JP2820859B2 - Method for producing hydrogen storage alloy powder - Google Patents

Method for producing hydrogen storage alloy powder

Info

Publication number
JP2820859B2
JP2820859B2 JP5113887A JP11388793A JP2820859B2 JP 2820859 B2 JP2820859 B2 JP 2820859B2 JP 5113887 A JP5113887 A JP 5113887A JP 11388793 A JP11388793 A JP 11388793A JP 2820859 B2 JP2820859 B2 JP 2820859B2
Authority
JP
Japan
Prior art keywords
alloy powder
hydrogen
hydrogen storage
powder
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5113887A
Other languages
Japanese (ja)
Other versions
JPH06306411A (en
Inventor
勝 柳本
俊一郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP5113887A priority Critical patent/JP2820859B2/en
Publication of JPH06306411A publication Critical patent/JPH06306411A/en
Application granted granted Critical
Publication of JP2820859B2 publication Critical patent/JP2820859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】従来、小型化が要求される各種機
器の放充電可能なエネルギー源としてニッケルカドミウ
ム電池が多用されているが、環境問題や高エネルギー化
の観点からニッケルカドミウム電池に替えて水素吸蔵合
金を負極に用いたニッケル水素電池の使用が期待されて
いる。本発明は、この様なニッケル水素電池の負極や、
その他水素タンクやヒートポンプ等に使用される水素吸
蔵合金粉末の製造方法に関するものである。
Conventionally, nickel cadmium batteries have been widely used as rechargeable energy sources for various devices that require miniaturization. However, nickel cadmium batteries have been replaced with nickel cadmium batteries in view of environmental issues and high energy consumption. The use of nickel-metal hydride batteries using a hydrogen storage alloy for the negative electrode is expected. The present invention provides a negative electrode for such a nickel-metal hydride battery,
The present invention also relates to a method for producing a hydrogen storage alloy powder used for a hydrogen tank, a heat pump, and the like.

【0002】[0002]

【従来の技術】従来、水素吸蔵合金粉末は水素吸蔵合金
の鋳造塊を1〜2cmの大きさになるまで粉砕(割り出
し)した後、アルゴンなどの不活性雰囲気中でピンミル
などの粗粉砕機で2mm程度以下の大きさまで粗粉砕した
後、同様の雰囲気中でジェットミルなどの機械的微粉砕
装置にかけて希望の粒度になるまで微粉砕して粉末を製
造していた。これらの水素吸蔵合金の粉砕工程は通常連
続的に、また粗粉砕以降はアルゴンなどの不活性雰囲気
中で行っている。
2. Description of the Related Art Conventionally, a hydrogen storage alloy powder is ground (indexed) to a size of 1 to 2 cm from a casting block of the hydrogen storage alloy, and then is crushed by a coarse crusher such as a pin mill in an inert atmosphere such as argon. After coarsely pulverizing to a size of about 2 mm or less, the powder is finely pulverized in a similar atmosphere using a mechanical pulverizer such as a jet mill to a desired particle size to produce a powder. The pulverizing step of these hydrogen storage alloys is usually performed continuously, and after the coarse pulverization, is performed in an inert atmosphere such as argon.

【0003】しかし、従来の技術では、水素吸蔵合金の
粗粉砕後の微粉砕工程が単にジェットミルなどの機械的
微粉砕装置にかけて粉砕するだけであるので、希望の粒
度になるまでに長時間を要し、粉砕効率が悪くコストを
要していた。
However, in the prior art, the fine pulverization step after the coarse pulverization of the hydrogen storage alloy is merely pulverized by a mechanical pulverizer such as a jet mill. Cost was required due to poor grinding efficiency.

【0004】[0004]

【発明が解決しようとする課題】本発明の解決しようと
する課題は、上記の従来の技術の欠点を無くし、微粉砕
に要する時間を大幅に短縮して粉砕効率を高め、粉砕に
要するコストを低減することである。
The problem to be solved by the present invention is to eliminate the above-mentioned disadvantages of the prior art, greatly reduce the time required for fine pulverization, increase the pulverization efficiency, and reduce the cost required for pulverization. It is to reduce.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、微粉砕前の水素吸蔵合金粗粉末にいっ
たん水素を吸蔵させることにより、該粗粉砕合金粉末表
面にクラックを発生させ、その後の微粉砕工程を効率的
に行う水素吸蔵合金粉末の製造方法において、該粗粉砕
合金粉末に水素を吸蔵させる際に、該粗粉砕合金粉末を
水素とともに可塑性容器に封入した後、冷間静水圧プレ
スを使用して該粗粉砕合金粉末に100気圧以上の水素
圧をかけるものである。
In order to solve the above-mentioned problems, the present invention provides a method for generating cracks on the surface of a coarsely ground alloy powder by temporarily storing hydrogen in the hydrogen storage alloy coarse powder before fine grinding. in the allowed method for producing a hydrogen-absorbing alloy powder to perform the subsequent milling step efficiently, when occluding hydrogen into the roughly pulverized alloy powder, was sealed in plastic containers with hydrogen crude pulverized alloy powder, cold A hydrogen pressure of 100 atm or more is applied to the coarsely pulverized alloy powder by using an isostatic press.

