JPH06306411A - Production of hydrogen storage alloy powder - Google Patents

Production of hydrogen storage alloy powder

Info

Publication number
JPH06306411A
JPH06306411A JP5113887A JP11388793A JPH06306411A JP H06306411 A JPH06306411 A JP H06306411A JP 5113887 A JP5113887 A JP 5113887A JP 11388793 A JP11388793 A JP 11388793A JP H06306411 A JPH06306411 A JP H06306411A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy powder
powder
hydrogen storage
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5113887A
Other languages
Japanese (ja)
Other versions
JP2820859B2 (en
Inventor
Masaru Yanagimoto
勝 柳本
Shunichiro Nishikawa
俊一郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP5113887A priority Critical patent/JP2820859B2/en
Publication of JPH06306411A publication Critical patent/JPH06306411A/en
Application granted granted Critical
Publication of JP2820859B2 publication Critical patent/JP2820859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To drastically reduce the time required for pulverization after coarse crushing, to increase crushing efficiency and to reduce the crushing cost in the production of a hydrogen storage alloy powder. CONSTITUTION:The ingot of a hydrogen storage alloy is coarsely crushed, hydrogen is occluded in the surface of the coarsely crushed alloy powder to generate cracks, and the powder is pulverized. When hydrogen is occluded in the coarsely crushed alloy powder, the powder is sealed in a plastic vessel along with hydrogen, and then >=100atm hydrogen pressure is applied on the coarsely crushed alloy powder by cold isostatic pressing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】従来、小型化が要求される各種機
器の放充電可能なエネルギー源としてニッケルカドミウ
ム電池が多用されているが、環境問題や高エネルギー化
の観点からニッケルカドミウム電池に替えて水素吸蔵合
金を負極に用いたニッケル水素電池の使用が期待されて
いる。本発明は、この様なニッケル水素電池の負極や、
その他水素タンクやヒートポンプ等に使用される水素吸
蔵合金粉末の製造方法に関するものである。
[Industrial application] Nickel-cadmium batteries have been widely used as an energy source that can be charged and discharged in various devices that are required to be miniaturized. The use of nickel-hydrogen batteries with a hydrogen storage alloy for the negative electrode is expected. The present invention is a negative electrode of such a nickel hydrogen battery,
The present invention also relates to a method for producing a hydrogen storage alloy powder used in a hydrogen tank, a heat pump or the like.

【0002】[0002]

【従来の技術】従来、水素吸蔵合金粉末は水素吸蔵合金
の鋳造塊を1〜2cmの大きさになるまで粉砕(割り出
し)した後、アルゴンなどの不活性雰囲気中でピンミル
などの粗粉砕機で2mm程度以下の大きさまで粗粉砕した
後、同様の雰囲気中でジェットミルなどの機械的微粉砕
装置にかけて希望の粒度になるまで微粉砕して粉末を製
造していた。これらの水素吸蔵合金の粉砕工程は通常連
続的に、また粗粉砕以降はアルゴンなどの不活性雰囲気
中で行っている。
2. Description of the Related Art Conventionally, a hydrogen storage alloy powder is crushed (indexed) into a hydrogen storage alloy casting ingot to a size of 1 to 2 cm, and then a coarse crusher such as a pin mill is used in an inert atmosphere such as argon. After roughly pulverizing to a size of about 2 mm or less, it was finely pulverized in a similar atmosphere with a mechanical fine pulverizing device such as a jet mill until a desired particle size was obtained to produce a powder. The pulverization process of these hydrogen storage alloys is usually performed continuously, and after coarse pulverization is performed in an inert atmosphere such as argon.

【0003】しかし、従来の技術では、水素吸蔵合金の
粗粉砕後の微粉砕工程が単にジェットミルなどの機械的
微粉砕装置にかけて粉砕するだけであるので、希望の粒
度になるまでに長時間を要し、粉砕効率が悪くコストを
要していた。
However, in the prior art, since the fine pulverization process after the coarse pulverization of the hydrogen storage alloy is simply performed by pulverizing with a mechanical fine pulverizing device such as a jet mill, it takes a long time to reach a desired grain size. In addition, the crushing efficiency was poor and the cost was high.

