JPH10265810A - Hydrogen occlusion alloy powder, its production and electrode consisting thereof - Google Patents

Hydrogen occlusion alloy powder, its production and electrode consisting thereof

Info

Publication number
JPH10265810A
JPH10265810A JP9071703A JP7170397A JPH10265810A JP H10265810 A JPH10265810 A JP H10265810A JP 9071703 A JP9071703 A JP 9071703A JP 7170397 A JP7170397 A JP 7170397A JP H10265810 A JPH10265810 A JP H10265810A
Authority
JP
Japan
Prior art keywords
powder
heat treatment
alloy powder
hydrogen storage
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9071703A
Other languages
Japanese (ja)
Inventor
Yukiteru Takeshita
幸輝 竹下
Hideya Kaminaka
秀哉 上仲
Tatsuo Nagata
辰夫 永田
Noriyuki Negi
教之 禰宜
Koichi Kamishiro
光一 神代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9071703A priority Critical patent/JPH10265810A/en
Publication of JPH10265810A publication Critical patent/JPH10265810A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain hydrogen occlusion alloy powder which has an excellent discharge capacity and charge and discharge repetition life when the power is used for the battery by specifying the ratio of the average grain size of the alloy powder pulverized after a heat treatment to the average grain size of the substantially spherical hydrogen occlusion alloy powder before the heat treatment. SOLUTION: The hydrogen occlusion alloy powder at least partially sintered during the heat treatment is pulverized and the sintered compacts are nearly completely disintegrated. The disintegration is so executed that the ratio of the average grain size of the pulverized powder after the heat treatment to the average grain size of the powder before the heat treatment attains a range of 0.85 to 1.15. Namely, the powder having nearly the same average grain size as the average grain size of the powder before the heat treatment is obtd. Such pulverization is easily attained by using a pulverizing machine of which the main pulverizing mechanism is impact. The hydrogen occlusion alloy powder having the spherical shape can thus be obtd. Consequently, a high-density electrode packed with a large amt. of the hydrogen occlusion alloy by the peculiar high packing property of the spherical powder is obtd. and the capacity of the battery is made higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル−水素二
次電池 (以下、Ni−H二次電池、または単にNi−H電池
という) の負極材料等として好適な、高い充填率を示す
水素吸蔵合金粉末およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage material having a high filling rate, which is suitable as a material for a negative electrode of a nickel-hydrogen secondary battery (hereinafter referred to as Ni-H secondary battery or simply Ni-H battery). The present invention relates to an alloy powder and a method for producing the same.

【0002】[0002]

【従来の技術】今日のエネルギー事情では、化石燃料に
よる大気汚染、温暖化等の地球環境問題が課題となって
おり、水素はこれら化石燃料に変わるクリーンな燃料と
して注目されている。これは水素が水を原料としている
こと、燃焼生成物が水であること、さらに電力・熱・動
力へのエネルギー変換システムに適用し得る材料である
ことからである。
2. Description of the Related Art In today's energy situation, global environmental problems such as air pollution and global warming caused by fossil fuels have become issues, and hydrogen has been attracting attention as a clean fuel replacing these fossil fuels. This is because hydrogen uses water as a raw material, the combustion product is water, and it is a material that can be applied to an energy conversion system for electric power, heat, and power.

【0003】この水素を貯蔵するものとして水素吸蔵合
金が存在し、貯蔵、ヒートポンプ、アクチュエータ等へ
の応用開発がなされてきた。近年になって、Ni−H二次
電池への適用が実用化された。特に、この分野では、主
流であったNi−Cd二次電池の公害問題、Cdの資源的問
題、そして機器のポータブル化に伴う高容量化のニーズ
への対応等により、その需要は大きく伸びており、現在
では水素吸蔵合金の用途の主要な部分を占めるまでにな
ってきた。
[0003] A hydrogen storage alloy exists for storing this hydrogen, and its application to storage, heat pumps, actuators and the like has been developed. In recent years, application to Ni-H secondary batteries has been put to practical use. In particular, demand in this field has grown sharply due to the mainstream pollution problems of Ni-Cd secondary batteries, resource problems of Cd, and the need for higher capacity due to portable equipment. At present, it has become a major part of the use of hydrogen storage alloys.

【0004】水素吸蔵合金として検討されてきた主な合
金系は、Mg系、LaNi5 やMmNi5 等のAB5 系、ZrV2等で
代表されるAB2 型のラーベス相を有する系等である。
実用化の進んでいる二次電池向けの用途では、AB5
が最も進んでいるが、AB2系も高容量化が図れる点で
有望である。
[0004] The major alloy systems that have been studied as a hydrogen storage alloy is a system or the like having a Mg-based, LaNi 5 or MmNi 5 like the AB 5 type, AB 2 type Laves phase as represented by the ZrV 2, etc. .
In applications for the secondary battery has progressed a practical, although AB 5 system is the most advanced, AB 2 system also is promising in that a high capacity can be achieved.

【0005】Ni−H二次電池も量産開始から数年が立
ち、高容量化が進んでいるが、機器メーカからのより一
層の高容量化要望と、近年の高容量リチウムイオン電池
の登場によって、Ni−H二次電池の高容量化の必要性は
ますます高くなっている。
[0005] Ni-H secondary batteries have been several years after mass production has started, and their capacity has been increasing. However, with the demand for higher capacity from equipment manufacturers and the recent appearance of high capacity lithium ion batteries, There is a growing need for higher capacity Ni-H secondary batteries.

【0006】高容量化へのアプローチ法は種々検討され
ているが、球形の水素吸蔵合金を用いて負極への合金の
充填率を向上させる方法が、特開平3−116655号公報等
に述べられている。このような球形の水素吸蔵合金粉末
(以下、球形粉末ともいう)を得る方法としては、例え
ばガスアトマイズ法や回転電極法等がある。
Various approaches to increasing the capacity have been studied, and a method for improving the filling rate of the alloy into the negative electrode by using a spherical hydrogen storage alloy is described in Japanese Patent Application Laid-Open No. 3-116655. ing. Such spherical hydrogen storage alloy powder
Examples of a method for obtaining spherical powder (hereinafter, also referred to as spherical powder) include a gas atomizing method and a rotating electrode method.

【0007】球形の水素吸蔵合金粉末は、不規則形状の
粉末に比べて、高密度に充填することができ、容積 (形
状) が決まっている電池内により多量の合金を充填する
ことが可能となる。その結果、電極の高容量化、即ち電
池の高容量化が図られる。
[0007] Spherical hydrogen storage alloy powder can be packed at a higher density than irregular shaped powder, and it is possible to fill a larger amount of alloy in a battery having a fixed volume (shape). Become. As a result, the capacity of the electrode is increased, that is, the capacity of the battery is increased.

【0008】このような球形の水素吸蔵合金粉末は、通
常は急冷凝固されている。急冷凝固された水素吸蔵合金
粉末は、偏析が少ない、結晶粒径が小さい、といった特
徴を有しているため、Ni−H二次電池の負極に利用した
場合には、高耐食性、高率放電特性を良くするという長
所を発揮する (特開平3−216959号公報、特開平4−63
207 号公報等を参照) 。
[0008] Such a spherical hydrogen storage alloy powder is usually rapidly solidified. The rapidly solidified hydrogen-absorbing alloy powder has the characteristics of low segregation and small crystal grain size, and when used for the negative electrode of a Ni-H secondary battery, has high corrosion resistance and high-rate discharge. It has the advantage of improving the characteristics (JP-A-3-216959, JP-A-4-63959)
No. 207, etc.).

【0009】[0009]

【発明が解決しようとする課題】これらの長所をさらに
際立たせる方法として、熱処理がある。急冷凝固合金は
一般に上述のような特長 (偏析が小、結晶粒径が小) を
有するが、急冷に起因する格子歪があり、また微小な偏
析も残っている。このような格子歪や微小な偏析がある
と、水素を十分に吸蔵できないため、Ni−H二次電池の
放電容量が著しく低下する上、使用中に合金粉末が崩壊
して粉化し易いので、電池の充放電繰り返し寿命も劣化
する。急冷凝固合金の格子歪や微小な偏析の解消には、
熱処理が有効である。
As a method for further highlighting these advantages, there is a heat treatment. Although the rapidly solidified alloy generally has the above-mentioned features (small segregation and small crystal grain size), it has a lattice strain due to rapid cooling, and minute segregation remains. If there is such a lattice strain or minute segregation, hydrogen cannot be sufficiently absorbed, so that the discharge capacity of the Ni-H secondary battery is significantly reduced, and the alloy powder is easily collapsed and powdered during use. The repeated charge / discharge life of the battery also deteriorates. To eliminate lattice distortion and minute segregation in rapidly solidified alloys,
Heat treatment is effective.

【0010】特開平3−116655号公報には、球形粉末を
用いて充填率を向上させることによるNi−H二次電池の
高容量化については説明されているが、熱処理すること
は開示されていない。
Japanese Unexamined Patent Publication (Kokai) No. 3-116655 discloses a technique for increasing the capacity of a Ni-H secondary battery by improving the filling rate by using spherical powder, but discloses heat treatment. Absent.

【0011】水素吸蔵合金粉末の熱処理は、材質によっ
ても異なるが、通常は 550〜1100℃の温度で行われてい
る。しかし、粉末状態での熱処理のため、この熱処理中
に合金が焼結して、球形粉末が互いにくっついて1つに
固まった焼結体、或いはいくつか (例、2〜3個) の球
形粒子が連結した仮焼結体になってしまうことがある。
このような水素吸蔵合金粉末の焼結体または仮焼結体か
ら、再びばらばらの粉末を得るには粉砕が必要である
が、この粉砕によって、せっかくの球形の粒子形状が壊
れてしまい、高充填率という球形粉末の優位性が消失し
てしまうことが多かった。そのため、球形の水素吸蔵合
金粉末が本来は持っている筈である高容量化という利点
を十分に享受することができなかった。
[0011] The heat treatment of the hydrogen storage alloy powder is usually performed at a temperature of 550 to 1100 ° C, though it varies depending on the material. However, due to the heat treatment in the powder state, the alloy sinters during this heat treatment, and the spherical powder adheres to each other to form a sintered body, or several (eg, two to three) spherical particles. May become a connected temporary sintered body.
From the sintered or pre-sintered body of such a hydrogen storage alloy powder, pulverization is necessary to obtain separate powder again, but this pulverization breaks the precious spherical particle shape, resulting in high filling. In many cases, the superiority of the spherical powder in terms of ratio was lost. For this reason, the spherical hydrogen storage alloy powder could not fully enjoy the advantage of high capacity that it should originally have.

【0012】特開平8−45505 号公報には、球形の水素
吸蔵合金粉末を熱処理で部分的に焼結させ、必要に応じ
て解砕して得た一部焼結合金を電極に用いることが記載
されている。しかし、最適な熱処理温度は合金特性の観
点から決められるべきものであり、部分的に焼結する温
度と最適熱処理温度とは必ずしも一致しない。そのた
め、部分的に焼結する温度での熱処理では、本来その合
金が熱処理によって発揮しうる性能を確保できない可能
性がある。また、解砕して得た合金粉末はなお一部焼結
状態にあるので、球形粉末の持つ高い充填性が損なわれ
る。
Japanese Patent Application Laid-Open No. 8-45505 discloses that a partially sintered alloy obtained by partially sintering a spherical hydrogen-absorbing alloy powder by heat treatment and, if necessary, crushing the powder is used for the electrode. Have been described. However, the optimal heat treatment temperature is to be determined from the viewpoint of alloy properties, and the temperature at which partial sintering is performed does not always match the optimal heat treatment temperature. Therefore, in the heat treatment at a temperature at which the alloy is partially sintered, there is a possibility that the performance of the alloy originally exhibited by the heat treatment cannot be secured. Further, since the alloy powder obtained by crushing is still partially in a sintered state, the high filling property of the spherical powder is impaired.

【0013】本発明は、球形の(即ち、急冷凝固を受け
た)水素吸蔵合金粉末を熱処理することによりその性能
を最大限に発揮させることができると同時に、熱処理に
よる焼結または仮焼結に起因する充填性の低下が実質的
に避けられた、放電容量と充放電繰り返し寿命のいずれ
にも優れた水素吸蔵合金粉末とその製造方法を提供する
ことを課題とするものである。
According to the present invention, the performance of a spherical (ie, rapidly solidified) hydrogen-absorbing alloy powder can be maximized by heat-treating it. An object of the present invention is to provide a hydrogen storage alloy powder excellent in both the discharge capacity and the charge / discharge repetition life, in which the reduction of the filling property caused is substantially avoided, and a method for producing the same.

【0014】[0014]

【課題を解決するための手段】本発明者らは、球形の水
素吸蔵合金粉末を熱処理した後、仮焼結体または焼結体
を衝撃方式の粉砕機で粉砕すると、平均粒径が熱処理前
の球形粉末の平均粒径に近く、形状がほぼ球形の粉末が
得られることを見出し、この手段により上記課題を解決
することができることを見出した。
Means for Solving the Problems The inventors of the present invention heat-treat a spherical hydrogen-absorbing alloy powder and then pulverize a pre-sintered body or a sintered body with an impact-type pulverizer. It has been found that a powder having a shape close to the average particle diameter of the spherical powder and having a substantially spherical shape can be obtained, and that this means can solve the above problem.

【0015】ここに、本発明は「実質的に球形の水素吸
蔵合金粉末を、粉末が少なくとも部分的に焼結する条件
下で熱処理した後、焼結した粉末を粉砕することからな
る水素吸蔵合金粉末の製造方法であって、熱処理前の水
素吸蔵合金粉末の平均粒径に対する熱処理後に粉砕した
該粉末の平均粒径の比が0.85〜1.15の範囲内であること
を特徴とする方法」である。
Here, the present invention provides a hydrogen storage alloy which comprises heat-treating a substantially spherical hydrogen storage alloy powder under conditions at least partially sintering the powder and then pulverizing the sintered powder. A method for producing a powder, wherein the ratio of the average particle size of the powder crushed after the heat treatment to the average particle size of the hydrogen storage alloy powder before the heat treatment is in the range of 0.85 to 1.15 ''. .

【0016】この粉砕は、主な粉砕機構が衝撃である粉
砕機を使用して行うことができる。本発明の方法で製造
された水素吸蔵合金粉末は、同組成の合金の不規則形状
の水素吸蔵合金粉末より高い充填率を有しており、従っ
て、放電容量の高いNi−H二次電池を作製することがで
きる。
The pulverization can be performed using a pulverizer whose main pulverizing mechanism is an impact. The hydrogen-absorbing alloy powder produced by the method of the present invention has a higher filling factor than the irregularly-shaped hydrogen-absorbing alloy powder of the alloy having the same composition, and thus has a high discharge capacity of a Ni-H secondary battery. Can be made.

【0017】[0017]

【発明の実施の形態】本発明の水素吸蔵合金粉末の製造
方法は、実質的に球形の水素吸蔵合金粉末を熱処理した
後、粉砕することからなる。ここで、「実質的に球形」
とは、一般に粉末のアスペクト比が2以下であることを
意味する。以下では、説明の簡略化のために、この水素
吸蔵合金粉末を単に「球形」粉末という。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a hydrogen storage alloy powder according to the present invention comprises heat-treating a substantially spherical hydrogen storage alloy powder and then pulverizing the powder. Where "substantially spherical"
Means that the aspect ratio of the powder is generally 2 or less. Hereinafter, for simplicity of description, this hydrogen storage alloy powder is simply referred to as “spherical” powder.

【0018】このような水素吸蔵合金の球形粉末は、前
述したように、ガスアトマイズ法や回転電極法等により
得ることができる。しかし、この粉末の製造方法は特に
限定されるものではなく、水素吸蔵合金粉末の球形粉末
が得られる方法であれば何でもよい。
As described above, such a spherical powder of the hydrogen storage alloy can be obtained by a gas atomizing method, a rotating electrode method, or the like. However, the method for producing this powder is not particularly limited, and any method may be used as long as a spherical powder of the hydrogen storage alloy powder can be obtained.

【0019】本発明の方法において、水素吸蔵合金粉末
の合金組成は特に制限されない。現状ではAB5 型やA
2 型の水素吸蔵合金がNi−H二次電池の負極材料に使
用されているが、これら以外の水素吸蔵合金の粉末に対
しても本発明を適用することができる。
In the method of the present invention, the alloy composition of the hydrogen storage alloy powder is not particularly limited. At present AB 5 type and A
Although the B 2 type hydrogen storage alloy is used as the negative electrode material of the Ni—H secondary battery, the present invention can be applied to other hydrogen storage alloy powders.

【0020】本発明による熱処理を施す前に、水素吸蔵
合金の球形粉末に適当な表面処理を施してもよい。この
ような表面処理としては、酸水溶液やアルカリ水溶液に
よる処理、ニッケルめっき等が知られており、初期活性
化特性やその他の特性が向上することがある。
Before the heat treatment according to the present invention, the spherical powder of the hydrogen storage alloy may be subjected to an appropriate surface treatment. As such a surface treatment, treatment with an aqueous acid solution or aqueous alkali solution, nickel plating, and the like are known, and the initial activation characteristics and other characteristics may be improved in some cases.

【0021】また、例えば、ガスアトマイズ法で得られ
た水素吸蔵合金粉末の球形粉末は粒度分布が比較的広い
ので、熱処理前に分級して粒度分布や平均粒径を調整し
てもよい。Ni−H二次電池の負極材料としては平均粒径
が10〜100 μmの範囲内の水素吸蔵合金粉末が好まし
い。後述するように、本発明の方法では、最終的に熱処
理前とほぼ同じ平均粒径を持つ水素吸蔵合金粉末が得ら
れるので、熱処理に供する水素吸蔵合金の球形粉末の平
均粒径は、使用する用途に最適となるように決めればよ
い。
For example, since the spherical powder of the hydrogen storage alloy powder obtained by the gas atomizing method has a relatively wide particle size distribution, it may be classified before heat treatment to adjust the particle size distribution and the average particle size. As the negative electrode material of the Ni-H secondary battery, a hydrogen storage alloy powder having an average particle diameter in the range of 10 to 100 μm is preferable. As will be described later, in the method of the present invention, a hydrogen storage alloy powder having substantially the same average particle size as before heat treatment is finally obtained, so that the average particle size of the spherical powder of the hydrogen storage alloy to be subjected to heat treatment is used. What is necessary is just to decide so that it may be optimal for a use.

【0022】本発明において、水素吸蔵合金粉末の平均
粒径は、レーザー回折式粒度分布計により求めた粒度分
布における累積50%の値を意味する。
In the present invention, the average particle size of the hydrogen-absorbing alloy powder means a value of 50% cumulative in the particle size distribution obtained by a laser diffraction type particle size distribution meter.

【0023】前述したように、実質的に球形の水素吸蔵
合金粉末は一般に急冷凝固されているので、格子歪や微
小な偏析があり、これらを除去するために熱処理を行
う。熱処理条件は、格子歪や微小な偏析が解放されるよ
うに選択すればよく、水素吸蔵合金粉末の合金組成、製
造法 (特に急冷速度) 、粒度等により異なる。例えば、
AB5 型の水素吸蔵合金では、温度 550〜1100℃で、時
間2〜8時間程度の熱処理が好ましい。中でも、ガスア
トマイズ法で得られた急冷凝固粉末の場合には、650〜1
000℃の温度範囲が好ましい。
As described above, since the substantially spherical hydrogen-absorbing alloy powder is generally rapidly solidified, there is lattice distortion and minute segregation, and heat treatment is performed to remove these. The heat treatment conditions may be selected so as to release lattice strain and minute segregation, and vary depending on the alloy composition of the hydrogen storage alloy powder, the production method (particularly, rapid cooling rate), the particle size, and the like. For example,
The AB 5 type hydrogen storage alloy, at a temperature from 550 to 1,100 ° C., preferably the heat treatment time of about 2-8 hours. Above all, in the case of rapidly solidified powder obtained by the gas atomizing method, 650 to 1
A temperature range of 000 ° C. is preferred.

【0024】熱処理の雰囲気は、合金粉末の酸化が抑制
されるような条件、即ち、非酸化性雰囲気が好ましく、
例えば、真空もしくは減圧雰囲気、或いは不活性ガス雰
囲気が好ましい。
The atmosphere for the heat treatment is preferably a condition under which the oxidation of the alloy powder is suppressed, that is, a non-oxidizing atmosphere.
For example, a vacuum or reduced pressure atmosphere, or an inert gas atmosphere is preferable.

【0025】熱処理条件によっては、実質的に球形の水
素吸蔵合金粉末が少なくとも部分的に焼結して、互いに
くっついてしまうことがある。その結果、粉末が全体と
して1つに固まった焼結体、或いはいくつかの球形粒子
が連結した仮焼結体が生成する。本発明の方法は、この
ような条件下で (即ち、少なくとも部分的に焼結が起こ
る条件下で) 熱処理を行う場合を対象とする。熱処理中
に焼結が全く起こらなければ、熱処理後の水素吸蔵合金
粉末は、熱処理前の実質的に球形の形状を維持してお
り、そのまま使用することができる。
Depending on the heat treatment conditions, the substantially spherical hydrogen-absorbing alloy powder may at least partially sinter and stick to each other. As a result, a sintered body in which the powder is solidified as a whole or a temporary sintered body in which several spherical particles are connected to each other is generated. The method of the present invention is directed to the case where the heat treatment is performed under such conditions (ie, under conditions where sintering occurs at least partially). If no sintering occurs during the heat treatment, the hydrogen storage alloy powder after the heat treatment maintains a substantially spherical shape before the heat treatment and can be used as it is.

【0026】本発明によれば、このように熱処理中に少
なくとも部分的に焼結した水素吸蔵合金粉末を粉砕し
て、焼結体(仮焼結体を含む、以下同じ)をほぼ完全に
解砕するが、この時の粉砕を、熱処理前の水素吸蔵合金
粉末の平均粒径に対する熱処理後に粉砕した粉末の平均
粒径の比(平均粒径比)が0.85〜1.15の範囲内となるよ
うに行う。即ち、粉砕により熱処理前の平均粒径とほぼ
同じ平均粒径の粉末を得る。このような粉砕は、主な粉
砕機構が衝撃である粉砕機を用いることによって容易に
達成することができる。
According to the present invention, the hydrogen storage alloy powder at least partially sintered during the heat treatment is pulverized to almost completely dissolve the sintered body (including the temporarily sintered body, the same applies hereinafter). The pulverization at this time is performed so that the ratio of the average particle diameter of the powder pulverized after the heat treatment to the average particle diameter of the hydrogen storage alloy powder before the heat treatment (average particle diameter ratio) is in the range of 0.85 to 1.15. Do. That is, a powder having an average particle diameter substantially equal to the average particle diameter before the heat treatment is obtained by pulverization. Such pulverization can be easily achieved by using a pulverizer whose main pulverizing mechanism is impact.

【0027】粉砕機の粉砕機構 (粉砕のために固体に加
えられる外力) は主に圧縮、剪断、衝撃、および摩擦の
四つである。これらの粉砕機構のうち、圧縮、剪断、お
よび/または摩擦を主とする粉砕機を用いて、少なくと
も部分的に焼結した球形の水素吸蔵合金粉末を粉砕する
と、粉砕後の粉末は球形状ではなく、不規則形状になっ
てしまう。しかし、この焼結した粉末を、主に衝撃によ
り粉砕する粉砕機で粉砕を行うと、元の (熱処理前の)
球形状を保持した粉末が得られることが判明した。その
理由は次のように考えられる。
The crushing mechanism of the crusher (external force applied to the solid for crushing) is mainly of four types: compression, shear, impact, and friction. Among these pulverizing mechanisms, when a spherical hydrogen storage alloy powder that is at least partially sintered is pulverized using a pulverizer mainly based on compression, shearing, and / or friction, the pulverized powder has a spherical shape. And an irregular shape. However, when this sintered powder is crushed by a crusher that crushes mainly by impact, the original (before heat treatment)
It was found that a powder having a spherical shape was obtained. The reason is considered as follows.

【0028】衝撃による粉砕では、外力が瞬間的にしか
加わらないため、破壊される (切れる) 部位が、水素吸
蔵合金粉末の粒子そのものではなく、最も弱い部位であ
る熱処理中に焼結した部位 (通常「ネック」と称され
る、粒子の連結部) が主になる。そのため、粉砕後に得
られた粉末は、焼結前 (即ち、熱処理前) と同様の球形
の粒子形状を持つ結果となる。また、熱処理前の粉末粒
子は破壊されないので、粉砕後の粉末の平均粒径は、熱
処理前の粉末の平均粒径に近いものとなる。
In the pulverization by the impact, since the external force is applied only instantaneously, the part to be broken (cut) is not the hydrogen storage alloy powder itself, but the part which is sintered during the heat treatment which is the weakest part. The connection part of the particles, which is usually called “neck”, is mainly used. Therefore, the powder obtained after the pulverization has the same spherical particle shape as before the sintering (that is, before the heat treatment). Further, since the powder particles before heat treatment are not broken, the average particle size of the powder after pulverization is close to the average particle size of the powder before heat treatment.

【0029】これに対して、圧縮、摩擦、および/また
は剪断による粉砕では、外力が比較的長い時間にわたっ
て加わるため、最も結合が弱い部分であるネック部 (焼
結体の粒子連結部) のみでなく、球形粉末の粒子自体も
破壊あるいは潰される確率が高くなる。その結果、焼結
した粉末粒子がほぼ完全になくなるまで (即ち、ほぼ完
全に解砕されるまで) 粉砕を行うと、得られた粉末のか
なりの部分が、粒子の割れや偏平化によって不規則形状
になり、球形粉末の特徴である高充填性という特性が得
られなくなる。しかも、熱処理前の球形粉末の多くが破
壊されて分割してしまうので、平均粒径が熱処理前に比
べてかなり小さくなる。
On the other hand, in the pulverization by compression, friction, and / or shearing, an external force is applied for a relatively long period of time, so that only the neck portion (the particle connecting portion of the sintered body) which is the weakest portion is bonded. In addition, the probability that the spherical powder particles themselves are broken or crushed is increased. As a result, when grinding is performed until the sintered powder particles are almost completely eliminated (i.e., almost completely disintegrated), a significant portion of the resulting powder becomes irregular due to cracking and flattening of the particles. It becomes impossible to obtain the characteristic of high filling property which is a characteristic of the spherical powder. Moreover, since most of the spherical powder before heat treatment is broken and divided, the average particle size becomes considerably smaller than before heat treatment.

【0030】そのため、本発明では、主に衝撃により粉
砕する (即ち、主な粉砕機構が衝撃である) 粉砕機を用
いて、熱処理中に少なくとも部分的に焼結した水素吸蔵
合金の球形粉末を粉砕する。この粉砕機を用いて、焼結
した粉末粒子の焼結部位 (ネック部) を優先的に破壊す
ることにより、元の球形の粒子形状を保持したまま、焼
結した粉末をほぼ完全に解砕することができ、球形の形
状を持つ水素吸蔵合金粉末を得ることができる。その結
果、球形粉末に固有の高充填性により、不規則形状の粉
末より多量の水素吸蔵合金を電極内に充填できるので、
高密度の電極が得られ、Ni−H二次電池の高容量化が可
能となる。
Therefore, in the present invention, the spherical powder of the hydrogen-absorbing alloy, which is at least partially sintered during the heat treatment, is obtained by using a pulverizer that is mainly pulverized by impact (that is, the main pulverizing mechanism is the impact). Smash. By using this pulverizer, the sintered part (neck) of the sintered powder particles is preferentially destroyed, so that the sintered powder is almost completely disintegrated while maintaining the original spherical particle shape. And a hydrogen storage alloy powder having a spherical shape can be obtained. As a result, due to the high filling property inherent in spherical powder, a larger amount of hydrogen storage alloy can be filled in the electrode than the irregularly shaped powder,
A high-density electrode can be obtained, and the capacity of the Ni-H secondary battery can be increased.

【0031】主に衝撃により粉砕する粉砕機の代表例は
ハンマーミル (高速回転するローターに取り付けられた
ハンマーで粉砕する粉砕機) およびハンマーミルの1種
であるスクリーンミルである。ハンマーミルやスクリー
ンミルの粉砕機構は衝撃と剪断が組合わさっているが、
衝撃が主である。
Representative examples of the crusher that mainly crushes by impact are a hammer mill (a crusher that crushes with a hammer attached to a high-speed rotating rotor) and a screen mill that is a kind of a hammer mill. The crushing mechanism of a hammer mill or screen mill combines impact and shear,
Shock is the main.

【0032】主に衝撃により粉砕する粉砕機の別の例
は、ジェットミル (ジェット気流に粉末を巻き込んで粒
子相互の衝突で粉砕する粉砕機) 、転動ボールミル (水
平軸を回転軸とする回転容器内に粉砕媒体もしくは衝撃
体としてボールを入れ、ボールの落下等で粉砕する粉砕
機;粉砕媒体がペブル形状であるペブルミル、ロッド形
状であるロッドミルも含む) 、振動ボールミル (回転で
はなく、振動により粉砕を行うボールミル) 、ならびに
対向する回転円板のピンまたは溝で粉砕するディスクミ
ルやピンミルである。これらの粉砕機では、衝撃と摩
擦、または衝撃と摩擦と剪断により粉砕が達成される
が、衝撃が主な粉砕機構である。主な粉砕機構が衝撃で
あれば、上記以外の粉砕機も、本発明の方法に使用でき
る。
Another example of a pulverizer mainly crushing by impact is a jet mill (a crusher in which powder is entrained in a jet stream and crushed by collision of particles), a rolling ball mill (rotation with a horizontal axis as a rotation axis). A crusher that puts a ball as a crushing medium or impactor in a container and crushes the ball by dropping the ball; also includes a pebble mill in which the crushing medium is a pebble shape and a rod mill in which a rod shape is used; Ball mills for pulverization), as well as disc mills and pin mills for pulverization with pins or grooves of a rotating disk facing each other. In these crushers, crushing is achieved by impact and friction, or by impact, friction and shear, but impact is the main crushing mechanism. Other grinders can also be used in the method of the present invention if the primary grinding mechanism is an impact.

【0033】本発明で用いる粉砕機は、粉砕機構が主に
衝撃であればよいが、衝撃以外の粉砕機構が関与する割
合が多くなるほど、球形の粉末粒子が破壊する可能性が
高くなり、充填率向上の効果は小さくなる。逆に、粉砕
機構に占める衝撃の割合が高いほど、得られる効果は大
きくなる。従って、衝撃が支配的な粉砕機構である粉砕
機が、より大きな効果を得る上で好ましい。例えば、ハ
ンマーミルは、その粉砕機構において衝撃が支配的であ
るので、特に大きな充填率の向上効果を与える。逆に、
転動ボールミルや振動ボールミルによる粉砕では、衝撃
が主であるが、他に剪断、摩擦もかなり関与するため、
ハンマーミルに比べると、効果は小さくなる。ジェット
ミルは、一般にハンマーミルとボールミルの中間の結果
を与えることが多い。
In the pulverizer used in the present invention, it is sufficient that the pulverizing mechanism is mainly an impact. However, as the proportion of the pulverizing mechanism other than the impact increases, the possibility that spherical powder particles are broken increases, and The effect of improving the rate is reduced. Conversely, the higher the proportion of the impact on the crushing mechanism, the greater the effect obtained. Therefore, a pulverizer, which is a pulverizing mechanism in which impact is dominant, is preferable for obtaining a greater effect. For example, a hammer mill has a particularly large effect of improving the filling rate because impact is dominant in its pulverizing mechanism. vice versa,
In grinding with a rolling ball mill or vibrating ball mill, impact is mainly involved, but also shearing and friction are considerably involved, so
The effect is smaller than that of a hammer mill. Jet mills generally provide intermediate results between hammer mills and ball mills.

【0034】一方、衝撃以外の粉砕機構を主とする、本
発明の方法では使用できない粉砕機の例としては次のも
のがある:圧縮を主とし、摩擦や剪断が加わる粉砕機
[例、、ロールミル (逆方向に回転する、回転速度の異
なる2本のロール間で粉砕する粉砕機)]、圧縮を主と
し、衝撃と剪断が加わる粉砕機 [例、スタンプミル (杵
型スタンプの落下(上下動)により粉砕する粉砕機)]、
摩擦と圧縮を主とする粉砕機 (例、低速ボールミル、乳
鉢と乳棒) 。
On the other hand, examples of pulverizers which mainly use a pulverizing mechanism other than an impact and which cannot be used in the method of the present invention include the following: pulverizers which mainly use compression and are subject to friction and shear.
[Example: Roll mill (pulverizer that rotates in the opposite direction, pulverizes between two rolls with different rotation speeds)], pulverizer that mainly applies compression, and is subject to impact and shearing [Example, stamp mill (punch type stamp) Crusher that crushes by falling (vertical movement)
Crushers mainly for friction and compression (eg low speed ball mills, mortars and pestle).

【0035】本発明においては、高充填率を得ることが
できる実質的に球形の水素吸蔵合金粉末を粉砕で得るこ
とを目的にしているので、粉砕した粉末が実質的に球形
の形状を持っていることを確認する必要がある。最も直
接的な確認方法は、SEM等で粉末形状を直接観察する
ことであるが、全ての粉末を観察する必要があり、実際
の製造工程においては現実的ではない。
In the present invention, an object is to obtain a substantially spherical hydrogen storage alloy powder capable of obtaining a high filling rate by pulverization, so that the pulverized powder has a substantially spherical shape. You need to make sure that The most direct confirmation method is to directly observe the powder shape with an SEM or the like, but it is necessary to observe all powders, which is not practical in an actual manufacturing process.

【0036】本発明者らは、主な粉砕機構が衝撃である
粉砕機を用いて粉砕した場合、熱処理前の粉末の平均粒
径と熱処理後に粉砕した粉末の平均粒径との比 (以下、
単に平均粒径比ともいう) が0.85〜1.15の範囲に入って
いれば、粉砕した粉末が熱処理前の実質的に球形の粒子
形状を有し、しかも焼結した粉末粒子がほぼ完全になく
なるまで解砕されていることを経験的に突き止めた。こ
の平均粒径比は、好ましくは0.90〜1.10である。
The present inventors have found that when pulverizing using a pulverizer whose main pulverizing mechanism is impact, the ratio of the average particle diameter of the powder before heat treatment to the average particle diameter of the powder pulverized after heat treatment (hereinafter, referred to as
If the average particle size ratio is within the range of 0.85 to 1.15, the pulverized powder has a substantially spherical particle shape before heat treatment, and the sintered powder particles are almost completely eliminated. We have empirically determined that it has been crushed. This average particle size ratio is preferably from 0.90 to 1.10.

【0037】前述したように、主な粉砕機構が衝撃であ
る粉砕機では、機械的に弱い焼結部位 (ネック部) が優
先的に破壊され、元の球形の粉末それ自体はほどんと破
壊されないので、完全に解砕が起こった時点でも、粉末
それ自体はほとんど破壊されていない。従って、この時
点での粉砕後の粉末の平均粒径は熱処理前とさほど違わ
ないものとなるので、平均粒径が元の値の±15% (即
ち、平均粒径比が0.85〜1.15) であることを目安とし
て、粉砕の進行を管理することにより、粉末はほぼ完全
に個々の粒子に解砕され、しかも熱処理前の実質的に球
形の粉末形状を有する粉末が得られるものと考えられ
る。
As described above, in a crusher in which the main crushing mechanism is an impact, a mechanically weak sintering portion (neck portion) is preferentially destroyed, and the original spherical powder itself is substantially destroyed. The powder itself is hardly destroyed even when complete disintegration has occurred. Therefore, since the average particle size of the powder after pulverization at this point is not so different from that before the heat treatment, the average particle size is ± 15% of the original value (that is, the average particle size ratio is 0.85 to 1.15). Based on this, it is considered that by controlling the progress of the pulverization, the powder is almost completely disintegrated into individual particles, and a powder having a substantially spherical powder shape before the heat treatment is obtained.

【0038】但し、粉末の平均粒径は、同じロットの粉
末でも、試料の採取ごと若干異なる値を示すことが多
い。また、主な粉砕機構が衝撃である粉砕機を用いて粉
砕しても、粉末の割れや偏平化が全く起こらないとは言
えず、ごく僅かな粉末は割れや偏平化を受け、或いは割
れた粉末が凝集したりするのが普通である。このような
種々雑多な現象があっても、主な粉砕機構が衝撃である
粉砕機を用いた場合には、粉砕の進行を前記の平均粒径
比で全体的に管理することで、目的とする粉砕結果を得
ることができることを確認した。
However, the average particle size of the powder often shows a slightly different value each time a sample is collected, even in the same lot of powder. In addition, even if the main pulverizing mechanism is pulverized using a pulverizer having an impact, it cannot be said that powder cracking or flattening does not occur at all, and a very small amount of powder undergoes cracking or flattening or cracks. It is common for powder to agglomerate. Even with such various phenomena, when a crusher whose main crushing mechanism is an impact is used, the progress of the crushing is controlled by the average particle diameter ratio as a whole to achieve the purpose and It was confirmed that a pulverization result could be obtained.

【0039】本発明の方法によれば、熱処理中に水素吸
蔵合金の球形粉末が完全に焼結しても、粉砕により元の
球形粉末に近い形状に戻るので、熱処理条件を自由に設
定できる。従って、急冷凝固を受けた球形粉末が持つ格
子歪や微小な偏析が解消される最適条件で熱処理を実施
することができる。そして、粉砕後には実質的に球形の
粉末形状に戻るので、球形粉末に固有の高充填性という
利点はそのまま享受することができ、不規則形状の水素
吸蔵合金粉末に比べて、充填率が高く、従って放電容量
の大きいNi−H二次電池を構成することができる。
According to the method of the present invention, even if the spherical powder of the hydrogen-absorbing alloy is completely sintered during the heat treatment, it returns to a shape close to the original spherical powder by pulverization, so that the heat treatment conditions can be freely set. Therefore, the heat treatment can be performed under the optimal conditions for eliminating the lattice distortion and minute segregation of the rapidly solidified spherical powder. Then, since the powder returns to a substantially spherical powder shape after pulverization, the advantage of the high filling property inherent to the spherical powder can be enjoyed as it is, and the filling rate is higher than that of the irregularly shaped hydrogen storage alloy powder. Therefore, a Ni-H secondary battery having a large discharge capacity can be formed.

【0040】本発明の方法で製造された水素吸蔵合金粉
末は、従来の水素吸蔵合金粉末と同様にして、この合金
粉末を活物質とする電極を作製することができる。電極
は、水素吸蔵合金粉末を粉末冶金の手法で焼結すること
により作製することもできるが、通常は有機バインダー
を使用して成形することにより作製される。有機バイン
ダーとしては、例えば、ポリビニルアルコール、ポリテ
トラフルオロエチレン、ポリエチレンオキサイド、カル
ボキシメチルセルロース等が使用できる。
The hydrogen-absorbing alloy powder produced by the method of the present invention can produce an electrode using the alloy powder as an active material in the same manner as a conventional hydrogen-absorbing alloy powder. The electrode can be produced by sintering the hydrogen storage alloy powder by a powder metallurgy technique, but is usually produced by molding using an organic binder. As the organic binder, for example, polyvinyl alcohol, polytetrafluoroethylene, polyethylene oxide, carboxymethyl cellulose and the like can be used.

【0041】バインダーを用いた電極の作製は、水素吸
蔵合金粉末と有機バインダーとを適当な溶媒(例、水、
アルコール類、ケトン類等)を用いてスラリーまたはペ
ースト状にし、これを電極基板(例、発泡金属板、有孔
金属板、金網等の多孔性金属板、好ましくはニッケルめ
っきした有孔鉄板であるパンチングメタル)に塗着また
は充填し、乾燥して溶媒を除去した後、ロール圧延して
成形することにより行うことができる。こうして作製さ
れた水素吸蔵電極は、Ni−H二次電池の負極として有用
である。
For the production of an electrode using a binder, a hydrogen storage alloy powder and an organic binder are mixed with a suitable solvent (eg, water,
A slurry or paste is formed using alcohols, ketones, etc., and this is a porous metal plate such as an electrode substrate (eg, a foamed metal plate, a perforated metal plate, a wire mesh), preferably a perforated iron plate plated with nickel. It can be performed by coating or filling a punching metal), drying and removing the solvent, and then rolling and molding. The hydrogen storage electrode thus manufactured is useful as a negative electrode of a Ni-H secondary battery.

【0042】[0042]

【実施例】実施例で用いた水素吸蔵合金粉末は、アルゴ
ンガスアトマイズ法により調製した、表1に示す組成を
持つAB5 型(合金A)またはAB2 型(合金B)の水
素吸蔵合金の実質的に球形の粉末 (平均粒径:30μm)
であった。表中、MmはLa:27%、Ce:48%、Pr:7%、
Nd:17%を含む希土類金属混合合金 (ミッシュメタル)
である。ただし、本発明は上記組成に限定されるもので
はなく、あらゆる組成の水素吸蔵合金に適用可能であ
る。
Hydrogen-absorbing alloy powder used in EXAMPLE was prepared by argon gas atomizing method, substantially of the hydrogen storage alloy of AB 5 type having a composition shown in Table 1 (Alloy A) or AB 2 type (Alloy B) Spherical powder (average particle size: 30μm)
Met. In the table, Mm is La: 27%, Ce: 48%, Pr: 7%,
Nd: Rare earth metal mixed alloy containing 17% (Misch metal)
It is. However, the present invention is not limited to the above composition, but is applicable to hydrogen storage alloys of any composition.

【0043】比較のために、各合金のインゴット材も常
法により製造した。実施例で用いた粉砕機とその主粉砕
機構および粉砕条件は次の表2に示す通りであった。
For comparison, an ingot material of each alloy was also manufactured by a conventional method. The pulverizer used in the examples, its main pulverizing mechanism and pulverizing conditions are as shown in Table 2 below.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】(実施例1)表1の合金Aの組成を持つAB
5 型の実質的に球形の水素吸蔵合金粉末 (平均粒径30μ
m) に、アルゴンガス雰囲気中、950 ℃で8時間の熱処
理を施した。熱処理後の水素吸蔵合金粉末は、ケーキ状
に焼結していた。熱処理により得られた水素吸蔵合金粉
末の焼結体を、表2に示す粉砕方法で粉砕した。粉砕
は、焼結した粉末粒子がほぼ完全になくなるまで(即
ち、ほぼ完全に解砕されるまで)続けた。
Example 1 AB having the composition of alloy A shown in Table 1
Type 5 substantially spherical hydrogen storage alloy powder (average particle size 30μ
m) was subjected to a heat treatment at 950 ° C. for 8 hours in an argon gas atmosphere. The hydrogen storage alloy powder after the heat treatment was sintered in a cake shape. The sintered body of the hydrogen storage alloy powder obtained by the heat treatment was pulverized by a pulverization method shown in Table 2. Milling was continued until the sintered powder particles were almost completely gone (ie, almost completely broken up).

【0047】得られた水素吸蔵合金粉末の平均粒径、タ
ップ密度、走査型電子顕微鏡 (SEM) による形状観察
の結果を、粉砕機、粉砕条件、粉砕時間と共に表3に示
す。ここで、平均粒径はレーザー回折式粒度分布計によ
り測定した粒度分布の累積50%での粒径である。タップ
密度は粉末の最密充填密度の指標となる値であり、粉末
を均一に充填したシリンダーをタッピング (上下動) さ
せて粉末を圧縮させた時の粉末重量をその占有体積で除
することにより求められる。本例では、シリンダー体
積:100 cc、ストローク:40 mm 、タッピング:800 回
(2回/秒) の条件で測定を行った。
Table 3 shows the average particle size, tap density, and results of shape observation by a scanning electron microscope (SEM) of the obtained hydrogen storage alloy powder together with the crusher, crushing conditions and crushing time. Here, the average particle size is a particle size at a cumulative 50% of the particle size distribution measured by a laser diffraction type particle size distribution meter. The tap density is a value that is an index of the closest packing density of the powder, and is obtained by dividing the powder weight when the powder uniformly compressed by tapping (moving up and down) the cylinder filled with the powder by the occupied volume. Desired. In this example, cylinder volume: 100 cc, stroke: 40 mm, tapping: 800 times
(2 times / second).

【0048】参考のために、試験No.4の熱処理後にジェ
ットミル粉砕した水素吸蔵合金粉末と、試験No.6の熱処
理後にスタンプミル粉砕した水素吸蔵合金粉末のSEM
写真を図1および2にそれぞれ示す。
For reference, SEM of a hydrogen storage alloy powder which was jet-milled after heat treatment of Test No. 4 and a hydrogen storage alloy powder which was stamp-milled after heat treatment of Test No. 6
The photographs are shown in FIGS. 1 and 2, respectively.

【0049】得られた水素吸蔵合金粉末から、次のよう
にして電極を作製した。合金粉末100 重量部にバインダ
ーのポリビニルアルコールの5%水溶液を添加し、混練
して、水素吸蔵合金粉末のペーストを作製し、このペー
ストを電極基板(パンチングメタル) の両面に塗布し、
乾燥した後、ロール圧延機により圧延し、適当な寸法に
切断して、電極を得た。各電極は、電極基板を除いた部
分 (合金+バインダー) の占める体積が1cm3 になるよ
うに厚みを一定にした。得られた電極中の合金密度 (電
極基板を除いた部分の密度) を測定し、同じく表3に示
した。
From the obtained hydrogen storage alloy powder, an electrode was produced as follows. A 5% aqueous solution of polyvinyl alcohol as a binder was added to 100 parts by weight of the alloy powder and kneaded to prepare a paste of a hydrogen storage alloy powder, and this paste was applied to both surfaces of an electrode substrate (punching metal).
After drying, it was rolled by a roll rolling mill and cut into appropriate dimensions to obtain an electrode. The thickness of each electrode was made constant so that the volume occupied by the portion (alloy + binder) excluding the electrode substrate was 1 cm 3 . The alloy density (density excluding the electrode substrate) in the obtained electrode was measured and also shown in Table 3.

【0050】この電極を、ポリアミド不織布を介して、
負極より容量の大きな公知の焼結式ニッケル正極と組み
合わせて、電池容器中に挿入し、6N−KOH 溶液を注入し
て、負極容量規制型のNi−H二次電池を構成した。次
に、合金充填率と合金の理論容量 (合金Aでは約320 mA
h/g)からこの電池の理論容量を算出し、3時間率の電池
で110 %の過充電を行った後、同じ3時間率の電流で端
子電圧0.9 Vまでの放電を行い、そのときの放電容量を
記録した。この結果も表3に示す。
The electrode is connected to a non-woven polyamide fabric.
In combination with a known sintered nickel positive electrode having a capacity larger than that of the negative electrode, the battery was inserted into a battery container, and a 6N-KOH solution was injected to form a negative electrode capacity-controlled Ni-H secondary battery. Next, the alloy filling rate and the theoretical capacity of the alloy (about 320 mA for alloy A)
h / g), calculate the theoretical capacity of this battery, perform 110% overcharging with a 3-hour rate battery, and discharge to a terminal voltage of 0.9 V at the same 3-hour rate current. The discharge capacity was recorded. The results are also shown in Table 3.

【0051】比較のために、熱処理前の水素吸蔵合金の
アトマイズ粉末、ならびにインゴット材を上と同様の条
件下で熱処理した後、乳鉢と乳棒で粉砕して得た水素吸
蔵合金粉末についても、上と同様の試験を行った。その
結果も表3に一緒に示す。
For comparison, the hydrogen storage alloy powder before heat treatment and the hydrogen storage alloy powder obtained by heat-treating the ingot material under the same conditions as above and then pulverizing it with a mortar and pestle were also used. The same test was performed. The results are also shown in Table 3.

【0052】[0052]

【表3】 [Table 3]

【0053】表3からわかるように、本発明に従って、
熱処理後に主に衝撃により粉砕する粉砕機でほぼ完全に
解砕されるまで粉砕して得た水素吸蔵合金粉末は、平均
粒径が熱処理前の平均粒径 (30μm) に対する比で0.85
以上、1.15以下の範囲に入っており、形状も球形であっ
た。図1に示すSEM写真からも、ほぼ全部の粉末粒子
が球形であることがわかる。
As can be seen from Table 3, according to the present invention,
The hydrogen storage alloy powder obtained by pulverizing until almost completely disintegrated with a pulverizer that is mainly subjected to impact after heat treatment has an average particle diameter of 0.85 to the average particle diameter (30 μm) before heat treatment.
As described above, it was within the range of 1.15 or less, and the shape was spherical. From the SEM photograph shown in FIG. 1, it can be seen that almost all the powder particles are spherical.

【0054】水素吸蔵合金粉末のタップ密度や電極密度
は、熱処理前のアトマイズのまま粉末が最も高くなる
が、本発明の方法で得た粉末もそれに近い高い密度を示
す。中でも、衝撃が支配的であるハンマーミルで粉砕す
ると、タップ密度と電極密度のいずれも最も高くなり、
熱処理前の値に非常に近かった。
The tap density and the electrode density of the hydrogen-absorbing alloy powder become the highest in the atomized state before the heat treatment, and the powder obtained by the method of the present invention also shows a high density close to that. Above all, when crushed with a hammer mill where impact is dominant, both tap density and electrode density become highest,
It was very close to the value before heat treatment.

【0055】また、本発明の方法で得られた水素吸蔵合
金粉末は、熱処理によりアトマイズ粉末の格子歪や微小
偏析が解消された結果、熱処理していないアトマイズの
ままの合金粉末に比べて、電極密度は低いものの、電着
の放電容量は改善された値を示した。この場合も、電極
密度が最も高いハンマーミルで粉砕した粉末が最も高い
放電容量を示した。しかし、ジェットミルまたはボール
ミルで粉砕した粉末でも、電極密度はアトマイズのまま
の粉末に比べてかなり低いにもかかわらず、放電容量は
アトマイズのままの粉末より高くなった。
Further, the hydrogen storage alloy powder obtained by the method of the present invention has a lower electrode strain than an atomized alloy powder that has not been heat-treated, as a result of eliminating lattice distortion and minute segregation of the atomized powder by heat treatment. Although the density was low, the discharge capacity of the electrodeposition showed an improved value. Also in this case, the powder crushed by the hammer mill having the highest electrode density showed the highest discharge capacity. However, the discharge capacity of the powder milled by the jet mill or the ball mill was higher than that of the atomized powder, even though the electrode density was considerably lower than that of the atomized powder.

【0056】これに対して、比較例では、熱処理後の粉
砕に、衝撃以外の粉砕機構が主である粉砕機を使用した
ため、粉砕中に球形粉末が割れて、図2のSEM写真に
示すように、球形粉末も一部残存するが、割球が非常に
多く発生し、割れて生じた微小粉末が凝集していた。そ
のため、粉砕後の粉末の平均粒径は熱処理前の平均粒径
の0.85倍より小さくなった。また、平均粒径が小さいに
もかかわらず、割球の持つ不規則形状のために、タップ
密度や電極密度は著しく低下した。この充填密度に低下
により、熱処理したにもかかわらず、本発明方法により
得られた粉末より電池の放電容量は著しく低くなった。
中でも、インゴット材を乳鉢で粉砕した粉末が、密度お
よび放電容量とも、最も結果が悪かった。
On the other hand, in the comparative example, since a pulverizer mainly comprising a pulverizing mechanism other than an impact was used for pulverization after the heat treatment, the spherical powder was broken during the pulverization, as shown in the SEM photograph of FIG. Some of the spherical powder also remained, but very many blasted balls were generated, and the resulting fine powder was aggregated. Therefore, the average particle size of the powder after pulverization was smaller than 0.85 times the average particle size before heat treatment. Also, despite the small average particle size, the tap density and electrode density were significantly reduced due to the irregular shape of the blast ball. Due to this decrease in packing density, the discharge capacity of the battery was significantly lower than that of the powder obtained by the method of the present invention, despite the heat treatment.
Among them, the powder obtained by grinding the ingot material with a mortar had the worst results in both the density and the discharge capacity.

【0057】なお、熱処理していない「アトマイズ粉の
まま」の比較例では、放電容量が比較的高い値を示して
いる。しかし、熱処理していないため、耐食性が劣り、
充放電繰り返すと放電容量が低下し易く、電池寿命が短
くなるので、実用的ではない。この点は、後述の表4で
も同様である。
Incidentally, in the comparative example of "as atomized powder" without heat treatment, the discharge capacity shows a relatively high value. However, because it has not been heat treated, its corrosion resistance is poor,
When charge and discharge are repeated, the discharge capacity is likely to decrease and the battery life is shortened, so that it is not practical. This is the same in Table 4 described later.

【0058】(実施例2)水素吸蔵合金として、表1に示
す合金Bの組成を持つAB2 型合金 (理論容量は約360
mAh/g)を使用した以外は実施例1を繰り返した。熱処理
条件も実施例1と同じであった。粉砕機と粉砕時間、平
均粒径、および得られた粉末の試験結果を表4にまとめ
て示す。
Example 2 As a hydrogen storage alloy, an AB 2 type alloy having an alloy B composition shown in Table 1 (theoretical capacity is about 360
Example 1 was repeated except that mAh / g) was used. The heat treatment conditions were the same as in Example 1. Table 4 summarizes the pulverizer, the pulverization time, the average particle size, and the test results of the obtained powder.

【0059】[0059]

【表4】 [Table 4]

【0060】AB2 型の合金Bの方がAB5 型の合金A
より理論容量が高いため、電池の放電容量は実施例1に
比べて高くなるものの、試験結果は実施例1と同様の傾
向を示した。即ち、本発明に従って、主に衝撃により粉
砕する粉砕機で熱処理したアトマイズ粉末を粉砕する
と、平均粒径比が0.85〜1.15で、形状が球形の粉末が得
られた。本発明例のうち、ハンマーミルで粉砕した粉末
が、タップ密度と電極密度が最も高く、放電容量もアト
マイズのままの粉末に比べて著しく改善された。また、
ジェットミルやボールミルでは、密度はやや低くなるも
のの、放電容量はなおアトマイズのままの粉末の場合と
同等以上であった。これに対し、粉砕を他の粉砕機で行
った場合には、平均粒径比が0.85より小さくなり、粉末
形状も割球となった。また、粉末が不規則形状であるた
め、密度が低下し、熱処理したにもかかわらず、アトマ
イズのままの粉末の放電容量を得ることはできなかっ
た。
AB 2 type alloy B is AB 5 type alloy A
Since the theoretical capacity was higher, the discharge capacity of the battery was higher than that of Example 1, but the test results showed the same tendency as that of Example 1. That is, when the heat-treated atomized powder was pulverized by a pulverizer mainly pulverized by impact according to the present invention, a spherical powder having an average particle diameter ratio of 0.85 to 1.15 was obtained. Among the examples of the present invention, the powder pulverized by the hammer mill had the highest tap density and the highest electrode density, and the discharge capacity was remarkably improved as compared with the powder that had been atomized. Also,
In the case of the jet mill and the ball mill, the discharge capacity was slightly higher, but the discharge capacity was still equal to or higher than that of the powder which was still atomized. On the other hand, when pulverization was performed by another pulverizer, the average particle size ratio was smaller than 0.85, and the powder shape was also blasted. Further, since the powder had an irregular shape, the density was lowered, and it was not possible to obtain the discharge capacity of the atomized powder despite the heat treatment.

【0061】[0061]

【発明の効果】本発明によれば、ガスアトマイズ法、回
転電極法等で得られた実質的に球形の水素吸蔵合金粉末
を熱処理した後、焼結した粉末を、元の球形の形状をほ
とんど壊さずに粉砕して、球形の形状を持つ水素吸蔵合
金粉末を得ることができる。そのため、熱処理による焼
結の程度を気にせずに、急冷凝固に起因する格子歪や微
小な偏析を完全に解消するよう十分な条件下で熱処理を
行うことができる。
According to the present invention, a substantially spherical hydrogen storage alloy powder obtained by a gas atomization method, a rotating electrode method, or the like is heat-treated, and then the sintered powder is substantially broken into its original spherical shape. To obtain a hydrogen storage alloy powder having a spherical shape. Therefore, heat treatment can be performed under sufficient conditions to completely eliminate lattice distortion and minute segregation due to rapid solidification without regard to the degree of sintering due to heat treatment.

【0062】さらに、得られた球形の水素吸蔵合金粉末
は、球形粉末に固有の高い充填性を示すので、合金充填
密度の高い電極を作製することができ、熱処理による効
果と相まって、放電容量が非常に高いNi−H二次電池を
与えることができる。従って、本発明により、水素吸蔵
合金の球形粉末が持つ性能を最大限に発揮させることが
可能となり、Ni−H二次電池の性能が著しく改善され
る。
Further, the obtained spherical hydrogen-absorbing alloy powder shows a high filling property inherent to the spherical powder, so that an electrode having a high alloy filling density can be produced, and the discharge capacity can be reduced in combination with the effect of the heat treatment. A very high Ni-H secondary battery can be provided. Therefore, according to the present invention, the performance of the spherical powder of the hydrogen storage alloy can be maximized, and the performance of the Ni-H secondary battery is significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従って熱処理後にジェットミルで粉砕
した水素吸蔵合金粉末のSEM写真である。
FIG. 1 is an SEM photograph of a hydrogen storage alloy powder pulverized by a jet mill after heat treatment according to the present invention.

【図2】比較例において熱処理後にスタンプミルで粉砕
した水素吸蔵合金粉末のSEM写真である。
FIG. 2 is an SEM photograph of a hydrogen storage alloy powder pulverized by a stamp mill after heat treatment in a comparative example.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年3月26日[Submission date] March 26, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

───────────────────────────────────────────────────── フロントページの続き (72)発明者 禰宜 教之 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 (72)発明者 神代 光一 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Noriyuki Nego 4-5-33 Kitahama, Chuo-ku, Osaka City Within Sumitomo Metal Industries Co., Ltd. (72) Inventor Koichi Jinshiro 4-5-33 Kitahama, Chuo-ku, Osaka City Sumitomo Metal Industries Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 実質的に球形の水素吸蔵合金粉末を、粉
末が少なくとも部分的に焼結する条件下で熱処理した
後、焼結した粉末を粉砕することからなる水素吸蔵合金
粉末の製造方法であって、熱処理前の水素吸蔵合金粉末
の平均粒径に対する熱処理後に粉砕した該粉末の平均粒
径の比が0.85〜1.15であることを特徴とする方法。
1. A method for producing a hydrogen-absorbing alloy powder, comprising heat-treating a substantially spherical hydrogen-absorbing alloy powder under conditions at least partially sintering the powder, and pulverizing the sintered powder. Wherein the ratio of the average particle size of the hydrogen storage alloy powder before and after heat treatment to the average particle size of the hydrogen storage alloy powder before heat treatment is 0.85 to 1.15.
【請求項2】 前記粉砕を、主な粉砕機構が衝撃である
粉砕機を使用して行う、請求項1記載の方法。
2. The method according to claim 1, wherein the crushing is performed using a crusher whose main crushing mechanism is an impact.
【請求項3】 請求項1または2記載の方法で製造され
た、同組成の合金の不規則形状粉末より高い充填率を有
する水素吸蔵合金粉末。
3. A hydrogen storage alloy powder produced by the method according to claim 1 having a higher filling factor than an irregularly shaped powder of an alloy of the same composition.
【請求項4】 請求項3記載の水素吸蔵合金粉末を活物
質とする、Ni−水素二次電池用電極。
4. An electrode for a Ni-hydrogen secondary battery comprising the hydrogen storage alloy powder according to claim 3 as an active material.
JP9071703A 1997-03-25 1997-03-25 Hydrogen occlusion alloy powder, its production and electrode consisting thereof Pending JPH10265810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9071703A JPH10265810A (en) 1997-03-25 1997-03-25 Hydrogen occlusion alloy powder, its production and electrode consisting thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9071703A JPH10265810A (en) 1997-03-25 1997-03-25 Hydrogen occlusion alloy powder, its production and electrode consisting thereof

Publications (1)

Publication Number Publication Date
JPH10265810A true JPH10265810A (en) 1998-10-06

Family

ID=13468174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9071703A Pending JPH10265810A (en) 1997-03-25 1997-03-25 Hydrogen occlusion alloy powder, its production and electrode consisting thereof

Country Status (1)

Country Link
JP (1) JPH10265810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526920A (en) * 2009-05-14 2012-11-01 スリーエム イノベイティブ プロパティズ カンパニー Low energy grinding method, low crystalline alloy, and negative electrode composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526920A (en) * 2009-05-14 2012-11-01 スリーエム イノベイティブ プロパティズ カンパニー Low energy grinding method, low crystalline alloy, and negative electrode composition

Similar Documents

Publication Publication Date Title
JP2980328B2 (en) Hydrogen storage alloy for battery, method for producing the same, and nickel-metal hydride secondary battery
US5964968A (en) Rare earth metal-nickel hydrogen storage alloy, method for producing the same, and anode for nickel-hydrogen rechargeable battery
US5840166A (en) Rare earth metal-nickel hydrogen storage alloy, process for producing the same, and anode for nickel-hydrogen rechargeable battery
US5817222A (en) Rare earth metal-nickel hydrogen storage alloy, process for producing the same, and anode for nickel-hydrogen rechargeable battery
WO2015041063A1 (en) Composite particles of silicon phase-containing substance and graphite, and method for producing same
JPH0925529A (en) Rare earth metal-nickel based hydrogen storage alloy and its production, and cathode for nickel-hydrogen secondary battery
WO2012073418A1 (en) Hydrogen-storage alloy particles, alloy powder for electrode, and alkaline storage battery
JP2004095469A (en) Negative electrode material for nonaqueous electrolyte secondary battery and manufacturing method of same
JP3603013B2 (en) Hydrogen storage alloy and nickel hydrogen secondary battery
JPH10265810A (en) Hydrogen occlusion alloy powder, its production and electrode consisting thereof
JP3215235B2 (en) Method for producing hydrogen storage alloy powder and hydrogen storage alloy powder
JP2972919B2 (en) Method for producing hydrogen storage alloy powder for storage battery and hydrogen storage electrode
JP3016064B2 (en) Method for producing hydrogen storage alloy powder for battery
JPH0673466A (en) Hydrogen occlusion alloy for ni-hydrogen battery having excellent electrode life and its production
JP3079890B2 (en) Hydrogen storage alloy powder and nickel-hydrogen battery
JP2985553B2 (en) Hydrogen storage alloy powder and method for producing the same
JP2001126724A (en) Method for manufacturing hydrogen-occlusion alloy powder
JP3307176B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode using the same
JP3414148B2 (en) Hydrogen storage alloy powder and hydrogen storage electrode for Ni-H secondary battery
JP3290895B2 (en) Hydrogen storage alloy powder for nickel-metal hydride batteries
JP4122941B2 (en) Method for producing hydrogen storage alloy powder
JP3315880B2 (en) Method for producing hydrogen storage alloy powder
JP2820859B2 (en) Method for producing hydrogen storage alloy powder
JP3033430B2 (en) Hydrogen storage alloy powder and nickel-hydrogen battery
JPH1197002A (en) Hydrogen storage alloy electrode for alkaline storage battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020115