JP2000310614A - Chip for electrophoresis, its manufacture, and electrophoresis device and chargeable material separating method using the same - Google Patents

Chip for electrophoresis, its manufacture, and electrophoresis device and chargeable material separating method using the same

Info

Publication number
JP2000310614A
JP2000310614A JP11093452A JP9345299A JP2000310614A JP 2000310614 A JP2000310614 A JP 2000310614A JP 11093452 A JP11093452 A JP 11093452A JP 9345299 A JP9345299 A JP 9345299A JP 2000310614 A JP2000310614 A JP 2000310614A
Authority
JP
Japan
Prior art keywords
electrophoresis
plate
groove
injection
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11093452A
Other languages
Japanese (ja)
Other versions
JP4178654B2 (en
Inventor
Kenji Watanabe
健二 渡辺
Kazuhiko Obara
和彦 小原
Takashi Shimayama
隆 嶋山
Hiroo Watanabe
博夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP09345299A priority Critical patent/JP4178654B2/en
Publication of JP2000310614A publication Critical patent/JP2000310614A/en
Application granted granted Critical
Publication of JP4178654B2 publication Critical patent/JP4178654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a chip for electrophoresis which is suitable for the separation of chargeable materials, can be handled easily, and can be manufactured with high reproducibility and productivity, by providing injection holes, discharge holes and grooves which connect the holes to each other through and into a platy member and forming electrodes on the internal surfaces of the injection and discharge holes and/or around the injection and discharge holes on the groove forming surface of the member. SOLUTION: A sealing member 2 is joined to a platy member 1 having injection holes 4a and 4b formed through the member 1 in the thickness direction, through or non-through discharge holes 5a and 5b, and grooves 3a and 3b which respectively connect the holes 5a and 5b to the holes 4a and 4b. The platy member 1 has electrodes 6 formed on the internal surfaces of the injection and discharge holes 4a and 4b, and 5a and 5b and/or around the injection holes 4a and 4b, and discharge holes 5a and 5b on the surface of the member 1 on which the grooves 3a and 3b are formed. In addition, the member 1 is also providing with an electric circuit formed adjacently to the electrodes 6. The platy member 1 and/or sealing member 2 is made of an acrylic resin or styrene resin. Moreover, the sealing member 2 is formed in a film-like state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はキャピラリー電気泳
動に利用される電気泳動用チップとその製造方法、該電
気泳動用チップを用いた電気泳動装置及び荷電性物質の
分離方法に関する。
The present invention relates to an electrophoresis chip used for capillary electrophoresis, a method for producing the same, an electrophoresis apparatus using the electrophoresis chip, and a method for separating a charged substance.

【0002】[0002]

【従来の技術】イオン、有機酸、アミノ酸、タンパク
質、核酸、糖、ウイルス、細胞等の荷電性物質を分離す
る一般的な方法として電気泳動法が広く利用されてい
る。特に核酸やタンパク質等の生体物質やその他の低分
子物質といったごく微量物質を分離同定する手法として
キャピラリー電気泳動法がある。これは、内径が100
ミクロン以下程度のガラス細管(キャピラリー)を用
い、この中に電気泳動用緩衝液や分子ふるい用ポリマ等
の分離用媒体を充填し、キャピラリーの一端に試料を導
入した後その両端に高電圧を印加して試料をキャピラリ
ー内で移動させ、その電荷や分子量の差などにより分離
し、これをUV吸収や蛍光などにより検出するものであ
る。このキャピラリー電気泳動法は長所として、1)必
要試料量がごく微量で済む、2)分離特性に優れる、
3)高速分離が可能、4)様々の分離モードにより幅広
い試料分析に対応可能、などが挙げられるが、従来、キ
ャピラリーは内径が100ミクロン以下程度のファイバ
ー状であるためその強度は非常に低く、キャピラリーの
交換等の作業は極めて取り扱いにくいものであった。ま
た、複数回キャリピラリを使用するためにはその度に洗
浄する必要もあり、分析方法としてはユーザの簡便性の
面でも問題があった。
2. Description of the Related Art Electrophoresis is widely used as a general method for separating charged substances such as ions, organic acids, amino acids, proteins, nucleic acids, sugars, viruses and cells. In particular, there is a capillary electrophoresis method as a technique for separating and identifying very small amounts of substances such as biological substances such as nucleic acids and proteins and other low molecular substances. This means that the inner diameter is 100
Using a micron-sized glass capillary (capillary), filling it with a separation medium such as an electrophoresis buffer or a polymer for molecular sieving, introducing a sample into one end of the capillary, and then applying a high voltage to both ends. Then, the sample is moved in the capillary, separated by a difference in charge or molecular weight, and detected by UV absorption or fluorescence. The advantages of this capillary electrophoresis method are 1) the required sample amount is very small, and 2) excellent separation characteristics.
3) High-speed separation is possible. 4) A wide range of sample analysis can be supported by various separation modes. However, conventionally, the capillary is in the form of a fiber with an inner diameter of about 100 μm or less, so its strength is extremely low. Work such as capillary exchange was extremely difficult to handle. In addition, in order to use the capillary a plurality of times, it is necessary to wash each time, and there is a problem in terms of the analysis method in terms of the simplicity of the user.

【0003】これに対し、キャピラリー電気泳動法の概
念をさらに推し進めた一般に「マイクロチップケミスト
リー」と呼ばれる手法が提案されている(D.J.Harriso
n.ら:Analytical Chemistry,1992年,64巻,1926-1932
頁)。これは、ガラス基板上に微細溝をつくり、それを
もう一枚の基板と貼り合わせることによりキャピラリー
を形成させて、この流路中でキャピラリー電気泳動を行
うというというものである。このキャピラリーを内在し
たガラス基板を貼り合わせたものがマイクロチップと呼
ばれている。構造としては、2枚のガラス基板を張り合
わせて形成されたキャピラリー部の端部に、電気泳動用
緩衝液や分子ふるい用ポリマ、及び分析試料を供給する
ための液溜め部を有したものが一般的である。
[0003] On the other hand, a technique generally called "microchip chemistry" has been proposed which further advances the concept of capillary electrophoresis (DJ Harriso).
n. Et al .: Analytical Chemistry, 1992, 64, 1926-1932
page). In this method, a capillary is formed by forming a fine groove on a glass substrate and bonding the groove to another substrate, and performing capillary electrophoresis in this flow path. A glass substrate in which the capillary is embedded is called a microchip. The structure generally has a buffer for electrophoresis, a polymer for molecular sieving, and a reservoir for supplying an analysis sample at the end of a capillary formed by laminating two glass substrates. It is a target.

【0004】[0004]

【発明が解決しようとする課題】上記のマイクロチップ
ケミストリーという手法では、キャピラリーがマイクロ
チップ内に形成されたことで、取り扱い性は従来のキャ
ピラリー電気泳動法に比べ大きく改善されたが、簡便性
の面では、分析作業における電圧印加の為の電極接合や
装置への固定といった面倒な付随作業が伴い、十分なも
のではない。例えば、電極接合は、分析装置或いは高電
圧電源からの電気端子の白金線を液溜まり部に挿入固定
するという作業が必要で、高価な白金線を分析毎に洗浄
して使うといった面倒さがあり、この洗浄作業が不十分
であると分析対象物質以外のコンタミの心配があった。
また、ガラス基板の孔加工の難しさから、従来のチップ
は、キャピラリー形成のための2枚のガラス基板のうち
の一方の基板部材に溝を、他方の基板部材に液溜まり用
孔を設けていた。このため、それぞれの部材が構造体と
しての必要強度から、厚さが1mm程で剛性が高いこと
が必要であり、貼り合わせ時に密着不足が生じ易くエア
の巻き込み等の問題があり、品質の再現性が低かった。
In the above-mentioned technique of microchip chemistry, the handling property is greatly improved as compared with the conventional capillary electrophoresis method because the capillary is formed in the microchip. On the surface side, there are troublesome accompanying operations such as electrode bonding for application of a voltage and fixing to an apparatus in the analysis operation, which is not sufficient. For example, electrode bonding requires the work of inserting and fixing a platinum wire of an electrical terminal from an analyzer or a high-voltage power supply into a liquid reservoir, and has the trouble of washing and using an expensive platinum wire for each analysis. However, if the washing operation was insufficient, there was a concern about contamination other than the substance to be analyzed.
In addition, due to the difficulty in forming holes in the glass substrate, the conventional chip has a groove in one of the two glass substrates for forming a capillary and a hole for a liquid reservoir in the other substrate. Was. For this reason, it is necessary that each member has a thickness of about 1 mm and high rigidity due to the required strength as a structure, and there is a problem of insufficient adhesion at the time of bonding and there is a problem such as air entrapment. Sex was low.

【0005】本発明はかかる状況に鑑みなされたもの
で、荷電性物質の分離に適し、取り扱い性と簡便性とを
合わせ持ち、しかも再現性と生産性の良いキャピラリー
を内在する電気泳動用チップとその製造方法、その電気
泳動用チップを用いた電気泳動装置及び荷電性物質の分
離方法を提供するものである。
The present invention has been made in view of the above circumstances, and has been developed for an electrophoresis chip having a capillary which is suitable for separating charged substances, has both ease of handling and simplicity, and has good reproducibility and productivity. An object of the present invention is to provide a manufacturing method thereof, an electrophoresis apparatus using the electrophoresis chip, and a method of separating a charged substance.

【0006】[0006]

【課題を解決するための手段】発明者らは上記の課題を
解決するために鋭意検討を重ねた結果、注入孔と排出
孔、それらを連結する溝、及び電極を有する板状部材と
シール部材とを接合した電気泳動用チップを作製するこ
とにより上記の目的を達成し得ることを見い出し、本発
明を完成するに至った。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a plate-like member having an injection hole and a discharge hole, a groove connecting them, an electrode, and a sealing member. It has been found that the above object can be achieved by preparing an electrophoresis chip in which the present invention is joined, and the present invention has been completed.

