JP2004095469A - Negative electrode material for nonaqueous electrolyte secondary battery and manufacturing method of same - Google Patents

Negative electrode material for nonaqueous electrolyte secondary battery and manufacturing method of same Download PDF

Info

Publication number
JP2004095469A
JP2004095469A JP2002257810A JP2002257810A JP2004095469A JP 2004095469 A JP2004095469 A JP 2004095469A JP 2002257810 A JP2002257810 A JP 2002257810A JP 2002257810 A JP2002257810 A JP 2002257810A JP 2004095469 A JP2004095469 A JP 2004095469A
Authority
JP
Japan
Prior art keywords
negative electrode
phase
electrode material
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002257810A
Other languages
Japanese (ja)
Other versions
JP4069710B2 (en
Inventor
Yukiteru Takeshita
竹下 幸輝
Motoharu Obika
小比賀 基治
Tatsuo Nagata
永田 辰夫
Hideya Kaminaka
上仲 秀哉
Yasuto Higashida
東田 泰斗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Panasonic Holdings Corp
Original Assignee
Sumitomo Metal Industries Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Matsushita Electric Industrial Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002257810A priority Critical patent/JP4069710B2/en
Publication of JP2004095469A publication Critical patent/JP2004095469A/en
Application granted granted Critical
Publication of JP4069710B2 publication Critical patent/JP4069710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material and a manufacturing method of the same having high discharge capacity and discharge/charge efficiency, an excellent cycle life, and stable performance by improving the cycle life of the negative electrode material for a nonaqueous electrolyte secondary battery having an active material phase (a phase reversely reacting with Li) of high capacity such as Si and Sn, and an inactive phase (for example, CoSi<SB>2</SB>). <P>SOLUTION: This manufacturing method conducts mechanical grinding processing (crushing and granulation by grinding) of the negative electrode material obtained by quenching from molten metal with a ball mill type device (an attritor, vibrating ball mill, planetary ball mill or the like), or conducts the mechanical grinding processing of mixture of fine powder of the active material phase and the inactive phase. A contained rate of the active material phase does not change before and after the processing. The active material phase of the negative electrode material subjected to the mechanical grinding processing is fined, and a peak strength of at least one active material phase becomes not more than 50 % of the peak strength before the mechanical grinding processing in an X-ray diffraction pattern. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、Li等のアルカリ金属を多量かつ可逆的に吸蔵・放出することができる非水電解質二次電池用負極材料と、この負極材料の製造方法とに関する。非水電解質二次電池は、支持電解質を有機溶媒に溶解した液状非水電解質を用いた電池と、高分子電解質やゲル電解質等の固体状態の非水電解質を用いた電池とを包含する。
【0002】
【従来の技術】
携帯機器の普及に伴い、高容量の非水電解質二次電池の需要が高まり、そのさらなる高容量化が求められている。
【0003】
現在実用化されている非水電解質二次電池は、炭素材料を負極に用いたリチウムイオン二次電池であるが、炭素材料では、黒鉛の場合で理論容量最大値が372 mAh/g と低いことから、高容量化には限界がある。
【0004】
負極を金属Liから構成すれば、炭素材料に比べて10倍以上の高容量化が可能となるが、充電時に負極に金属Liがデンドライト状で析出し、セパレータを突き破って短絡する危険性があるため、電池の安全性の点から実用電池の負極に金属Liを使用することはできない。
【0005】
金属Liに代わる新たな高容量負極材料として、理論容量がLi並みに高いAl、Si、Sn、およびそれらの金属間化合物が提案されている。しかし、これらの材料は高容量である代わりに、充放電に伴う膨張収縮が大きいため、充放電を繰り返すと割れが生じ、微粉化する。そのため、これらの材料を負極に用いた非水電解質二次電池は、充放電サイクルに伴う容量低下が大きく、サイクル寿命が著しく短いものとなる。
【0006】
これを解決するため、メカニカルアロイング (MA) 法を利用して不活性な元素と合金化することにより活物質相を超微細化することが検討されている。活物質相が微細化され、微細な活物質相の周囲が不活性相で包囲されていると、充放電中の活物質相の体積変化が抑制され、サイクル寿命が向上する。
【0007】
【発明が解決しようとする課題】
しかし、MA法で作製した合金は、元素間の合金化反応によって活物質相と不活性相が生成するため、反応過程で活物質相の量が変化する。つまり、生成する活物質相の量が反応の進行度に非常に敏感であるため、容量の安定した負極材料を作製することが困難である。結果として、非水電解質二次電池の容量のバラツキが大きくなるという、実用電池として困った問題を抱える上、サイクル寿命の改善も十分ではない。また、元素の純粉末を原料として合金化すると、生成した合金の酸素濃度が高くなり、負極材料の不可逆容量が大きくなって、充放電効率が低下するという問題点もある。さらに、MA法に使用する微細な元素粉末は高価である。
【0008】
本発明は、Li (または他のアルカリ金属) を吸蔵・放出する量が大きく、従って非水電解質二次電池の負極材料として用いた場合の充電・放電容量が大きく、しかも充電・放電を繰り返すことによる容量低下が小さく、サイクル寿命に非常に優れ、充放電効率が高く、特性のバラツキが小さい、安定した高性能非水電解質二次電池用負極材料とその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者は、負極材料を構成する元素単体の微粉末の混合物を原料とし、混合、造粒、粉砕により合金化するMA法ではなく、予め合金化した原料の圧縮・擦りつぶしにより崩壊と造粒を繰り返すメカニカルグラインディング (MG) 法による処理(メカニカルグラインディング処理)によって活物質相を超微細化すると、MA法について上述した問題点が回避され、上記目的を達成することができることを見出した。
【0010】
本発明により、Liと可逆的に反応可能な1以上の元素で構成する1以上の活物質相と、長周期型周期表のIIA 族元素、遷移元素、IIIB族元素及びIVB 族元素から選ばれた1以上の元素で構成する1以上の不活性相、とを有する機械的グラインディングを経て製造された非水電解質二次電池用負極材料であって、負極材料のX線回折パターンにおいて、少なくとも1つの活物質相のピーク強度がグラインディング前のピーク強度の50%以下であることを特徴とする非水電解質二次電池用負極材料が提供される。
【0011】
本発明はまた、Liと可逆的に反応可能な1以上の元素で構成する1以上の活物質相と、長周期型周期表のIIA 族元素、遷移元素、IIIB族元素及びIVB 族元素から選ばれた1以上の元素で構成する1以上の不活性相、とを有する非水電解質二次電池用負極材料の製造方法も提供する。
【0012】
第1の方法は、負極材料の溶湯から鋳造された固体をメカニカルグラインディング処理することを特徴とする。
別の第2の製造方法は、活物質相と不活性相との混合物をメカニカルグラインディング処理することからなり、この処理の前後で活物質相の含有率が実質的に変化しないことを特徴とする。
【0013】
いずれの方法でも、メカニカルグラインディング処理は、ボール状の粉砕媒体を使用して行うことが好ましく、また、負極材料のX線回折パターンにおける少なくとも1つの活物質相のピーク強度が処理前のピーク強度の50%以下になるまで行うことが好ましい。
【0014】
第1の方法では、好ましくは急冷により鋳造した、活物質相と不活性相の両方を有する負極材料をMG法で処理して、組織を超微細化する。急冷で得られた負極材料は組織がある程度は微細化しているが、急冷だけによる組織の微細化ではサイクル寿命の改善には不十分であり、実用電池に求められるサイクル寿命を得るには、組織をさらに微細化する必要がある。そのため、MG法で処理して組織を超微細化することで、活物質相を超微細化する。
【0015】
第1の方法では、MG法による組織の超微細化を効率よく短時間で行うため、負極材料を溶湯から急冷して、MG法による処理前に組織を予め微細化しておくことが好ましいが、MG法による処理を長時間行えば、鋳造時の急冷は必ずしも必要ない。
【0016】
第2の方法では、不活性相と活物質相とを別々に用意し、その混合物をMG法で処理する。この場合、混合物中の各相の粒子の粒度が相の大きさとなる。従って、活物質相に関して、その粒子を微粉砕することで処理前に活物質相を微細化できるので、第1の方法のような冷却速度による組織制御の必要はない。不活性相は、5mm以下程度の大きさであればサイクル特性の改善には十分であり、MG法で処理する前に必ずしも粉末化しておく必要はない。
【0017】
本発明において、超微細組織の負極材料とは、一般に活物質相のサイズ (平均短軸径) が100 nm以下であることが目安となる。活物質相のサイズは好ましくは50 nm 以下、より好ましくは30 nm 以下である。
【0018】
【発明の実施の形態】
本発明の非水電解質二次電池用負極材料は、Liと可逆的に反応可能な1以上の元素で構成する1以上の活物質相と、長周期型周期表のIIA 族元素、遷移元素、IIIB族元素及びIVB 族元素から選ばれた1以上の元素で構成する1以上の不活性相とを有し、少なくとも活物質相はサイクル寿命の改善に十分な程度まで微細化されている。不活性相とは、Liと実質的な反応性を示さない相を意味し、わずかに反応性があってもよい。