【0004】[0004]

【発明が解決しようとする課題】本発明の解決しようと
する課題は、上記の従来の技術の欠点を無くし、微粉砕
に要する時間を大幅に短縮して粉砕効率を高め、粉砕に
要するコストを低減することである。
The problem to be solved by the present invention is to eliminate the above-mentioned drawbacks of the prior art, to significantly shorten the time required for fine pulverization, to improve the pulverization efficiency, and to reduce the cost required for pulverization. It is to reduce.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、微粉砕前の水素吸蔵合金粗粉末にいっ
たん水素を吸蔵させることにより、該粗粉砕合金粉末表
面にクラックを発生させ、その後の微粉砕工程を効率的
に行うものである。すなわち、本発明は、水素吸蔵合金
の鋳造塊を粗粉砕した後、該粗粉砕合金粉末表面に水素
を吸蔵させてクラックを発生させた状態で微粉砕するも
ので、特に、上記における粗粉砕合金粉末に水素を吸蔵
させる際に、該粗粉砕合金粉末を水素とともに可塑性容
器に封入した後、冷間静水圧プレスを使用して該粗粉砕
合金粉末に100気圧以上の水素圧をかけるものであ
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is to cause hydrogen to be stored in a coarse hydrogen-absorbing alloy coarse powder before fine pulverization, thereby generating cracks on the surface of the coarse-crush alloy powder. Then, the subsequent fine pulverization step is efficiently performed. That is, the present invention is to coarsely pulverize a casting mass of a hydrogen storage alloy, and then finely pulverize it in a state in which hydrogen is stored on the surface of the coarsely pulverized alloy powder and cracks are generated. When occluding hydrogen in the powder, the coarsely crushed alloy powder is enclosed in a plastic container together with hydrogen, and then a cold isostatic press is used to apply a hydrogen pressure of 100 atm or more to the coarsely crushed alloy powder. .

【0006】[0006]

【作用】本発明は、微粉砕前の粒径2mm前後の粗粉砕合
金粉末にいったん水素を吸蔵させることにより粗粉砕合
金粉末表面にクラックを発生させるので、その後の微粉
砕工程が効率的に行え、粒径50μm 以下の微粉末に短
時間で容易に粉砕できるものである。本発明は水素吸蔵
合金粉末一般の製造工程に適用可能で、適用できる成分
系としてはミッシュメタル−ニッケル系、鉄−チタン
系、マグネシウム系などがあげられる。
According to the present invention, since hydrogen is temporarily stored in the coarsely pulverized alloy powder having a particle size of about 2 mm before fine pulverization to cause cracks on the surface of the coarsely pulverized alloy powder, the subsequent fine pulverization step can be efficiently performed. It can be easily pulverized into a fine powder having a particle size of 50 μm or less in a short time. INDUSTRIAL APPLICABILITY The present invention can be applied to a general production process of hydrogen storage alloy powder, and applicable component systems include misch metal-nickel system, iron-titanium system, magnesium system and the like.

【0007】[0007]

【実施例】アルミナるつぼにMnNi3 合金およびNi、Mn、
Al、Co各単体金属の塊又は粒を装入し、誘導溶解により
MmNi3.2CoMn0.6Al0.2 の組成の水素吸蔵合金を溶製し
た。アルゴン雰囲気中で冷却して凝固させた後、該合金
インゴットを取り出してハンマーで1〜2cmの大きさに
粉砕後、ピンミルで2mm程度の大きさに粉砕した。
Example: Alumina crucible with MnNi 3 alloy and Ni, Mn,
By charging lumps or particles of Al and Co simple metals, and by induction melting
A hydrogen storage alloy having a composition of MmNi 3.2 CoMn 0.6 Al 0.2 was melted. After cooling in an argon atmosphere to solidify, the alloy ingot was taken out, crushed with a hammer to a size of 1 to 2 cm, and then crushed to a size of about 2 mm with a pin mill.

【0008】粗粉砕後の粉末をポリエチレン袋に水素ガ
スとともに密封し、冷間静水圧プレス中で100から4
000気圧までの静水圧で処理した後、ジェットミルに
よりアルゴン雰囲気中で微粉砕を行った。
The coarsely pulverized powder was sealed in a polyethylene bag together with hydrogen gas, and then cooled in a cold isostatic press at 100 to 4 times.
After treating with a hydrostatic pressure up to 000 atm, fine pulverization was carried out in a jet mill in an argon atmosphere.

【0009】これらの微粉砕工程の評価を行い表1に示
す。
Table 1 shows the results of evaluation of these fine pulverization processes.

【0010】[0010]

【表1】 [Table 1]

【0011】評価尺度は粉末10kg当たりを微粉砕する
ために要した処理時間を当てた。また微粉砕後の粉末が
どの条件においても略一定の粒度を示すことの評価とし
て、平均粒径を求めた。
The evaluation scale was the treatment time required for pulverizing 10 kg of powder. Further, the average particle size was obtained as an evaluation that the powder after fine pulverization exhibits a substantially constant particle size under any condition.

【0012】表1から判るように本発明方法の水素雰囲
気中で冷間静水圧プレス処理したものは、100気圧の
水素圧を2分かけたものも4000気圧を2分かけたも
のもいずれも平均粒度12μ前後の微粉末10kgを得る
ための微粉砕処理時間が2時間から2時間45分内であ
るのに対し、本発明の方法を適用しない従来の微粉砕方
法では3時間20分かかり、本発明方法は従来方法に比
し35分から1時間20分も微粉砕時間が短縮されてお
り、大幅に微粉砕効率が向上していることが理解され
る。
As can be seen from Table 1, both the cold isostatic pressing treatment in the hydrogen atmosphere of the method of the present invention was carried out at a hydrogen pressure of 100 atm for 2 minutes and at 4000 atm for 2 minutes. The fine pulverization treatment time for obtaining 10 kg of fine powder having an average particle size of about 12 μ is within 2 hours to 2 hours 45 minutes, whereas the conventional fine pulverization method to which the method of the present invention is not applied takes 3 hours 20 minutes, It is understood that the method of the present invention shortens the pulverization time by 35 minutes to 1 hour and 20 minutes as compared with the conventional method, and the pulverization efficiency is significantly improved.

【0013】[0013]

【発明の効果】以上説明したように、本発明は、微粉砕
前の粗粉末にいったん水素を吸蔵させることにより、予
め粗粉砕合金粉末表面にクラックを発生させた後に微粉
砕を行うので、従来の方法に比して大幅に微粉砕に要す
る時間を短縮でき、従って低コストで効率よく微粉砕工
程が行える。
As described above, according to the present invention, since hydrogen is once stored in the coarse powder before fine pulverization, cracks are generated in advance on the surface of the coarsely pulverized alloy powder, so that fine pulverization is performed. The time required for fine pulverization can be greatly reduced as compared with the above method, and therefore the fine pulverization process can be efficiently performed at low cost.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粉末の製造において、水素
吸蔵合金の鋳造塊を粗粉砕した後、該粗粉砕合金粉末表
面に水素を吸蔵させてクラックを発生させた状態で微粉
砕することを特徴とする水素吸蔵合金粉末の製造方法。
1. A method for producing a hydrogen-absorbing alloy powder, comprising: roughly crushing a cast ingot of hydrogen-absorbing alloy, and then finely crushing hydrogen on the surface of the roughly-crushed alloy powder while causing hydrogen to be absorbed therein. And a method for producing a hydrogen storage alloy powder.
【請求項2】 請求項1における粗粉砕合金粉末に水素
を吸蔵させる際に、該粗粉砕合金粉末を水素とともに可
塑性容器に封入した後、冷間静水圧プレスを使用して該
粗粉砕合金粉末に100気圧以上の水素圧をかけること
を特徴とする請求項1記載の水素吸蔵合金粉末の製造方
法。
2. When the coarsely crushed alloy powder according to claim 1 absorbs hydrogen, after the coarsely crushed alloy powder is enclosed in a plastic container together with hydrogen, the coarsely crushed alloy powder is subjected to cold isostatic pressing. The method for producing a hydrogen storage alloy powder according to claim 1, wherein a hydrogen pressure of 100 atm or more is applied.
JP5113887A 1993-04-16 1993-04-16 Method for producing hydrogen storage alloy powder Expired - Lifetime JP2820859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5113887A JP2820859B2 (en) 1993-04-16 1993-04-16 Method for producing hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5113887A JP2820859B2 (en) 1993-04-16 1993-04-16 Method for producing hydrogen storage alloy powder

Publications (2)

Publication Number Publication Date
JPH06306411A true JPH06306411A (en) 1994-11-01
JP2820859B2 JP2820859B2 (en) 1998-11-05

Family

ID=14623624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5113887A Expired - Lifetime JP2820859B2 (en) 1993-04-16 1993-04-16 Method for producing hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JP2820859B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034025A1 (en) * 1997-12-26 1999-07-08 Toyota Jidosha Kabushiki Kaisha Hydrogen absorbing alloys, processes for producing hydrogen absorbing alloys, hydrogen absorbing alloy electrode, process for producing hydrogen absorbing alloy electrode, and battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034025A1 (en) * 1997-12-26 1999-07-08 Toyota Jidosha Kabushiki Kaisha Hydrogen absorbing alloys, processes for producing hydrogen absorbing alloys, hydrogen absorbing alloy electrode, process for producing hydrogen absorbing alloy electrode, and battery
CN1078909C (en) * 1997-12-26 2002-02-06 丰田自动车株式会社 Hydrogen absorbing alloys, processes for producing hydrogen absorbing alloy, hydrogen absorbing alloy electrode, process for producing hydrogen absorbing alloy electrode, and battery
US6602639B1 (en) 1997-12-26 2003-08-05 Toyota Jidosha Kabushiki Kaisha Process for producing hydrogen storage alloy and process for producing hydrogen storage alloy electrode
US6942947B2 (en) 1997-12-26 2005-09-13 Toyota Jidosha Kabushiki Kaisha Hydrogen storage alloy, process for producing hydrogen storage alloy, hydrogen storage alloy electrode, process for producing hydrogen storage alloy electrode, and battery
US7223497B2 (en) 1997-12-26 2007-05-29 Toyota Jidosha Kabushiki Kaisha Hydrogen storage alloy, process for producing hydrogen storage alloy, hydrogen storage alloy electrode, process for producing hydrogen storage alloy electrode, and battery

Also Published As

Publication number Publication date
JP2820859B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
CN1327549C (en) Hydrogen storage powder and process for preparing same
EP0751229B1 (en) Age precipitation-containing rare earth metal-nickel alloy, method of producing the alloy, and anode for nickel-hydrogen rechargeable battery
US6074453A (en) Ultrafine hydrogen storage powders
JPH03158427A (en) Manufacture of hydrogen occluding alloy containing vanadium in large amount
JP5909600B2 (en) Hydrogen storage alloy
JPH06306411A (en) Production of hydrogen storage alloy powder
JPH05303966A (en) Hydrogen storage alloy electrode
JP2920343B2 (en) Hydrogen storage alloy powder, nickel-metal hydride battery having the hydrogen storage alloy powder as negative electrode active material, and method for producing hydrogen storage alloy powder
JP2972919B2 (en) Method for producing hydrogen storage alloy powder for storage battery and hydrogen storage electrode
JP2560567B2 (en) Method for producing hydrogen storage alloy
JP2896718B2 (en) Method for producing hydrogen storage alloy powder
JPH06187979A (en) Hydrogen storage alloy electrode
JP3079890B2 (en) Hydrogen storage alloy powder and nickel-hydrogen battery
JP4235721B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and method for producing hydrogen storage alloy
EP0761833B1 (en) Hydrogen occluding alloy and electrode made of the alloy
JP3315880B2 (en) Method for producing hydrogen storage alloy powder
JPH06248302A (en) Method for activating hydrogen storage alloy
JPH04318106A (en) Production of hydrogen storage alloy powder
JP3678281B2 (en) Hydrogen storage electrode
Ting et al. Gas atomization processing of designed dual-phase intermetallic hydrogen storage alloys
Young et al. Improved hydride/dehydride process to prepare metal powders for NiMH battery applications
JPH10195569A (en) Hydrogen storage alloy excellent in initial activity
JPH10195571A (en) Hydrogen storage alloy excellent in initial activity
JP2002212601A (en) Method for producing hydrogen occlusion alloy
JPH059504A (en) Material for hydrogen occlusion alloy and production thereof