【0007】すなわち、本発明は、(1)板状部材
(A)とシール部材(B)とからなり、板状部材(A)
が、板厚方向に貫通した1個以上の注入孔(C)と、板
厚方向に貫通又は非貫通の1個以上の排出孔(D)と、
一方の面に形成される注入孔(C)と排出孔(D)とを
連結する1本以上の溝(E)と、注入孔(C)及び排出
孔(D)の内壁及び/又は溝(E)形成面の注入孔
(C)及び排出孔(D)の周辺部に形成された電極
(F)、とを有し、シール部材(B)が板状部材(A)
の溝形成面に接合されていることを特徴とする電気泳動
用チップ、(2)注入孔(C)と排出孔(D)をそれぞ
れ2個以上有し、溝(E)を2本以上有し、かつ溝
(E)のうちの少なくとも2本が交差していることを特
徴とする上記(1)記載の電気泳動用チップ、(3)板
状部材(A)がさらに電気回路(G)を有することを特
徴とする上記(1)又は上記(2)記載の電気泳動用チ
ップ、(4)板状部材(A)及び/又はシール部材
(B)がアクリル系樹脂又はスチレン系樹脂製であるこ
とを特徴とする上記(1)〜(3)記載のいずれかの電
気泳動用チップ、(5)シール部材(B)がフィルム状
であることを特徴とする上記(1)〜(4)記載のいず
れかの電気泳動用チップ、(6)板状部材(A)が電気
泳動用装置に位置決めされるための突起、凹み及び穴の
うちのいずれかひとつ以上を有することを特徴とする上
記(1)〜(5)記載のいずれかの電気泳動用チップ、
(7)板厚方向に貫通する1個以上の注入孔(C)と、
板厚方向に貫通又は非貫通の1個以上の排出孔(D)
と、片面上に注入孔(C)と排出孔(D)とを連結する
1本以上の溝(E)とを形成したした後に、電極(F)
を注入孔(C)及び排出孔(D)の内壁及び/又は溝
(E)形成面の注入孔(C)及び排出孔(D)の周辺部
に形成した板状部材(A)を、溝(E)形成面を内側に
してシール部材(B)と接合して製造することを特徴と
する電気泳動用チップの製造方法、(8)電極(F)を
印刷、真空蒸着、スパッタリング及びイオンプレーティ
ングのいずれかにより形成することを特徴とする上記
(7)記載の電気泳動用チップの製造方法、(9)板厚
方向に貫通する1個以上の注入孔(C)と、板厚方向に
貫通又は非貫通の1個以上の排出孔(D)と、片面上に
注入孔(C)と排出孔(D)とを連結する1本以上の溝
(E)とを形成したした後に、電極(F)及び電気回路
(G)を注入孔(C)及び排出孔(D)の内壁及び/又
は溝(E)形成面の注入孔(C)及び排出孔(D)の周
辺部に形成した板状部材(A)を、溝(E)形成面を内
側にしてシール部材(B)と接合して製造することを特
徴とする電気泳動用チップの製造方法、(10)電極
(F)及び電気回路(G)を印刷、真空蒸着、スパッタ
リング及びイオンプレーティングのいずれかにより形成
することを特徴とする上記(9)記載の電気泳動用チッ
プの製造方法、(11)板状部材(A)とシール部材
(B)との接合が熱融着によりなされることを特徴とす
る上記(7)〜(10)記載のいずれかの電気泳動用チ
ップの製造方法、(12)上記(1)〜(6)記載のい
ずれかの電気泳動用チップ若しくは請求上記(7)〜
(11)記載のいずれかの製造方法により得られる電気
泳動用チップを用いる電気泳動用装置、(13)上記
(1)〜(6)記載のいずれかの電気泳動用チップ若し
くは請求上記(7)〜(11)記載のいずれかの製造方
法により得られる電気泳動用チップを用いることを特徴
とする荷電性物質の分離方法。(14)上記(12)記
載の電気泳動用装置を用いることを特徴とする荷電性物
質の分離方法、(15)荷電性物質が荷電性分子又は荷
電性粒子である上記(13)又は上記(14)記載の荷
電性物質の分離方法、(16)荷電性分子がイオン、有
機酸、アミノ酸、タンパク質、核酸及び糖のいずれか
で、荷電性粒子がウイルス又は細胞である上記(15)
記載の荷電性物質の分離方法、(17)分離用媒体とし
て高分子ゲルを用いることを特徴とする上記(13)〜
上記(16)記載のいずれかの荷電性物質の分離方法、
(18)高分子ゲルが非交差型高分子ゲルであることを
特徴とする上記(17)記載の荷電性物質の分離方法、
(19)非交差型高分子ゲルが直鎖状ポリアクリルアミ
ド、直鎖状ハイドロキシエチルセルロース、直鎖状ハイ
ドロキシプロピルメチルセルロース、直鎖状ハイドロキ
シプロピルセルロース、直鎖状メチルセルロース、直鎖
状ポリエチレングリコール及び直鎖状ポリエチレンオキ
サイドのいずれかである上記(18)記載の荷電性物質
の分離方法、である。
That is, the present invention provides (1) a plate-like member (A) and a seal member (B),
Has one or more injection holes (C) penetrating in the plate thickness direction, and one or more discharge holes (D) penetrating or non-penetrating in the plate thickness direction.
One or more grooves (E) connecting the injection hole (C) and the discharge hole (D) formed on one surface, and the inner wall and / or groove () of the injection hole (C) and the discharge hole (D). E) an electrode (F) formed around the injection hole (C) and the discharge hole (D) on the formation surface, and the sealing member (B) is a plate-like member (A).
(2) having at least two injection holes (C) and at least two discharge holes (D), and having at least two grooves (E). Wherein at least two of the grooves (E) intersect, the chip for electrophoresis according to the above (1), and (3) the plate-like member (A) further comprises an electric circuit (G). (1) The chip for electrophoresis according to (1) or (2), wherein (4) the plate member (A) and / or the sealing member (B) are made of an acrylic resin or a styrene resin. (1) The chip for electrophoresis according to any one of (1) to (3) above, wherein (5) the sealing member (B) is in the form of a film. (6) The plate-like member (A) is positioned in the electrophoresis apparatus. Because of the projections, indentations, and the (1) and having a higher any one of the holes to (5) either electrophoresis chip according,
(7) one or more injection holes (C) penetrating in the thickness direction,
One or more discharge holes (D) that penetrate or do not penetrate in the thickness direction
And one or more grooves (E) connecting the injection hole (C) and the discharge hole (D) on one side, and then forming the electrode (F).
The plate-like member (A) formed on the inner wall of the injection hole (C) and the discharge hole (D) and / or the periphery of the injection hole (C) and the discharge hole (D) on the groove (E) forming surface is formed by a groove. (E) A method for manufacturing an electrophoresis chip, which is manufactured by joining the sealing member (B) with the formation surface inside, (8) printing, vacuum deposition, sputtering and ion plating of the electrode (F). (9) one or more injection holes (C) penetrating in the plate thickness direction, and the method of manufacturing the electrophoresis chip according to the above (7), wherein After forming one or more discharge holes (D) which are penetrating or non-penetrating, and one or more grooves (E) connecting the injection hole (C) and the discharge hole (D) on one surface, the electrode is formed. (F) and the electric circuit (G) are injected into the inner wall and / or groove (E) forming surface of the injection hole (C) and the discharge hole (D). The plate-like member (A) formed around the hole (C) and the discharge hole (D) is joined to the seal member (B) with the groove (E) forming surface inside, and is manufactured. (10) The method according to (9), wherein the electrode (F) and the electric circuit (G) are formed by any one of printing, vacuum deposition, sputtering, and ion plating. (11) any one of the above-mentioned (7) to (10), wherein the method of manufacturing the chip for electrophoresis, (11) the bonding between the plate-shaped member (A) and the sealing member (B) is performed by heat fusion. (12) The method for producing an electrophoresis chip according to any one of the above (1) to (6) or the above (7) to
(11) An electrophoresis apparatus using an electrophoresis chip obtained by any one of the production methods described in (11), (13) the electrophoresis chip described in any of (1) to (6), or (7). A method for separating a charged substance, comprising using an electrophoresis chip obtained by any one of the production methods described in (11) to (11). (14) A method for separating a charged substance, wherein the apparatus for electrophoresis according to the above (12) is used; (15) The above (13) or (), wherein the charged substance is a charged molecule or a charged particle. (14) The method for separating a charged substance according to (15), wherein the charged molecule is any one of an ion, an organic acid, an amino acid, a protein, a nucleic acid, and a sugar, and the charged particle is a virus or a cell.
(17) The method according to (13) to (13), wherein a polymer gel is used as a separation medium.
The method for separating a charged substance according to any one of the above (16),
(18) The method for separating a charged substance according to the above (17), wherein the polymer gel is a non-crossing type polymer gel,
(19) The non-crossing type polymer gel is linear polyacrylamide, linear hydroxyethyl cellulose, linear hydroxypropyl methylcellulose, linear hydroxypropyl cellulose, linear methyl cellulose, linear polyethylene glycol, and linear. The method for separating a charged substance according to the above (18), which is any of polyethylene oxide.

【0008】[0008]

【発明の実施の形態】本発明において用いられる板状部
材(A)は、板厚方向に貫通した注入孔(C)、貫通又
は非貫通の排出孔(D)、注入孔(C)と排出孔(D)
とを連結する溝(E)、及び電極(F)を有する部材で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION A plate-like member (A) used in the present invention has an injection hole (C) penetrating in the thickness direction, a through-hole or non-through discharge hole (D), an injection hole (C) and a discharge hole. Hole (D)
And a member having a groove (E) connecting the electrodes and an electrode (F).

【0009】板状部材(A)に用いられる材料は、UV
吸収や蛍光などにより検出することを考慮し透明又は半
透明の材料であることが必要であるが、特に限定される
ものではない。再現性向上の観点からは、注型可能なガ
ラス、熱硬化性樹脂、熱可塑性樹脂等の型で成形可能な
ものが好ましい。絶縁性や成形の自由度から樹脂材料で
あることがより好ましい。また、樹脂材料は、弾力性が
あるために接触面積が面圧により確保でき、ガラス基材
のものより有利な電気条件となり好ましい。特に熱可塑
性樹脂材料は生産性の面からも有効であり、ポリメチル
メタクリレート、ポリアクリレート等のアクリル系樹
脂、ポリスチレン、スチレンコポリマ等のスチレン系樹
脂、ポリカーボネート、ナイロン6、ナイロン66、ポ
リエチレンテレフタレートなどが好ましい。中でも、透
明性及び蛍光特性の面で、アクリル系樹脂とスチレン系
樹脂がより好ましく、ポリメチルメタクリレート、ポリ
スチレンがさらに好ましい。また、本発明の電気泳動用
チップは生産性が高く化学的検体を扱うために、使い捨
て製品として使用されることも考えられ、このような観
点からは生分解性プラスチックであることが好ましい。
生分解性プラスチックとしては、例えば、マタービー
(ノバモント社(伊)製商品名)等の澱粉を利用したポ
リマ、セルグリーンP−CA(ダイセル化学工業株式会
社製商品名)、ルナーレZT(日本触媒化学工業株式会
社製商品名)等のセルロースエステル系ポリマ、ビオノ
ーレ(昭和高分子社製商品名)等の脂肪族ポリエステル
系ポリマ、エコプレ(カーギル社(米)製商品名)等の
ポリ乳酸系ポリマ、ポリヒドロキシブチレート/バリレ
ート等の微生物ポリエステルなどが挙げられる。
The material used for the plate member (A) is UV
It is necessary that the material be transparent or translucent in consideration of detection by absorption or fluorescence, but is not particularly limited. From the viewpoint of improvement in reproducibility, a moldable material such as a castable glass, a thermosetting resin, or a thermoplastic resin is preferable. It is more preferable to use a resin material from the standpoint of insulation and freedom of molding. Further, since the resin material has elasticity, the contact area can be ensured by the surface pressure, and the resin material has more advantageous electric conditions than that of the glass base material, which is preferable. In particular, a thermoplastic resin material is effective from the viewpoint of productivity, and acrylic resins such as polymethyl methacrylate and polyacrylate, styrene resins such as polystyrene and styrene copolymer, polycarbonate, nylon 6, nylon 66, and polyethylene terephthalate. preferable. Above all, in terms of transparency and fluorescent characteristics, acrylic resins and styrene resins are more preferable, and polymethyl methacrylate and polystyrene are more preferable. In addition, the electrophoresis chip of the present invention is considered to be used as a disposable product in order to handle a chemical sample with high productivity, and from such a viewpoint, it is preferable to use a biodegradable plastic.
Examples of the biodegradable plastic include polymers using starch such as Matterby (product name, manufactured by Novamont (Italy)), Cell Green P-CA (product name, manufactured by Daicel Chemical Industries, Ltd.), and Lunare ZT (product name: Nippon Shokubai Chemical Co., Ltd.) Cellulose ester-based polymers such as Kogyo Co., Ltd.), aliphatic polyester-based polymers such as Bionole (trade name of Showa Kogaku Co.), polylactic acid-based polymers such as Ecopre (trade name manufactured by Cargill (US)), Microbial polyesters such as polyhydroxybutyrate / valerate and the like.

【0010】板状部材(A)のサイズは、片手で取り扱
い易いように10mm角〜150mm角程度の大きさが
好ましく、20mm角〜100mm角がより好ましく、
電気泳動装置小型化の観点からは30mm角〜50mm
角がさらに好ましい。また、板状部材(A)の板厚は、
成形性、取り扱い性の観点から0.2mm〜5mm程度
が好ましく、1mm〜2mmがより好ましい。板状部材
(A)の成形方法は特に限定するものではないが、例え
ば、金型を用いて射出成形、注入成形、プレス成形等で
成形する方法や、機械加工で成形する方法などが挙げら
れるが、金型を用いる方法が寸法、形状共に再現性が高
いものが得られるために好ましい。
The size of the plate-shaped member (A) is preferably about 10 mm square to 150 mm square, more preferably 20 mm square to 100 mm square so that it can be easily handled with one hand.
30 mm square to 50 mm from the viewpoint of miniaturization of the electrophoresis device
Corners are more preferred. The plate thickness of the plate member (A) is
From the viewpoint of moldability and handleability, it is preferably about 0.2 mm to 5 mm, more preferably 1 mm to 2 mm. The method for forming the plate-shaped member (A) is not particularly limited, and examples thereof include a method of forming by injection molding, injection molding, press molding, and the like using a mold, and a method of forming by mechanical processing. However, a method using a mold is preferable because a material having high reproducibility in both dimensions and shape can be obtained.

【0011】板状部材(A)に形成される注入孔(C)
は、電気泳動用緩衝液、分子ふるい用ポリマ等の分離用
媒体を含む泳動液や分析対象物質を含む試料液等の供給
のための液溜め部であり、板厚方向に貫通した形で1個
以上の孔が形成されることが必要である。注入孔(C)
のサイズは、泳動液や試料液が注入できる大きさであれ
ば特に制限はないが、注入作業の観点から内径が1〜1
0mmの範囲に設定されることが好ましく、2〜5mm
がより好ましい。
Injection hole (C) formed in plate-like member (A)
Denotes a liquid reservoir for supplying an electrophoresis running buffer containing a separation medium such as a buffer for electrophoresis and a polymer for molecular sieving, and a sample solution containing a substance to be analyzed. It is necessary that more than one hole be formed. Injection hole (C)
Is not particularly limited as long as it can inject the electrophoresis running solution or the sample solution.
It is preferably set in the range of 0 mm, 2 to 5 mm
Is more preferred.