【0006】[0006]

【作用】本発明は、微粉砕前の粒径2mm前後の粗粉砕合
金粉末にいったん水素を吸蔵させることにより粗粉砕合
金粉末表面にクラックを発生させるので、その後の微粉
砕工程が効率的に行え、粒径50μm 以下の微粉末に短
時間で容易に粉砕できるものである。本発明は水素吸蔵
合金粉末一般の製造工程に適用可能で、適用できる成分
系としてはミッシュメタル−ニッケル系、鉄−チタン
系、マグネシウム系などがあげられる。
According to the present invention, cracks are generated on the surface of the coarsely pulverized alloy powder by temporarily absorbing hydrogen in the coarsely pulverized alloy powder having a particle diameter of about 2 mm before the fine pulverization, so that the subsequent fine pulverization process can be performed efficiently. And can be easily pulverized into a fine powder having a particle size of 50 μm or less in a short time. The present invention is applicable to general manufacturing processes of hydrogen storage alloy powder, and applicable component systems include misch metal-nickel system, iron-titanium system, and magnesium system.

【0007】[0007]

【実施例】アルミナるつぼにMnNi3 合金およびNi、Mn、
Al、Co各単体金属の塊又は粒を装入し、誘導溶解により
MmNi3.2CoMn0.6Al0.2 の組成の水素吸蔵合金を溶製し
た。アルゴン雰囲気中で冷却して凝固させた後、該合金
インゴットを取り出してハンマーで1〜2cmの大きさに
粉砕後、ピンミルで2mm程度の大きさに粉砕した。
[Example] MnNi 3 alloy and Ni, Mn,
Al or Co individual metal lumps or grains are charged and induction melting
A hydrogen storage alloy having a composition of MmNi 3.2 CoMn 0.6 Al 0.2 was produced. After cooling and solidifying in an argon atmosphere, the alloy ingot was taken out, crushed with a hammer to a size of 1 to 2 cm, and crushed to a size of about 2 mm with a pin mill.

【0008】粗粉砕後の粉末をポリエチレン袋に水素ガ
スとともに密封し、冷間静水圧プレス中で100から4
000気圧までの静水圧で処理した後、ジェットミルに
よりアルゴン雰囲気中で微粉砕を行った。
[0008] The powder after coarse pulverization is sealed in a polyethylene bag together with hydrogen gas, and 100 to 4 g in a cold isostatic press.
After treatment at a hydrostatic pressure of up to 000 atm, pulverization was carried out in an argon atmosphere by a jet mill.

【0009】これらの微粉砕工程の評価を行い表1に示
す。
Table 1 shows the results of the evaluation of the fine pulverization process.

【0010】[0010]

【表1】 [Table 1]

【0011】評価尺度は粉末10kg当たりを微粉砕する
ために要した処理時間を当てた。また微粉砕後の粉末が
どの条件においても略一定の粒度を示すことの評価とし
て、平均粒径を求めた。
The evaluation scale was based on the processing time required for pulverizing 10 kg of powder. The average particle size was determined as an evaluation that the powder after the fine pulverization exhibited a substantially constant particle size under any conditions.

【0012】表1から判るように本発明方法の水素雰囲
気中で冷間静水圧プレス処理したものは、100気圧の
水素圧を2分かけたものも4000気圧を2分かけたも
のもいずれも平均粒度12μ前後の微粉末10kgを得る
ための微粉砕処理時間が2時間から2時間45分内であ
るのに対し、本発明の方法を適用しない従来の微粉砕方
法では3時間20分かかり、本発明方法は従来方法に比
し35分から1時間20分も微粉砕時間が短縮されてお
り、大幅に微粉砕効率が向上していることが理解され
る。
As can be seen from Table 1, the method of cold isostatic pressing in a hydrogen atmosphere of the method of the present invention is either a hydrogen pressure of 100 atm for 2 minutes or a hydrogen pressure of 4000 atm for 2 minutes. While the pulverization processing time for obtaining 10 kg of fine powder having an average particle size of about 12μ is within 2 hours to 2 hours and 45 minutes, the conventional pulverization method without applying the method of the present invention takes 3 hours and 20 minutes, It is understood that the pulverization time of the method of the present invention is reduced from 35 minutes to 1 hour and 20 minutes as compared with the conventional method, and the pulverization efficiency is greatly improved.

【0013】[0013]

【発明の効果】以上説明したように、本発明は、微粉砕
前の粗粉砕合金粉末にいったん水素を吸蔵させることに
より、粗粉砕合金粉末表面にクラックを発生させて
微粉砕を行う水素吸蔵合金粉末の製造方法におい
て、該粗粉砕合金粉末に水素を吸蔵させる際に、該粗粉
砕合金粉末を水素とともに可塑性容器に封入した後、冷
間静水圧プレスを使用して該粗粉砕合金粉末に100気
圧以上の水素圧をかけるので、微粉砕処理に要する時間
が従来の方法に比して大幅に短縮でき、従って低コスト
で効率よく微粉砕工程が行える。
As described above, according to the present invention, by temporarily occluding hydrogen into coarse pulverization the alloy powder before fine grinding, later to generate cracks in the coarse grinding alloy powder surface, for fine pulverization In the manufacturing method of hydrogen storage alloy powder
When hydrogen is absorbed in the coarsely pulverized alloy powder,
After sealing the ground alloy powder with hydrogen in a plastic container,
Using a hydrostatic press for 100
Time required for the fine grinding process
Can be greatly shortened as compared with the conventional method , so that the fine pulverizing step can be performed efficiently at low cost.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B22F 9/04 H01M 4/24──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) B22F 9/04 H01M 4/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金の鋳造塊を粗粉砕して粗粉
砕合金粉末を生成し、該粗粉砕合金粉末表面に水素を吸
蔵させてクラック発生させた状態で微粉砕する水素吸蔵
合金粉末の製造方法において、該粗粉砕合金粉末表面に
水素を吸蔵させる際に、該粗粉砕合金粉末を水素ととも
に可塑性容器に封入したのち、冷間静水圧プレスを使用
して該粗粉砕合金粉末に100気圧以上の水素圧をかけ
ることを特徴とする水素吸蔵合金粉末の製造方法。
1. A coarse powder obtained by roughly pulverizing a casting lump of a hydrogen storage alloy.
Crushed alloy powder and absorb hydrogen on the surface of the coarsely crushed alloy powder.
Hydrogen storage that is finely pulverized with cracks generated
In the method for producing an alloy powder,
When storing hydrogen, the coarsely pulverized alloy powder is combined with hydrogen.
Use a cold isostatic press after sealing in a plastic container
And applying a hydrogen pressure of 100 atm or more to the coarsely pulverized alloy powder .
JP5113887A 1993-04-16 1993-04-16 Method for producing hydrogen storage alloy powder Expired - Lifetime JP2820859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5113887A JP2820859B2 (en) 1993-04-16 1993-04-16 Method for producing hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5113887A JP2820859B2 (en) 1993-04-16 1993-04-16 Method for producing hydrogen storage alloy powder

Publications (2)

Publication Number Publication Date
JPH06306411A JPH06306411A (en) 1994-11-01
JP2820859B2 true JP2820859B2 (en) 1998-11-05

Family

ID=14623624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5113887A Expired - Lifetime JP2820859B2 (en) 1993-04-16 1993-04-16 Method for producing hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JP2820859B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1187852C (en) 1997-12-26 2005-02-02 丰田自动车株式会社 Hydrogen-absorbing alloy and its preparing process, hydrogne-absorbing alloy electrode and its preparing process, and battery

Also Published As

Publication number Publication date
JPH06306411A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
EP0790323B1 (en) Rare earth metal/nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen secondary battery
US5840166A (en) Rare earth metal-nickel hydrogen storage alloy, process for producing the same, and anode for nickel-hydrogen rechargeable battery
EP0751229B1 (en) Age precipitation-containing rare earth metal-nickel alloy, method of producing the alloy, and anode for nickel-hydrogen rechargeable battery
JP2820859B2 (en) Method for producing hydrogen storage alloy powder
Cui et al. Synthesis and electrode characteristics of the new composite alloys Mg2Ni-xwt.% Ti2Ni
US5389333A (en) Hydrogen storage alloys
US6261517B1 (en) Rare earth metal-nickel hydrogen storage alloy, a method for producing the same, and anode for nickel-hydrogen rechargeable battery
JP2920343B2 (en) Hydrogen storage alloy powder, nickel-metal hydride battery having the hydrogen storage alloy powder as negative electrode active material, and method for producing hydrogen storage alloy powder
JP2972919B2 (en) Method for producing hydrogen storage alloy powder for storage battery and hydrogen storage electrode
JP3079890B2 (en) Hydrogen storage alloy powder and nickel-hydrogen battery
JP2896718B2 (en) Method for producing hydrogen storage alloy powder
JPH06187979A (en) Hydrogen storage alloy electrode
JP4122941B2 (en) Method for producing hydrogen storage alloy powder
JP3183680B2 (en) Metal oxide / hydrogen battery
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JP2699136B2 (en) Activation method of hydrogen storage alloy
JP2985553B2 (en) Hydrogen storage alloy powder and method for producing the same
Young et al. Improved hydride/dehydride process to prepare metal powders for NiMH battery applications
JPH10265810A (en) Hydrogen occlusion alloy powder, its production and electrode consisting thereof
JPH11116201A (en) Hydrogen storage device and hydrogen occlusion alloy electrode and their production
JPH059504A (en) Material for hydrogen occlusion alloy and production thereof
JP3290895B2 (en) Hydrogen storage alloy powder for nickel-metal hydride batteries
JPH06240310A (en) Production of hydrogen storage alloy powder
JPH10199521A (en) Hydrogen storage alloy powder and hydrogen storage electrode
JPH10195569A (en) Hydrogen storage alloy excellent in initial activity