JP2896718B2 - Method for producing hydrogen storage alloy powder - Google Patents

Method for producing hydrogen storage alloy powder

Info

Publication number
JP2896718B2
JP2896718B2 JP3159752A JP15975291A JP2896718B2 JP 2896718 B2 JP2896718 B2 JP 2896718B2 JP 3159752 A JP3159752 A JP 3159752A JP 15975291 A JP15975291 A JP 15975291A JP 2896718 B2 JP2896718 B2 JP 2896718B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
ingot
alloy powder
mold
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3159752A
Other languages
Japanese (ja)
Other versions
JPH04358008A (en
Inventor
成生 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP3159752A priority Critical patent/JP2896718B2/en
Publication of JPH04358008A publication Critical patent/JPH04358008A/en
Application granted granted Critical
Publication of JP2896718B2 publication Critical patent/JP2896718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水素吸蔵合金粉末の製造
方法に関し、特に鋳造条件を制御することにより、鋳造
組織の80%以上を柱状組織としたインゴットを粉砕し
て得られる水素吸蔵合金粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy powder, and more particularly to a hydrogen storage alloy powder obtained by pulverizing an ingot having a columnar structure of 80% or more of a cast structure by controlling casting conditions. And a method for producing the same.

【0002】[0002]

【従来の技術】従来、水素吸蔵合金の水素吸蔵能の向上
対策として、原料について種々の合金組成について検討
が行なわれてきた。しかし、合金組成の点のみでは水素
吸蔵能が充分ではなく、実用に供するため更なる性能向
上が期待されている。
2. Description of the Related Art Conventionally, various alloy compositions of raw materials have been studied as a measure for improving the hydrogen storage ability of a hydrogen storage alloy. However, hydrogen storage capacity is not sufficient only in terms of alloy composition, and further improvement in performance is expected for practical use.

【0003】一方、従来の水素吸蔵合金粉末の製造方法
として、次のような方法が提案されている。すなわち、
アーク溶解炉や高周波溶解炉により水素吸蔵合金の溶湯
を作製し、これを鋳型に流し込んで自然冷却する方法、
もしくは銅製鋳型中で水冷する方法により水素吸蔵合金
を作製した後、合金塊を粗粉砕し、ついでボールミル中
等で微粉砕して粉末にする方法である。しかしながら、
このような方法では充分に満足できる水素吸蔵能が得ら
れない。
On the other hand, the following method has been proposed as a conventional method for producing a hydrogen storage alloy powder. That is,
A method of producing a molten metal of a hydrogen storage alloy using an arc melting furnace or a high-frequency melting furnace, pouring the molten metal into a mold, and allowing it to cool naturally.
Alternatively, a method of water-cooling in a copper mold to prepare a hydrogen storage alloy, coarsely pulverizing the alloy lump, and then finely pulverizing in a ball mill or the like to obtain a powder. However,
With such a method, a sufficiently satisfactory hydrogen storage capacity cannot be obtained.

【0004】別の方法として、溶湯を液体急冷法で冷却
し、薄片もしくは薄帯を作製する工程と、これを不活性
ガス中もしくは真空中で熱処理する工程と、前記薄片も
しくは薄帯を微粉砕する工程により水素吸蔵合金粉末を
得る方法がある。この方法は工程が繁雑であるのみなら
ず、薄片や薄帯はかさばり、取り扱い性が悪く、量産に
は適しないという課題がある。
[0004] As another method, a step of cooling a molten metal by a liquid quenching method to produce a flake or a ribbon, a step of heat-treating the same in an inert gas or in a vacuum, and pulverizing the flake or a ribbon There is a method of obtaining a hydrogen storage alloy powder by the step of performing. This method has a problem that not only is the process complicated, but also the flakes and ribbons are bulky, have poor handling properties, and are not suitable for mass production.

【0005】[0005]

【発明が解決しようとする課題】本発明は、これらの課
題を解決すべくなされたもので、水素吸蔵能および粉砕
性を向上させると共に、製造工程を簡便にし、特に、ニ
ッケル−水素電池の負極に用いた場合にその内圧上昇を
低減させる水素吸蔵合金粉末用インゴットおよび該合金
粉末の製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made to solve these problems. The present invention improves the hydrogen absorbing ability and the pulverizability, simplifies the manufacturing process, and particularly reduces the negative electrode of a nickel-hydrogen battery. An object of the present invention is to provide an ingot for a hydrogen-absorbing alloy powder which reduces the internal pressure rise when used in a steel sheet, and a method for producing the alloy powder.