【0019】
活物質相を構成する、Liと可逆的に反応可能な元素の例は、Si、Ge、Sn、Pb、Al、P、Ga、In、Znである。活物質相は、これらの1以上の元素またはそれらの合金から構成することができる。本発明において、「合金」とは、金属間化合物も包含する意味である。
【0020】
望ましい活物質相は、高容量のSiとSnの一方または両方を含む。即ち、望ましい活物質相は、Si金属、Si合金 (例、Si−P、Si−Ge) 、Sn金属、およびSn合金(例、Sn−Cu) から選ばれた1種以上である。合金は上記のように金属間化合物であってもよい。
【0021】
不活性相を構成する長周期型周期表のIIA 族元素、遷移元素、IIIB族元素及びIVB 族元素から選ばれた1以上の元素の例は次の通りである:
IIA 族元素:Be, Mg, Ca, Sr, Ba, Ra;
遷移元素:Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, ランタノイド, アクチノイド;
IIIB族元素:B, Al, Ga, Ub, Tl;
IVA 族元素:C, Si, Ge, Sn, Pb。
【0022】
不活性相は、Mg、Ca、Ba、Ti、V、Cr、W、Mn、Fe、Co、Ni、Cuから選ばれた1以上の元素、ならびにそれらを含む合金 (上記のように金属間化合物を包含する) から構成することが望ましい。不活性相が合金から構成される場合、この合金は、活物質相を構成する元素と上記から選ばれた他の元素との合金とすることができる。例えば、活物質相がSiから構成される場合、不活性相は、Siと他の元素との合金 (例、CoSi)から構成することができる。
【0023】
本発明の非水電解質二次電池用負極材料は、前述した1以上の活物質相と1以上の不活性相とを有する、メカニカルグラインディング (MG) 処理された材料であって、負極材料のX線回折パターンにおいて、少なくとも1つの活物質相のピーク強度がMG処理前のピーク強度の50%以下であることを特徴とする。
【0024】
MG処理前に対するMG処理後の活物質相のピーク強度比は、MG処理による活物質相の超微細化の目安であり、このピーク強度比が50%より高いと活物質相の超微細化が不十分で、サイクル寿命の改善効果を十分に達成することができない。このピーク強度比は、好ましくは40%以下である。
【0025】
負極材料中の活物質相と不活性相の割合は特に制限されない。一般に、不活性相が多くなるほどサイクル寿命は高くなるが、容量は低下する傾向がある。不活性相は必要なサイクル寿命が得られるような割合で存在させればよい。本発明では、MG法での処理を受けることで活物質相が超微細化されるため、不活性相によるサイクル寿命の改善効果がより効果的に発揮される。その結果、不活性相の割合が従来より少なくてもサイクル寿命を十分に改善することが可能となるので、高容量でサイクル寿命も十分な負極材料を得ることができる。
【0026】
本発明に係る非水電解質二次電池用負極材料の第1の製造方法では、まず、上述した活物質相と不活性相とを有する負極材料を鋳造する。例えば、活物質相がSi相で、不活性相がSi−Co金属間化合物 (例、CoSi)相である場合、この金属間化合物の組成よりSiリッチになるように配合したSiとCoの混合物を溶解炉に装入して加熱溶解し、Si−Co合金からなる溶湯を得る。Siリッチの程度、つまり原料組成により、溶湯からの冷却中に析出する活物質相と不活性相との相対的割合が決まる。このような条件は平衡状態図から容易に設定可能である。
【0027】
加熱雰囲気は、原料が易酸化性の元素を含んでいる場合には、不活性ガスまたは真空とするが、雰囲気にさほど影響を受けない組成のものもあるので、雰囲気調整は必ずしも必要ない。加熱方法は、高周波誘導加熱、アーク溶解、プラズマ溶解、抵抗加熱等があり、いずれの方法でもよい。溶解では組成的に均一な溶湯を形成することが重要である。
【0028】
この合金溶湯を、好ましくは1×102 ℃/sec以上の冷却速度で急冷することにより鋳造して、負極材料の固体を得る。冷却中に活物質相 (例、Si) と不活性相(例、CoSi)が析出して、活物質相と不活性相を含む組織を持つ負極材料が得られるが、急冷とすることで、得られた材料の組織がある程度微細化される。冷却速度はより好ましくは1×103 ℃/sec以上とする。冷却速度が1×102 ℃/secより遅いと、特にサイクル寿命を改善するために行う次のMG処理において、非常に長時間の処理が必要となる。
【0029】
冷却速度が1×102 ℃/sec以上となる代表的な鋳造方法としてガスアトマイズ法、ロール急冷法、平板鋳造法があり、一般にこの順で冷却速度は遅くなる。
ガスアトマイズ法は、タンディッシュ内の溶湯をタンディッシュ底部の細孔から流出させて細流化し、これにAr、N、He等の高圧の不活性ガスを吹き付けて溶湯を粉砕し、粉末状で凝固させる方法であり、球形粉末が得られる。
【0030】
ロール急冷法は、溶湯を高速回転する単ロールもしくは双ロール上に落下させるか、もしくはロールで引き上げて、薄鋳片を得る方法である。得られた薄鋳片は適当なサイズに粉砕する。
【0031】
平板鋳造法は、溶湯を鋳造する際に、インゴットの厚みが薄くなるよう平板状の鋳型に鋳込む方法であり、ブロック状のインゴットよりも冷却速度が速くなる。得られた平板状インゴットを適当なサイズに粉砕する。
【0032】
なお、急冷鋳造法は上記方法に限られるものではない。回転電極法、液体アトマイズ法、メルトスピニング法など、他にも1×102 ℃/sec以上の冷却速度で鋳造可能な方法があり、それらも採用可能である。
【0033】
溶湯を耐火物または金属製の鋳型に流し込み、冷却してブロック状のインゴットを得る普通のインゴット鋳造法は、一般には冷却速度が101 ℃/sec台であり、1×102 ℃/secには達しないので、本発明の第1の方法で採用するのに好ましい方法ではない。しかし、MG処理を非常に長時間行うことで、本発明の負極材料を製造することも不可能ではない。
【0034】
活物質相と不活性相とを含む微細組織を持つ負極材料を、必要に応じて適当なサイズに粉砕した後、MG処理して、組織を超微細化する。MG処理に供する負極材料のサイズは、平均粒径で5mm以下であることが好ましく、より好ましくは1mm以下、さらにより好ましくは500 μm 以下である。
【0035】
MG (メカニカルグラインディング) 処理とは、被処理材の粒子に圧縮力および剪断力を加えて、擦りつぶしながら粒子の崩壊と造粒を繰り返し行う処理である。その結果、元の組織は壊され、処理前に存在していた相がナノメートルオーダーで超微細に分散した組織をもつ粒子が形成される。但し、この超微細組織を構成する活物質相の種類や含有量は処理前と実質的に同じであり、処理によって新たな相が形成されることは起こらない。MG処理により活物質相の種類や含有量が実質的に変化しないことは、MG処理前後で負極材料の放電容量が実質的に同一 (変化率が5%以内、好ましくは1%以内) であることにより確認できる。このMG処理の特性のため、本発明の負極材料は安定した放電容量を示す。この点で、元素間の合金化反応が起こり、処理により活物質相の含有量が変化するMA法 (メカニカルアロイング法) とは異なる。
【0036】
一方、単なる粉砕では、組織は壊れないので、粉砕後の粒子は粉砕前の組織を保持している。即ち、粉砕では粒子径だけが小さくなり、組織の微細化は起こらない。処理中に組織が擦りつぶされて壊れ、組織が超微細化するMG処理は、この点で粉砕と異なる。
【0037】
MG処理は、材料の擦りつぶしが可能な任意の粉砕機により実施することができる。中でも、ボール状の粉砕媒体を用いる粉砕機、即ち、ボールミル型の粉砕機が、構造が簡単であること、粉砕媒体のボールが多様な材質で容易に入手できること、ボール同士の接触点で粉砕・グラインディングが起こるため非常に多くの場所で均一にグラインディングが進行すること(これは、反応の高均一性、従って、製品の安定性の観点から特に重要である)等のメリットがあり、本発明で採用するのに特に好適である。中でも粉砕筒を単純に回転するだけではなく、振動を加えることにより粉砕エネルギーを高めた振動ボールミルやロッドでボールおよび粉砕媒体のボールを強制的に攪拌するアトライター、回転力と遠心力で粉砕エネルギーを高めた遊星ボールミル等が好ましい。
【0038】
特開平10−223221号公報に、急冷凝固させた非晶質または低結晶質の負極材料をサンプルミル粉砕することが記載されている。この場合は、急冷で得られた材料が既に非晶質化または低結晶質化しているため、粉砕によって組織をさらに微細化するということは考えられない。そうではなく、急冷材を単に粉末化する目的で粉砕を実施しているにすぎない。
【0039】
MG処理の時間は、負極材料のX線回折パターンにおける少なくとも1つの活物質相のピーク強度を指標として決めることができる。即ち、MG処理により活物質相が超微細化することや、結晶構造に乱れを生ずること等のため、MG処理を続けるにつれて活物質相のピーク強度は次第に小さくなる。MG処理を、処理前の活物質相のピーク強度に対する処理後の該ピーク強度の比 (以下、単にピーク強度比という) が50%以下になるまで行うことが、負極材料の高い容量を維持したまま、サイクル寿命を著しく改善することができるため、好ましいことが判明した。MG処理でピーク強度比を50%以下にするのに要する処理時間は、処理に供する負極材料の組織が微細であるほど (つまり、鋳造時の冷却速度が速いほど) 短くなる傾向がある。
【0040】
MG処理は、処理中の材料の酸化を防止するため、アルゴン等の不活性ガス雰囲気中で行うことが好ましい。但し、鋳造時と同様、材料によっては酸化しにくいので、そうしなくてもよい。活物質相がSiおよび/またはSnを含む場合、MG処理後の材料の酸素濃度は2.5 質量%以下であることが好ましく、より好ましくは2.0 質量%以下である。酸素濃度が2.5 質量%を超えると、不可逆容量が大きくなり、充放電効率が著しく低下する。
【0041】
MG法と同様の材料のボールミル処理であっても、元素自体を原料とし、処理中に元素間で合金化反応を生じさせるメカニカルアロイング (MA) 法では、不活性ガス雰囲気中で実施しても、原料として用いるのは通常は微粉末 (合金化反応の促進のため) で、酸素濃度が高いため、処理後に得られた負極材料の酸素量が高くなる傾向があり、充放電効率は低くなる。
【0042】
本発明に係る非水電解質二次電池用負極材料の第2の製造方法では、活物質相の材料と不活性相の材料との混合物をMG処理する。MA法とは違って、MG処法では活物質相と不活性相との間で合金化反応が起こらないので、存在する相の種類や含有量は処理の前後で実質的に変化しない。しかし、MG処理により、活物質相の材料と不活性相の材料が一緒に擦りつぶされながら、崩壊と造粒を繰り返す結果、両相が微細化して均一に混ざり合い、一体化した材料、即ち、1つの粒子中に活物質相と不活性相とを含む負極材料が得られる。第1の方法と同様、活物質相の含有率が処理中に変化しないため、得られた負極材料の放電容量が安定化する。
【0043】
第2の方法では、MG処理に使用する活物質相の材料と不活性相の材料がMG処理前の各相の構成単位となるので、超微細化が必要な活物質相の材料を微粉末にしておけば、MG処理中に活物質相がさらに微細化され、活物質相が超微細組織となった負極材料を得ることができる。不活性相は、前述したように5mm以下程度であれば、サイクル寿命の改善に十分である。従って、第1の方法とは異なり、MG処理に供する材料は微細な急冷組織としておく必要はない。活物質相と不活性相の材料は、例えば、通常のインゴット鋳造材を粉砕して調製すればよいが、アトマイズ等の急冷凝固法を採用してもよいことはもちろんである。
【0044】
第2の方法で用いる活物質相が微粉末であると、短いMG処理時間で超微細組織の負極材料が得られる。活物質相の材料の平均粒径は、好ましくは20μm以下、より好ましくは10μm以下、最も好ましくは5μm以下である。不活性相の材料の粒度は負極材料の特性への影響が小さく、平均粒径は好ましくは5mm以下、より好ましくは1mm以下である。
【0045】
MG処理は、第1の方法で使用する活物質相と不活性相とを有する鋳造した負極材料の代わりに、少なくとも1の活物質相の材料と少なくとも1の不活性相の材料との混合物を使用することを除いて、第1の方法に関して説明したのと同様に実施すればよい。この場合も、MG処理前の混合物のX線回折パターンにおける活物質相のピーク強度に対する処理後の材料の同じピーク強度の比が50%以下になるまでMG処理を行うことが好ましい。
【0046】