【0012】板状部材(A)に形成される排出孔(D)
は、電気泳動用緩衝液、分子ふるい用ポリマ等の分離用
媒体を含む泳動液や分析対象物質を含む試料液等の排出
のための液溜め部であり、板厚方向に貫通又は非貫通の
形で1個以上の孔が形成されることが必要である。排出
孔(D)のサイズは、注入孔(C)に注入された泳動液
や試料液が十分排出できる大きさであれば特に制限はな
いが、作業上の観点から内径が1〜10mmの範囲に設
定されることが好ましく、2〜5mmがより好ましい。
A discharge hole (D) formed in the plate member (A)
Is a liquid reservoir for discharging the electrophoresis buffer containing a separation medium such as a buffer for electrophoresis, a polymer for molecular sieving, or a sample solution containing a substance to be analyzed, and has a penetration or non-penetration in the plate thickness direction. It is necessary that one or more holes be formed in shape. The size of the discharge hole (D) is not particularly limited as long as the electrophoresis liquid or the sample liquid injected into the injection hole (C) can be sufficiently discharged, but from the viewpoint of working, the inner diameter is in the range of 1 to 10 mm. Is preferably set, and 2 to 5 mm is more preferable.

【0013】板状部材(A)に形成される溝(E)は、
分析対象試料や電気泳動用緩衝液や分子ふるい用ポリマ
等の分離用媒体を含む泳動液を導入したり、分離したり
するための流路(導入流路または分離流路)となるため
のもので、注入孔(C)と排出孔(D)とを連結するよ
う形成されることが必要である。試料を分離するための
分離流路は必ず必要であるが、この分離流路は導入流路
を兼ねることができるので、溝(E)は板状部材(A)
に少なくとも1本は形成されることが必要である。分離
流路と導入流路とは兼用が可能であるが、分析精度の観
点からは、分離流路と導入流路とを互いに接する別々の
溝とすることが好ましい。分析精度の向上には、分析対
象試料液の容量を制御する手法が有効であるが、試料の
導入流路と分離流路とが同一の溝で構成される場合は分
離流路中に導入される試料液の容量の制御が難しい。分
離流路と導入流路とを互いに接する別々の溝とした場合
には、導入された試料液の一部を分離流路に導入するこ
とが可能であるため、試料液量の制御が容易で分析精度
が向上する。試料液量の制御の観点からは、分離流路と
導入流路とは互いに交差していることがより好ましく、
交差角は特に限定はないが、交差部の試料液が分離流路
に導入されることを鑑みると、交差空間は菱形形状より
も直方形状の方が泳動像がよりシャープになり好ましい
ので、交差角は直角に近いほうが好ましい。また、分離
流路と導入流路を別に設けることも、分離流路と導入流
路をそれぞれ複数設けることも可能であるので、溝
(E)は2本以上の複数形成されていてもよい。分離流
路を複数設けることで、複数の分析対象物質を同時に分
離分析することが可能となる。分離流路となる複数の溝
(E)は、それぞれ並列に形成され、ほぼ平行に並んで
いることが、分析感度の観点から好ましい。複数の分析
対象物質を同時に分離分析する場合、分析対象物質を含
む試料液の供給や排出のための液溜め部である注入孔
(C)と排出孔(D)は、分析対象物質ごとに別々に用
意されることが好ましいので、分離流路が試料の導入流
路を兼ねている2本以上の溝(E)には、それぞれ両端
に独立した別個の注入孔(C)と排出孔(D)とが連結
していることが好ましい。試料の導入流路が分離流路と
は別に用意されいる場合は、導入流路となる2本以上の
溝(E)には、それぞれの両端に独立した別個の注入孔
(C)と排出孔(D)とが連結していることが好ましい
が、分離流路となる2本以上の溝(E)にはそれぞれ独
立した別個の注入孔(C)と排出孔(D)を用意しなく
てもよい。すなわち、1個の注入孔(C)と1個の排出
孔(D)とを連結する溝(E)が2本以上あって、別個
の溝(E)が同じ注入孔(C)と排出孔(D)を共有す
る場合があってもかまわない。この場合、2本以上の溝
(E)に連結した注入孔(C)と排出孔(D)は、泳動
液の導入又は排出のための液溜り部として使用すること
ができるが、分析対象物質を含む試料液の導入用の液溜
り部として使用することは好ましくない。溝(E)の形
状は、分析の精度、形態により任意に設計でき、例え
ば、直線状でも、ループ状でも、くの字型でも、複雑に
折れ曲がった形状でもかまわない。複数の溝を形成させ
る場合には、溝同士を平行に並列しても、交差させて
も、並列と交差が混在していてもよく、いかなる設計も
可能であるが、取り扱い性と分析精度の観点からは、分
析試料の分離流路と導入路とを別々の溝として、それら
を直交するよう設計することが好ましい。溝(E)のサ
イズは分析対象の物質が分離できれば特に限定はなく任
意に設計できるが、取り扱い性、成形性、電気泳動装置
の小型化の観点から、幅は10〜2000μmが好まし
く、20〜1000μmがより好ましく、30μm〜5
00μmがさらに好ましい。深さは5〜1000μmが
好ましく、5〜500μmがより好ましく、10μm〜
100μmがさらに好ましい。長さは5mm〜150m
m程度が好ましく、より好ましくは10mm〜100m
m、さらに好ましくは、15〜50mmである。
The groove (E) formed in the plate member (A)
To be a flow path (introduction flow path or separation flow path) for introducing or separating an electrophoresis running solution containing a separation medium such as a sample to be analyzed, an electrophoresis buffer, or a polymer for molecular sieving. Therefore, it is necessary to be formed so as to connect the injection hole (C) and the discharge hole (D). Although a separation flow path for separating the sample is always necessary, this separation flow path can also serve as an introduction flow path, so that the groove (E) is a plate-like member (A).
Must be formed at least. The separation channel and the introduction channel can be used for both purposes, but from the viewpoint of analysis accuracy, it is preferable that the separation channel and the introduction channel be separate grooves that contact each other. A method of controlling the volume of the sample liquid to be analyzed is effective for improving the analysis accuracy.However, when the sample introduction channel and the separation channel are configured with the same groove, the sample is introduced into the separation channel. It is difficult to control the volume of the sample solution. When the separation channel and the introduction channel are formed as separate grooves that are in contact with each other, it is possible to introduce a part of the introduced sample solution into the separation channel, so that it is easy to control the amount of the sample solution. The analysis accuracy is improved. From the viewpoint of control of the sample liquid amount, it is more preferable that the separation channel and the introduction channel intersect with each other,
The crossing angle is not particularly limited, but in view of the fact that the sample liquid at the crossing portion is introduced into the separation channel, the crossing space is preferably a rectangular shape rather than a rhombic shape because the electrophoresis image becomes sharper and is preferable. The angle is preferably closer to a right angle. In addition, since the separation channel and the introduction channel can be provided separately or a plurality of the separation channel and the introduction channel can be provided respectively, two or more grooves (E) may be formed. By providing a plurality of separation channels, a plurality of analytes can be simultaneously separated and analyzed. The plurality of grooves (E) serving as separation channels are preferably formed in parallel and arranged substantially in parallel from the viewpoint of analysis sensitivity. When a plurality of analytes are separated and analyzed at the same time, the inlet (C) and the outlet (D), which are reservoirs for supplying and discharging a sample solution containing the analyte, are provided separately for each analyte. In the two or more grooves (E) in which the separation flow path also serves as the sample introduction flow path, separate injection holes (C) and discharge holes (D ) Are preferably connected. When the sample introduction flow path is prepared separately from the separation flow path, two or more grooves (E) serving as the introduction flow path have independent injection holes (C) and discharge holes at both ends thereof. (D) are preferably connected to each other, but independent injection holes (C) and discharge holes (D) are not prepared in two or more grooves (E) serving as separation channels. Is also good. That is, there are two or more grooves (E) connecting one injection hole (C) and one discharge hole (D), and separate grooves (E) have the same injection hole (C) and discharge hole. (D) may be shared. In this case, the injection hole (C) and the discharge hole (D) connected to the two or more grooves (E) can be used as a liquid reservoir for introducing or discharging the electrophoresis running solution. It is not preferable to use it as a liquid reservoir for introducing a sample liquid containing. The shape of the groove (E) can be arbitrarily designed depending on the accuracy and form of the analysis, and may be, for example, a straight line, a loop, a dogleg, or a complicatedly bent shape. When a plurality of grooves are formed, the grooves may be arranged in parallel or in parallel, or may intersect, or the mixture of parallel and intersection may be used, and any design is possible. From the viewpoint, it is preferable to design the separation flow path and the introduction path of the analysis sample as separate grooves and to make them orthogonal to each other. The size of the groove (E) is not particularly limited as long as the substance to be analyzed can be separated, and can be arbitrarily designed. However, from the viewpoint of handleability, moldability, and miniaturization of the electrophoresis apparatus, the width is preferably 10 to 2000 μm, and 20 to 20 μm. 1000 μm is more preferable, and 30 μm to 5
00 μm is more preferred. The depth is preferably from 5 to 1000 μm, more preferably from 5 to 500 μm, and from 10 μm to
100 μm is more preferred. Length is 5mm-150m
m, more preferably 10 mm to 100 m
m, more preferably 15 to 50 mm.

【0014】注入孔(C)、排出孔(D)及び溝(E)
の形成方法は特に限定するものではないが、例えば、金
型を用い、射出成形や注入成形、プレス成形といった生
産性の高い工法を適用することで寸法、形状共に再現性
が高いものが得られるが機械加工で形成することもでき
る。注入孔(C)、排出孔(D)及び溝(E)の形成
は、それぞれべつべつにどの順序で行ってもかまわない
が、1回の成形で全てを同時に行う手法が工程が少なく
なり簡便である。
Injection hole (C), discharge hole (D) and groove (E)
Although there is no particular limitation on the forming method, for example, by using a mold, applying a highly productive method such as injection molding, injection molding, or press molding, a material having high reproducibility in both dimensions and shape can be obtained. Can also be formed by machining. The formation of the injection hole (C), the discharge hole (D) and the groove (E) may be performed in any order individually, but the method of performing all of them simultaneously by one molding reduces the number of steps and is simple. is there.

【0015】板状部材(A)に形成される電極(F)
は、電圧印加して電位差により分析対象試料を溝(E)
によって形成された流路(キャピラリー)を移動させる
ことにより、試料を分離するために使用するもので、試
料や泳動液の導入流路及び分離流路の両端の液溜め部す
なわち注入孔(C)及び排出孔(D)の開口部周辺に形
成されることが必要である。そこで、本発明において
は、電極(F)は注入孔(C)及び排出孔(D)の内壁
及び/又は溝(E)形成面の注入孔(C)及び排出孔
(D)の周辺部に形成される。この場所に形成されるこ
とにより、シール部材(B)を接合した電気泳動用チッ
プにおいて、電極(F)はチップの内部に位置し、液に
よる腐食が起き難くなる。電極(F)への導電を外部か
らの配線等により行う場合には、分析対象物質を含む試
料液に配線等を接触させないようにするために、電極
(F)は、注入孔(C)及び排出孔(D)の内壁だけで
なく、少なくとも溝(E)形成面上に形成されることが
好ましい。
Electrode (F) formed on plate-like member (A)
Is to apply a voltage and subject the sample to be analyzed to a groove (E) by a potential difference.
This is used to separate a sample by moving a flow path (capillary) formed by the above. A liquid reservoir at both ends of the sample and electrophoresis liquid introduction flow path and the separation flow path, that is, an injection hole (C) It is necessary to be formed around the opening of the discharge hole (D). Therefore, in the present invention, the electrode (F) is provided on the inner wall of the injection hole (C) and the discharge hole (D) and / or on the periphery of the injection hole (C) and the discharge hole (D) on the groove (E) formation surface. It is formed. By being formed in this place, in the electrophoresis chip to which the sealing member (B) is joined, the electrode (F) is located inside the chip, and the corrosion by the liquid hardly occurs. When conducting to the electrode (F) by an external wiring or the like, the electrode (F) has an injection hole (C) and an injection hole (C) in order to prevent the wiring or the like from coming into contact with the sample liquid containing the substance to be analyzed. It is preferably formed not only on the inner wall of the discharge hole (D) but also on at least the groove (E) forming surface.