【0006】[0006]

【課題を解決するための手段】本発明の上記目的は、次
に示す製造方法によって達成される。
The above object of the present invention is attained by the following manufacturing method.

【0007】すなわち、本発明の水素吸蔵合金粉末の製
造方法は、水素吸蔵合金粉末原料を溶解し、鋳造温度を
その融点より250℃以上高い温度とし、鋳造速度1〜
15Kg/秒/m2(但し、面積は鋳型の総冷却面
積)、鋳型面間隔20〜100mmの条件で水冷鋳型を
用いて鋳造し、得られたインゴッドを粉砕することを特
徴とする。
That is, in the method for producing a hydrogen storage alloy powder according to the present invention, the hydrogen storage alloy powder raw material is melted, the casting temperature is set to a temperature higher than its melting point by at least 250 ° C.
The casting is performed using a water-cooled mold under the conditions of 15 kg / sec / m 2 (where the area is the total cooling area of the mold) and the space between the mold surfaces is 20 to 100 mm, and the obtained ingot is pulverized.

【0008】本発明に用いられる水素吸蔵合金粉末原料
には、水素吸蔵性能を有する単体金属および合金が使用
でき、特に限定されない。好ましい合金としてはAB5
型結晶を主体とした合金(但し、Aは希土類金属または
ミッシュメタル(Mm)、Bはニッケル、コバルト、
鉄、マンガン、アルミニウム、銅、ケイ素、チタン、モ
リブデン、バナジウムから選択される少なくとも1種)
が挙げられる。この合金組成において、A成分は30〜
35重量%含有されることが望ましく、またB成分中に
はニッケルが少なくとも含まれることがさらに好まし
い。具体的な合金組成としては、例えば、MmNi3.55
Co0.75Mn0.4Al0.3、MmNi3.2Co1 .0Mn0.6
Al0.2等が挙げられる。
[0008] As the hydrogen storage alloy powder raw material used in the present invention, simple metals and alloys having hydrogen storage performance can be used and are not particularly limited. AB 5 is a preferred alloy.
Alloy mainly composed of type crystals (however, A is a rare earth metal or misch metal (Mm), B is nickel, cobalt,
At least one selected from iron, manganese, aluminum, copper, silicon, titanium, molybdenum, and vanadium)
Is mentioned. In this alloy composition, A component is 30 to
It is desirable to contain 35% by weight, and it is more preferable that at least nickel is contained in the B component. As a specific alloy composition, for example, MmNi 3.55
Co 0.75 Mn 0.4 Al 0.3, MmNi 3.2 Co 1 .0 Mn 0.6
Al 0.2 and the like.

【0009】次に、この水素吸蔵合金粉末原料を溶解
し、その鋳造温度はその融点より250℃以上高い温度
であることが必要である。ここで融点とは固体金属が溶
解を開始する温度をいう。この温度未満では鋳型壁面上
での核生成が激しく、得られるインゴットが等軸組織と
なり易い。鋳造温度の上限は特に制限されないが、好ま
しくは2000℃以下であり、2000℃を超えると溶
解炉や鋳型が高い耐熱性が必要となり、経済性に劣る。
ここで使用される溶解炉としては高周波溶解炉等が挙げ
られ、また雰囲気はアルゴンガス雰囲気等の不活性ガス
雰囲気が好ましく用いられる。
Next, the hydrogen storage alloy powder raw material is melted, and its casting temperature must be at least 250 ° C. higher than its melting point. Here, the melting point refers to a temperature at which the solid metal starts melting. Below this temperature, nucleation on the mold wall surface is intense, and the resulting ingot tends to have an equiaxed structure. The upper limit of the casting temperature is not particularly limited, but is preferably 2000 ° C. or lower. If the temperature exceeds 2000 ° C., the melting furnace and the mold require high heat resistance, which is inferior in economy.
The melting furnace used here includes a high-frequency melting furnace and the like, and the atmosphere is preferably an inert gas atmosphere such as an argon gas atmosphere.

【0010】この鋳造における鋳造速度1〜15Kg/
秒/m2である。但し、ここにおける面積は鋳型の総冷
却面積である。鋳造速度が15Kg/秒/m2を超える
と溶湯が激しく動いて等軸組織となり易い。また、1K
g/秒/m2未満では熱容量が小さいため、鋳型壁面上
での核生成が激しく、得られるインゴットが同様に等軸
組織となり易い。
The casting speed in this casting is 1 to 15 kg /
Seconds / m 2 . However, the area here is the total cooling area of the mold. If the casting speed exceeds 15 kg / sec / m 2 , the molten metal moves violently and tends to have an equiaxed structure. Also, 1K
If it is less than g / sec / m 2 , the heat capacity is small, so that nucleation on the mold wall surface is intense, and the obtained ingot is likely to have an equiaxed structure.

【0011】 また、鋳型面間隔、すなわち得られるイ
ンゴットの厚さは20〜100mmであることが必要で
ある。鋳型面間隔が100mmを超えると得られるイン
ゴットの熱伝導に限度があり、柱状組織の成長が継続的
に維持できない。また、20mm未満では操業が行ない
難い他、冷却効果が強くチル組織が発生し、柱状組織が
得にくい。
[0011] Furthermore, the mold spacing, that is, the thickness of the obtained ingot needs to be 20 to 100 mm. If the mold spacing exceeds 100 mm, the heat transfer of the ingot obtained is limited, and the growth of the columnar structure cannot be maintained continuously. On the other hand, if the thickness is less than 20 mm, the operation is difficult to perform, and the cooling effect is strong, a chill structure is generated, and it is difficult to obtain a columnar structure.

【0012】また、鋳造は水冷鋳型、好ましくは銅製の
水冷鋳型中でなされる。鋳造を鋳鉄性の自然放冷鋳型を
用いたり、溶解るつぼでそのまま自然放冷した場合に
は、柱状組織はほとんど得られない。この水冷鋳型の好
ましい水量は100〜3000リットル/分/m2であ
る。このような金属製鋳型の一例の平面図および断面図
を図1〜2に示す。同図において、1は鋳型冷却面、2
は鋳型側面、3は鋳型底部、4は冷却水管、dは鋳型面
の間隔をそれぞれ示し、図2は図1のa−b部分の断面
図である。
The casting is performed in a water-cooled mold, preferably a copper-made water-cooled mold. When casting is performed using a cast iron spontaneous cooling mold or spontaneous cooling in a melting crucible, a columnar structure is hardly obtained. The preferred amount of water in the water-cooled mold is 100 to 3000 liter / min / m 2 . FIGS. 1 and 2 show a plan view and a cross-sectional view of an example of such a metal mold. In the figure, 1 is a mold cooling surface, 2
Is a mold side surface, 3 is a mold bottom portion, 4 is a cooling water pipe, d is an interval between mold surfaces, and FIG. 2 is a cross-sectional view taken along a line ab in FIG.

【0013】このようにして得られた本発明の水素吸蔵
合金粉末用インゴットは、鋳造組織の80%以上が柱状
組織であり、このインゴットの模式断面図を図3に示
す。同図において、Aはチル組織、Bは柱状組織をそれ
ぞれ示す。このような組織を有するインゴットが得られ
るのは、上記した図1〜2に示されるような向い合う2
面が冷却される金属製の水冷鋳型で鋳造することによ
り、それぞれの面から内部に向い、鋳型面に対して垂直
な方向に凝固が進み、それぞれの冷却面から成長した柱
状組織帯がぶつかり合い、凝固が完了することにより、
等軸組織の発生が抑止され、80%以上が柱状組織の水
素吸蔵能を持つ合金インゴットが得られるのである。な
お、インゴット中の柱状組織の割合は、鋳造インゴット
の中心を縦に分割し、この断面積に対する柱状組織の割
合をトレース方眼紙を用いて求められる。
The thus obtained ingot for a hydrogen storage alloy powder according to the present invention has a columnar structure in which at least 80% of the cast structure is a columnar structure. FIG. 3 is a schematic sectional view of this ingot. In the figure, A indicates a chill structure, and B indicates a columnar structure. An ingot having such a structure is obtained by facing two ingots as shown in FIGS.
By casting in a metal water-cooled mold whose surface is cooled, solidification proceeds from each surface to the inside and in a direction perpendicular to the mold surface, and columnar tissue bands grown from each cooled surface collide. By the completion of coagulation,
The generation of the equiaxed structure is suppressed, and an alloy ingot having a columnar structure hydrogen storage capacity of 80% or more can be obtained. In addition, the ratio of the columnar structure in the ingot is obtained by vertically dividing the center of the cast ingot, and calculating the ratio of the columnar structure to the cross-sectional area by using trace graph paper.