本発明に係る負極材料から、常法に従って非水電解質二次電池用負極を作製することができる。例えば、粉末状の負極材料に適当な結着剤を混合し、必要に応じて導電性向上のために適当な導電粉を混合して、負極合剤を調製する。この負極合剤に結着剤を溶解する溶媒を加え、必要であればホモジナイザーとガラスビーズを用いて充分に攪拌しスラリー状にする。このスラリーを圧延銅箔、銅電析銅箔などの電極基板 (集電体) にドクターブレード等を用いて塗布し、乾燥した後、ロール圧延等で圧密化させると、非水電解質二次電池用負極が得られる。
【0047】
結着剤としては、PVDF(ポリフッ化ビニリデン)、PMMA(ポリメチルメタクリレート)、PTFE(ポリテトラフルオロエチレン)、スチレン−ブタジエン系ゴム等の非水溶性の樹脂 (但し、電池の非水電解質に使用する溶媒に不溶性のもの) 、並びにCMC (カルボキシメチルセルロース) 、PVA (ポリビニルアルコール) 等の水溶性樹脂が例示される。溶媒としては、結着剤に応じて、NMP (N−メチルピロリドン) 、DMF (ジメチルホルムアミド) 等の有機溶媒、または水を使用する。
【0048】
導電粉としては、炭素材料 (例、カーボンブラック、黒鉛) および金属(例、Ni)のいずれも使用できるが、好ましいのは炭素材料である。炭素材料は、その層間にLiイオンを吸蔵することができるので、導電性に加えて、負極の容量にも寄与することができ、また保液性にも富んでいる。好ましい炭素材料はアセチレンブラックである。
【0049】
上記のようにして製造された負極を用いて、非水電解質二次電池を作製する。非水電解質二次電池の代表例はリチウムイオン二次電池であり、本発明に係る負極材料および負極は、リチウムイオン二次電池の負極材料および負極として好適である。但し、理論的には、他の非水電解質二次電池にも適用できる。
【0050】
非水電解質二次電池は、基本構造として、負極、正極、セパレーター、非水系の電解質を含んでいる。負極は上記のように本発明に従って製造したものを使用するが、他の正極、セパレーター、電解質は、従来より公知のもの、或いは今後開発される材料を適当に使用すればよい。
【0051】
【実施例】
(実施例1)
本例は、本発明に係る第1の方法による非水電解質二次電池用負極材料の製造を例示する。以下の実施例中、組成に関する%は質量%である。
【0052】
表1に示す組成を持つ溶湯を、ガスアトマイズ法、単ロール急冷法、平板鋳造法、または通常鋳造法により鋳造し、ガスアトマイズ法以外は、乳鉢で粉砕して粉末状にし、活物質相と不活性相とを有する原料粉末を得た。
【0053】
各鋳造法の冷却速度は次の通りであった。
ガスアトマイズ法 (ATと略記) :
Arガス:1×105 ℃/sec、
単ロール急冷法 (SCと略記) :5×104 ℃/sec、
平板鋳造法 (平板と略記) :2×102 ℃/sec、
インゴット鋳造法 (ITと略記) :5℃/sec。
【0054】
得られた原料粉末の断面をSEMで観察し、活物質相のサイズを調べた。活物質相は1視野につき不作為に選んだ10個を観察し、それぞれの短軸径を測定した。5視野についてこの測定を行い、それらの平均値 (活物質相の平均短軸径) を活物質相のサイズとした。
【0055】
この原料粉末を−63μmに篩分けし、篩分けした粉末80gを下記のいずれかの粉砕装置を使用して、大気圧のアルゴン雰囲気下でMG処理して、負極材料を得た:
アトライター (Aと略記) :回転数250 rpm 、
ボールミル (Bと略記) :回転数200 rpm 、
振動ボールミル (Vと略記) :周波数40 Hz 、
遊星ボールミル (Pと略記) :自転/公転回転数60/60 rpm、
ロッドミル (Rと略記) :回転数200 rpm 。            。
【0056】
ボールを粉砕媒体とするアトライター (A) 、ボールミル (B) 、振動ボールミル (O) および遊星ボールミル (S) で使用するボールは、いずれも3/8 inch径のものであった。
【0057】
得られた負極材料の粉末 (即ち、MG処理後の粉末) と原料粉末 (即ち、MG処理前の粉末) のX線回折パターンをCuKα線を用いて測定し、活物質相のピーク強度比を次式により求めた:
ピーク強度比=MG処理後のピーク強度/MG処理前のピーク強度×100 。
【0058】
また、MG処理で得た負極材料の酸素濃度を活性ガス搬送融解赤外線吸収法により測定した。
負極材料の電極特性は、次の方法で調べた。
【0059】
負極材料の粉末を−63μm (平均径10μm) に分級し、負極材料100 質量部に対して、結着剤のポリフッ化ビニリデンを9質量部、溶媒N−メチルピロリドンを10質量部、導電剤の炭素 (アセチレンブラック) を9質量部加えて混練し、均一なスラリーを作製した。このスラリーを厚み30μmの銅箔に塗布し、乾燥およびロール圧延後に、直径13 mm にダイスで打ち抜き、負極を作製した。銅箔上の負極層の厚みは約100 μmであった。
【0060】
上記負極の単極での性能を、対極と参照極にLi金属を用いた、いわゆる3極式セルを用いて評価した。電解液としては、エチレンカーボネートとジメトシキエタンの1:1混合溶媒中に、支持電解質のLiPF6 を1M濃度で溶解させた溶液を使用した。測定は25℃で行い、グローブボックスのように、不活性雰囲気を維持できる装置を用いて、雰囲気露点が−70℃程度の条件で測定した。
【0061】
まず、1/10C充電 (10時間で満充電になるような電流値) で参照極の電位に対して負極の電位が 0Vになるまで充電を行い、同じ電流値で参照極の電位が負極の電位に対して 2Vになるまで放電を行って、この時の1サイクル目の放電容量をその負極材料を用いた負極の放電容量とした。
【0062】
また、次式に示すように、1サイクル目の充電容量に対する放電容量の比を充放電効率として求めた。充放電効率は不可逆容量の小ささの指標である:
充放電効率(%) =放電容量/充電容量×100 。
【0063】
上記の条件で充電・放電を繰り返し、300 サイクル目の放電容量を測定して、次式からサイクル寿命を計算した:
サイクル寿命(%) =300サイクル 目の放電容量/1サイクル目の放電容量×100 。
【0064】
充放電効率とサイクル寿命はいずれも90%以上であれば良好であり、特に95%以上であれば非常に良好である。
放電容量は、体積当たりの容量、即ち、mAh/ccの単位 (ccは負極板の容積、負極板の面積と負極材料層の厚みで算出) で示す。
【0065】
この試験結果を、負極材料の組成、鋳造法とMG処理に用いた装置、活物質相のピーク強度比、負極材料の酸素濃度、活物質相と不活性相の種類、原料粉末中の活物質相のサイズ (平均短軸径) と一緒に表1に示す。表1中、MG時間が0である例はMG未処理の原料粉末での結果を意味し、いずれも比較例である。
【0066】
【表1】

Figure 2004095469
【0067】
表1からわかるように、本発明の第1の方法に従って、好ましくは急冷鋳造材をMG処理することによって、高い放電容量を維持したまま、充放電効率と特にサイクル寿命を大きく改善することができ、放電容量と充放電効率が高く、サイクル寿命も良好な負極材料が得られることがわかる。表からわかるように、ピーク強度比が50%以下になるまでMG処理を行うと、充放電効率とサイクル寿命がいずれも90%以上と良好になる。原料粉末の鋳造時の冷却速度が速く、活物質相のサイズが小さいほど、短いMG処理時間でピーク強度比を50%以下にすることができる。ピーク強度比を小さい負極材料を得るには、ロッドミルやボールミルより、アトライター、振動ボールミル、遊星ボールミルを使用する方が効率的である。
【0068】
原料粉末を冷却速度が102 ℃/sec未満の通常のインゴット鋳造法により調製した場合には、ピーク強度比が50%以下の負極材料を得るのに非常に長いMG処理時間が必要となるが、そのように長時間かけてピーク強度比を50%以下にすれば、原料が急冷材である場合と遜色のない負極特性の結果が得られた。
【0069】
(実施例2)
本例は、本発明に係る第2の方法による非水電解質二次電池用負極材料の製造を例示する。
【0070】
活物質相となるSi金属の試薬を乳鉢で粉砕し、分級して、平均粒径の異なる活物質相の粉末を得た。別に、不活性相となるCoSi2 を、単ロール急冷法または通常のインゴット鋳造法で鋳造し、乳鉢で粉砕し、分級して、平均粒径約30μmの不活性相の粉末を得た。
【0071】
活物質相のSi粉末と不活性相のCoSi2 粉末各1種類ずつを、実施例1と同様にCo−60%Siとなる割合で混合し、この混合粉末を実施例1と同様にアトライターを用いてMG処理し、活物質相と不活性相とを有する負極材料の粉末を得た。
【0072】
比較のために、上記と同様に調製したSi粉末 (−63μmに分級、平均粒径15μm) とCo粉末 (試薬を分級したもの、平均粒径約15μm) をCo−60%Siとなる割合で混合し、この混合粉末をアトライターを用いてメカニカルアロイング (MA) 処理し、処理中に不活性相のCoSi2 を生成させて、活物質相と不活性相とを有する負極材料を得た。処理条件はMG法と同様であり、処理はアルゴン雰囲気中で行った。
【0073】
上記2種類の方法で得られた負極材料の電極特性、ピーク強度比 (原料混合粉末のX線回折パターンとの比較) 、酸素濃度を実施例1と同様に調べた結果を表2にまとめて示す。また、MG処理またはMA処理の前後での放電容量を調べた結果も、処理後の負極材料の充放電効率およびサイクル寿命の結果と共に、表2に併記する。
【0074】
【表2】
Figure 2004095469
【0075】
表2からわかるように、本発明に従って活物質相のSi粉末と不活性相のCoSi2 粉末との混合物をMG処理して得た負極材料は、この処理の前後で活物質相(Si)の含有量が実質的に変化せず (放電容量が実質的に変化しないことで確認) 、放電容量、充放電効率、サイクル寿命のどれもが非常に良好であった。
【0076】
一方、同組成の負極材料の構成元素であるSi粉末とCo粉末をMA処理して、処理中に不活性相を生成させる方法では、活物質であるSiの合金化が完全には進行していない分、放電容量は高いものの、不活性相によるサイクル寿命の改善が不十分で、処理時間を100 時間と非常に長くしてもサイクル寿命を良好な水準まで改善することができなかった。また、負極材料の酸素濃度が高いため、充放電効率も低くなった。さらに、MA法では、処理時間によって活物質相のSi含有量が変化するため放電容量の変化が大きく、安定した容量の負極材料を得ることが困難であることもわかる。
【0077】
なお、MA法の処理時間0の例からわかるように、活物質相のSi相が不活性相に包囲されず、また微分散していない状態で存在していると、サイクル寿命は5%と著しく低い。本発明では、第1および第2の方法のいずれでも、このSiの示す低いサイクル寿命を90%以上にまで高めることが可能である。
【0078】
【発明の効果】
本発明によれば、現行の実用リチウムイオン二次電池の負極材料である炭素材料より高容量で、充放電効率とサイクル寿命に優れ、性能が安定した非水電解質二次電池用負極材料を比較的低コストで供給することが可能となり、非水電解質二次電池の小型化、高性能化を可能にする。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery capable of storing and releasing a large amount and reversibly of an alkali metal such as Li, and a method for producing the negative electrode material. Non-aqueous electrolyte secondary batteries include batteries using a liquid non-aqueous electrolyte in which a supporting electrolyte is dissolved in an organic solvent, and batteries using a solid-state non-aqueous electrolyte such as a polymer electrolyte or a gel electrolyte.
[0002]
[Prior art]
With the spread of portable devices, demand for high-capacity non-aqueous electrolyte secondary batteries has increased, and further higher capacities have been demanded.
[0003]
The non-aqueous electrolyte secondary battery currently in practical use is a lithium ion secondary battery using a carbon material for the negative electrode. However, in the case of graphite, the maximum theoretical capacity of graphite is as low as 372 mAh / g. Therefore, there is a limit in increasing the capacity.
[0004]
If the negative electrode is composed of metal Li, the capacity can be increased by a factor of 10 or more as compared with the carbon material, but there is a risk that the metal Li will precipitate in a dendrite form on the negative electrode during charging, break through the separator, and cause a short circuit. Therefore, metal Li cannot be used for the negative electrode of a practical battery from the viewpoint of battery safety.
[0005]
Al, Si, Sn, and their intermetallic compounds, whose theoretical capacity is as high as Li, have been proposed as a new high capacity negative electrode material replacing metal Li. However, these materials have a large capacity and a large expansion and contraction due to charge / discharge instead of high capacity. Therefore, a non-aqueous electrolyte secondary battery using these materials for the negative electrode has a large decrease in capacity due to charge / discharge cycles, and has a remarkably short cycle life.
[0006]
In order to solve this, it has been studied to make the active material phase ultrafine by alloying with an inert element using a mechanical alloying (MA) method. When the active material phase is miniaturized and the periphery of the fine active material phase is surrounded by the inactive phase, a change in volume of the active material phase during charging and discharging is suppressed, and the cycle life is improved.
[0007]
[Problems to be solved by the invention]
However, in an alloy manufactured by the MA method, an active material phase and an inactive phase are generated by an alloying reaction between elements, so that the amount of the active material phase changes in a reaction process. That is, since the amount of the generated active material phase is very sensitive to the progress of the reaction, it is difficult to produce a negative electrode material having a stable capacity. As a result, the non-aqueous electrolyte secondary battery has a problem of a large variation in capacity, which is a problem for a practical battery, and the cycle life is not sufficiently improved. Further, when alloying is performed using pure powder of an element as a raw material, there is a problem that the oxygen concentration of the resulting alloy increases, the irreversible capacity of the negative electrode material increases, and the charge / discharge efficiency decreases. Further, fine elemental powder used in the MA method is expensive.
[0008]
The present invention provides a large amount of occlusion / release of Li (or other alkali metal), and therefore a large charge / discharge capacity when used as a negative electrode material of a non-aqueous electrolyte secondary battery, and repetition of charge / discharge. It is an object of the present invention to provide a stable high-performance negative electrode material for a non-aqueous electrolyte secondary battery and a method for producing the same, which have a small capacity reduction, a very excellent cycle life, a high charge-discharge efficiency, and a small variation in characteristics. .
[0009]
[Means for Solving the Problems]
The present inventor uses a mixture of fine powders of elemental elements constituting the negative electrode material as a raw material, and does not use the MA method of alloying by mixing, granulating, and pulverizing, but collapses and forms by compressing and crushing the prealloyed raw material. It has been found that when the active material phase is made ultra-fine by treatment using a mechanical grinding (MG) method (mechanical grinding treatment) in which grains are repeated, the above-described problems of the MA method can be avoided and the above object can be achieved. .
[0010]
According to the present invention, one or more active material phases composed of one or more elements capable of reversibly reacting with Li, and one or more active material phases selected from a group IIA element, a transition element, a group IIIB element, and a group IVB element of the long period type periodic table are provided. And at least one inert phase composed of at least one element, and a negative electrode material for a non-aqueous electrolyte secondary battery manufactured through mechanical grinding having at least an X-ray diffraction pattern of the negative electrode material. A negative electrode material for a non-aqueous electrolyte secondary battery is provided, wherein the peak intensity of one active material phase is 50% or less of the peak intensity before grinding.
[0011]
The present invention also provides one or more active material phases composed of one or more elements capable of reversibly reacting with Li, and one or more active material phases selected from a group IIA element, a transition element, a group IIIB element, and a group IVB element of the long period periodic table. And a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery having at least one inert phase composed of at least one element selected from the group consisting of:
[0012]
The first method is characterized by subjecting a solid cast from a molten negative electrode material to a mechanical grinding treatment.
Another second production method comprises subjecting a mixture of an active material phase and an inactive phase to mechanical grinding treatment, wherein the content of the active material phase does not substantially change before and after this treatment. I do.
[0013]
In any method, the mechanical grinding treatment is preferably performed using a ball-shaped grinding medium, and the peak intensity of at least one active material phase in the X-ray diffraction pattern of the negative electrode material is the peak intensity before the treatment. It is preferably performed until 50% or less.
[0014]
In the first method, an anode material having both an active material phase and an inactive phase, preferably cast by quenching, is treated by the MG method to ultrafine the structure. Although the structure of the negative electrode material obtained by quenching has been refined to some extent, refinement of the structure by quenching alone is not enough to improve the cycle life. Needs to be further miniaturized. Therefore, the active material phase is made ultra-fine by treating it with the MG method to make the structure ultra-fine.
[0015]
In the first method, it is preferable to rapidly cool the negative electrode material from the molten metal and to refine the structure in advance before the treatment by the MG method, in order to efficiently perform ultrafine refinement of the structure by the MG method in a short time. If the treatment by the MG method is performed for a long time, rapid cooling during casting is not always necessary.
[0016]
In the second method, an inert phase and an active material phase are separately prepared, and the mixture is treated by the MG method. In this case, the size of the particles of each phase in the mixture is the size of the phase. Therefore, regarding the active material phase, since the active material phase can be refined before the treatment by finely pulverizing the particles, there is no need to control the structure by the cooling rate as in the first method. The inert phase having a size of about 5 mm or less is sufficient for improving the cycle characteristics, and need not always be powdered before being treated by the MG method.
[0017]
In the present invention, a negative electrode material having an ultrafine structure generally indicates that the size (average minor axis diameter) of the active material phase is 100 nm or less. The size of the active material phase is preferably 50 nm or less, more preferably 30 nm or less.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention comprises one or more active material phases composed of one or more elements capable of reversibly reacting with Li, a group IIA element of a long period type periodic table, a transition element, It has one or more inert phases composed of one or more elements selected from the group IIIB elements and the group IVB elements, and at least the active material phase is miniaturized to an extent sufficient to improve the cycle life. An inert phase means a phase that does not show substantial reactivity with Li, and may be slightly reactive.
[0019]
Examples of elements that can form a reversible reaction with Li, which constitute the active material phase, are Si, Ge, Sn, Pb, Al, P, Ga, In, and Zn. The active material phase can be composed of one or more of these elements or their alloys. In the present invention, “alloy” is meant to include intermetallic compounds.
[0020]
Desirable active material phases include high capacity Si and / or Sn. That is, the desired active material phase is at least one selected from Si metal, Si alloy (eg, Si—P, Si—Ge), Sn metal, and Sn alloy (eg, Sn—Cu). The alloy may be an intermetallic compound as described above.
[0021]
Examples of one or more elements selected from Group IIA, transition, Group IIIB and Group IVB elements of the Long Periodic Table constituting the inert phase are as follows:
Group IIA elements: Be, Mg, Ca, Sr, Ba, Ra;
Transition elements: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, lanthanoid, actinoid;
Group IIIB elements: B, Al, Ga, Ub, Tl;
Group IVA elements: C, Si, Ge, Sn, Pb.
[0022]
The inert phase is at least one element selected from Mg, Ca, Ba, Ti, V, Cr, W, Mn, Fe, Co, Ni, and Cu, and an alloy containing them (as described above, It is desirable to be comprised from. When the inert phase is composed of an alloy, the alloy can be an alloy of the element constituting the active material phase and another element selected from the above. For example, when the active material phase is composed of Si, the inactive phase is an alloy of Si and another element (eg, CoSi 2 ).
[0023]
The negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention is a material having one or more active material phases and one or more inactive phases, which has been subjected to mechanical grinding (MG) treatment. In the X-ray diffraction pattern, the peak intensity of at least one active material phase is not more than 50% of the peak intensity before the MG treatment.
[0024]
The peak intensity ratio of the active material phase after the MG treatment to that before the MG treatment is a measure of the ultrafineness of the active material phase by the MG treatment. If the peak intensity ratio is higher than 50%, the ultrafineness of the active material phase is reduced. It is insufficient, and the effect of improving the cycle life cannot be sufficiently achieved. This peak intensity ratio is preferably 40% or less.
[0025]
The ratio between the active material phase and the inactive phase in the negative electrode material is not particularly limited. Generally, the cycle life increases as the number of inert phases increases, but the capacity tends to decrease. The inert phase may be present in such a ratio that a required cycle life is obtained. In the present invention, the active material phase is made ultrafine by being subjected to the treatment by the MG method, so that the effect of improving the cycle life by the inactive phase is more effectively exhibited. As a result, it is possible to sufficiently improve the cycle life even if the ratio of the inactive phase is smaller than in the conventional case, so that a negative electrode material having a high capacity and a sufficient cycle life can be obtained.
[0026]
In the first method for producing a negative electrode material for a nonaqueous electrolyte secondary battery according to the present invention, first, the negative electrode material having the active material phase and the inactive phase described above is cast. For example, the active material phase is a Si phase, and the inactive phase is a Si—Co intermetallic compound (eg, CoSi 2 ) Phase, a mixture of Si and Co blended so as to be more Si-rich than the composition of the intermetallic compound is charged into a melting furnace and heated and melted to obtain a molten metal made of a Si-Co alloy. The relative proportion between the active material phase and the inactive phase that precipitates during cooling from the molten metal is determined by the degree of Si richness, that is, the raw material composition. Such conditions can be easily set from the equilibrium diagram.
[0027]
When the raw material contains an easily oxidizable element, the heating atmosphere is an inert gas or a vacuum. However, since there are some compositions which are not so affected by the atmosphere, the atmosphere adjustment is not necessarily required. The heating method includes high-frequency induction heating, arc melting, plasma melting, resistance heating, and the like, and any method may be used. In melting, it is important to form a compositionally uniform molten metal.
[0028]
The molten alloy is preferably 1 × 10 2 Casting is performed by quenching at a cooling rate of at least ° C / sec to obtain a solid of the negative electrode material. During cooling, the active material phase (eg, Si) and the inert phase (eg, CoSi) 2 ) Is deposited to obtain a negative electrode material having a structure containing an active material phase and an inactive phase. However, by rapidly cooling, the structure of the obtained material is refined to some extent. The cooling rate is more preferably 1 × 10 3 C / sec or more. Cooling rate is 1 × 10 2 When the temperature is lower than ° C./sec, a very long processing time is required particularly in the next MG processing performed to improve the cycle life.
[0029]
Cooling rate is 1 × 10 2 As typical casting methods at a temperature of at least ° C / sec, there are a gas atomizing method, a roll quenching method, and a flat plate casting method, and the cooling rate generally becomes lower in this order.
In the gas atomizing method, the molten metal in the tundish flows out of the pores at the bottom of the tundish to be trickle, and this is mixed with Ar, N 2 , He or the like is sprayed with a high-pressure inert gas to pulverize the molten metal and solidify it in a powder form, thereby obtaining a spherical powder.
[0030]
The roll quenching method is a method in which a molten metal is dropped on a single roll or twin rolls rotating at a high speed, or pulled up by a roll to obtain a thin cast piece. The obtained thin slab is ground to an appropriate size.
[0031]
The flat plate casting method is a method of casting a molten metal into a flat mold so as to reduce the thickness of the ingot, and the cooling rate is higher than that of the block ingot. The obtained flat ingot is ground to an appropriate size.
[0032]
The rapid casting method is not limited to the above method. Rotating electrode method, liquid atomizing method, melt spinning method, etc. 2 There are methods that can be cast at a cooling rate of at least ° C / sec, and these methods can also be adopted.
[0033]
The usual ingot casting method in which a molten metal is poured into a refractory or metal mold and cooled to obtain a block-shaped ingot generally has a cooling rate of 10%. 1 ° C / sec, 1 × 10 2 Since the temperature does not reach C / sec, it is not a preferable method to be employed in the first method of the present invention. However, it is not impossible to produce the negative electrode material of the present invention by performing the MG treatment for a very long time.
[0034]
A negative electrode material having a fine structure including an active material phase and an inactive phase is pulverized to an appropriate size, if necessary, and then subjected to MG treatment to make the structure ultrafine. The size of the negative electrode material to be subjected to the MG treatment is preferably 5 mm or less in average particle size, more preferably 1 mm or less, and even more preferably 500 μm or less.
[0035]
The MG (mechanical grinding) treatment is a treatment in which a compressive force and a shearing force are applied to particles of a material to be treated, and the particles are repeatedly disintegrated and granulated while being crushed. As a result, the original structure is destroyed, and particles having a structure in which the phase existing before the treatment is ultrafinely dispersed on the order of nanometers are formed. However, the type and content of the active material phase constituting the ultrafine structure are substantially the same as before the treatment, and no new phase is formed by the treatment. The fact that the type and content of the active material phase do not substantially change by the MG treatment means that the discharge capacity of the negative electrode material before and after the MG treatment is substantially the same (change rate is within 5%, preferably within 1%). Can be confirmed. Due to the characteristics of this MG treatment, the negative electrode material of the present invention shows a stable discharge capacity. In this point, it is different from the MA method (mechanical alloying method) in which the alloying reaction between elements occurs and the content of the active material phase changes by the treatment.
[0036]
On the other hand, the structure is not broken by mere pulverization, so that the particles after pulverization retain the structure before pulverization. That is, in the pulverization, only the particle diameter is reduced, and the structure is not made fine. MG processing, in which the tissue is rubbed and broken during processing and the tissue is ultra-fine, differs from grinding in this regard.
[0037]
The MG treatment can be performed by any pulverizer capable of crushing the material. Among them, a pulverizer using a ball-shaped pulverizing medium, that is, a ball mill type pulverizer, has a simple structure, that the balls of the pulverizing medium can be easily obtained from various materials, and that the pulverizing medium is used at the contact point between the balls. This method has advantages such as the fact that the grinding proceeds uniformly in a very large number of places due to the occurrence of the grinding (this is particularly important from the viewpoint of high uniformity of the reaction and, therefore, the stability of the product). Particularly suitable for use in the invention. Above all, not only the grinding cylinder is simply rotated, but also a vibrating ball mill that increases the grinding energy by applying vibration, an attritor that forcibly agitates the ball and the ball of the grinding medium with a rod, and the grinding energy with the rotational force and centrifugal force And a planetary ball mill with an increased
[0038]
Japanese Patent Application Laid-Open No. Hei 10-223221 describes that a rapidly solidified amorphous or low crystalline negative electrode material is pulverized by a sample mill. In this case, since the material obtained by quenching has already become amorphous or low-crystalline, it is unlikely that the structure will be further refined by pulverization. Instead, the crushing is merely performed for the purpose of pulverizing the quenched material.
[0039]
The time of the MG treatment can be determined using the peak intensity of at least one active material phase in the X-ray diffraction pattern of the negative electrode material as an index. That is, the peak intensity of the active material phase gradually decreases as the MG processing is continued because the active material phase becomes ultrafine or the crystal structure is disordered by the MG treatment. Performing the MG treatment until the ratio of the peak intensity after the treatment to the peak intensity of the active material phase before the treatment (hereinafter, simply referred to as peak intensity ratio) becomes 50% or less maintains the high capacity of the negative electrode material. As it is, the cycle life can be remarkably improved, so that it has been found preferable. The processing time required to reduce the peak intensity ratio to 50% or less in the MG processing tends to be shorter as the structure of the negative electrode material to be processed is finer (that is, as the cooling rate during casting is higher).
[0040]
The MG treatment is preferably performed in an atmosphere of an inert gas such as argon in order to prevent oxidation of the material during the treatment. However, as in the case of casting, some materials are not easily oxidized. When the active material phase contains Si and / or Sn, the oxygen concentration of the material after the MG treatment is preferably 2.5% by mass or less, more preferably 2.0% by mass or less. If the oxygen concentration exceeds 2.5% by mass, the irreversible capacity becomes large, and the charge / discharge efficiency is significantly reduced.
[0041]
Even in ball milling of the same material as in the MG method, the mechanical alloying (MA) method, in which the element itself is used as a raw material and an alloying reaction occurs between the elements during the processing, is performed in an inert gas atmosphere. However, since the raw material is usually a fine powder (to promote the alloying reaction) and the oxygen concentration is high, the amount of oxygen in the negative electrode material obtained after the treatment tends to be high, and the charge / discharge efficiency is low. Become.
[0042]
In the second method for producing a negative electrode material for a nonaqueous electrolyte secondary battery according to the present invention, a mixture of an active material phase material and an inactive phase material is subjected to MG treatment. Unlike the MA method, in the MG method, no alloying reaction occurs between the active material phase and the inactive phase, so that the type and content of the existing phase do not substantially change before and after the treatment. However, as a result of the MG treatment, the material of the active material phase and the material of the inactive phase are repeatedly crushed and repeatedly disintegrated and granulated. A negative electrode material containing an active material phase and an inactive phase in one particle is obtained. As in the first method, the content of the active material phase does not change during processing, so that the discharge capacity of the obtained negative electrode material is stabilized.
[0043]
In the second method, since the material of the active material phase and the material of the inactive phase used for the MG processing are constituent units of each phase before the MG processing, the material of the active material phase that needs to be ultra-fine is finely powdered. By doing so, it is possible to obtain a negative electrode material in which the active material phase is further refined during the MG treatment and the active material phase has an ultrafine structure. If the inert phase is about 5 mm or less as described above, it is sufficient to improve the cycle life. Therefore, unlike the first method, the material to be subjected to MG processing does not need to have a fine quenched structure. The material of the active material phase and the material of the inert phase may be prepared, for example, by pulverizing a usual ingot casting material. Of course, a rapid solidification method such as atomization may be employed.
[0044]
When the active material phase used in the second method is a fine powder, a negative electrode material having an ultrafine structure can be obtained in a short MG treatment time. The average particle size of the material of the active material phase is preferably 20 μm or less, more preferably 10 μm or less, and most preferably 5 μm or less. The particle size of the material of the inert phase has little effect on the characteristics of the negative electrode material, and the average particle size is preferably 5 mm or less, more preferably 1 mm or less.
[0045]
The MG treatment comprises mixing a mixture of at least one active material phase material and at least one inert phase material in place of the cast negative electrode material having the active material phase and the inert phase used in the first method. Except for its use, it may be implemented as described for the first method. Also in this case, it is preferable to perform the MG treatment until the ratio of the same peak intensity of the material after the treatment to the peak intensity of the active material phase in the X-ray diffraction pattern of the mixture before the MG treatment becomes 50% or less.
[0046]
From the negative electrode material according to the present invention, a negative electrode for a non-aqueous electrolyte secondary battery can be produced according to a conventional method. For example, a negative electrode mixture is prepared by mixing a suitable binder into a powdered negative electrode material and, if necessary, mixing an appropriate conductive powder to improve conductivity. A solvent for dissolving the binder is added to the negative electrode mixture, and if necessary, sufficiently stirred using a homogenizer and glass beads to form a slurry. This slurry is applied to an electrode substrate (collector) such as a rolled copper foil or a copper electrodeposited copper foil using a doctor blade or the like, dried, and then consolidated by roll rolling or the like to obtain a non-aqueous electrolyte secondary battery. A negative electrode is obtained.
[0047]
As the binder, water-insoluble resins such as PVDF (polyvinylidene fluoride), PMMA (polymethyl methacrylate), PTFE (polytetrafluoroethylene), and styrene-butadiene rubber (however, used for non-aqueous electrolyte of batteries) And water-soluble resins such as CMC (carboxymethylcellulose) and PVA (polyvinyl alcohol). As the solvent, an organic solvent such as NMP (N-methylpyrrolidone) or DMF (dimethylformamide) or water is used depending on the binder.
[0048]
As the conductive powder, any of a carbon material (eg, carbon black, graphite) and a metal (eg, Ni) can be used, but a carbon material is preferable. Since the carbon material can occlude Li ions between the layers, in addition to conductivity, it can contribute to the capacity of the negative electrode, and is rich in liquid retention. The preferred carbon material is acetylene black.
[0049]
A non-aqueous electrolyte secondary battery is manufactured using the negative electrode manufactured as described above. A typical example of the nonaqueous electrolyte secondary battery is a lithium ion secondary battery, and the negative electrode material and the negative electrode according to the present invention are suitable as the negative electrode material and the negative electrode of the lithium ion secondary battery. However, it is theoretically applicable to other non-aqueous electrolyte secondary batteries.
[0050]
The non-aqueous electrolyte secondary battery has a basic structure including a negative electrode, a positive electrode, a separator, and a non-aqueous electrolyte. As the negative electrode, the one produced according to the present invention as described above is used, and as the other positive electrode, separator and electrolyte, conventionally known ones or materials to be developed in the future may be appropriately used.
[0051]
【Example】
(Example 1)
This example illustrates the production of a negative electrode material for a non-aqueous electrolyte secondary battery by the first method according to the present invention. In the following examples, the percentages related to the composition are% by mass.
[0052]
A molten metal having the composition shown in Table 1 was cast by a gas atomizing method, a single-roll quenching method, a flat casting method, or a normal casting method. Except for the gas atomizing method, the molten metal was pulverized into a powder form by a mortar, and inert with the active material phase. A raw material powder having a phase was obtained.
[0053]
The cooling rate of each casting method was as follows.
Gas atomizing method (abbreviated as AT):
Ar gas: 1 × 10 5 ° C / sec,
Single roll quenching method (abbreviated as SC): 5 × 10 4 ° C / sec,
Flat plate casting method (abbreviated as flat plate): 2 × 10 2 ° C / sec,
Ingot casting method (abbreviated as IT): 5 ° C./sec.
[0054]
The cross section of the obtained raw material powder was observed by SEM, and the size of the active material phase was examined. As for the active material phase, 10 randomly selected per visual field were observed, and the minor axis diameter of each was measured. This measurement was performed for five visual fields, and their average value (average minor axis diameter of the active material phase) was defined as the size of the active material phase.
[0055]
This raw material powder was sieved to −63 μm, and 80 g of the sieved powder was subjected to MG treatment under an argon atmosphere at atmospheric pressure using any of the following crushers to obtain a negative electrode material:
Attritor (abbreviated as A): 250 rpm,
Ball mill (abbreviated as B): 200 rpm,
Vibration ball mill (abbreviated as V): frequency 40 Hz,
Planetary ball mill (abbreviated as P): rotation / revolution speed 60/60 rpm,
Rod mill (abbreviated as R): rotation speed 200 rpm. .
[0056]
The balls used in the attritor (A), ball mill (B), vibrating ball mill (O) and planetary ball mill (S) using the ball as a grinding medium were all 3/8 inch in diameter.
[0057]
X-ray diffraction patterns of the obtained negative electrode material powder (that is, powder after MG processing) and raw material powder (that is, powder before MG processing) were measured using CuKα radiation, and the peak intensity ratio of the active material phase was determined. It was determined by the following equation:
Peak intensity ratio = peak intensity after MG processing / peak intensity before MG processing × 100.
[0058]
Further, the oxygen concentration of the negative electrode material obtained by the MG treatment was measured by an active gas carrier melting infrared absorption method.
The electrode characteristics of the negative electrode material were examined by the following method.
[0059]
The powder of the negative electrode material was classified into −63 μm (average diameter 10 μm), 9 parts by mass of polyvinylidene fluoride as a binder, 10 parts by mass of a solvent N-methylpyrrolidone, and 10 parts by mass of a conductive agent with respect to 100 parts by mass of the negative electrode material. 9 parts by mass of carbon (acetylene black) was added and kneaded to prepare a uniform slurry. This slurry was applied to a copper foil having a thickness of 30 μm, dried and roll-rolled, and then punched with a die to a diameter of 13 mm to produce a negative electrode. The thickness of the negative electrode layer on the copper foil was about 100 μm.
[0060]
The performance of a single electrode of the negative electrode was evaluated using a so-called three-electrode cell using Li metal for the counter electrode and the reference electrode. The electrolyte used was a supporting electrolyte LiPF in a 1: 1 mixed solvent of ethylene carbonate and dimethoxyethane. 6 Was used at a concentration of 1M. The measurement was performed at 25 ° C., and the measurement was performed using an apparatus capable of maintaining an inert atmosphere such as a glove box under the condition that the atmosphere dew point was about −70 ° C.
[0061]
First, charging is performed by 1 / 10C charging (a current value such that the battery is fully charged in 10 hours) until the potential of the negative electrode becomes 0 V with respect to the potential of the reference electrode. The discharge was performed until the potential became 2 V, and the discharge capacity in the first cycle at this time was defined as the discharge capacity of the negative electrode using the negative electrode material.
[0062]
Further, as shown in the following equation, the ratio of the discharge capacity to the charge capacity in the first cycle was determined as the charge / discharge efficiency. Charge / discharge efficiency is a measure of the small irreversible capacity:
Charge / discharge efficiency (%) = discharge capacity / charge capacity × 100.
[0063]
The charge / discharge was repeated under the above conditions, the discharge capacity at the 300th cycle was measured, and the cycle life was calculated from the following equation:
Cycle life (%) = discharge capacity at 300th cycle / discharge capacity at 1st cycle × 100.
[0064]
Both the charge and discharge efficiency and the cycle life are good if they are 90% or more, and particularly good if they are 95% or more.
The discharge capacity is represented by a capacity per volume, that is, a unit of mAh / cc (cc is calculated by the volume of the negative electrode plate, the area of the negative electrode plate and the thickness of the negative electrode material layer).
[0065]
The test results were obtained from the composition of the negative electrode material, the apparatus used for the casting method and the MG treatment, the peak intensity ratio of the active material phase, the oxygen concentration of the negative electrode material, the types of the active material phase and the inactive phase, and the active material in the raw material powder. It is shown in Table 1 together with the phase size (average minor axis diameter). In Table 1, the example in which the MG time is 0 means the result with the raw material powder not subjected to MG, and all are comparative examples.
[0066]
[Table 1]
Figure 2004095469
[0067]
As can be seen from Table 1, by subjecting the quenched cast material to MG treatment, preferably according to the first method of the present invention, the charge and discharge efficiency and especially the cycle life can be greatly improved while maintaining a high discharge capacity. It can be seen that a negative electrode material having high discharge capacity and charge / discharge efficiency and good cycle life can be obtained. As can be seen from the table, when the MG treatment is performed until the peak intensity ratio becomes 50% or less, both the charge / discharge efficiency and the cycle life become 90% or more. As the cooling rate during the casting of the raw material powder is higher and the size of the active material phase is smaller, the peak intensity ratio can be reduced to 50% or less in a shorter MG processing time. In order to obtain a negative electrode material having a small peak intensity ratio, it is more efficient to use an attritor, a vibrating ball mill, or a planetary ball mill than a rod mill or a ball mill.
[0068]
Cooling rate of raw material powder is 10 2 When prepared by a usual ingot casting method at a temperature of less than 50 ° C./sec, a very long MG treatment time is required to obtain a negative electrode material having a peak intensity ratio of 50% or less, but such a long time is required. When the peak intensity ratio was set to 50% or less, the result of the negative electrode characteristics was obtained, which was comparable to the case where the raw material was a quenched material.
[0069]
(Example 2)
This example illustrates the production of a negative electrode material for a non-aqueous electrolyte secondary battery by the second method according to the present invention.
[0070]
The Si metal reagent serving as the active material phase was pulverized in a mortar and classified to obtain powders of active material phases having different average particle diameters. Separately, CoSi which becomes an inert phase 2 Was cast by a single roll quenching method or a usual ingot casting method, crushed in a mortar, and classified to obtain an inert phase powder having an average particle size of about 30 μm.
[0071]
Active material phase Si powder and inert phase CoSi 2 One kind of each powder was mixed at a proportion of Co-60% Si as in Example 1, and the mixed powder was subjected to MG treatment using an attritor as in Example 1 to obtain an active material phase and an inert material. A negative electrode material powder having a phase was obtained.
[0072]
For comparison, Si powder (classified to −63 μm, average particle size of 15 μm) and Co powder (classified reagent, average particle size of about 15 μm) prepared in the same manner as above were mixed at a ratio of Co-60% Si. The mixed powder is subjected to mechanical alloying (MA) treatment using an attritor, and an inert phase of CoSi is treated during the treatment. 2 Was produced to obtain a negative electrode material having an active material phase and an inactive phase. The processing conditions were the same as in the MG method, and the processing was performed in an argon atmosphere.
[0073]
Table 2 summarizes the results obtained by examining the electrode characteristics, peak intensity ratio (comparison with the X-ray diffraction pattern of the raw material mixed powder), and oxygen concentration of the negative electrode material obtained by the above two methods in the same manner as in Example 1. Show. Table 2 also shows the results of examining the discharge capacity before and after the MG treatment or the MA treatment, together with the results of the charge / discharge efficiency and cycle life of the negative electrode material after the treatment.
[0074]
[Table 2]
Figure 2004095469
[0075]
As can be seen from Table 2, the active material phase Si powder and the inactive phase CoSi 2 The negative electrode material obtained by performing the MG treatment on the mixture with the powder has substantially no change in the content of the active material phase (Si) before and after the treatment (confirmed by substantially no change in the discharge capacity). The discharge capacity, charge / discharge efficiency, and cycle life were all very good.
[0076]
On the other hand, in the method in which the Si powder and the Co powder, which are the constituent elements of the negative electrode material having the same composition, are subjected to MA treatment to generate an inactive phase during the treatment, alloying of the active material, Si, has completely progressed. For this reason, although the discharge capacity was high, the cycle life was not sufficiently improved by the inactive phase, and the cycle life could not be improved to a satisfactory level even when the treatment time was as long as 100 hours. Further, since the oxygen concentration of the negative electrode material was high, the charge / discharge efficiency was low. Furthermore, in the MA method, since the Si content of the active material phase changes depending on the treatment time, the change in discharge capacity is large, and it can be seen that it is difficult to obtain a negative electrode material having a stable capacity.
[0077]
As can be seen from the example of the processing time 0 in the MA method, when the Si phase of the active material phase is not surrounded by the inactive phase and exists in a state of not being finely dispersed, the cycle life is 5%. Remarkably low. In the present invention, it is possible to increase the low cycle life exhibited by Si to 90% or more by any of the first and second methods.
[0078]
【The invention's effect】
According to the present invention, a negative electrode material for a non-aqueous electrolyte secondary battery having higher capacity, superior charge / discharge efficiency and cycle life, and more stable performance than a carbon material which is a negative electrode material of a current practical lithium ion secondary battery is compared. The non-aqueous electrolyte secondary battery can be supplied at extremely low cost, and the size and performance of the non-aqueous electrolyte secondary battery can be reduced.

Claims (6)

Liと可逆的に反応可能な1以上の元素で構成する1以上の活物質相と、長周期型周期表のIIA 族元素、遷移元素、IIIB族元素及びIVB 族元素から選ばれた1以上の元素で構成する1以上の不活性相、とを有するメカニカルグラインディング処理された非水電解質二次電池用負極材料であって、負極材料のX線回折パターンにおいて、少なくとも1つの活物質相のピーク強度がメカニカルグラインディング処理前のピーク強度の50%以下であることを特徴とする、非水電解質二次電池用負極材料。One or more active material phases composed of one or more elements capable of reversibly reacting with Li, and one or more active elements selected from a group IIA, a transition element, a group IIIB, and a group IVB in the long-term periodic table. A negative electrode material for a non-aqueous electrolyte secondary battery, which has been subjected to mechanical grinding and has at least one inert phase composed of an element, wherein at least one active material phase peak is present in an X-ray diffraction pattern of the negative electrode material. A negative electrode material for a non-aqueous electrolyte secondary battery, wherein the strength is 50% or less of the peak strength before the mechanical grinding treatment. Liと可逆的に反応可能な1以上の元素で構成する1以上の活物質相と、長周期型周期表のIIA 族元素、遷移元素、IIIB族元素及びIVB 族元素から選ばれた1以上の元素で構成する1以上の不活性相、とを有する非水電解質二次電池用負極材料の製造方法であって、負極材料の溶湯から鋳造された固体をメカニカルグラインディング処理することを特徴とする、非水電解質二次電池用負極材料の製造方法。One or more active material phases composed of one or more elements capable of reversibly reacting with Li, and one or more active elements selected from a group IIA, a transition element, a group IIIB, and a group IVB in the long-term periodic table. A method for producing a negative electrode material for a non-aqueous electrolyte secondary battery having at least one inert phase composed of an element, comprising subjecting a solid cast from a molten metal of the negative electrode material to mechanical grinding treatment. And a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery. 前記固体が負極材料の溶湯を1×102 ℃/sec以上の速度で急冷して得たものである、請求項2記載の非水電解質二次電池用負極材料の製造方法。3. The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to claim 2, wherein the solid is obtained by quenching a molten metal of the negative electrode material at a rate of 1 × 10 2 ° C./sec or more. Liと可逆的に反応可能な1以上の元素で構成する1以上の活物質相と、長周期型周期表のIIA 族元素、遷移元素、IIIB族元素及びIVB 族元素から選ばれた1以上の元素で構成する1以上の不活性相、とを有する非水電解質二次電池用負極材料の製造方法であって、活物質相と不活性相との混合物をメカニカルグラインディング処理することからなり、この処理の前後で活物質相の含有率が実質的に変化しないことを特徴とする、非水電解質二次電池用負極材料の製造方法。One or more active material phases composed of one or more elements capable of reversibly reacting with Li, and one or more active elements selected from a group IIA, a transition element, a group IIIB, and a group IVB in the long-term periodic table. A method for producing a negative electrode material for a non-aqueous electrolyte secondary battery having one or more inert phases composed of elements, and comprising mechanically grinding a mixture of an active material phase and an inert phase, A method for producing a negative electrode material for a non-aqueous electrolyte secondary battery, wherein the content of the active material phase does not substantially change before and after this treatment. メカニカルグラインディング処理をボール状の粉砕媒体を使用して行う請求項2〜4のいずれかに記載の非水電解質二次電池用負極材料の製造方法。The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to any one of claims 2 to 4, wherein the mechanical grinding treatment is performed using a ball-shaped grinding medium. メカニカルグラインディング処理を、負極材料のX線回折パターンにおける少なくとも1つの活物質相のピーク強度が処理前のピーク強度の50%以下になるまで行う、請求項2〜5のいずれかに記載の非水電解質二次電池用負極材料の製造方法。The method according to any one of claims 2 to 5, wherein the mechanical grinding treatment is performed until the peak intensity of at least one active material phase in the X-ray diffraction pattern of the negative electrode material becomes 50% or less of the peak intensity before the treatment. A method for producing a negative electrode material for a water electrolyte secondary battery.
JP2002257810A 2002-09-03 2002-09-03 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery Expired - Fee Related JP4069710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257810A JP4069710B2 (en) 2002-09-03 2002-09-03 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257810A JP4069710B2 (en) 2002-09-03 2002-09-03 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2004095469A true JP2004095469A (en) 2004-03-25
JP4069710B2 JP4069710B2 (en) 2008-04-02

Family

ID=32062629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257810A Expired - Fee Related JP4069710B2 (en) 2002-09-03 2002-09-03 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4069710B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129415A1 (en) * 2005-06-03 2006-12-07 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte and process for producing negative electrode
JP2008135364A (en) * 2006-11-27 2008-06-12 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, and lithium secondary battery containing the same
JP2009032644A (en) * 2007-06-26 2009-02-12 Daido Steel Co Ltd Negative electrode active material for lithium secondary battery, and lithium secondary battery
WO2009084781A1 (en) * 2007-12-27 2009-07-09 Iljin Electric Co., Ltd. Device of manufacturing rapidly solidified powder alloy used as anode active material for rechargeable li secondary cell
JP2010501995A (en) * 2006-08-25 2010-01-21 エルジー・ケム・リミテッド Highly reversible electrode active material capable of inserting lithium, method for producing the same, electrode having the same, and secondary battery
WO2012008206A1 (en) * 2010-07-15 2012-01-19 トヨタ自動車株式会社 Method for producing anode material, anode material, method for producing lithium secondary battery, and lithium secondary battery
US8147723B2 (en) 2008-08-26 2012-04-03 Samsung Electronics Co., Ltd. Porous anode active material, method of manufacturing the same, anode comprising the same, and lithium battery comprising the anode
JP2012514305A (en) * 2008-12-30 2012-06-21 エルジー・ケム・リミテッド Anode active material for secondary battery
WO2014034494A1 (en) * 2012-08-31 2014-03-06 中央電気工業株式会社 Alloy particles, electrode, nonaqueous electrolyte secondary battery, and method for producing alloy particles
JP2014107132A (en) * 2012-11-28 2014-06-09 Furukawa Electric Co Ltd:The Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery
US8835051B2 (en) 2007-04-05 2014-09-16 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery including same
US8835053B2 (en) 2007-03-21 2014-09-16 Samsung Sdi Co., Ltd. Negative active material containing an intermetallic compound of silicon and a first metal and a metal matrix containing copper and aluminum for rechargeable lithium battery and rechargeable lithium battery containing the negative active material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129415A1 (en) * 2005-06-03 2006-12-07 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte and process for producing negative electrode
JP5079334B2 (en) * 2005-06-03 2012-11-21 パナソニック株式会社 Lithium ion secondary battery and method for producing the negative electrode
JP2010501995A (en) * 2006-08-25 2010-01-21 エルジー・ケム・リミテッド Highly reversible electrode active material capable of inserting lithium, method for producing the same, electrode having the same, and secondary battery
JP2008135364A (en) * 2006-11-27 2008-06-12 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, and lithium secondary battery containing the same
US8574764B2 (en) 2006-11-27 2013-11-05 Samsung Sdi Co., Ltd. Negative active material including silicon active particles surrounded by copper, aluminum and tin metal matrix and rechargeable lithium battery including the same
US8835053B2 (en) 2007-03-21 2014-09-16 Samsung Sdi Co., Ltd. Negative active material containing an intermetallic compound of silicon and a first metal and a metal matrix containing copper and aluminum for rechargeable lithium battery and rechargeable lithium battery containing the negative active material
US8835051B2 (en) 2007-04-05 2014-09-16 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery including same
JP2009032644A (en) * 2007-06-26 2009-02-12 Daido Steel Co Ltd Negative electrode active material for lithium secondary battery, and lithium secondary battery
WO2009084781A1 (en) * 2007-12-27 2009-07-09 Iljin Electric Co., Ltd. Device of manufacturing rapidly solidified powder alloy used as anode active material for rechargeable li secondary cell
US8147723B2 (en) 2008-08-26 2012-04-03 Samsung Electronics Co., Ltd. Porous anode active material, method of manufacturing the same, anode comprising the same, and lithium battery comprising the anode
US8758939B2 (en) 2008-12-30 2014-06-24 Lg Chem, Ltd. Anode active material for secondary battery
JP2012514305A (en) * 2008-12-30 2012-06-21 エルジー・ケム・リミテッド Anode active material for secondary battery
CN103003988A (en) * 2010-07-15 2013-03-27 丰田自动车株式会社 Method for producing anode material, anode material, method for producing lithium secondary battery, and lithium secondary battery
JP5534010B2 (en) * 2010-07-15 2014-06-25 トヨタ自動車株式会社 Method for manufacturing negative electrode material, negative electrode material, method for manufacturing lithium secondary battery, lithium secondary battery
WO2012008206A1 (en) * 2010-07-15 2012-01-19 トヨタ自動車株式会社 Method for producing anode material, anode material, method for producing lithium secondary battery, and lithium secondary battery
WO2014034494A1 (en) * 2012-08-31 2014-03-06 中央電気工業株式会社 Alloy particles, electrode, nonaqueous electrolyte secondary battery, and method for producing alloy particles
JPWO2014034494A1 (en) * 2012-08-31 2016-08-08 新日鐵住金株式会社 Alloy particle, electrode, non-aqueous electrolyte secondary battery, and alloy particle manufacturing method
JP2014107132A (en) * 2012-11-28 2014-06-09 Furukawa Electric Co Ltd:The Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP4069710B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP5830419B2 (en) Porous silicon particles, porous silicon composite particles, and production methods thereof
US8980428B2 (en) Porous silicon particles and complex porous silicon particles, and method for producing both
KR101884476B1 (en) Negative electrode material for lithium ion battery
JP5790282B2 (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery
KR20080032037A (en) Alloy for negative electrode of lithium secondary battery
JP5729520B2 (en) Negative electrode active material
JP5877025B2 (en) Porous silicon composite particles and method for producing the same
JP5598861B2 (en) Porous silicon particles and method for producing the same
JP2004296412A (en) Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery
WO2012036265A1 (en) Porous silicon particles and complex porous silicon particles, and method for producing both
JP6808988B2 (en) Negative electrode active material for lithium-ion batteries and lithium-ion batteries
TW201316596A (en) Negative electrode active material for lithium ion battery, and negative electrode for lithium ion battery using the same
WO2015041063A1 (en) Composite particles of silicon phase-containing substance and graphite, and method for producing same
WO2014034494A1 (en) Alloy particles, electrode, nonaqueous electrolyte secondary battery, and method for producing alloy particles
JP4069710B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2004087264A (en) Negative electrode material for non-water electrolysis liquid secondary battery, and its manufacturing method
WO2015012086A1 (en) Composite particles, method for manufacturing same, electrode, and non-aqueous electrolyte secondary cell
JP2014053132A (en) Negative electrode material for lithium ion battery
JP4923877B2 (en) Anode material for non-aqueous electrolyte secondary battery and method for producing the same
JPH0969362A (en) Secondary battery and power source using it
JP2001307723A (en) Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2004103478A (en) Negative electrode material for nonaqueous electrolyte secondary battery
JP2015060640A (en) Alloy-graphite composite particle and method for producing the same
JP7443851B2 (en) Powder material for negative electrode of lithium ion battery and its manufacturing method
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4069710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees