密度の高い水素吸蔵電極を安定して製造できることを見
出し、本発明に到達した。
The present inventors defined the particle size distribution of spherical hydrogen-absorbing alloy powders, in particular, coexisting coarse particles considerably larger than the average diameter in an amount within a certain range, and the particles were also constant. Higher filling can be achieved by making more than a certain amount,
Moreover, they have found that even with spherical powder, slippage during rolling is suppressed, and a hydrogen storage electrode having a high packing density can be stably manufactured, and the present invention has been accomplished.

【0017】ここに、本発明は、平均径が5μm以上50
μm以下であり、かつ粒度分布における該平均径+30μ
m以上の粉末の割合が5%以上30%以下で、径20μm以
下の粉末の割合が5%以上であることを特徴とする、
スアトマイズ法、または回転電極法により製造された
質的に球形のNi−H二次電池用水素吸蔵合金粉末であ
る。本発明において水素吸蔵合金粉末の粒度分布におけ
る割合は体積割合である。この粒度分布はレーザー回折
式粒度分布計で測定したものである。
In the present invention, the average diameter is 5 μm or more.
the average diameter in the particle size distribution + 30μ
wherein the ratio of the above powder m is 5% or more and 30% or less, the following proportions of powder diameter 20μm is 5% or more, moth
It is a substantially spherical hydrogen storage alloy powder for a Ni-H secondary battery manufactured by a atomizing method or a rotating electrode method . In the present invention, the ratio in the particle size distribution of the hydrogen storage alloy powder is the volume ratio. This particle size distribution is measured by a laser diffraction type particle size distribution meter.

【0018】本発明はまた、この水素吸蔵合金粉末と有
機高分子バインダーとからなり、かつ圧延を受けて製造
された電極であって、基板を除外した充填密度が5.0 g/
cm3以上であることを特徴とするNi−H二次電池用水素
吸蔵電極も提供する。
The present invention is also an electrode made of this hydrogen-absorbing alloy powder and an organic polymer binder, which is manufactured by rolling and has a packing density of 5.0 g / min.
Also provided is a hydrogen storage electrode for a Ni-H secondary battery, which is characterized by having a cm 3 or more.

【0019】「実質的に球形」の水素吸蔵合金粉末と
は、球形もしくは略球形であることを意味し、例えば、
ガスアトマイズ法や回転電極法により作製された粉末が
これに相当する。一般にこのような粉末では、粉末粒子
直径の最大値と最小値の比 (アスペクト比) が2以下、
好ましくは1.5 以下である。
The "substantially spherical" hydrogen storage alloy powder means a spherical or substantially spherical shape, for example,
The powder produced by the gas atomizing method or the rotating electrode method corresponds to this. Generally, in such powder, the ratio (aspect ratio) of the maximum value and the minimum value of the powder particle diameter is 2 or less,
It is preferably 1.5 or less.

【0020】[0020]

【発明の実施の形態】本発明の水素吸蔵合金粉末は、上
記のように平均径と粒度分布を規定したものである。従
って、水素吸蔵合金種には関係なく適用できるので、使
用する水素吸蔵合金は、従来より公知、或いは今後開発
される任意の水素吸蔵合金でよい。現時点で好ましい水
素吸蔵合金は、現在実用化が進んでいるAB5 型または
AB2型水素吸蔵合金である。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage alloy powder of the present invention defines the average diameter and particle size distribution as described above. Therefore, since the hydrogen storage alloy can be applied regardless of the type of hydrogen storage alloy, the hydrogen storage alloy to be used may be any hydrogen storage alloy conventionally known or developed in the future. The presently preferred hydrogen storage alloy is the AB 5 type or AB 2 type hydrogen storage alloy which is now in practical use.

【0021】本発明の水素吸蔵合金粉末は、前述したよ
うに、実質的に球形な球形粉であるので、水素吸蔵合金
の溶湯から、例えば、ガスアトマイズ法 (例、アルゴン
ガスアトマイズ法) または回転電極法により製造するこ
とができる。前述した意味で実質的に球形粉末であれ
ば、他の方法で製造された球形粉であってもよい。ま
た、製造した合金粉末を分級し、所望の粒度分布にする
ため分級粉を適宜混合して用いてもよく、或いは2以上
のロットの球形粉を適宜混合してもよい。
As described above, the hydrogen-absorbing alloy powder of the present invention is a substantially spherical spherical powder. Therefore, from the molten hydrogen-absorbing alloy, for example, a gas atomizing method (eg, argon gas atomizing method) or a rotating electrode method is used. Can be manufactured by. Spherical powder produced by another method may be used as long as it is substantially spherical powder in the above-mentioned sense. Further, the produced alloy powder may be classified, and the classified powder may be appropriately mixed and used to obtain a desired particle size distribution, or spherical powders of two or more lots may be appropriately mixed.

【0022】球形粉は一般に急冷凝固を経ているため、
急冷歪みが残存している場合があり、必要であれば球形
粉を凝固後に熱処理して急冷歪みを緩和してもよい。ま
た、初期活性化特性を向上させる等の目的で水素吸蔵合
金粉末の各種の化学的処理法(例、酸および/またはア
ルカリ処理) が提案されており、所望により、このよう
な処理を施すこともできる。
Since spherical powder generally undergoes rapid solidification,
The quenching strain may remain, and if necessary, the spherical powder may be heat-treated after solidification to relax the quenching strain. In addition, various chemical treatment methods (eg, acid and / or alkali treatment) of the hydrogen storage alloy powder have been proposed for the purpose of improving the initial activation characteristics, and such treatment may be performed if desired. You can also

【0023】本発明の水素吸蔵合金粉末は、実質的に球
形で、平均径が5μm以上、50μm以下であり、かつそ
の粒度分布における該平均径+30μm以上の粉末の割合
が5%以上、30%以下で、径20μm以下の粉末の割合が
5%以上である。このような平均径と粒度分布を持つ球
形粉は、後で実施例において示すように、タップ密度
(粉末の最大充填密度の指標) が高く、もともと高充填
が可能である上、電極の製造工程における圧延時に滑り
にくく、不規則形状の粉砕粉と同様に円滑に圧延できる
ため、圧延後に高い充填密度を保持した、充填率と厚み
が均一な電極を得ることができ、そのため高容量化が可
能となり、製品品質も安定化する。
The hydrogen-absorbing alloy powder of the present invention is substantially spherical and has an average diameter of 5 μm or more and 50 μm or less, and the ratio of the powder having the average diameter + 30 μm or more in its particle size distribution is 5% or more, 30% or more. Below, the proportion of powder having a diameter of 20 μm or less is 5% or more. The spherical powder having such an average diameter and particle size distribution has a tap density, as will be shown later in Examples.
(Indicator of maximum packing density of powder) is high, it is possible to perform high packing from the beginning, it is hard to slip during rolling in the manufacturing process of electrodes, and it can be rolled smoothly like crushed powder with irregular shape, so high filling after rolling. It is possible to obtain an electrode having a uniform filling rate and a uniform thickness while maintaining the density, which enables high capacity and stabilizes product quality.

【0024】球形合金粉末の平均径が50μmより大きく
なると、合金間の接触点がより少なくなるので、ロール
圧延時に粉末同士が滑りを生じ、圧延が不均一となり、
所定の容量が得られない等の不具合が発生する。平均径
が5μmより小さくなると、合金が細かすぎて比表面積
が大きくなり、過充電時に酸化しやすく、電池を構成し
た際に寿命劣化が速くなる上、原料粉末のコストも増大
する。
When the average diameter of the spherical alloy powder is larger than 50 μm, the number of contact points between the alloys becomes smaller, so that the powders slip each other during roll rolling, resulting in uneven rolling.
Problems such as the inability to obtain a predetermined capacity may occur. If the average diameter is smaller than 5 μm, the alloy becomes too fine and the specific surface area becomes large, so that the alloy is easily oxidized during overcharging, the life of the battery is deteriorated rapidly, and the cost of the raw material powder also increases.

【0025】本発明では、上記の平均径の規定に加え
て、粒度分布も規定する。これは、平均径だけでは上記
課題が解決されないためである。そのため、本発明では
該平均径+30μm以上の粉末 (平均径より30μm以上大
きい粗粒子) を5〜30%存在させ、かつ径が20μm以下
の粉末(微粒子)を5%以上存在させる。
In the present invention, in addition to the above definition of the average diameter, the particle size distribution is also defined. This is because the above problem cannot be solved only by the average diameter. Therefore, in the present invention, 5 to 30% of the powder having the average diameter + 30 μm or more (coarse particles larger than the average diameter by 30 μm or more) is present, and 5% or more of the powder (fine particles) having the diameter of 20 μm or less is present.

【0026】一般に、球形粉末の粒度分布が極端に狭い
より、ある程度広い方が、粉末の充填率は向上するとい
われている。本発明者は、前記粗粒子をある程度存在さ
せることで、球形粉末の高充填が可能となることを見出
した。しかし、本発明では、充填率が向上するだけでな
く、粒度分布を上記のように規定することにより、球形
粉末のペーストをロール圧延する際に滑りが起こりにく
いという、予想外の結果が得られる。
In general, it is said that the packing rate of the powder is improved when the particle size distribution of the spherical powder is rather wide rather than extremely narrow. The present inventor has found that the spherical powder can be highly filled by allowing the coarse particles to exist to some extent. However, in the present invention, not only the filling rate is improved, but by defining the particle size distribution as described above, slippage does not easily occur when rolling the paste of spherical powder, an unexpected result is obtained. .

【0027】該平均径+30μm以上の粗粒子の割合が30
%を超えると、たとえ充填率がさらに向上しても、合金
間の接点が減少し、ロール圧延時に粉末が滑り易くなっ
て、電極がうまく作れなくなる可能性が大きくなる。こ
の粗粒子の該平均径からの粒径差を30μm未満に設定す
ると、不規則形状の粉砕粉に対する球形粉の充填率向上
という利点が充分に得られないことがある。一方、該平
均径+30μm以上の粉末の割合が5%未満になると、充
分な充填率の向上効果が得られない。該平均径+30μm
以上の粉末の割合は、好ましくは10〜20%である。
The ratio of coarse particles having an average diameter of 30 μm or more is 30
If it exceeds%, even if the filling rate is further improved, the contact points between the alloys are decreased, the powder becomes slippery during roll rolling, and there is a high possibility that the electrode cannot be successfully manufactured. When the difference in particle diameter from the average diameter of the coarse particles is set to less than 30 μm, the advantage of improving the filling rate of the spherical powder with respect to the irregularly ground powder may not be sufficiently obtained. On the other hand, if the ratio of the powder having the average diameter + 30 μm or more is less than 5%, a sufficient effect of improving the filling rate cannot be obtained. The average diameter +30 μm
The ratio of the above powder is preferably 10 to 20%.

【0028】20μm以下の粉末の割合が5%未満では、
やはりロール圧延時に粉末が滑り易くなって、電極がう
まく作れなくなる可能性が大きくなる。20μm以下の粉
末の割合は10%以上とすることが好ましく、それによ
り、圧延時の滑りの防止効果はより顕著となる。
If the proportion of powder of 20 μm or less is less than 5%,
After all, the powder becomes slippery during roll rolling, which increases the possibility that the electrode cannot be manufactured well. The proportion of powder of 20 μm or less is preferably 10% or more, whereby the effect of preventing slippage during rolling becomes more remarkable.

【0029】平均径および粒度分布が本発明で規定した
範囲を外れると、電極製造におけるロール圧延時に合金
が滑る現象が発生するばかりでなく、電極への合金充填
量の増大の効果が少なく、充分な高容量化の効果が得ら
れない。なお、本発明では、粒度分布のうち該平均径+
30μm以上の粗粉末の割合と20μm以下の微粉末の割合
が上記範囲内であれば上記効果が得られるので、全体の
粒度分布は特に限定しない。
If the average diameter and particle size distribution deviate from the ranges specified in the present invention, not only the phenomenon that the alloy slips during roll rolling in the production of electrodes but also the effect of increasing the amount of alloy filled in the electrode is small and sufficient. The effect of high capacity cannot be obtained. In the present invention, the average diameter of the particle size distribution +
If the ratio of the coarse powder of 30 μm or more and the ratio of the fine powder of 20 μm or less are within the above range, the above effect can be obtained, so that the overall particle size distribution is not particularly limited.

【0030】本発明の実質的に球形の水素吸蔵合金粉末
から、水素吸蔵電極は常法により、結着剤として有機高
分子バインダーを用いて製造することができる。Ni−H
二次電池の電解液がアルカリ水溶液 (例、水酸化カリウ
ム水溶液) であるので、バインダーとしては耐アルカリ
性の有機高分子材料を使用する。適当なバインダーの例
は、ポリビニルアルコール、ポリエチレンオキサイド、
カルボキシメチルセルロース、ポリテトラフルオロエチ
レンなどの有機高分子である。
From the substantially spherical hydrogen-absorbing alloy powder of the present invention, a hydrogen-absorbing electrode can be produced by a conventional method using an organic polymer binder as a binder. Ni-H
Since the electrolyte of the secondary battery is an alkaline aqueous solution (eg, potassium hydroxide aqueous solution), an alkali-resistant organic polymer material is used as the binder. Examples of suitable binders are polyvinyl alcohol, polyethylene oxide,
Organic polymers such as carboxymethyl cellulose and polytetrafluoroethylene.

【0031】有機高分子バインダーの溶液に水素吸蔵合
金粉末を混合し、ペースト化する。このペーストを、集
電体となる電極基板に塗布して乾燥させる。基板は、一
般に平織金網、エキスパンドメタル、パンチングメタ
ル、発泡金属、繊維状金属などの多孔性金属 (通常はニ
ッケル金属またはニッケルめっきした鉄)からなる。水
素吸蔵合金の充填密度を高めるため、塗布・乾燥後に、
ロール圧延機による圧延を行い、水素吸蔵合金粉末を基
板に圧着させると、電極が得られる。
Hydrogen storage alloy powder is mixed with a solution of an organic polymer binder to form a paste. This paste is applied to an electrode substrate serving as a current collector and dried. The substrate is generally made of a porous metal (usually nickel metal or nickel-plated iron) such as plain weave wire mesh, expanded metal, punching metal, foam metal, and fibrous metal. To increase the packing density of the hydrogen storage alloy, after coating and drying,
An electrode is obtained by rolling with a rolling mill and pressing the hydrogen storage alloy powder onto the substrate.

【0032】本発明の水素吸蔵合金粉末は、球形粉であ
るにもかかわらず、圧延時に滑りが発生しないため、そ
の本来の高充填性をそのまま保持することができ、バイ
ンダーを含有した電極の充填密度 (基板を除いた部分)
が5.0 g/cm3 以上、好ましくは5.5 g/cm3 以上という、
バインダー含有電極にしては充填密度が高い電極を製造
することが可能となる。それにより、不規則形状の粉砕
粉を用いて作製された同体積の水素吸蔵電極より水素吸
蔵量が多くなるため、高容量のNi−H二次電池が作製で
きる。
Although the hydrogen-absorbing alloy powder of the present invention is a spherical powder, it does not cause slippage during rolling, so that the original high filling property can be maintained as it is, and the filling of the electrode containing the binder can be performed. Density (excluding substrate)
Is 5.0 g / cm 3 or more, preferably 5.5 g / cm 3 or more,
As a binder-containing electrode, it is possible to manufacture an electrode having a high packing density. As a result, the hydrogen storage amount is larger than that of the hydrogen storage electrode of the same volume produced by using the irregularly-shaped pulverized powder, so that a high capacity Ni-H secondary battery can be produced.

【0033】[0033]

【実施例】以下、実施例により本発明の効果を例証す
る。実施例中、粒度分布に関するもの以外の%は、特に
指定のない限り重量%である。粒度分布に関する%は、
前述したように体積割合である。
EXAMPLES The effects of the present invention will be illustrated by the following examples. In the examples,% other than those relating to the particle size distribution is% by weight unless otherwise specified. % Related to particle size distribution is
As described above, it is the volume ratio.

【0034】実施例で用いた水素吸蔵合金粉末は、表1
に示す組成を持つAB5 型合金 (合金A) およびAB2
型合金 (合金B) である。表中、MmはLa:27%、Ce:
48%、Pr:7%、Nd:17%を含む希土類金属混合合金
(ミッシュメタル) である。
The hydrogen storage alloy powders used in the examples are shown in Table 1.
AB 5 type alloy (alloy A) and AB 2 having the composition shown in
It is a type alloy (alloy B). In the table, Mm is La: 27%, Ce:
Rare earth metal mixed alloy containing 48%, Pr: 7%, Nd: 17%
(Misch Metal).

【0035】[0035]

【表1】 [Table 1]

【0036】(実施例1)表1に示すAB5 型の合金Aの
組成を用い、Arガスアトマイズ法により実質的に球形の
水素吸蔵合金粉末を作製した。条件を変えて、平均径の
異なる水素吸蔵合金粉末を作製し、それらをそのままあ
るいは適宜混合して、または分級した後で分級物を適宜
混合することによって、平均径と粒度分布の異なる各種
のアトマイズ法球形粉(アトマイズ粉ともいう)を用意
した。
Example 1 Using the composition of AB 5 type alloy A shown in Table 1, a substantially spherical hydrogen storage alloy powder was produced by an Ar gas atomizing method. By changing the conditions, hydrogen storage alloy powders having different average diameters are produced, and as they are or by appropriately mixing them, or by classifying them appropriately after mixing, various atomized particles having different average diameters and particle size distributions. A spherical powder (also called atomized powder) was prepared.

【0037】従来の水素吸蔵合金粉末として、同組成の
鋳造インゴットをボールミルにより粉砕した水素吸蔵合
金粉末 (粉砕粉) 、特開平7−105943号公報に記載のよ
うにアトマイズ粉と粉砕粉とを混合した混合粉 (アトマ
イズ粉:粉砕粉の混合重量比=7:3) 、ならびに特開
平8−45505 号公報に記載のようにアトマイズ粉を熱処
理し (1000℃×4時間) 一部焼結させた後に解砕した一
部焼結粉、も併せて製造した。
As a conventional hydrogen-absorbing alloy powder, a hydrogen-absorbing alloy powder (crushed powder) obtained by crushing a cast ingot of the same composition by a ball mill, and atomized powder and crushed powder are mixed as described in JP-A-7-105943. The mixed powder (mixed weight ratio of atomized powder: crushed powder = 7: 3) and the atomized powder were heat-treated (1000 ° C. × 4 hours) and partially sintered as described in JP-A-8-45505. A part of the sintered powder that was crushed later was also manufactured.

【0038】得られた水素吸蔵合金粉末の平均径、該平
均径+30μm以上と径20μm以下の粉末の割合およびタ
ップ密度を表2に示す。なお、これらの平均径および割
合はレーザー回折式の粒度分布測定器により測定した積
算50%径 (平均径) および粒度分布から求めた。
Table 2 shows the average diameter of the obtained hydrogen storage alloy powder, the ratio of the powder having the average diameter +30 μm or more and the diameter of 20 μm or less, and the tap density. The average diameter and proportion were calculated from the integrated 50% diameter (average diameter) and particle size distribution measured by a laser diffraction particle size distribution analyzer.

【0039】タップ密度は、合金粉末を均一に充填した
シリンダをタッピングすることにより合金粉末を圧縮さ
せ、その時の合金粉末の重量をその占有体積で除するこ
とにより求めた、最密充填密度の指標となる値である。
本実施例では、シリンダ体積:100 cc、ストローク:40
mm、タッピング:800 回 (2回/秒) の条件にて測定を
行った。
The tap density is an index of the closest packing density obtained by compressing the alloy powder by tapping a cylinder uniformly filled with the alloy powder and dividing the weight of the alloy powder at that time by its occupied volume. Is the value.
In this embodiment, cylinder volume: 100 cc, stroke: 40
mm, tapping: The measurement was performed under the condition of 800 times (2 times / second).

【0040】各合金粉末は900 ℃で4時間の熱処理を施
してから使用した。各合金粉末に同じ割合でバインダー
の5%ポリビニルアルコール水溶液を添加して混練し、
水素吸蔵合金粉末のペーストを調製した。このペースト
を、パンチングメタル(ニッケルめっき)の両面に一定
厚みに塗布し、乾燥した後、ロール圧延機により圧延
し、水素吸蔵電極を作製した。ここで、各電極は、ロー
ル間隔を一定にすることにより、電極基板のパンチング
メタルを除いた乾燥合金ペーストの占める体積が1cm3
の一定厚みになるように作製した。得られた電極の充填
密度 (基板のパンチングメタルを除外) を測定し、同じ
く表2に示す。
Each alloy powder was used after being heat-treated at 900 ° C. for 4 hours. Add 5% polyvinyl alcohol aqueous solution of binder in the same ratio to each alloy powder and knead,
A hydrogen storage alloy powder paste was prepared. This paste was applied on both sides of punching metal (nickel plating) to a constant thickness, dried, and then rolled by a roll mill to produce a hydrogen storage electrode. Here, in each electrode, the volume occupied by the dry alloy paste excluding the punching metal of the electrode substrate is 1 cm 3 by making the roll interval constant.
Was manufactured to have a constant thickness. The packing density (excluding punching metal of the substrate) of the obtained electrode was measured and is also shown in Table 2.

【0041】この電極を負極とし、ポリアミド不織布を
介して、負極より容量の大きな市販の焼結式ニッケル正
極と組み合わせて、容器中に挿入し、電解液として6N−
KOH水溶液を注入して、負極容量規制型のNi−H二次電
池を構成した。
This electrode was used as a negative electrode, combined with a commercially available sintered nickel positive electrode having a larger capacity than the negative electrode via a polyamide non-woven fabric, and inserted into a container to give 6N- as an electrolytic solution.
A KOH aqueous solution was injected to form a negative electrode capacity regulated Ni-H secondary battery.

【0042】電極の合金充填率と合金の電極容量 (合金
Aでは約320 mAh/g)から、この電池の容量を算出し、3
時間率の電流で110 %の過充電を行った後、同じく3時
間率の電流で端子電圧0.9 Vまでの放電を行い、その時
の放電容量を測定した。この結果も表2に示す。なお、
3時間率の電流とは、所定容量の充電または放電が3時
間で行われるような電流値を意味する。
The capacity of this battery was calculated from the alloy filling rate of the electrode and the electrode capacity of the alloy (about 320 mAh / g for alloy A).
After performing 110% overcharge at a current of a time rate, discharging was performed to a terminal voltage of 0.9 V at a current of a similar rate for 3 hours, and the discharge capacity at that time was measured. The results are also shown in Table 2. In addition,
The 3-hour rate current means a current value at which a predetermined capacity is charged or discharged in 3 hours.

【0043】[0043]

【表2】 [Table 2]

【0044】表2からわかるように、本発明に規定する
平均径および粒度分布を持つ球形粉を使用した試験No.
1、3、4、6、7、9、11は、タップ密度が、従来例
である試験No.13 の粉砕粉より高く、高充填が可能であ
ることがわかる。その上、ペースト化して塗布後にロー
ル圧延した後の電極の充填密度も高く、5.0 g/cm3 以上
の充填密度を持つ電極を形成することができた。特に、
試験No. 1、3、5、6のようにタップ密度が著しく高
い場合でも、ロール圧延後に高い充填密度を保持してお
り、これは圧延時の滑りが抑制され、合金粉末の持つ高
充填性が圧延中もそのまま維持されていることを示す。
充填密度が高いため、電池容量も、粉砕粉を使用した試
験No. 13より著しく高くなった。
As can be seen from Table 2, Test No. using spherical powder having the average diameter and particle size distribution specified in the present invention.
It is understood that the tap densities of Nos. 1, 3, 4, 6, 7, 9, and 11 are higher than those of the crushed powder of Test No. 13 which is a conventional example, and high filling is possible. In addition, the packing density of the electrode after it was made into a paste and rolled after coating was high, and an electrode having a packing density of 5.0 g / cm 3 or more could be formed. In particular,
Even if the tap density is extremely high as in Test Nos. 1, 3, 5, and 6, it retains a high packing density after rolling, which suppresses slippage during rolling and has a high packing property of alloy powder. Indicates that it is maintained during rolling.
Due to the high packing density, the battery capacity was also significantly higher than Test No. 13 using ground powder.

【0045】これに対し、球形粉を使用しても、平均径
または粒度分布が本発明の範囲外となった比較例では、
試験No.2および10のように、タップ密度が非常に高くて
も電極の充填密度は大きく低下し、従来例と同程度にな
った。これは、試験No.2では該平均径+30μm以上の粗
粒子の含有量が多すぎるため、試験No.10 では平均径が
大き過ぎるため、いずれもロール圧延時に滑りが発生
し、電極の充填密度が著しく低下したものと考えられ
る。さらに、試験No.2および10では、充電時にガスが発
生した。この現象も、上述のロール圧延時の滑りにより
合金粒子間の接触が不十分となって起こったものと考え
られる。なお、本発明例では、このようなガス発生は見
られなかった。
On the other hand, in the comparative example in which the average diameter or the particle size distribution was out of the range of the present invention even when the spherical powder was used,
As in Test Nos. 2 and 10, even when the tap density was very high, the packing density of the electrode was significantly reduced, and was about the same as the conventional example. This is because in Test No.2, the content of coarse particles with the average diameter +30 μm or more is too large, and in Test No.10, the average diameter is too large. Is considered to have significantly decreased. Further, in Test Nos. 2 and 10, gas was generated during charging. It is considered that this phenomenon also occurred due to insufficient contact between the alloy particles due to the above-described slippage during rolling. In addition, in the present invention example, such gas generation was not observed.

【0046】また、試験No.5および8 では、粒度分布が
不適切で、タップ密度が低過ぎ、高い充填密度と容量が
得られていない。試験No.12 では、平均径が小さすぎ
て、粗粒子を含有していないため、充分な充填密度が得
られなかった。
In Test Nos. 5 and 8, the particle size distribution was inappropriate, the tap density was too low, and high packing density and capacity were not obtained. In Test No. 12, the average diameter was too small to contain coarse particles, so that a sufficient packing density could not be obtained.

【0047】また、球形のアトマイズ粉と粉砕粉との混
合粉を使用した試験No.14 および熱処理により一部焼結
させたアトマイズ粉を解砕して用いた試験No.15 の従来
例では、粉砕粉のみを使用した試験No.13 よりは高い充
填密度が得られたが、球形粉のみを用いた本発明例に比
べて充填密度と電池性能のいずれも劣っており、本発明
の水素吸蔵合金粉末がこれらの従来の水素吸蔵合金粉末
より優れていることがわかる。
Further, in the conventional example of Test No. 14 using a mixed powder of spherical atomized powder and crushed powder and Test No. 15 using the atomized powder partially sintered by heat treatment to crush, Although a higher packing density was obtained than Test No. 13 using only pulverized powder, both the packing density and the battery performance were inferior to the inventive examples using only spherical powder, and the hydrogen storage of the present invention was It can be seen that the alloy powder is superior to these conventional hydrogen storage alloy powders.

【0048】(実施例2)表1に示すAB2 型の合金Bを
用いた以外は、実施例1と同様に水素吸蔵合金粉末およ
び水素吸蔵電極を作製し、それぞれ実施例1と同様に試
験した。試験結果を表3に示す。
Example 2 A hydrogen storage alloy powder and a hydrogen storage electrode were prepared in the same manner as in Example 1 except that the AB 2 type alloy B shown in Table 1 was used, and the same test as in Example 1 was conducted. did. The test results are shown in Table 3.

【0049】[0049]

【表3】 [Table 3]

【0050】容量が高いAB2 型合金を用いたため、電
池容量は実施例1より全般的に高くなっているが、合金
組成が違っていても実施例1と同様の傾向が出ているこ
とがわかる。
Since the AB 2 type alloy having a high capacity was used, the battery capacity was generally higher than that in Example 1. However, even if the alloy composition was different, the same tendency as in Example 1 was observed. Recognize.

【0051】即ち、本発明例では、タップ密度および電
極の充填密度のいずれも、従来例の粉砕粉を使用した場
合より高くなり、5.0 g/cm3 以上の充填密度 (基板を除
外)を持つ、高容量の電極が得られた。これに対し、平
均径または粒度分布が本発明の範囲外になると、たとえ
タップ密度が高くても、電極の充填密度は低く、電極容
量も低下した。また、従来例では、アトマイズ粉と粉砕
粉との混合粉やアトマイズ粉の一部焼結粉の方が、粉砕
粉よりは高い充填密度が得られたが、やはり本発明例に
比べると充填密度と電池性能のいずれも劣っていた。
That is, in the example of the present invention, both the tap density and the packing density of the electrode are higher than the case where the pulverized powder of the conventional example is used, and the packing density is 5.0 g / cm 3 or more (excluding the substrate). A high capacity electrode was obtained. On the other hand, when the average diameter or the particle size distribution was out of the range of the present invention, the packing density of the electrode was low and the electrode capacity was reduced even if the tap density was high. Further, in the conventional example, a mixed powder of atomized powder and pulverized powder or a part of the powder of atomized powder was higher in packing density than the pulverized powder, but the packing density was still higher than that of the example of the present invention. And the battery performance was inferior.

【0052】[0052]

【発明の効果】以上に説明したように、本発明によれ
ば、平均径と粒度分布を一定範囲に調整することによ
り、球状の水素吸蔵合金粉末の高充填性を活かしなが
ら、電極製造時の球形状合金粉末固有の問題点 (ロール
圧延時の不良による充填密度の低下)を克服することが
でき、電極の基板部を除いた充填密度が5.0 g/cm3
上、好ましくは5.5 g/cm3 以上と高く、高容量の電極が
製造できる。また、圧延時の不具合がなくなると、厚み
と充填密度が均一な電極を製造できるため、品質のバラ
ツキがなくなり、製品歩留りが向上する。
As described above, according to the present invention, by adjusting the average diameter and the particle size distribution within a certain range, the high filling property of the spherical hydrogen-absorbing alloy powder can be utilized while the electrode is manufactured. The problems peculiar to spherical alloy powder (decrease in packing density due to defects during roll rolling) can be overcome, and the packing density excluding the substrate part of the electrode is 5.0 g / cm 3 or more, preferably 5.5 g / cm Higher than 3 and high capacity electrodes can be manufactured. In addition, if there is no problem during rolling, it is possible to manufacture an electrode having a uniform thickness and packing density, so that there is no variation in quality and the product yield improves.

【0053】本発明により、高充填が可能な球状水素吸
蔵合金粉末を用いて不具合の発生無しに高容量の水素吸
蔵電極の安定した製造が可能となり、Ni−H二次電池の
高容量化を実現することができる。
According to the present invention, a spherical hydrogen storage alloy powder capable of being highly filled can be used to stably manufacture a hydrogen storage electrode having a high capacity without causing a problem, thereby increasing the capacity of a Ni-H secondary battery. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】水素吸蔵合金粉末のペーストを基板に圧着させ
るロール圧延時の様子を示す説明図であり、図1(a) は
不規則形状の粉砕粉を使用した場合、図1(b) は球形粉
を使用した場合の滑りによる不具合を示す。
FIG. 1 is an explanatory view showing a state of roll rolling in which a paste of hydrogen storage alloy powder is pressure-bonded to a substrate. FIG. 1 (a) shows a case where irregularly-shaped pulverized powder is used, and FIG. 1 (b) shows Defects due to slippage when spherical powder is used are shown.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 禰▲宜▼ 教之 大阪市中央区北浜4丁目5番33号 住友 金属工業株式会社内 (72)発明者 神代 光一 大阪市中央区北浜4丁目5番33号 住友 金属工業株式会社内 (56)参考文献 特開 平7−73880(JP,A) 特開 平1−132049(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 H01M 4/38 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noriyuki Noriyuki 4-533 Kitahama, Chuo-ku, Osaka City Sumitomo Metal Industries, Ltd. (72) Koichi Kamishiro 4-5 Kitahama, Chuo-ku, Osaka City No. 33 Sumitomo Metal Industries Co., Ltd. (56) Reference JP-A-7-73880 (JP, A) JP-A-1-132049 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) ) H01M 4/24 H01M 4/38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均径が5μm以上50μm以下であり、
かつ粒度分布における該平均径+30μm以上の粉末の体
積割合が5%以上30%以下で、径20μm以下の粉末の体
積割合が5%以上であることを特徴とする、ガスアトマ
イズ法、または回転電極法により製造された実質的に球
形のNi−H二次電池用水素吸蔵合金粉末。
1. An average diameter of 5 μm or more and 50 μm or less,
A gas atomizer characterized in that the volume ratio of the powder having the average diameter + 30 μm or more in the particle size distribution is 5% or more and 30% or less, and the volume ratio of the powder having a diameter of 20 μm or less is 5% or more.
A substantially spherical hydrogen storage alloy powder for a Ni-H secondary battery, which is produced by the Izu method or the rotating electrode method .
【請求項2】 請求項1記載の水素吸蔵合金粉末と有機
高分子バインダーとからなり、かつ圧延を受けて製造さ
れた電極であって、基板を除外した充填密度が5.0 g/cm
3 以上であることを特徴とするNi−H二次電池用水素吸
蔵電極。
2. An electrode comprising the hydrogen storage alloy powder according to claim 1 and an organic polymer binder, which is manufactured by rolling and has a packing density of 5.0 g / cm, excluding the substrate.
A hydrogen storage electrode for a Ni-H secondary battery, which is characterized by having 3 or more.
JP23062296A 1996-08-30 1996-08-30 Hydrogen storage alloy powder and hydrogen storage electrode for Ni-H secondary battery Expired - Fee Related JP3414148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23062296A JP3414148B2 (en) 1996-08-30 1996-08-30 Hydrogen storage alloy powder and hydrogen storage electrode for Ni-H secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23062296A JP3414148B2 (en) 1996-08-30 1996-08-30 Hydrogen storage alloy powder and hydrogen storage electrode for Ni-H secondary battery

Publications (2)

Publication Number Publication Date
JPH1074508A JPH1074508A (en) 1998-03-17
JP3414148B2 true JP3414148B2 (en) 2003-06-09

Family

ID=16910668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23062296A Expired - Fee Related JP3414148B2 (en) 1996-08-30 1996-08-30 Hydrogen storage alloy powder and hydrogen storage electrode for Ni-H secondary battery

Country Status (1)

Country Link
JP (1) JP3414148B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142428B2 (en) 2001-06-21 2013-02-13 パナソニック株式会社 Method for producing hydrogen storage alloy electrode for nickel metal hydride storage battery
JP4698291B2 (en) * 2005-05-31 2011-06-08 三洋電機株式会社 Alkaline storage battery

Also Published As

Publication number Publication date
JPH1074508A (en) 1998-03-17

Similar Documents

Publication Publication Date Title
JP3191752B2 (en) Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
US5529857A (en) Hydrogen-absorbing alloy electrode and process for producing the same
JP2000082461A (en) Mg NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURE, HYDROGEN STORAGE ALLOY ELECTRODE AND ALKALINE SECONDARY BATTERY
EP0581275B1 (en) A pasted type nickel electrode for an alkaline storage battery and an alkaline storage battery
JP2002105563A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery using the same
JP3138120B2 (en) Metal hydride storage battery
JP2947284B2 (en) Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3414148B2 (en) Hydrogen storage alloy powder and hydrogen storage electrode for Ni-H secondary battery
JPH0837004A (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage battery
JP3114402B2 (en) Manufacturing method of alkaline storage battery
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JPH10259436A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2002231235A (en) Molding for carbon powder-containing nickel-hydrogen battery and method of manufacturing the same
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH07296810A (en) Hydrogen storage alloy powder and nickel-hydrogen battery
JPH10172546A (en) Hydrogen storage alloy powder and electrode for battery
JP3464717B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JP3685643B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery using the electrode
JP3981421B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JPH10102174A (en) Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
CA1263437A (en) Cadmium negative electrode
JPH10199521A (en) Hydrogen storage alloy powder and hydrogen storage electrode
JPH10106621A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030304

LAPS Cancellation because of no payment of annual fees