【0014】これに対して、従来においては、図4に示
すような組織のインゴットしか得られない。同図におい
て、符号は図3と同様のものを示し、Cは等軸組織であ
る。この理由は、従来のように、鋳型へ溶融した金属を
鋳込んだ場合、一般に、鋳型面と接触した金属は急冷さ
れ、まずチル層が形成され、次に、鋳型へ熱が伝導する
ために鋳型面に対して垂直な方向で内部に向けて柱状組
織が形成される、しかし、凝固が内部へ向かい、しだい
に熱伝導に方向性が無くなると、凝固組織が方向性の無
い等軸組織となって凝固が終了し、チル組織、柱状組
織、等軸組織が図4のように形成されるのである。
On the other hand, in the prior art, only an ingot having a structure as shown in FIG. 4 can be obtained. In the drawing, reference numerals indicate the same components as those in FIG. 3, and C is an equiaxed structure. The reason for this is that when a molten metal is cast into a mold as in the past, generally, the metal in contact with the mold surface is quenched, first forming a chill layer, and then conducting heat to the mold. A columnar structure is formed toward the inside in a direction perpendicular to the mold surface.However, when the solidification is directed inward and the heat conduction gradually becomes less directional, the solidified structure becomes an equiaxial structure having no direction. As a result, solidification is completed, and a chill structure, a columnar structure, and an equiaxial structure are formed as shown in FIG.

【0015】このようにして得られた80%以上が柱状
組織の合金インゴットは、そのまま粉砕するか、または
900〜1100℃の温度で4〜8時間、真空あるいは
アルゴンガス雰囲気中にて熱処理した後に粉砕する。粉
砕は3段階で行なわれることが望ましく、第1段階では
シングルトックル クラッシャーを用いて、粗粉砕され
1〜10mmの粒径の粉末となる。第2段階ではこの粉
末をスタンプミルを用いて30メッシュ篩下程度の粒径
の粉末とする。水素吸蔵測定試料としては、この粒径範
囲の粉末が用いられる。また、さらに第3段階としてこ
の粉末をボールミル等を用いて平均20μm程度に微粉
砕する。このように微粉砕した粉末は、ニッケル−水素
電池の負極として好適に用いられる。
The thus obtained alloy ingot having a columnar structure of 80% or more is either crushed as it is or heat-treated in a vacuum or argon gas atmosphere at a temperature of 900 to 1100 ° C. for 4 to 8 hours. Smash. The pulverization is desirably performed in three stages. In the first stage, the powder is coarsely pulverized using a single-tickle crusher into a powder having a particle size of 1 to 10 mm. In the second stage, this powder is formed into a powder having a particle size of about 30 mesh below a sieve using a stamp mill. A powder having this particle size range is used as a hydrogen storage measurement sample. Further, as a third step, this powder is finely ground to an average of about 20 μm using a ball mill or the like. The powder thus pulverized is suitably used as a negative electrode of a nickel-hydrogen battery.

【0016】[0016]

【実施例】以下、本発明を実施例等に基づき具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments and the like.

【0017】実施例1 合金インゴットの組成がMmNi3.55Co0.75Mn0.4
Al0.3となるように調製した水素吸蔵合金粉末原料
を、アルゴンガス雰囲気で高周波溶解炉にて溶解し、1
500℃(融点より400℃高い温度)で上記した図1
〜2に示す銅製の水冷鋳型へ投入し、鋳型面間隔55m
m、鋳造速度3Kg/秒/m2でインゴットを鋳造し
た。このようにして得られたインゴットの組織は95%
が柱状組織であった。なお、インゴット鋳造組織中の柱
状組織の割合は、鋳造インゴットの中心を縦に分割し、
この断面積に対する柱状組織の割合をトレース方眼紙を
用いて求めた。
Example 1 The composition of the alloy ingot was MmNi 3.55 Co 0.75 Mn 0.4
The hydrogen storage alloy powder raw material prepared to be Al 0.3 was melted in a high-frequency melting furnace in an argon gas atmosphere,
FIG. 1 described above at 500 ° C. (temperature higher than the melting point by 400 ° C.)
Into a copper water-cooled mold shown in Table 2
m, and an ingot was cast at a casting speed of 3 kg / sec / m 2 . The ingot structure obtained in this way is 95%
Was a columnar structure. In addition, the ratio of the columnar structure in the ingot casting structure, the center of the casting ingot is divided vertically,
The ratio of the columnar structure to the cross-sectional area was determined using trace graph paper.

【0018】 次に、得られたインゴットをアルゴンガ
ス雰囲気にて1050℃、6時間の熱処理を行なった
後、クラッシャーで1〜10mm程度に粗砕したものか
ら100g採取し、これをスタンプミルを用いて10分
間粉砕したものを32メッシュの篩で篩分けして水素吸
蔵能測定試料とし、下記に示す方法により水素吸蔵能を
測定した。結果を表1に示す。その結果、表1に示すよ
うに平衡圧が5気圧における0℃、1atm換算・水素
吸蔵量が132cc/gであった。
Next, the obtained ingot is subjected to a heat treatment at 1050 ° C. for 6 hours in an argon gas atmosphere, and then 100 g is collected from roughly crushed to about 1 to 10 mm with a crusher, and is collected using a stamp mill. The mixture was pulverized for 10 minutes and sieved with a 32 mesh sieve to obtain a hydrogen storage ability measurement sample, and the hydrogen storage ability was measured by the following method. Table 1 shows the results. As a result, as shown in Table 1, the equilibrium pressure was 5 ° C., 0 ° C., 1 atm conversion, and the hydrogen storage amount was 132 cc / g.

【0019】また、この時の粉砕歩留まりである篩下の
割合は、表1に示すように86.3%であり、これを粉
砕性の目安とした。
At this time, the ratio under the sieve, which is the pulverization yield, was 86.3% as shown in Table 1, which was used as a measure of the pulverizability.

【0020】他方、32メッシュ篩下の粉末をボールミ
ルを用いて平均20μmの粉末に粉砕し、ニッケル−水
素電池負極用試料とした。下記に示す方法によってテス
トセルを調製し、電池内圧を従来法である比較例6の内
圧を100として指数で表示し、その結果を表1に示し
た。
On the other hand, the powder under the 32 mesh sieve was pulverized into an average powder of 20 μm using a ball mill to obtain a sample for a nickel-hydrogen battery negative electrode. A test cell was prepared by the method shown below, and the internal pressure of the battery was indicated by an index with the internal pressure of Comparative Example 6 being a conventional method being 100, and the results are shown in Table 1.

【0021】<水素吸蔵能>32メッシュ篩下の試料を
用いて、この測定試料を約20g正確に秤量し、室温2
3℃、測定温度45℃の条件でジーベルツ装置を用い、
常法に従って測定試料である合金粉末の水素吸蔵放出特
性を測定し、PCT曲線を作成した。このPCT曲線か
ら平衡圧5気圧におけるH/Mを求め、次式により水素
吸蔵量を算出した。
<Hydrogen storage capacity> Using a sample under a 32 mesh sieve, about 20 g of this measurement sample was accurately weighed,
Using a Siebeltz apparatus under the conditions of 3 ° C and measurement temperature of 45 ° C,
The hydrogen storage / release characteristics of the alloy powder as the measurement sample were measured according to a conventional method, and a PCT curve was created. H / M at an equilibrium pressure of 5 atm was determined from the PCT curve, and the hydrogen storage amount was calculated by the following equation.

【0022】 水素吸蔵量(cc/g)=[(H/M)
×22.4×10×6]/(2×合金分子量) [ここで、Hは吸蔵された水素原子のモル数、Mは合金
モル数] <電池内圧> ボールミルによる粉砕で得られた平均20μmの粉末を
用いて、この合金粉末100重量部とポリテトラフルオ
ロエチレン10重量部を混練して、ニッケルメッシュ集
電体と共に、直径20mm、厚さ0.8mmのペレット
にプレス成形したものを電極とした。この電極を図5の
テストセルに入れ、30重量%のKOH水溶液を電解液
として対極にニッケル電極を用いて0.1Cで16時間
充電し、0.2Cで放電する充放電を100サイクル繰
り返した後の電池内圧を調べ、従来法である比較例6の
内圧を100として指数で表示した。なお、図5におい
て、5は合金電極、6はニッケル電極、7は圧力計およ
び8はガス放出バルブをそれぞれ示す。
Hydrogen storage amount (cc / g) = [(H / M)
× 22.4 × 10 3 × 6] / (2 × alloy molecular weight) [where, H is the number of moles of occluded hydrogen atoms, M is the number of moles of alloy] <Battery internal pressure> Average obtained by grinding with a ball mill Using a 20 μm powder, 100 parts by weight of this alloy powder and 10 parts by weight of polytetrafluoroethylene were kneaded, and pressed together with a nickel mesh current collector into a pellet having a diameter of 20 mm and a thickness of 0.8 mm to form an electrode. And This electrode was placed in the test cell shown in FIG. 5, and charged and discharged at 0.1 C for 16 hours using a nickel electrode as a counter electrode using a 30% by weight aqueous solution of KOH as an electrolyte, and discharged at 0.2 C for 100 cycles. Thereafter, the internal pressure of the battery was checked, and the internal pressure of Comparative Example 6, which is a conventional method, was set to 100 and indicated by an index. In FIG. 5, 5 indicates an alloy electrode, 6 indicates a nickel electrode, 7 indicates a pressure gauge, and 8 indicates a gas release valve.

【0023】実施例2〜10および比較例1〜5 合金組成、鋳造温度、鋳型面間かく、鋳造速度を表1に
示すように変更した以外は実施例1と同様にインゴット
を得、このインゴットの鋳造組織中の柱状組織の割合を
測定し、その結果を表1に示した。
Examples 2 to 10 and Comparative Examples 1 to 5 An ingot was obtained in the same manner as in Example 1 except that the alloy composition, the casting temperature, the distance between the mold surfaces, and the casting speed were changed as shown in Table 1. Of the cast structure was measured, and the results are shown in Table 1.

【0024】また、このインゴットを実施例1と同様に
粉砕し、粉砕性、水素吸蔵能および電池内圧を測定し、
結果をそれぞれ表1に示した。
Further, this ingot was pulverized in the same manner as in Example 1, and the pulverizability, hydrogen storage capacity and internal pressure of the battery were measured.
The results are shown in Table 1.

【0025】比較例6 銅製水冷鋳型に代えて鋳鉄製自然放冷鋳型を用いた以外
は実施例1と同様にインゴットを得、このインゴット鋳
造組織中の柱状組織の割合を測定し、その結果を表1に
示した。
Comparative Example 6 An ingot was obtained in the same manner as in Example 1 except that a natural cooling mold made of cast iron was used instead of the water-cooled mold made of copper, and the ratio of the columnar structure in the cast structure of the ingot was measured. The results are shown in Table 1.

【0026】また、このインゴットを実施例1と同様に
粉砕し、粉砕性、水素吸蔵能および電池内圧を測定し、
結果をそれぞれ表1に示した。
Further, this ingot was pulverized in the same manner as in Example 1, and the pulverizability, hydrogen storage capacity and battery internal pressure were measured.
The results are shown in Table 1.

【0027】比較例7 実施例1の溶湯をルツボの中でそのまま冷却し、インゴ
ットを得た。このインゴット組織中の柱状組織の割合を
測定し、結果を表1に示した。
Comparative Example 7 The molten metal of Example 1 was directly cooled in a crucible to obtain an ingot. The ratio of the columnar structure in the ingot structure was measured, and the results are shown in Table 1.

【0028】また、このインゴットを実施例1と同様に
粉砕し、粉砕性、水素吸蔵能および電池内圧を測定し、
結果をそれぞれ表1に示した。
Further, this ingot was pulverized in the same manner as in Example 1, and the pulverizability, hydrogen storage capacity and battery internal pressure were measured.
The results are shown in Table 1.

【0029】[0029]

【表1】 表1の結果に示されるように、実施例1〜10は比較例
1〜7と比較して、柱状組織がいずれも80%以上であ
り、粉砕性、水素吸蔵能に優れ、またニッケル−水素電
池の負極に用いた場合にも内圧が小さかった。
[Table 1] As shown in the results in Table 1, Examples 1 to 10 had a columnar structure of 80% or more, were excellent in pulverizability and hydrogen absorbing ability, and were excellent in nickel-hydrogen as compared with Comparative Examples 1 to 7. When used for the negative electrode of a battery, the internal pressure was small.

【0030】[0030]

【発明の効果】本発明の水素吸蔵合金粉末用インゴット
を用いることによって、水素吸蔵能に優れ、等軸組織を
多く含む合金に比べて10Cm角の合金で約25lもの
水素吸蔵量に差を生ずる他、単位重量当りの電気化学エ
ネルギーに換算すると約10mAh/gもの容量差とな
る。また、ニッケル−水素電池の負極に用いることによ
って、従来と比較して内圧が30%以上も低減できる。
By using the hydrogen storage alloy powder ingot of the present invention, the hydrogen storage capacity of the alloy of 10 cm square is superior to that of the alloy containing a large amount of equiaxed structure by about 25 liters compared to the alloy containing a large amount of equiaxed structure. In addition, when converted into electrochemical energy per unit weight, a capacity difference of about 10 mAh / g is obtained. Further, by using the negative electrode of a nickel-hydrogen battery, the internal pressure can be reduced by 30% or more as compared with the conventional case.

【0031】また、本発明の製造方法により、粉砕性が
向上し、簡便な製造工程によって、水素吸蔵合金粉末を
得ることができる。
Further, the production method of the present invention improves the pulverizability and makes it possible to obtain a hydrogen storage alloy powder by a simple production process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いた金属性水冷鋳型の一例を示す平
面図。
FIG. 1 is a plan view showing an example of a metallic water-cooled mold used in the present invention.

【図2】図1のa−b部分の断面図。FIG. 2 is a sectional view taken along the line ab of FIG. 1;

【図3】本発明により得られた水素吸蔵合金粉末のイン
ゴットの模式断面図。
FIG. 3 is a schematic sectional view of an ingot of the hydrogen storage alloy powder obtained according to the present invention.

【図4】従来の鋳造により得られるインゴットの模式断
面図。
FIG. 4 is a schematic sectional view of an ingot obtained by conventional casting.

【図5】充放電試験および内圧測定に用いたテストセル
の断面図。
FIG. 5 is a cross-sectional view of a test cell used for a charge / discharge test and internal pressure measurement.

【符号の説明】[Explanation of symbols]

1 鋳型冷却面 2 鋳型側面 3 鋳型底部 4 冷却水管 d 鋳型面の間隔 5 合金電極 6 ニッケル電極 7 圧力計 8 ガス放出バルブ Aチル組織 B柱状組織 C等軸組織 DESCRIPTION OF SYMBOLS 1 Mold cooling surface 2 Mold side surface 3 Mold bottom 4 Cooling water pipe d Mold surface spacing 5 Alloy electrode 6 Nickel electrode 7 Pressure gauge 8 Gas release valve A chill organization B columnar organization C equiaxed organization

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B22D 27/20 B22D 27/20 Z C22C 1/00 C22C 1/00 N H01M 4/24 H01M 4/24 J (58)調査した分野(Int.Cl.6,DB名) B22F 9/04 B22D 7/00 B22D 7/06 B22D 27/20 C22C 1/00 H01M 4/24 ──────────────────────────────────────────────────の Continuation of front page (51) Int.Cl. 6 Identification symbol FI B22D 27/20 B22D 27/20 Z C22C 1/00 C22C 1/00 N H01M 4/24 H01M 4/24 J (58) Field (Int.Cl. 6 , DB name) B22F 9/04 B22D 7/00 B22D 7/06 B22D 27/20 C22C 1/00 H01M 4/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金粉末原料を溶解し、鋳造温
度をその融点より400℃以上高い温度とし、鋳造速度
1〜15Kg/秒/m(但し、面積は鋳型の総冷却面
積)、鋳型面間隔20〜100mmの条件で水冷鋳型を
用いて鋳造組織の80%以上が柱状組織であるインゴッ
ドを鋳造し、該インゴッドを粉砕することを特徴とする
水素吸蔵合金粉末の製造方法。
1. A method for dissolving a hydrogen storage alloy powder raw material, setting the casting temperature at 400 ° C. or more higher than its melting point, at a casting speed of 1 to 15 kg / sec / m 2 (where the area is the total cooling area of the mold), A method for producing a hydrogen storage alloy powder, comprising: casting an ingot having a columnar structure of 80% or more of a cast structure using a water-cooled mold under the condition of a surface spacing of 20 to 100 mm, and pulverizing the ingot.
【請求項2】 鋳造温度をその融点より400℃以上で
800℃未満高い温度とすることを特徴とする請求項1
に記載の水素吸蔵合金粉末の製造方法。
2. The method according to claim 1, wherein the casting temperature is 400 ° C. or higher and lower than 800 ° C. higher than the melting point.
3. The method for producing a hydrogen storage alloy powder according to item 1.
【請求項3】 ニッケル−水素電池の負極用に用いる請
求項1または2に記載の水素吸蔵合金粉末の製造方法。
3. The method for producing a hydrogen storage alloy powder according to claim 1, which is used for a negative electrode of a nickel-hydrogen battery.
JP3159752A 1991-06-04 1991-06-04 Method for producing hydrogen storage alloy powder Expired - Lifetime JP2896718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3159752A JP2896718B2 (en) 1991-06-04 1991-06-04 Method for producing hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3159752A JP2896718B2 (en) 1991-06-04 1991-06-04 Method for producing hydrogen storage alloy powder

Publications (2)

Publication Number Publication Date
JPH04358008A JPH04358008A (en) 1992-12-11
JP2896718B2 true JP2896718B2 (en) 1999-05-31

Family

ID=15700490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3159752A Expired - Lifetime JP2896718B2 (en) 1991-06-04 1991-06-04 Method for producing hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JP2896718B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69333089T2 (en) * 1992-09-14 2004-05-19 Kabushiki Kaisha Toshiba, Kawasaki Hydrogen-absorbing alloy for batteries, process for their production and nickel-metal hydride secondary battery
US5512385A (en) * 1994-02-28 1996-04-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and nickel-metal hydride storage battery using the same
DE19528291C2 (en) * 1995-08-02 1998-06-04 Ald Vacuum Techn Gmbh Method and device for producing particles from directionally solidified castings

Also Published As

Publication number Publication date
JPH04358008A (en) 1992-12-11

Similar Documents

Publication Publication Date Title
US5840166A (en) Rare earth metal-nickel hydrogen storage alloy, process for producing the same, and anode for nickel-hydrogen rechargeable battery
US5964968A (en) Rare earth metal-nickel hydrogen storage alloy, method for producing the same, and anode for nickel-hydrogen rechargeable battery
JP3869003B2 (en) Rare earth metal-nickel metal hydride alloy, process for producing the same, and negative electrode for nickel metal hydride secondary battery
KR100207906B1 (en) Age-preciptating rare earth metal-nickel alloy, its manufacture and negative electrode for nickel-hydrogen secondary cell
JP3737163B2 (en) Rare earth metal-nickel hydrogen storage alloy and negative electrode for nickel metal hydride secondary battery
JP6948441B1 (en) Low Co hydrogen storage alloy powder
JP3212133B2 (en) Rare earth metal-nickel based hydrogen storage alloy ingot and method for producing the same
JP5909600B2 (en) Hydrogen storage alloy
JP2896718B2 (en) Method for producing hydrogen storage alloy powder
JP2003197188A (en) Negative active material for lithium ion secondary battery and its manufacturing method
JP5437544B2 (en) Manufacturing method of negative electrode for secondary battery
WO1998010107A1 (en) Rare earth metal-nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen rechargeable battery
JP3493516B2 (en) Hydrogen storage alloy and method for producing the same
WO2001069700A1 (en) Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell
JP2000144278A (en) Hydrogen occlusion alloy and its production
JP3924319B2 (en) Aging-precipitated rare earth metal-nickel alloy, process for producing the same, and negative electrode for nickel metal hydride secondary battery
JPH0860265A (en) Hydrogen storage alloy thin sheet, alloy powder and production thereof
JPH11310838A (en) Hydrogen occlusion alloy and manufacture therefor
JP2023029212A (en) Hydrogen storage alloy
JPH06306413A (en) Production of hydrogen storage alloy powder
JP3024402B2 (en) Manufacturing method of hydrogen storage alloy
JP2004131825A (en) Hydrogen storage alloy
JP2000144277A (en) Hydrogen occlusion alloy and its production
JPH11323468A (en) Hydrogen storage alloy and its production
JPH11310861A (en) Manufacture of hydrogen storage alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13