【0016】電極(F)への電圧印加には、パワーサプ
ライ等の高電圧供給源から白金等の配線を用いて行うこ
とが可能であるが、操作の簡便性の観点から、板状部材
(A)にさらに電気回路(G)を形成することが好まし
い。電気回路(G)は、電極(F)に密接するように形
成されることが必要である。本発明においては、電極
(F)は注入孔(C)及び排出孔(D)の内壁及び/又
は溝(E)形成面上に形成されるので、電気回路(G)
も、注入孔(C)及び排出孔(D)の内壁及び/又は溝
(E)形成面上に形成される。分析対象物質を含む試料
液に導電用の配線等を接触させないようにするために、
電気回路(G)は少なくとも溝(E)形成面上に形成さ
れることが好ましい。電気回路(G)は、板状部材
(A)の外周部まで延ばすと、外部からの導電が容易に
なり好ましいが、この場合、板状部材(A)とシール部
材(B)とをすきまなく接合することが難しくなるので
完全にシールできるよう注意を要する。シールが不完全
であると液漏れの不具合を招き好ましくないので、接合
力が弱い接合方法を採択する場合は、電気回路(G)は
板状部材(A)の外周部まで延ばさないように形成され
ることが好ましい。
The application of a voltage to the electrode (F) can be performed by using a wiring of platinum or the like from a high-voltage supply source such as a power supply. It is preferable to further form an electric circuit (G) in A). The electric circuit (G) needs to be formed so as to be in close contact with the electrode (F). In the present invention, since the electrode (F) is formed on the inner wall of the injection hole (C) and the discharge hole (D) and / or the surface on which the groove (E) is formed, the electric circuit (G) is formed.
Are also formed on the inner wall of the injection hole (C) and the discharge hole (D) and / or on the groove (E) formation surface. In order to prevent conductive wiring etc. from coming into contact with the sample solution containing the analyte,
The electric circuit (G) is preferably formed at least on the surface on which the groove (E) is formed. It is preferable that the electric circuit (G) be extended to the outer peripheral portion of the plate-shaped member (A) to facilitate conduction from the outside. However, in this case, the plate-shaped member (A) and the seal member (B) are not cleaved. Care must be taken to ensure complete sealing, as joining becomes difficult. If the seal is incomplete, it is not preferable because a problem of liquid leakage is caused, which is not preferable. Therefore, when a joining method having a weak joining force is adopted, the electric circuit (G) is formed so as not to extend to the outer peripheral portion of the plate-shaped member (A). Is preferably performed.

【0017】電極(F)及び電気回路(G)の形成方法
としては、特に限定はなく、メッキ工法、印刷工法、蒸
着工法等従来からある種々の工法が適用できるが、メッ
キ工法は板状部材(A)が透明樹脂の場合は薬液に対す
る保護等の面で取り扱いが難しく、生産性の観点から印
刷工法又は蒸着工法が好ましい。中でも真空蒸着、スパ
ッタリング、イオンプレーティング等の蒸着工法が好ま
しい。電極(F)及び電気回路(G)は、両者が一体化
した形の一体化物として形成してもよい。電極(F)及
び電気回路(G)の材質は、導電性のある材料であれば
特に限定はなく、例えば、金、銀、銅、白金、アルミニ
ウム、カーボン等が挙げられる。中でも、電極(F)の
材質は、電極表面部での液による腐食等で接触電気抵抗
が変化すると泳動条件に悪影響を及ぼす可能性があるた
め、金、銀、白金、カーボン等の耐食性の良い材料が好
ましい。電気回路(G)の材質は、価格や使い易さの観
点から銀、白金、銅、アルミニウムが好ましく、銀、白
金がより好ましい。板状部材(A)及び/又はシール部
材(B)が樹脂製の場合には、この樹脂と密着性のよい
樹脂系のバインダーを用いた銀ペースト等が好ましい。
電極(F)及び電気回路(G)の厚みは、通電に支障が
なければ特に限定されるものではないが、印刷工法の導
電膜の場合、1〜100μmが好ましく、5μm〜50
μmがより好ましい。スパッタリングまたはイオンプレ
ーティングの金属膜の場合、0.005μm〜20μm
が好ましく、0.01μm〜5μmがより好ましい。電
極(F)及び電気回路(G)の幅は、0.1mm〜20
mmが好ましく、0.5mm〜10mmがより好まし
く、1〜5mmがさらに好ましい。
The method for forming the electrode (F) and the electric circuit (G) is not particularly limited, and various conventional methods such as a plating method, a printing method, and a vapor deposition method can be applied. When (A) is a transparent resin, handling is difficult in terms of protection against chemicals and the like, and a printing method or a vapor deposition method is preferred from the viewpoint of productivity. Above all, vapor deposition methods such as vacuum vapor deposition, sputtering, and ion plating are preferable. The electrode (F) and the electric circuit (G) may be formed as an integrated product in which both are integrated. The material of the electrode (F) and the electric circuit (G) is not particularly limited as long as it is a conductive material, and examples thereof include gold, silver, copper, platinum, aluminum, and carbon. Among them, the material of the electrode (F) has a good corrosion resistance of gold, silver, platinum, carbon, and the like because a change in contact electric resistance due to corrosion by a liquid on the surface of the electrode may adversely affect electrophoretic conditions. Materials are preferred. The material of the electric circuit (G) is preferably silver, platinum, copper, or aluminum, and more preferably silver or platinum, from the viewpoint of price and ease of use. When the plate-shaped member (A) and / or the sealing member (B) are made of a resin, a silver paste or the like using a resin-based binder having good adhesion to the resin is preferable.
The thicknesses of the electrode (F) and the electric circuit (G) are not particularly limited as long as they do not interfere with energization, but in the case of a conductive film formed by a printing method, the thickness is preferably 1 to 100 μm, and preferably 5 μm to 50 μm.
μm is more preferred. 0.005 μm to 20 μm in the case of a metal film of sputtering or ion plating
Is preferable, and 0.01 μm to 5 μm is more preferable. The width of the electrode (F) and the electric circuit (G) is 0.1 mm to 20 mm.
mm is preferable, 0.5 mm to 10 mm is more preferable, and 1 to 5 mm is further preferable.

【0018】板状部材(A)に電極(F)が形成される
ことで、従来の煩わしい電極接続作業をすることなく、
簡単に電気泳動チップ上の電極と配線とを接触させるこ
とができる。また、電気回路(G)が形成されることで
配線もさらに簡便化され、試料液に配線が直接触れない
構造にすれば分析毎の洗浄も不要となる。
By forming the electrode (F) on the plate-like member (A), it is possible to carry out the conventional troublesome electrode connection work.
The electrodes on the electrophoresis chip can be easily brought into contact with the wiring. In addition, the formation of the electric circuit (G) further simplifies the wiring, and if the wiring is not in direct contact with the sample liquid, washing for each analysis is not required.

【0019】本発明において用いられるシール部材
(B)は、キャピラリーを形成するために、板状部材
(A)の溝(E)が形成されている面に接合させること
が必要である。
The seal member (B) used in the present invention needs to be joined to the surface of the plate member (A) on which the groove (E) is formed in order to form a capillary.

【0020】シール部材(B)の材料は、UV吸収や蛍
光などにより検出することを考慮し透明又は半透明の材
料で、シールしやすいようフィルム状に成形できる樹脂
材料が好ましい。特に熱可塑性樹脂材料は生産性の面か
らも有効であり、ポリメチルメタクリレート、ポリアク
リレート等のアクリル系樹脂、ポリスチレン、スチレン
コポリマ等のスチレン系樹脂、ポリカーボネート、ナイ
ロン6、ナイロン66、ポリエチレンテレフタレートな
どが好ましい。中でも、透明性及び蛍光特性の面で、ア
クリル系樹脂とスチレン系樹脂がより好ましく、ポリメ
チルメタクリレート、ポリスチレンがさらに好ましい。
また、使い捨て製品として使用される場合は、生分解性
プラスチックが好ましい。生分解性プラスチックとして
は、例えば、マタービー(ノバモント社(伊)製商品
名)等の澱粉を利用したポリマ、セルグリーンP−CA
(ダイセル化学工業株式会社製商品名)、ルナーレZT
(日本触媒化学工業株式会社製商品名)等のセルロース
エステル系ポリマ、ビオノーレ(昭和高分子社製商品
名)等の脂肪族ポリエステル系ポリマ、エコプレ(カー
ギル社(米)製商品名)等のポリ乳酸系ポリマ、ポリヒ
ドロキシブチレート/バリレート等の微生物ポリエステ
ルなどが挙げられる。
The material of the sealing member (B) is preferably a transparent or translucent material in consideration of detection by UV absorption or fluorescence, and is preferably a resin material which can be formed into a film so as to be easily sealed. In particular, a thermoplastic resin material is effective from the viewpoint of productivity, and acrylic resins such as polymethyl methacrylate and polyacrylate, styrene resins such as polystyrene and styrene copolymer, polycarbonate, nylon 6, nylon 66, and polyethylene terephthalate. preferable. Above all, in terms of transparency and fluorescent characteristics, acrylic resins and styrene resins are more preferable, and polymethyl methacrylate and polystyrene are more preferable.
When used as a disposable product, a biodegradable plastic is preferable. As the biodegradable plastic, for example, a polymer using starch such as Matterby (trade name, manufactured by Novamont (Italy)), Cell Green P-CA
(Trade name, manufactured by Daicel Chemical Industries, Ltd.), Lunar ZT
Cellulose ester polymers such as Nippon Shokubai Chemical Co., Ltd., aliphatic polyester polymers such as Bionore (Showa Kogaku Co., Ltd.), and polymers such as Ecopre (Cargill (US)) Examples include lactic acid-based polymers and microbial polyesters such as polyhydroxybutyrate / valerate.

【0021】シール部材(B)と板状部材(A)とを接
合させる方法としては、両者が密着して溝(E)の開口
部がシール部材によって封鎖されてキャピラリーが形成
され、注入孔(C)と排出孔(D)の開口部の少なくと
も一方がシール部材によって封鎖されて液溜め部が形成
され、液漏れが起こらない方法であれば特に限定はない
が、例えば、機械的に対向する面を圧接させるように接
合させる方法、接着剤を用いる方法、熱融着による方法
等が挙げられる。シール部材(B)が弾力性を持つ場合
は、別の部材を介してシール部材(B)を板状部材
(A)に押し付け固定するか、または、シール部材を変
移(圧縮)させた状態で固定する等の方法により、溝
(E)、電極(F)及び電気回路(G)の周りでの密着
したシールが容易にでき、キャピラリー形成ができる。
接着剤を用いてシール部材(B)と板状部材(A)とを
接合させる場合は、溝(E)のサイズによっては接着剤
が流れ込み管路が消失或いは大きく変化する心配があ
り、微細な溝には適用が難しい。本発明の板状部材
(A)は、液溜まり用の注入孔(C)及び排出孔(D)
と溝(E)とを有するので、従来の溝を有する部材と液
溜まり孔を有する部材とを貼り合わせたマイクロチップ
と比較して溝と孔の位置を合わせるなどの手間が省け、
シール部材(B)を板状部材(A)に接合する際の位置
決めが容易で、自由度の高い設計、選択ができる。ま
た、再現性が高く、分析精度が向上する利点を有する。
As a method of joining the sealing member (B) and the plate-like member (A), they are brought into close contact with each other and the opening of the groove (E) is closed by the sealing member to form a capillary, and the injection hole ( There is no particular limitation as long as at least one of C) and the opening of the discharge hole (D) is closed by a sealing member to form a liquid reservoir, and no liquid leakage occurs. Examples include a method of joining the surfaces so as to be pressed, a method using an adhesive, a method using heat fusion, and the like. When the seal member (B) has elasticity, the seal member (B) is pressed and fixed to the plate-shaped member (A) via another member, or the seal member (B) is displaced (compressed). By a method such as fixing, a tight seal around the groove (E), the electrode (F) and the electric circuit (G) can be easily formed, and a capillary can be formed.
When the sealing member (B) and the plate-shaped member (A) are joined by using an adhesive, there is a concern that the adhesive may flow in depending on the size of the groove (E) and the conduit may be lost or greatly changed. Difficult to apply to grooves. The plate-like member (A) of the present invention has an injection hole (C) and a discharge hole (D) for a liquid pool.
And a groove (E), so that the trouble of adjusting the position of the groove and the hole as compared with a conventional microchip in which a member having a groove and a member having a liquid reservoir hole are bonded is eliminated,
Positioning at the time of joining the seal member (B) to the plate-like member (A) is easy, and design and selection with high flexibility can be performed. In addition, there is an advantage that reproducibility is high and analysis accuracy is improved.

【0022】シール部材(B)の形状は、シールできる
形状であれば特に限定はなく、板状、フィルム状等が挙
げられるが、成形性の観点からは、フィルム状が好まし
い。特に、シール部材(B)と板状部材(A)とを熱融
着により接合させる場合は、フィルム状のシール部材を
用いることが好ましい。フィルムは薄くすることで低い
熱量で熱融着でき、しかも低熱量であるために溝(E)
を変形させることも少ない。また、蛍光やUV吸光によ
る検出時のノイズ低減の観点からもフィルム状であるこ
とが好ましい。溝(E)が微細な溝の場合にもフィルム
状のシール部材が好適である。シール部材(B)のサイ
ズは、接合する板状部材(A)と同程度の大きさが好ま
しい。シール部材(B)の厚みは、成形性、密着性の観
点から、フィルム状の場合は1〜250μm程度が好ま
しく、5〜100μmがより好ましく、10μm〜80
μmがさらに好ましい。板状の場合は、0.05mm〜
10mm程度の厚さが好ましく、0.2mm〜5mmが
より好ましく、0.5mm〜2mmがさらに好ましい。
The shape of the sealing member (B) is not particularly limited as long as it can be sealed, and includes a plate shape and a film shape. From the viewpoint of moldability, a film shape is preferable. In particular, when the sealing member (B) and the plate-shaped member (A) are joined by heat fusion, it is preferable to use a film-shaped sealing member. The film can be heat-sealed with a low calorie by making it thin, and the groove (E)
Is less likely to deform. Further, it is preferably in the form of a film from the viewpoint of reducing noise during detection by fluorescence or UV absorption. Even when the groove (E) is a fine groove, a film-shaped sealing member is suitable. The size of the sealing member (B) is preferably the same size as the plate-like member (A) to be joined. In the case of a film, the thickness of the sealing member (B) is preferably about 1 to 250 μm, more preferably 5 to 100 μm, and more preferably 10 μm to 80, from the viewpoint of moldability and adhesion.
μm is more preferred. 0.05mm ~
The thickness is preferably about 10 mm, more preferably 0.2 mm to 5 mm, and still more preferably 0.5 mm to 2 mm.

【0023】シール部材(B)の成形方法は、シールし
やすい形に成形されれば特に限定はないが、例えば、金
型を用いて射出成形、注入成形、プレス成形等で成形す
る方法や、機械加工で成形する方法、インフレーション
成形、カレンダー成形、ダイ押出成形等のフィルム状に
成形される方法などが挙げられ、中でもフィルム状に成
形される方法が好ましい。板状に成形する場合には、金
型を用いる方法が寸法、形状共に再現性が高いものが得
られるために好ましい。また、フィルム状に成形された
市販の材料をシール部材(B)として用いることもでき
る。板状部材(A)に電気回路(G)を有しない場合、
及び電気回路(G)が板状部材(A)の外周部まで達し
ていない場合には、シール部材によって電極(F)及び
電気回路(G)が完全にシールされてしまうので、電極
(F)又は電気回路(G)に導電が行えるような手段、
例えば、貫通孔等を設けておくことが好ましい。
The method of forming the seal member (B) is not particularly limited as long as the seal member (B) is formed into a shape that is easy to seal. For example, a method of molding by injection molding, injection molding, press molding or the like using a mold, Examples thereof include a method of forming by a mechanical process, a method of forming into a film such as inflation molding, calendering, and die extrusion, among which a method of forming into a film is preferable. In the case of molding into a plate shape, a method using a metal mold is preferable because a material having high reproducibility in both dimensions and shape can be obtained. Further, a commercially available material formed into a film shape can be used as the sealing member (B). When the plate-shaped member (A) has no electric circuit (G),
When the electric circuit (G) does not reach the outer peripheral portion of the plate-shaped member (A), the electrode (F) and the electric circuit (G) are completely sealed by the sealing member. Or means for conducting electricity in the electric circuit (G),
For example, it is preferable to provide a through hole or the like.

【0024】本発明の電気泳動用チップは、板状部材
(A)とシール部材(B)とを、板状部材(A)の溝
(E)形成面を内側にして接合し、溝(E)の開口部が
シール部材によって封鎖されてキャピラリーが形成され
ればよく、いかなる方法においても製造することができ
るが、例えば次のような方法が挙げられる。注入孔
(C)、排出孔(D)及び溝(E)を形成した後に電極
(F)を形成した板状部材(A)と、シール部材(B)
とを接合する方法、注入孔(C)、排出孔(D)及び溝
(E)を形成した後に電極(F)及び電気回路(G)を
形成した板状部材(A)と、シール部材(B)とを接合
する方法、注入孔(C)、排出孔(D)及び溝(E)を
形成した後に電極(F)を形成した板状部材(A)と、
貫通孔を形成したシール部材(B)とを接合する方法、
注入孔(C)、排出孔(D)及び溝(E)を形成した後
に電極(F)及び電気回路(G)を形成した板状部材
(A)と、貫通孔を形成したシール部材(B)とを接合
する方法、注入孔(C)、排出孔(D)及び溝(E)を
形成した後に電極(F)を形成した板状部材(A)と、
シール部材(B)とを接合した後に、シール部材(B)
に電極(F)に達するような貫通孔を開ける方法、注入
孔(C)、排出孔(D)及び溝(E)を形成した後に電
極(F)及び電気回路(G)を形成した板状部材(A)
と、シール部材(B)とを接合した後に、シール部材
(B)に電気回路(G)に達するような貫通孔を開ける
方法、等が挙げられる。本発明の電気泳動用チップは、
電気泳動用緩衝液や分子ふるい用ポリマ等の分離用媒体
があらかじめ充填されていてもよい。
In the electrophoresis chip of the present invention, the plate member (A) and the sealing member (B) are joined with the groove (E) forming surface of the plate member (A) inside, and the groove (E) is joined. It is sufficient that the opening is closed by a sealing member to form a capillary, and the capillary can be manufactured by any method. For example, the following method can be used. A plate-like member (A) having an electrode (F) formed after forming an injection hole (C), a discharge hole (D) and a groove (E), and a sealing member (B)
A plate member (A) in which an electrode (F) and an electric circuit (G) are formed after forming an injection hole (C), a discharge hole (D) and a groove (E), and a sealing member ( B), a plate-like member (A) on which an electrode (F) is formed after forming an injection hole (C), a discharge hole (D), and a groove (E);
A method of joining the sealing member (B) having a through hole,
A plate member (A) in which an electrode (F) and an electric circuit (G) are formed after forming an injection hole (C), a discharge hole (D) and a groove (E), and a seal member (B) in which a through hole is formed. A) a plate-like member (A) on which an electrode (F) is formed after forming an injection hole (C), a discharge hole (D) and a groove (E);
After joining with the sealing member (B), the sealing member (B)
A method of forming a through-hole to reach the electrode (F), a plate-like shape in which the electrode (F) and the electric circuit (G) are formed after forming the injection hole (C), the discharge hole (D) and the groove (E). Member (A)
And a method of forming a through hole in the seal member (B) so as to reach the electric circuit (G) after joining the seal member (B) with the seal member (B). The chip for electrophoresis of the present invention,
A separation medium such as a buffer for electrophoresis or a polymer for molecular sieving may be filled in advance.

【0025】本発明の電気泳動用チップを用いて分析を
行う電気泳動用装置は、分析対象物質を含む試料の導入
流路または分離流路の両端に電位差を与えて分析対象物
質を電気泳動させるために電極(F)又は電気回路
(G)に電圧を印加するための手段、分析対象物質に光
を照射するための手段、分析対象物質からの検出光を測
定するための手段、電気泳動用チップを位置決めする手
段とを備えるものである。
An electrophoresis apparatus for performing an analysis using the electrophoresis chip of the present invention applies a potential difference to both ends of an introduction channel or a separation channel of a sample containing an analyte and causes the analyte to be electrophoresed. For applying a voltage to the electrode (F) or the electric circuit (G), means for irradiating the analyte with light, means for measuring the detection light from the analyte, and for electrophoresis Means for positioning the chip.

【0026】電圧を印加するための手段は、パワーサプ
ライ等の電圧を発生させるための電源と配線を備えるも
ので、電源は装置と一体化したものでなくてもよいが、
装置を小型化する観点からは装置の中に一体に組み込ま
れたものが好ましい。
The means for applying a voltage includes a power supply for generating a voltage such as a power supply and wiring, and the power supply may not be integrated with the apparatus.
From the viewpoint of reducing the size of the device, it is preferable that the device is integrated into the device.

【0027】分析対象物質に光を照射するための手段
は、少なくとも光を発生するための光源を備えるもの
で、光源から発せられる光を効率的に照射するためには
集光手段も備えていることが好ましい。光源としては特
に制限はないが、例えば、水銀ランプ、QIランプ(石
英ーヨウ素ランプ)、フォトダイオード、発光ダイオー
ド(LED)、EL(electroluminescence)等が挙げ
られる。また、レーザ光源も用いることができる。集光
手段も特に制限はないが、例えば、ダイクロイックミラ
ー、光フィルタ、対物レンズ、プリズムレンズ等のレン
ズ、マイクロレンズ、光ファイバーなどが挙げられ、こ
れらを1種あるいは2種以上組み合わせて用いることが
できる。集光手段としてレンズを用いる場合、球面レン
ズと非球面レンズのどちらを用いてもかまわないが、焦
点の合わせやすさの観点から集光面積が小さい場合には
非球面レンズが好ましく、これらレンズは集光面積に応
じて1枚又は2枚以上複数重ねて用いることができる。
励起光を照射する場合には、ダイクロイックミラーや光
フィルタを用いることが好ましい。レーザ光源を用いる
場合には、複数のプリズムレンズを備えてドット状のレ
ーザ光源を拡大して全走査線を含有するようにすること
が好ましい。
The means for irradiating the substance to be analyzed with light includes at least a light source for generating light, and also includes a light condensing means for efficiently irradiating the light emitted from the light source. Is preferred. The light source is not particularly limited, and examples thereof include a mercury lamp, a QI lamp (quartz-iodine lamp), a photodiode, a light emitting diode (LED), and an EL (electroluminescence). Further, a laser light source can also be used. There is no particular limitation on the light condensing means, and examples thereof include dichroic mirrors, optical filters, objective lenses, lenses such as prism lenses, microlenses, optical fibers, and the like. These can be used alone or in combination of two or more. . When a lens is used as the light condensing means, either a spherical lens or an aspherical lens may be used, but an aspherical lens is preferable when the light condensing area is small from the viewpoint of ease of focusing. One or two or more sheets can be used in accordance with the condensing area.
When irradiating with excitation light, it is preferable to use a dichroic mirror or an optical filter. When a laser light source is used, it is preferable to provide a plurality of prism lenses and enlarge the dot laser light source so as to include all scanning lines.

【0028】分析対象物質からの検出光を測定するため
の手段は、少なくとも光検出器を備えるもので、測定感
度の観点からは集光手段を備えていることが好ましい。
励起光が照射される場合には検出する光は蛍光となる。
光検出器は特に限定はないが、例えば、蛍光検出器、光
電子倍増管(フォトマル)、CCD、フォトダイオード
等が挙げられる。集光手段も特に制限はないが、例え
ば、ダイクロイックミラー、光フィルタ、球面又は非球
面のレンズ、マイクロレンズ等が挙げられる。
The means for measuring the detection light from the substance to be analyzed includes at least a photodetector, and preferably includes a light collecting means from the viewpoint of measurement sensitivity.
When the excitation light is applied, the light to be detected becomes fluorescent light.
The photodetector is not particularly limited, and examples thereof include a fluorescence detector, a photomultiplier (photomultiplier), a CCD, and a photodiode. The light collecting means is not particularly limited, and examples thereof include a dichroic mirror, an optical filter, a spherical or aspherical lens, and a micro lens.

【0029】電気泳動用チップを位置決めする手段とし
ては特に制限はないが、例えば、電気泳動用チップの形
状に合うように設計された突起、凹み、穴、ピン等の位
置決め用の型や、コイル、バネ状物質等を挙げることが
できる。これらは1種類1個でも複数でも、複数種類の
手段を併設してもよく、必要に応じて用いることができ
る。
The means for positioning the electrophoresis chip is not particularly limited. For example, a positioning die such as a projection, a dent, a hole, a pin, etc., designed to fit the shape of the electrophoresis chip, a coil, or the like. And a spring-like substance. Each of these may be used alone or in plurals, or a plurality of types of means may be provided side by side, and may be used as necessary.

【0030】本発明の電気泳動用装置は、電気泳動用チ
ップを移動させての分析も可能なように電気泳動用チッ
プの移動手段を備えていてもよい。また、光照射部や検
出部の位置を変更可能なように光を照射するための手段
及び/又は検出光を測定するための手段に移動手段を備
えていてもよい。測定した検出光を分析するための解析
器を装置の内部に一体化して、または外部に接続して備
えていてもよい。
The electrophoresis apparatus of the present invention may include a means for moving the electrophoresis chip so that the analysis can be performed by moving the electrophoresis chip. Further, a moving unit may be provided in a unit for irradiating light and / or a unit for measuring detection light so that the positions of the light irradiation unit and the detection unit can be changed. An analyzer for analyzing the measured detection light may be provided integrally with the inside of the apparatus or connected to the outside.

【0031】本発明の電気泳動用チップは、電気泳動装
置に簡便にセット位置決めされることが好ましい。電気
泳動用チップは、前記の電気泳動用装置の位置決め手段
に板状部材(A)の端面を接触することにより通常位置
決めされる。電気泳動用チップを測定時に動かないよう
固定するためには、電気泳動装置側だけでなく、電気泳
動用チップ側にも位置決めの手段を有していることが好
ましい。この場合、電気泳動用装置の位置決め手段と電
気泳動用チップの位置決め手段の形状との一致している
ことが有効である。電気泳動用チップの位置決め手段と
しては特に限定はないが、板状部材(A)に位置決めの
ための突起、凹み及び穴のうちいずれか1つ以上を有し
ていることが好ましい。この突起、凹み及び穴のサイズ
は任意に設計できるが、単一の形状であれば内径1〜5
mm程度のもの、ライン状の形状であれば幅1〜3mm
程度のものが好ましい。
It is preferable that the electrophoresis chip of the present invention is easily set and positioned in an electrophoresis apparatus. The chip for electrophoresis is usually positioned by bringing the end surface of the plate-shaped member (A) into contact with the positioning means of the apparatus for electrophoresis. In order to fix the electrophoresis chip so as not to move at the time of measurement, it is preferable to have a positioning means not only on the electrophoresis apparatus side but also on the electrophoresis chip side. In this case, it is effective that the shape of the positioning means of the electrophoresis apparatus matches the shape of the positioning means of the electrophoresis chip. The means for positioning the electrophoresis chip is not particularly limited, but it is preferable that the plate-shaped member (A) has at least one of a projection, a dent, and a hole for positioning. The size of the projections, dents and holes can be arbitrarily designed.
mm, a width of 1 to 3 mm for a linear shape
Are preferred.

【0032】本発明の電気泳動用チップは、イオン、有
機酸、アミノ酸等の低分子や、タンパク質、核酸、糖等
の高分子からなる荷電性分子、ウイルス、細胞等の荷電
性粒子、などの荷電性物質を分離して、対象物質を分析
するのに有効な手段として用いることができる。また、
本発明の電気泳動用チップは、荷電性ラテックスビーズ
を利用して間接的に分析対象物質を分析する方法にも利
用可能である。具体的には、本発明の電気泳動用チップ
の溝(E)の中に分離用緩衝液、分離用高分子ゲル、分
離用等電性フォーカッシング緩衝液等の分離用媒体を充
填させて、分析対象物質を含む試料を注入し、溝(E)
の両端に電圧を印加することによって、分離用媒体中で
分析対象物質を電位差で移動させて分離することができ
る。
The chip for electrophoresis of the present invention includes charged molecules such as small molecules such as ions, organic acids and amino acids, charged molecules composed of macromolecules such as proteins, nucleic acids and sugars, and charged particles such as viruses and cells. The charged substance can be separated and used as an effective means for analyzing the target substance. Also,
The chip for electrophoresis of the present invention can also be used for a method of indirectly analyzing a substance to be analyzed using charged latex beads. Specifically, the grooves (E) of the electrophoresis chip of the present invention are filled with a separation medium such as a separation buffer, a separation polymer gel, a separation isoelectric focusing buffer, and the like. Inject the sample containing the substance to be analyzed,
By applying a voltage to both ends of the sample, the analyte can be moved by a potential difference in the separation medium and separated.

【0033】分離用媒体を電気泳動用チップの溝(E)
に充填するためには、注入孔(C)と排出孔(D)の液
溜まり部に分離用媒体を介して溝(E)に注入すればよ
い。注入方法としては特に制限はないが、例えば、毛細
管現象を利用する方法、注射筒等を用いる加圧注入法、
一方の液溜まり部に滴下した媒体をもう一方の液溜まり
部から水流ポンプ、真空ポンプ等を用いて減圧すること
によって注入する減圧注入法などが挙げられる。この
際、気泡やホコリ等のその他の夾雑物が溝(E)に入ら
ないようにすることが重要である。
The separation medium is inserted into the groove (E) of the electrophoresis chip.
In order to fill the groove (E), it is sufficient to inject into the groove (E) into the liquid reservoir of the injection hole (C) and the discharge hole (D) via the separation medium. Although there is no particular limitation on the injection method, for example, a method utilizing capillary action, a pressurized injection method using a syringe, or the like,
There is a reduced pressure injection method in which the medium dropped into one of the liquid pools is injected from the other liquid pool by reducing the pressure using a water flow pump, a vacuum pump, or the like. At this time, it is important to prevent other contaminants such as bubbles and dust from entering the groove (E).

【0034】荷電性物質等の分離対象物質は、分離流路
用の溝(E)に一定量導入されることが必要である。分
離対象物質を溝(E)に導入する方法としては、例え
ば、動電学的導入法(electrokinetic injection)や動水
力学的導入法(hydrodynamic injection)等が挙げられ
る。動電学的導入法は、試料の導入流路と分離流路とを
別にして、試料導入用液溜まり部に荷電性物質を含む試
料溶液を少量滴下し、この液溜まり部と導入流路を挟ん
で逆端に位置する液溜まり部とに適当な電界をかけるこ
とによって、試料を導入流路と直交する分離流路の溝交
差部に移動させて、試料を導入する方法である。この方
法は、シャープな検出像が得られるので好ましい。本電
気泳動用チップを用いて電気泳動分離した荷電性物質
は、その光学的特性や電気化学的特性等を利用して検出
することができる。例えば、核酸分子の有するUV吸収
特性を利用して吸光度を測定したり、核酸分子に蛍光色
素を標識して蛍光を測定することにより検出することが
可能で、DNAやRNAのような核酸断片を分離してそ
の断片の大きさを分析することができる。
It is necessary that a certain amount of a substance to be separated such as a charged substance be introduced into the groove (E) for the separation channel. Examples of a method for introducing the substance to be separated into the groove (E) include an electrokinetic injection method and a hydrodynamic injection method. In the electrokinetic introduction method, a small amount of a sample solution containing a charged substance is dropped into a sample introduction liquid reservoir separately from a sample introduction channel and a separation channel, and the liquid reservoir and the introduction channel are separated. In this method, a sample is introduced by applying an appropriate electric field to a liquid reservoir located at the opposite end with respect to the sample, thereby moving the sample to a groove intersection of a separation channel orthogonal to the introduction channel. This method is preferable because a sharp detection image can be obtained. A charged substance electrophoretically separated using the present electrophoresis chip can be detected by utilizing its optical characteristics, electrochemical characteristics, and the like. For example, it is possible to measure absorbance using the UV absorption properties of nucleic acid molecules, or to detect nucleic acids by labeling nucleic acid molecules with a fluorescent dye and measuring fluorescence, and to detect nucleic acid fragments such as DNA and RNA. Separated and the size of the fragments can be analyzed.

【0035】[0035]

【実施例】次に、実施例により本発明を説明するが、本
発明の範囲はこれら実施例に限定されるものではない。
EXAMPLES Next, the present invention will be described with reference to examples, but the scope of the present invention is not limited to these examples.

【0036】実施例1 電気泳動用チップの作製1 50トン射出成形機で、成形温度240℃、射出圧力4
00kg/cm2の成形条件で透明樹脂材料であるPM
MA(ポリメチルメタクリレート)樹脂(三菱レーヨン
株式会社製アクリペットVH)を成形し、内径3mmの
2個の注入孔4(4a、4b)、内径3mmの2個の貫通
した排出孔5(5a、5b)と、片側表面に100μm
幅、40μm深の2本の溝3(3a、3b)を有する、外
形寸法20mm×75mm×1mm厚の図1に示す板状
部材1を得た。溝3の長さは、長い方の3aが45m
m、短い方の3bが6mmで、3aと3bの交差部から
4a、4cの外周部までの長さはそれぞれ3mmであ
る。外形成形及び溝3、注入孔4及び排出孔5の形成
は、一度の射出成形で同時に行った。次に、板状部材1
の溝3形成面上と注入孔4及び排出孔5の内壁に白金の
スパッタリングによって電極と電気回路が一体となった
一体化物6(0.02μm厚)を形成させた。次に、接
合する板状部材の電極及び電気回路の一体化物6に相当
する個所に導電用の内径3mmの貫通孔7を開けたPM
MA製の50μmフィルム2(三菱レーヨン株式会社製
アクリプレン)をシール部材(B)として用いて、プレ
ス圧1kg/cm2、104℃の条件で、溝3がある平
面側に熱融着させることによって接合させて、電気泳動
用チップを得た。得られた電気泳動用チップの断面図を
図2に、フィルム側を上方にした時の上方図を図3にそ
れぞれ示す。
Example 1 Preparation of Electrophoresis Chip 1 Using a 50-ton injection molding machine, a molding temperature of 240 ° C. and an injection pressure of 4
PM which is a transparent resin material under the molding condition of 00 kg / cm 2
MA (polymethyl methacrylate) resin (Acrypet VH manufactured by Mitsubishi Rayon Co., Ltd.) was molded, and two injection holes 4 (4a, 4b) having an inner diameter of 3 mm and two penetrating discharge holes 5 (5a, 5b) and 100 μm on one side surface
A plate-like member 1 shown in FIG. 1 having an outer dimension of 20 mm × 75 mm × 1 mm and having two grooves 3 (3a, 3b) having a width and a depth of 40 μm was obtained. The length of the groove 3 is 45m for the longer 3a.
m, the shorter 3b is 6 mm, and the length from the intersection of 3a and 3b to the outer periphery of 4a and 4c is 3 mm. The outer shape formation and the formation of the groove 3, the injection hole 4 and the discharge hole 5 were simultaneously performed by one injection molding. Next, the plate-like member 1
An integrated product 6 (0.02 μm thick) in which the electrode and the electric circuit were integrated was formed on the surface of the groove 3 and the inner wall of the injection hole 4 and the discharge hole 5 by sputtering of platinum. Next, a PM having a conductive through-hole 7 having an inner diameter of 3 mm was formed at a position corresponding to the integrated member 6 of the electrode and the electric circuit of the plate member to be joined.
By using a 50 μm film 2 made of MA (Acryprene manufactured by Mitsubishi Rayon Co., Ltd.) as a sealing member (B), it is heat-sealed to the flat surface side with the groove 3 under the conditions of a press pressure of 1 kg / cm 2 and 104 ° C. By bonding, an electrophoresis chip was obtained. FIG. 2 is a cross-sectional view of the obtained electrophoresis chip, and FIG. 3 is an upper view when the film side is turned upward.

【0037】実施例2 電気泳動用チップの作製2 実施例1と同様にして図4に示す板状部材8を得た。板
状部材8には電気泳動装置に位置決めするための貫通孔
9が設けてある。貫通孔9の形成も射出成形により、外
形成形と溝3、注入孔4及び排出孔5の形成と同時に行
った。次に、実施例1と同様の方法、同様の素材で、電
極及び電気回路の一体化物の形成を行い、その後、シー
ル部材(B)として位置決め孔9用の逃げ形状となる貫
通孔を設けたフィルムを用いた以外は実施例と同様にし
てシール部材(B)の接合を行い、電気泳動用チップを
得た。
Example 2 Preparation of Electrophoresis Chip 2 A plate member 8 shown in FIG. 4 was obtained in the same manner as in Example 1. The plate member 8 is provided with a through hole 9 for positioning in the electrophoresis apparatus. The formation of the through hole 9 was also performed by injection molding at the same time as the outer shape forming and the formation of the groove 3, the injection hole 4 and the discharge hole 5. Next, an integrated product of the electrode and the electric circuit was formed using the same method and the same material as in Example 1, and thereafter, a through hole having a relief shape for the positioning hole 9 was provided as the sealing member (B). The sealing member (B) was joined in the same manner as in the example except that a film was used, and an electrophoresis chip was obtained.

【0038】実施例3 ΦX174HaeIII分解断片
の分離 0.5g/Lハイドロキシプロピルメチルセルロース(A
ldrich社製、平均分子量90,000)、5mg/Lエチ
ジウムブロマイド、44.75mM TRIS(2−ア
ミノー2−ヒドロキシメチルー1,3−プロパンジオー
ル)、44.75mMホウ酸(pH8.2)を含む分離
用ゲル緩衝液を用いてΦX174(DNA)のHaeII
I分解断片を分離した。ΦX174のHaeIII分解断片
は、DNA鎖長で72bpから1353bpの11個の
断片から構成されている。分離は実施例1で作製した電
気泳動用チップを用いて行った。2本の溝3のうち、3
aを分離流路、3bを試料導入流路として使用した。ま
ず、上記分離用ゲル緩衝液を、泳動液導入用液溜まり4
dに10μl、4cと4bに各10μl滴下し、毛細管
現象を利用して分離流路3a及び試料導入流路3bに緩
衝液を充填した。次に、ΦX174のHaeIII分解断
片を分離用ゲル緩衝液に溶解(40μg/ml)し、3μL
を試料導入用液溜まり4aに滴下し、試料導入用溝3b
の両端に1000V/cmの電圧を印加して、試料を溝
交差部まで移動させ分離用溝3aに導入し、続けて分離
用溝3aの両端に200V/cmの電圧を印加して電気
泳動を実施し、DNA断片を分離した。分離したDNA
断片の検出は水銀ランプ、ダイクロイックミラー、対物
レンズを有する蛍光顕微鏡(オリンパス光学工業株式会
社製)と光電子倍増管(Photon Technology Internatio
nal社製)を組み合わせた検出系で検出した。水銀ラン
プからダイクロイックミラー、対物レンズを通して54
5nmの励起光を分離用溝3aの溝交差部から3cm離
れた位置に照射し、DNAにインターカレートしたエチ
ジウムブロマイドの蛍光を蛍光フィルタを通して光電子
倍増管に送り検出した検出結果を図5に示す。
Example 3 Separation of ΦX174 HaeIII degradation fragment 0.5 g / L hydroxypropylmethylcellulose (A
ldrich, average molecular weight 90,000), containing 5 mg / L ethidium bromide, 44.75 mM TRIS (2-amino-2-hydroxymethyl-1,3-propanediol), 44.75 mM boric acid (pH 8.2) HaeII of ΦX174 (DNA) using gel buffer for separation
The I fragment was separated. The HaeIII-degraded fragment of ΦX174 is composed of 11 fragments having a DNA chain length of 72 bp to 1353 bp. Separation was performed using the electrophoresis chip prepared in Example 1. Of the two grooves 3, 3
a was used as a separation channel, and 3b was used as a sample introduction channel. First, the above-mentioned gel buffer for separation is transferred to the liquid pool 4 for electrophoresis liquid introduction.
Then, 10 μl was dropped into d, 10 μl each into 4c and 4b, and the buffer was filled into the separation channel 3a and the sample introduction channel 3b by utilizing the capillary phenomenon. Next, the HaeIII-degraded fragment of ΦX174 was dissolved in a gel buffer for separation (40 μg / ml), and 3 μL
Is dropped into the sample introduction liquid reservoir 4a, and the sample introduction groove 3b is dropped.
A voltage of 1000 V / cm is applied to both ends of the sample, the sample is moved to the groove intersection and introduced into the separation groove 3a, and a voltage of 200 V / cm is continuously applied to both ends of the separation groove 3a to perform electrophoresis. And DNA fragments were separated. DNA isolated
Fragment detection was performed using a fluorescence microscope (manufactured by Olympus Optical Co., Ltd.) equipped with a mercury lamp, dichroic mirror, and objective lens and a photomultiplier tube (Photon Technology Internatio).
nal). 54 from mercury lamp through dichroic mirror and objective lens
FIG. 5 shows a detection result obtained by irradiating excitation light of 5 nm to a position 3 cm away from the groove intersection of the separation groove 3a, sending fluorescence of ethidium bromide intercalated to DNA to the photomultiplier through a fluorescent filter, and detecting the result. .

【0039】実施例4 細胞抽出総RNAの分離 ヒト肺ガン細胞CRL5800株培養細胞から全自動R
NA抽出機(MFX−2000、東洋紡績株式会社製商
品名)を用いて総RNAを抽出した。抽出RNAをジエ
チルピロカーボネート(RNase阻害剤)処理して、
0.4g/Lハイドロキシプロピルメチルセルロース(Al
drich社製、平均分子量90,000)、5mg/Lエチジ
ウムブロマイド、44.75mM TRIS、44.7
5mMホウ酸(pH8.2)を含む分離用ゲル緩衝液に
25μg/ml濃度となるよう溶解した試料液とし、分
離用溝3aの両端に印加する電圧を200V/cmと
し、蛍光照射位置(検出位置)を溝交差部から1cmと
した以外は実施例3と同様にして電気泳動による分離を
行い、検出した。検出結果を図6に示す。
Example 4 Isolation of Total RNA Extracted from Cells Fully automatic R from human lung cancer cell line CRL5800
Total RNA was extracted using an NA extractor (MFX-2000, trade name, manufactured by Toyobo Co., Ltd.). The extracted RNA is treated with diethyl pyrocarbonate (RNase inhibitor),
0.4 g / L hydroxypropyl methylcellulose (Al
drich, average molecular weight 90,000), 5 mg / L ethidium bromide, 44.75 mM TRIS, 44.7
A sample solution dissolved in a gel buffer for separation containing 5 mM boric acid (pH 8.2) to a concentration of 25 μg / ml was prepared. The voltage applied to both ends of the separation groove 3a was 200 V / cm, and the fluorescence irradiation position (detection) Separation by electrophoresis was carried out and detected in the same manner as in Example 3 except that the position) was set at 1 cm from the groove intersection. FIG. 6 shows the detection results.

【0040】この実施例1及び実施例2で作製された電
気泳動用チップは、キャピラリーが内蔵された板状形態
であるので、取り扱いが簡便で、容易に電気泳動装置に
セットすることが可能である。また、電極及び電気回路
を備えているので、電気泳動装置に用意された電極とコ
ンタクトプローブ等で接触させるなどして、高電圧供給
源と接続するだけで容易に電気泳動に供することがで
き、従来の接続配線等の洗浄作業が不要となり、配線等
が直接試料に触れない構造なので、ここからのコンタミ
の心配もなくなった。さらに、電極回路が内部に位置し
露出していないために、液による腐食が起きにくい構造
になっている。また、実施例1で作製した電気泳動用チ
ップを使用して、実施例3、実施例4で示したように、
DNA、RNAといった核酸の分離分析を簡便に行うこ
とができた。RNAの分析に際しては、RNase(R
NA分解酵素)による分解に特に注意が必要であるが、
本発明の電気泳動用チップは上述したようにコンタミを
受けにくい構造のため、分析の過程でのRNaseコン
タミによる分解が起こりにくくなっている。実施例3で
は、図5に示したように、ΦX174HaeIII分解断
片DNAの全ての断片の分離が確認できた。271bp
と281bpのHaeIII分解断片DNAが分離できて
いるので、10bp以上の分離解像度(検出感度)が得
られた。実施例4では、図6に示したように、5s、1
8s及び28sのリボゾームRNAの分離が確認でき
た。これらの分離は、1cmの泳動距離で十分可能でで
あった。
The electrophoresis chip manufactured in each of Examples 1 and 2 has a plate shape with a built-in capillary, so that it is easy to handle and can be easily set in an electrophoresis apparatus. is there. In addition, since it is provided with an electrode and an electric circuit, it can be easily subjected to electrophoresis simply by connecting to a high voltage supply source, for example, by contacting the electrode prepared in the electrophoresis apparatus with a contact probe or the like, The cleaning work of the conventional connection wiring and the like is unnecessary, and the wiring and the like do not directly touch the sample, so that there is no fear of contamination from here. Further, since the electrode circuit is located inside and is not exposed, the structure is less likely to be corroded by the liquid. In addition, using the electrophoresis chip prepared in Example 1, as shown in Examples 3 and 4,
Separation and analysis of nucleic acids such as DNA and RNA could be easily performed. When analyzing RNA, RNase (R
Special attention must be paid to the degradation by NA-degrading enzyme,
As described above, the chip for electrophoresis of the present invention is less susceptible to contamination, and thus is less likely to be decomposed by RNase contamination in the course of analysis. In Example 3, as shown in FIG. 5, the separation of all the fragments of the ΦX174HaeIII-degraded fragment DNA was confirmed. 271 bp
And 281 bp of HaeIII-degraded fragment DNA were separated, so that a separation resolution (detection sensitivity) of 10 bp or more was obtained. In the fourth embodiment, as shown in FIG.
Separation of 8s and 28s ribosomal RNA was confirmed. These separations were possible with a migration distance of 1 cm.

【0041】[0041]

【発明の効果】実施例に示したように、本発明によって
取り扱い易く、しかも再現性と生産性の良い電気泳動用
チップの製造が可能となり、またこの電気泳動用チップ
を用いることによってDNA、RNA等の核酸などの荷
電性物質を簡便に分離分析することができるので、その
工業的価値は大である。最近、メッセンジャーRNAを
用いた遺伝子解析が多く実施されているが、メッセンジ
ャーRNAは極微量しか存在しないために、生体試料等
から抽出したメッセンジャーRNAがRNaseによる
分解をうけていないことの確認が困難である。本発明の
電気泳動用チップを用いた分離を行えば、実施例で示し
たように微量の試料で高感度の分析が可能であるので、
メッセンジャーRNAを直接分析することにより、ある
いはメッセンジャーRNAと共存する大過剰のリボゾー
ムRNAを分析することにより間接的に、簡便にメッセ
ンジャーRNAの分解の有無を調べることが可能とな
り、この分野における利用も期待できる。
As shown in the examples, the present invention makes it possible to manufacture an electrophoresis chip which is easy to handle and has good reproducibility and productivity. Since such charged substances such as nucleic acids can be easily separated and analyzed, their industrial value is great. Recently, many gene analyzes using messenger RNA have been performed. However, since only a very small amount of messenger RNA is present, it is difficult to confirm that messenger RNA extracted from a biological sample or the like has not been degraded by RNase. is there. If the separation using the electrophoresis chip of the present invention is performed, high-sensitivity analysis is possible with a small amount of sample as shown in the Examples,
By directly analyzing messenger RNA, or indirectly by analyzing a large excess of ribosome RNA coexisting with messenger RNA, it is possible to easily check the presence or absence of messenger RNA degradation, and it is expected to be used in this field. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で作製した板状部材の全体像を示す斜
視図
FIG. 1 is a perspective view showing an overall image of a plate-like member manufactured in Example 1.

【図2】実施例1で作製した電気泳動用チップの断面図FIG. 2 is a cross-sectional view of the electrophoresis chip manufactured in Example 1.

【図3】実施例1で作製した電気泳動用チップをシール
部材側から見た平面図
FIG. 3 is a plan view of the electrophoresis chip manufactured in Example 1 as viewed from a sealing member side.

【図4】実施例2で作製した板状部材の全体像を示す斜
視図
FIG. 4 is a perspective view showing an overall image of a plate-like member manufactured in Example 2.

【図5】実施例3のΦX174HaeIII分解断片の検
出結果を示す図
FIG. 5 is a view showing a result of detecting a ΦX174HaeIII-degraded fragment of Example 3.

【図6】実施例4の細胞抽出総RNAの検出結果を示す
FIG. 6 is a view showing the detection results of total RNA extracted from cells in Example 4.

【符号の説明】[Explanation of symbols]

1:実施例1の板状部材(A) 2:シール部材(B) 3(3a、3b):溝(C) 4(4a、4b):注入孔(D) 5(5a、5b):排出孔(E) 6:電極(F)及び電気回路(G)の一体化物 7:導電用貫通孔 8:実施例2の板状部材(A) 9:位置決め用貫通孔 1: Plate member (A) of Example 1 2: Seal member (B) 3 (3a, 3b): Groove (C) 4 (4a, 4b): Injection hole (D) 5 (5a, 5b): Discharge Hole (E) 6: Integrated product of electrode (F) and electric circuit (G) 7: Through-hole for conduction 8: Plate-like member (A) of Example 9 9: Through-hole for positioning

───────────────────────────────────────────────────── フロントページの続き (72)発明者 嶋山 隆 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 渡辺 博夫 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Takashi Shimayama 48 Wadai, Tsukuba, Ibaraki Prefecture Within Tsukuba Development Laboratory, Hitachi Chemical Co., Ltd. Inside the development laboratory

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】板状部材(A)とシール部材(B)とから
なり、板状部材(A)が、板厚方向に貫通した1個以上
の注入孔(C)と、板厚方向に貫通又は非貫通の1個以
上の排出孔(D)と、一方の面に形成される注入孔
(C)と排出孔(D)とを連結する1本以上の溝(E)
と、注入孔(C)及び排出孔(D)の内壁及び/又は溝
(E)形成面の注入孔(C)及び排出孔(D)の周辺部
に形成された電極(F)、とを有し、シール部材(B)
が板状部材(A)の溝形成面に接合されていることを特
徴とする電気泳動用チップ。
1. A plate-like member (A) and a seal member (B), wherein the plate-like member (A) has one or more injection holes (C) penetrating in the plate thickness direction and One or more grooves (E) connecting one or more discharge holes (D), which are penetrated or non-penetrated, and the injection holes (C) and the discharge holes (D) formed on one surface.
And an electrode (F) formed on the inner wall of the injection hole (C) and the discharge hole (D) and / or the periphery of the injection hole (C) and the discharge hole (D) on the groove (E) formation surface. Having a seal member (B)
Is bonded to the groove forming surface of the plate-shaped member (A).
【請求項2】注入孔(C)と排出孔(D)をそれぞれ2
個以上有し、溝(E)を2本以上有し、かつ溝(E)の
うちの少なくとも2本が交差していることを特徴とする
請求項1記載の電気泳動用チップ。
2. The injection hole (C) and the discharge hole (D) are each 2
The chip for electrophoresis according to claim 1, wherein the chip has at least two grooves, at least two grooves (E), and at least two of the grooves (E) intersect.
【請求項3】板状部材(A)がさらに電気回路(G)を
有することを特徴とする請求項1又は請求項2記載の電
気泳動用チップ。
3. The electrophoresis chip according to claim 1, wherein the plate-shaped member (A) further has an electric circuit (G).
【請求項4】板状部材(A)及び/又はシール部材
(B)がアクリル系樹脂又はスチレン系樹脂製であるこ
とを特徴とする請求項1〜3記載のいずれかの電気泳動
用チップ。
4. The electrophoresis chip according to claim 1, wherein the plate member (A) and / or the sealing member (B) are made of an acrylic resin or a styrene resin.
【請求項5】シール部材(B)がフィルム状であること
を特徴とする請求項1〜4記載のいずれかの電気泳動用
チップ。
5. The electrophoresis chip according to claim 1, wherein the sealing member (B) is in the form of a film.
【請求項6】板状部材(A)が電気泳動用装置に位置決
めされるための突起、凹み及び穴のうちのいずれかひと
つ以上を有することを特徴とする請求項1〜5記載のい
ずれかの電気泳動用チップ。
6. The plate-like member (A) according to claim 1, wherein the plate-like member (A) has at least one of a projection, a dent, and a hole for positioning in the electrophoresis apparatus. Electrophoresis chip.
【請求項7】板厚方向に貫通する1個以上の注入孔
(C)と、板厚方向に貫通又は非貫通の1個以上の排出
孔(D)と、片面上に注入孔(C)と排出孔(D)とを
連結する1本以上の溝(E)とを形成したした後に、電
極(F)を注入孔(C)及び排出孔(D)の内壁及び/
又は溝(E)形成面の注入孔(C)及び排出孔(D)の
周辺部に形成した板状部材(A)を、溝(E)形成面を
内側にしてシール部材(B)と接合して製造することを
特徴とする電気泳動用チップの製造方法。
7. One or more injection holes (C) penetrating in the thickness direction, one or more discharge holes (D) penetrating or non-penetrating in the thickness direction, and an injection hole (C) on one surface. After forming at least one groove (E) connecting the electrode and the discharge hole (D), the electrode (F) is connected to the inner wall of the injection hole (C) and the discharge hole (D) and / or
Alternatively, the plate-like member (A) formed around the injection hole (C) and the discharge hole (D) on the groove (E) forming surface is joined to the sealing member (B) with the groove (E) forming surface inside. A method for producing an electrophoresis chip, comprising:
【請求項8】電極(F)を印刷、真空蒸着、スパッタリ
ング及びイオンプレーティングのいずれかにより形成す
ることを特徴とする請求項7記載の電気泳動用チップの
製造方法。
8. The method for producing an electrophoresis chip according to claim 7, wherein the electrode (F) is formed by any one of printing, vacuum deposition, sputtering and ion plating.
【請求項9】板厚方向に貫通する1個以上の注入孔
(C)と、板厚方向に貫通又は非貫通の1個以上の排出
孔(D)と、片面上に注入孔(C)と排出孔(D)とを
連結する1本以上の溝(E)とを形成したした後に、電
極(F)及び電気回路(G)を、注入孔(C)及び排出
孔(D)の内壁及び/又は溝(E)形成面の注入孔
(C)及び排出孔(D)の周辺部に形成した板状部材
(A)を、溝(E)形成面を内側にしてシール部材
(B)と接合して製造することを特徴とする電気泳動用
チップの製造方法。
9. One or more injection holes (C) penetrating in the thickness direction, one or more discharge holes (D) penetrating or non-penetrating in the thickness direction, and an injection hole (C) on one surface. After forming at least one groove (E) for connecting the electrode (F) and the discharge hole (D), the electrode (F) and the electric circuit (G) are connected to the inner wall of the injection hole (C) and the discharge hole (D). And / or the plate-like member (A) formed around the injection hole (C) and the discharge hole (D) on the groove (E) forming surface, with the groove (E) forming surface inside, and the sealing member (B). And a method for producing an electrophoresis chip.
【請求項10】電極(F)及び電気回路(G)を印刷、
真空蒸着、スパッタリング及びイオンプレーティングの
いずれかにより形成することを特徴とする請求項9記載
の電気泳動用チップの製造方法。
10. Printing the electrode (F) and the electric circuit (G),
The method for producing an electrophoresis chip according to claim 9, wherein the method is performed by any one of vacuum deposition, sputtering, and ion plating.
【請求項11】板状部材(A)とシール部材(B)との
接合が熱融着によりなされることを特徴とする請求項7
〜10記載のいずれかの電気泳動用チップの製造方法。
11. The bonding between the plate member (A) and the sealing member (B) is performed by heat fusion.
11. The method for producing an electrophoresis chip according to any one of items 10 to 10.
【請求項12】請求項1〜6記載のいずれかの電気泳動
用チップ若しくは請求項7〜11記載のいずれかの製造
方法により得られる電気泳動用チップを用いる電気泳動
用装置。
12. An electrophoresis apparatus using an electrophoresis chip according to any one of claims 1 to 6 or an electrophoresis chip obtained by the production method according to any one of claims 7 to 11.
【請求項13】請求項1〜6記載のいずれかの電気泳動
用チップ若しくは請求項7〜11記載のいずれかの製造
方法により得られる電気泳動用チップを用いることを特
徴とする荷電性物質の分離方法。
13. A charged substance characterized by using the electrophoresis chip according to any one of claims 1 to 6 or the electrophoresis chip obtained by the production method according to any one of claims 7 to 11. Separation method.
【請求項14】請求項13記載の電気泳動用装置を用い
ることを特徴とする荷電性物質の分離方法。
14. A method for separating a charged substance, comprising using the apparatus for electrophoresis according to claim 13.
【請求項15】荷電性物質が荷電性分子又は荷電性粒子
である請求項13又は請求項14記載の荷電性物質の分
離方法。
15. The method for separating a charged substance according to claim 13, wherein the charged substance is a charged molecule or a charged particle.
【請求項16】荷電性分子がイオン、有機酸、アミノ
酸、タンパク質、核酸及び糖のいずれかで、荷電性粒子
がウイルス又は細胞である請求項15記載の荷電性物質
の分離方法。
16. The method for separating a charged substance according to claim 15, wherein the charged molecule is any one of an ion, an organic acid, an amino acid, a protein, a nucleic acid and a sugar, and the charged particle is a virus or a cell.
【請求項17】分離用媒体として高分子ゲルを用いるこ
とを特徴とする請求項13〜16記載のいずれかの荷電
性物質の分離方法。
17. The method for separating a charged substance according to claim 13, wherein a polymer gel is used as a separation medium.
【請求項18】高分子ゲルが非交差型高分子ゲルである
ことを特徴とする請求項17記載の荷電性物質の分離方
法。
18. The method according to claim 17, wherein the polymer gel is a non-crossing type polymer gel.
【請求項19】非交差型高分子ゲルが直鎖状ポリアクリ
ルアミド、直鎖状ハイドロキシエチルセルロース、直鎖
状ハイドロキシプロピルメチルセルロース、直鎖状ハイ
ドロキシプロピルセルロース、直鎖状メチルセルロー
ス、直鎖状ポリエチレングリコール及び直鎖状ポリエチ
レンオキサイドのいずれかである請求項18記載の荷電
性物質の分離方法。
19. The non-crossing type high molecular gel comprises a linear polyacrylamide, a linear hydroxyethyl cellulose, a linear hydroxypropylmethylcellulose, a linear hydroxypropylcellulose, a linear methylcellulose, a linear polyethylene glycol and 19. The method for separating a charged substance according to claim 18, wherein the charged substance is any one of linear polyethylene oxides.
JP09345299A 1999-02-26 1999-03-31 Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance Expired - Fee Related JP4178654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09345299A JP4178654B2 (en) 1999-02-26 1999-03-31 Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5148499 1999-02-26
JP11-51484 1999-02-26
JP09345299A JP4178654B2 (en) 1999-02-26 1999-03-31 Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance

Publications (2)

Publication Number Publication Date
JP2000310614A true JP2000310614A (en) 2000-11-07
JP4178654B2 JP4178654B2 (en) 2008-11-12

Family

ID=26392032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09345299A Expired - Fee Related JP4178654B2 (en) 1999-02-26 1999-03-31 Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance

Country Status (1)

Country Link
JP (1) JP4178654B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004700A (en) * 2001-06-22 2003-01-08 Hitachi Chem Co Ltd Chip for cataphoresis
WO2003058228A1 (en) * 2001-12-28 2003-07-17 Cluster Technology Co., Ltd. Electrophoresis-use microchip
JP2005055320A (en) * 2003-08-05 2005-03-03 Pentax Corp Electrophoresis chip
WO2008078403A1 (en) * 2006-12-26 2008-07-03 Nec Corporation Electrophoresis chip and method for using the same
US7582261B2 (en) 2003-11-18 2009-09-01 Sharp Kabuhsiki Kaisha Electricity supplying device, electricity supplying apparatus, sample detection device, and sample detection apparatus
JP2014062747A (en) * 2012-09-20 2014-04-10 Enplas Corp Fluid treatment device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178897A (en) * 1994-12-27 1996-07-12 Shimadzu Corp Electrophoresis apparatus
JPH08327594A (en) * 1995-05-29 1996-12-13 Shimadzu Corp Capillary electrophoretic chip
JPH08334505A (en) * 1995-06-07 1996-12-17 Hewlett Packard Co <Hp> Miniaturized total analysis system
JPH1010088A (en) * 1996-06-26 1998-01-16 Hitachi Ltd Capillary electrophoretic device
JPH10148628A (en) * 1996-11-19 1998-06-02 Shimadzu Corp Microchip electrophoresis device
JPH10274638A (en) * 1997-03-31 1998-10-13 Shimadzu Corp Cataphoresis member and electric cataphoresis device using the same
WO1998045693A1 (en) * 1997-04-04 1998-10-15 Aclara Biosciences Methods for fabricating enclosed microchannel structures
JPH11183437A (en) * 1997-12-22 1999-07-09 Shimadzu Corp Electrophoresis member and electrophoresis device using same
JP2001520377A (en) * 1997-10-15 2001-10-30 アクレイラ バイオサイエンシズ,インコーポレイティド Laminated micro structural device and method of manufacturing laminated micro structural device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178897A (en) * 1994-12-27 1996-07-12 Shimadzu Corp Electrophoresis apparatus
JPH08327594A (en) * 1995-05-29 1996-12-13 Shimadzu Corp Capillary electrophoretic chip
JPH08334505A (en) * 1995-06-07 1996-12-17 Hewlett Packard Co <Hp> Miniaturized total analysis system
JPH1010088A (en) * 1996-06-26 1998-01-16 Hitachi Ltd Capillary electrophoretic device
JPH10148628A (en) * 1996-11-19 1998-06-02 Shimadzu Corp Microchip electrophoresis device
JPH10274638A (en) * 1997-03-31 1998-10-13 Shimadzu Corp Cataphoresis member and electric cataphoresis device using the same
WO1998045693A1 (en) * 1997-04-04 1998-10-15 Aclara Biosciences Methods for fabricating enclosed microchannel structures
JP2001520377A (en) * 1997-10-15 2001-10-30 アクレイラ バイオサイエンシズ,インコーポレイティド Laminated micro structural device and method of manufacturing laminated micro structural device
JPH11183437A (en) * 1997-12-22 1999-07-09 Shimadzu Corp Electrophoresis member and electrophoresis device using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004700A (en) * 2001-06-22 2003-01-08 Hitachi Chem Co Ltd Chip for cataphoresis
WO2003058228A1 (en) * 2001-12-28 2003-07-17 Cluster Technology Co., Ltd. Electrophoresis-use microchip
JP2005055320A (en) * 2003-08-05 2005-03-03 Pentax Corp Electrophoresis chip
US7582261B2 (en) 2003-11-18 2009-09-01 Sharp Kabuhsiki Kaisha Electricity supplying device, electricity supplying apparatus, sample detection device, and sample detection apparatus
WO2008078403A1 (en) * 2006-12-26 2008-07-03 Nec Corporation Electrophoresis chip and method for using the same
JP2014062747A (en) * 2012-09-20 2014-04-10 Enplas Corp Fluid treatment device

Also Published As

Publication number Publication date
JP4178654B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP4178653B2 (en) Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance
Chao et al. Microfluidic single-cell analysis of intracellular compounds
US9063007B2 (en) Bioanalytical instrumentation using a light source subsystem
JP5497587B2 (en) Microchannel chip and microarray chip
US7641780B2 (en) Two-dimensional microfluidics for protein separations and gene analysis
JP2004069430A (en) Chip for electrophoresis, method for production thereof and method for separating substance
US8778155B2 (en) Disposible bio-analysis cartridge and instrument for conducting bio-analysis using same
US20110256572A1 (en) Biological sample discrimination apparatus, biological sample discrimination method, and biological sample discrimination plate
US20110120867A1 (en) Micro-channel chip for electrophoresis and method for electrophoresis
JP2002536962A (en) Integrated portable biological detection system
JP2004151041A (en) Biochip and biochip manufacturing method
JP2000310615A (en) Chip for electrophoresis, its manufacture, electrophoresis device and chargeable material separating method using the same
JP3034770B2 (en) Capillary electrophoresis device
US20080075632A1 (en) Biological Sample Analysis Plate
US8784626B2 (en) Bio-analysis using ball-ended incident and output optical fibers
JP4178654B2 (en) Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance
CN1250962C (en) Preparing method of integrated capillary electrophoresis electrochemical luminescence detecting chip
US20030087290A1 (en) Bio-affinity porous matrix in microfluidic channels
WO2004038399A1 (en) Method of controlling migration of substance
CN100427944C (en) Ngatively pressurized sampling three-dimensional chip capillary array electrophoresis system
JP2007075051A (en) Plate for judging biological sample
JP2003004700A (en) Chip for cataphoresis
Zhuang et al. Microchip‐based capillary electrophoresis for determination of lactate dehydrogenase isoenzymes
JP2006242612A (en) Plate for discriminating biological sample
US7708874B2 (en) Electrophoresis apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees