JP4178653B2 - Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance - Google Patents

Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance Download PDF

Info

Publication number
JP4178653B2
JP4178653B2 JP09345199A JP9345199A JP4178653B2 JP 4178653 B2 JP4178653 B2 JP 4178653B2 JP 09345199 A JP09345199 A JP 09345199A JP 9345199 A JP9345199 A JP 9345199A JP 4178653 B2 JP4178653 B2 JP 4178653B2
Authority
JP
Japan
Prior art keywords
electrophoresis
electrode
plate
electrophoresis chip
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09345199A
Other languages
Japanese (ja)
Other versions
JP2000310613A (en
Inventor
健二 渡辺
和彦 小原
隆 嶋山
博夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP09345199A priority Critical patent/JP4178653B2/en
Publication of JP2000310613A publication Critical patent/JP2000310613A/en
Application granted granted Critical
Publication of JP4178653B2 publication Critical patent/JP4178653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はキャピラリー電気泳動に利用される電気泳動用チップとその製造方法、該電気泳動用チップを用いた電気泳動装置及び荷電性物質の分離方法に関する。
【0002】
【従来の技術】
イオン、有機酸、アミノ酸、タンパク質、核酸、糖、ウイルス、細胞等の荷電性物質を分離する一般的な方法として電気泳動法が広く利用されている。特に核酸やタンパク質等の生体物質やその他の低分子物質といったごく微量物質を分離同定する手法としてキャピラリー電気泳動法がある。これは、内径が100ミクロン以下程度のガラス細管(キャピラリー)を用い、この中に電気泳動用緩衝液や分子ふるい用ポリマ等の分離用媒体を充填し、キャピラリーの一端に試料を導入した後その両端に高電圧を印加して試料をキャピラリー内で移動させ、その電荷や分子量の差などにより分離し、これをUV吸収や蛍光などにより検出するものである。
このキャピラリー電気泳動法は長所として、1)必要試料量がごく微量で済む、2)分離特性に優れる、3)高速分離が可能、4)様々の分離モードにより幅広い試料分析に対応可能、などが挙げられるが、従来、キャピラリーは内径が100ミクロン以下程度のファイバー状であるためその強度は非常に低く、キャピラリーの交換等の作業は極めて取り扱いにくいものであった。また、複数回キャリピラリを使用するためにはその度に洗浄する必要もあり、分析方法としてはユーザの簡便性の面でも問題があった。
【0003】
これに対し、キャピラリー電気泳動法の概念をさらに推し進めた一般に「マイクロチップケミストリー」と呼ばれる手法が提案されている(D.J.Harrison.ら:Analytical Chemistry,1992年,64巻,1926-1932頁)。これは、ガラス基板上に微細溝をつくり、それをもう一枚の基板と貼り合わせることによりキャピラリーを形成させて、この流路中でキャピラリー電気泳動を行うというというものである。このキャピラリーを内在したガラス基板を貼り合わせたものがマイクロチップと呼ばれている。構造としては、2枚のガラス基板を張り合わせて形成されたキャピラリー部の端部に、電気泳動用緩衝液や分子ふるい用ポリマ、及び分析試料を供給するための液溜め部を有したものが一般的である。
【0004】
【発明が解決しようとする課題】
上記のマイクロチップケミストリーという手法では、キャピラリーがマイクロチップ内に形成されたことで、取り扱い性は従来のキャピラリー電気泳動法に比べ大きく改善されたが、簡便性の面では、分析作業における電圧印加の為の電極接合や装置への固定といった面倒な付随作業が伴い、十分なものではない。例えば、電極接合は、分析装置或いは高電圧電源からの電気端子の白金線を液溜まり部に挿入固定するという作業が必要で、高価な白金線を分析毎に洗浄して使うといった面倒さがあり、この洗浄作業が不十分であると分析対象物質以外のコンタミの心配があった。また、ガラス基板の孔加工の難しさから、従来のチップは、キャピラリー形成のための2枚のガラス基板のうちの一方の基板部材に溝を、他方の基板部材に液溜まり用孔を設けていた。このため、それぞれの部材が構造体としての必要強度から、厚さが1mm程で剛性が高いことが必要であり、貼り合わせ時に密着不足が生じ易くエアの巻き込み等の問題があり、品質の再現性が低かった。
【0005】
本発明はかかる状況に鑑みなされたもので、荷電性物質の分離に適し、取り扱い性と簡便性とを合わせ持ち、しかも再現性と生産性の良いキャピラリーを内在する電気泳動用チップとその製造方法、その電気泳動用チップを用いた電気泳動装置及び荷電性物質の分離方法を提供するものである。
【0006】
【課題を解決するための手段】
発明者らは上記の課題を解決するために鋭意検討を重ねた結果、注入孔と排出孔、それらを連結する溝を有する板状部材と電極を有するシール部材とを接合した電気泳動用チップを作製することにより上記の目的を達成し得ることを見い出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、
(1)板状部材(A)とシール部材(B)とからなり、板状部材(A)が、
板厚方向に貫通した1個以上の注入孔(C)と、板厚方向に貫通又は非貫通の1個以上の排出孔(D)と、一方の面に形成される注入孔(C)と排出孔(D)とを連結する1本以上の溝(E)とを有し、シール部材(B)が電極(F)を有し、シール部材(B)が板状部材(A)の溝形成面に接合されていることを特徴とする電気泳動用チップ、
(2)注入孔(C)と排出孔(D)をそれぞれ2個以上有し、溝(E)を2本以上有し、かつ溝(E)のうちの少なくとも2本が交差していることを特徴とする上記(1)記載の電気泳動用チップ、
(3)電極(F)が接合する板状部材(A)の注入孔(C)及び排出孔(D)の開口部及び/又はその周辺部に相当するシール部材(B)の接合面上にあることを特徴とする上記(1)又は上記(2)記載の電気泳動用チップ、
(4)シール部材(B)がさらに電極(F)と密接した電気回路(G)を有することを特徴とする上記(1)〜(3)記載のいずれかの電気泳動用チップ、
(5)板状部材(A)及び/又はシール部材(B)がアクリル系樹脂又はスチレン系樹脂製であることを特徴とする上記(1)〜(4)記載のいずれかの電気泳動用チップ、
(6)シール部材(B)がフィルム状であることを特徴とする上記(1)〜(5)記載のいずれかの電気泳動用チップ、
(7)板状部材(A)が電気泳動用装置に位置決めされるための突起、凹み及び穴のうちのいずれかひとつ以上を有することを特徴とする上記(1)〜(6)記載のいずれかの電気泳動用チップ、
(8)板厚方向に貫通する1個以上の注入孔(C)と、板厚方向に貫通又は非貫通の1個以上の排出孔(D)と、片面上に注入孔(C)と排出孔(D)とを連結する1本以上の溝(E)とを形成した板状部材(A)を、溝(E)形成面を内側にして、注入孔(C)及び排出孔(D)の開口部及び/又はその周辺部に相当する位置に電極(F)を形成したシール部材(B)と接合して、製造することを特徴とする電気泳動用チップの製造方法、
(9)電極(F)を印刷、真空蒸着、スパッタリング及びイオンプレーティングのいずれかにより形成することを特徴とする上記(8)記載の電気泳動用チップの製造方法、
(10)板厚方向に貫通する1個以上の注入孔(C)と、板厚方向に貫通又は非貫通の1個以上の排出孔(D)と、片面上に注入孔(C)と排出孔(D)とを連結する1本以上の溝(E)とを形成した板状部材(A)を、溝(E)形成面を内側にして、注入孔(C)及び排出孔(D)の開口部及び/又はその周辺部に相当する位置に電極(F)を形成したシール部材(B)と接合し、次に電気回路(G)をシール部材(B)の接合面の反対面上に電極(F)密接するよう形成して、製造することを特徴とする電気泳動用チップの製造方法、
(11)電極(F)及び電気回路(G)を印刷、真空蒸着、スパッタリング及びイオンプレーティングのいずれかにより形成することを特徴とする上記(10)記載の電気泳動用チップの製造方法、
(12)板状部材(A)とシール部材(B)との接合が熱融着によりなされることを特徴とする上記(8)〜(11)記載のいずれかの電気泳動用チップの製造方法、
(13)上記(1)〜(7)記載のいずれかの電気泳動用チップ若しくは請求上記(8)〜(12)記載のいずれかの製造方法により得られる電気泳動用チップを用いる電気泳動用装置、
(14)上記(1)〜(7)記載のいずれかの電気泳動用チップ若しくは請求上記(8)〜(12)記載のいずれかの製造方法により得られる電気泳動用チップを用いることを特徴とする荷電性物質の分離方法。
(15)上記(13)記載の電気泳動用装置を用いることを特徴とする荷電性物質の分離方法、
(16)荷電性物質が荷電性分子又は荷電性粒子である上記(14)又は上記(15)記載の荷電性物質の分離方法、
(17)荷電性分子がイオン、有機酸、アミノ酸、タンパク質、核酸及び糖のいずれかで、荷電性粒子がウイルス又は細胞である上記(16)記載の荷電性物質の分離方法、
(18)分離用媒体として高分子ゲルを用いることを特徴とする上記(14)〜上記(17)記載のいずれかの荷電性物質の分離方法、
(19)高分子ゲルが非交差型高分子ゲルであることを特徴とする上記(18)記載の荷電性物質の分離方法、
(20)非交差型高分子ゲルが直鎖状ポリアクリルアミド、直鎖状ハイドロキシエチルセルロース、直鎖状ハイドロキシプロピルメチルセルロース、直鎖状ハイドロキシプロピルセルロース、直鎖状メチルセルロース、直鎖状ポリエチレングリコール及び直鎖状ポリエチレンオキサイドのいずれかである上記(19)記載の荷電性物質の分離方法、
である。
【0008】
【発明の実施の形態】
本発明において用いられる板状部材(A)は、板厚方向に貫通した注入孔(C)と、貫通又は非貫通の排出孔(D)と、それらを連結する溝(E)とを有する部材である。
【0009】
板状部材(A)に用いられる材料は、UV吸収や蛍光などにより検出することを考慮し透明又は半透明の材料であることが必要であるが、特に限定されるものではない。再現性向上の観点からは、注型可能なガラス、熱硬化性樹脂、熱可塑性樹脂等の型で成形可能なものが好ましい。絶縁性や成形の自由度から樹脂材料であることがより好ましい。また、樹脂材料は、弾力性があるために接触面積が面圧により確保でき、ガラス基材のものより有利な電気条件となり好ましい。特に熱可塑性樹脂材料は生産性の面からも有効であり、ポリメチルメタクリレート、ポリアクリレート等のアクリル系樹脂、ポリスチレン、スチレンコポリマ等のスチレン系樹脂、ポリカーボネート、ナイロン6、ナイロン66、ポリエチレンテレフタレートなどが好ましい。中でも、透明性及び蛍光特性の面で、アクリル系樹脂とスチレン系樹脂がより好ましく、ポリメチルメタクリレート、ポリスチレンがさらに好ましい。また、本発明の電気泳動用チップは生産性が高く化学的検体を扱うために、使い捨て製品として使用されることも考えられ、このような観点からは生分解性プラスチックであることが好ましい。生分解性プラスチックとしては、例えば、マタービー(ノバモント社(伊)製商品名)等の澱粉を利用したポリマ、セルグリーンP−CA(ダイセル化学工業株式会社製商品名)、ルナーレZT(日本触媒化学工業株式会社製商品名)等のセルロースエステル系ポリマ、ビオノーレ(昭和高分子社製商品名)等の脂肪族ポリエステル系ポリマ、エコプレ(カーギル社(米)製商品名)等のポリ乳酸系ポリマ、ポリヒドロキシブチレート/バリレート等の微生物ポリエステルなどが挙げられる。
【0010】
板状部材(A)のサイズは、片手で取り扱い易いように10mm角〜150mm角程度の大きさが好ましく、20mm角〜100mm角がより好ましく、電気泳動装置小型化の観点からは30mm角〜50mm角がさらに好ましい。また、板状部材(A)の板厚は、成形性、取り扱い性の観点から0.2mm〜5mm程度が好ましく、1mm〜2mmがより好ましい。
板状部材(A)の成形方法は特に限定するものではないが、例えば、金型を用いて射出成形、注入成形、プレス成形等で成形する方法や、機械加工で成形する方法などが挙げられるが、金型を用いる方法が寸法、形状共に再現性が高いものが得られるために好ましい。
【0011】
板状部材(A)に形成される注入孔(C)は、電気泳動用緩衝液、分子ふるい用ポリマ等の分離用媒体を含む泳動液や分析対象物質を含む試料液等の供給のための液溜め部であり、板厚方向に貫通した形で1個以上の孔が形成されることが必要である。注入孔(C)のサイズは、泳動液や試料液が注入できる大きさであれば特に制限はないが、注入作業の観点から内径が0.5〜10mmの範囲に設定されることが好ましく、1〜5mmがより好ましい。
【0012】
板状部材(A)に形成される排出孔(D)は、電気泳動用緩衝液、分子ふるい用ポリマ等の分離用媒体を含む泳動液や分析対象物質を含む試料液等の排出のための液溜め部であり、板厚方向に貫通又は非貫通の形で1個以上の孔が形成されることが必要である。排出孔(D)のサイズは、注入孔(C)に注入された泳動液や試料液が十分排出できる大きさであれば特に制限はないが、作業上の観点から内径が1〜10mmの範囲に設定されることが好ましく、2〜5mmがより好ましい。
【0013】
板状部材(A)に形成される溝(E)は、分析対象試料や電気泳動用緩衝液や分子ふるい用ポリマ等の分離用媒体を含む泳動液を導入したり、分離したりするための流路(導入流路または分離流路)となるためのもので、注入孔(C)と排出孔(D)とを連結するよう形成されることが必要である。試料を分離するための分離流路は必ず必要であるが、この分離流路は導入流路を兼ねることができるので、溝(E)は板状部材(A)に少なくとも1本は形成されることが必要である。
分離流路と導入流路とは兼用が可能であるが、分析精度の観点からは、分離流路と導入流路とを互いに接する別々の溝とすることが好ましい。分析精度の向上には、分析対象試料液の容量を制御する手法が有効であるが、試料の導入流路と分離流路とが同一の溝で構成される場合は分離流路中に導入される試料液の容量の制御が難しい。分離流路と導入流路とを互いに接する別々の溝とした場合には、導入された試料液の一部を分離流路に導入することが可能であるため、試料液量の制御が容易で分析精度が向上する。試料液量の制御の観点からは、分離流路と導入流路とは互いに交差していることがより好ましく、交差角は特に限定はないが、交差部の試料液が分離流路に導入されることを鑑みると、交差空間は菱形形状よりも直方形状の方が泳動像がよりシャープになり好ましいので、交差角は直角に近いほうが好ましい。
また、分離流路と導入流路を別に設けることも、分離流路と導入流路をそれぞれ複数設けることも可能であるので、溝(E)は2本以上の複数形成されていてもよい。分離流路を複数設けることで、複数の分析対象物質を同時に分離分析することが可能となる。分離流路となる複数の溝(E)は、それぞれ並列に形成され、ほぼ平行に並んでいることが、分析感度の観点から好ましい。
複数の分析対象物質を同時に分離分析する場合、分析対象物質を含む試料液の供給や排出のための液溜め部である注入孔(C)と排出孔(D)は、分析対象物質ごとに別々に用意されることが好ましいので、分離流路が試料の導入流路を兼ねている2本以上の溝(E)には、それぞれ両端に独立した別個の注入孔(C)と排出孔(D)とが連結していることが好ましい。試料の導入流路が分離流路とは別に用意されいる場合は、導入流路となる2本以上の溝(E)には、それぞれの両端に独立した別個の注入孔(C)と排出孔(D)とが連結していることが好ましいが、分離流路となる2本以上の溝(E)にはそれぞれ独立した別個の注入孔(C)と排出孔(D)を用意しなくてもよい。すなわち、1個の注入孔(C)と1個の排出孔(D)とを連結する溝(E)が2本以上あって、別個の溝(E)が同じ注入孔(C)と排出孔(D)を共有する場合があってもかまわない。この場合、2本以上の溝(E)に連結した注入孔(C)と排出孔(D)は、泳動液の導入又は排出のための液溜り部として使用することができるが、分析対象物質を含む試料液の導入用の液溜り部として使用することは好ましくない。
溝(E)の形状は、分析の精度、形態により任意に設計でき、例えば、直線状でも、ループ状でも、くの字型でも、複雑に折れ曲がった形状でもかまわない。複数の溝を形成させる場合には、溝同士を平行に並列しても、交差させても、並列と交差が混在していてもよく、いかなる設計も可能であるが、取り扱い性と分析精度の観点からは、分析試料の分離流路と導入路とを別々の溝として、それらを直交するよう設計することが好ましい。
溝(E)のサイズは分析対象の物質が分離できれば特に限定はなく任意に設計できるが、取り扱い性、成形性、電気泳動装置の小型化の観点から、幅は10〜2000μmが好ましく、20〜1000μmがより好ましく、30μm〜500μmがさらに好ましい。深さは5〜1000μmが好ましく、5〜500μmがより好ましく、10μm〜100μmがさらに好ましい。長さは5mm〜150mm程度が好ましく、より好ましくは10mm〜100mm、さらに好ましくは、15〜50mmである。
【0014】
注入孔(C)、排出孔(D)及び溝(E)の形成方法は特に限定するものではないが、例えば、金型を用い、射出成形や注入成形、プレス成形といった生産性の高い工法を適用することで寸法、形状共に再現性が高いものが得られるが機械加工で形成することもできる。注入孔(C)、排出孔(D)及び溝(E)の形成は、それぞれべつべつにどの順序で行ってもかまわないが、1回の成形で全てを同時に行う手法が工程が少なくなり簡便である。
【0015】
本発明において用いられるシール部材(B)は、電極(F)を有する部材であり、キャピラリーを形成するために、板状部材(A)の溝(E)が形成されている面に接合させることが必要である。
【0016】
シール部材(B)の材料は、UV吸収や蛍光などにより検出することを考慮し透明又は半透明の材料で、シールしやすいようフィルム状に成形できる樹脂材料が好ましい。特に熱可塑性樹脂材料は生産性の面からも有効であり、ポリメチルメタクリレート、ポリアクリレート等のアクリル系樹脂、ポリスチレン、スチレンコポリマ等のスチレン系樹脂、ポリカーボネート、ナイロン6、ナイロン66、ポリエチレンテレフタレートなどが好ましい。中でも、透明性及び蛍光特性の面で、アクリル系樹脂とスチレン系樹脂がより好ましく、ポリメチルメタクリレート、ポリスチレンがさらに好ましい。また、使い捨て製品として使用される場合は、生分解性プラスチックが好ましい。生分解性プラスチックとしては、例えば、マタービー(ノバモント社(伊)製商品名)等の澱粉を利用したポリマ、セルグリーンP−CA(ダイセル化学工業株式会社製商品名)、ルナーレZT(日本触媒化学工業株式会社製商品名)等のセルロースエステル系ポリマ、ビオノーレ(昭和高分子社製商品名)等の脂肪族ポリエステル系ポリマ、エコプレ(カーギル社(米)製商品名)等のポリ乳酸系ポリマ、ポリヒドロキシブチレート/バリレート等の微生物ポリエステルなどが挙げられる。
【0017】
シール部材(B)に形成される電極(F)は、電圧印加して電位差により分析対象試料を溝(E)によって形成された流路(キャピラリー)を移動させることにより、試料を分離するために使用するもので、試料や泳動液の導入流路及び分離流路の両端の液溜め部すなわち注入孔(C)及び排出孔(D)の開口部周辺にあることが必要であるので、板状部材(A)とシール部材(B)が接合した時注入孔(C)及び排出孔(D)の開口部に対応する位置に来るように形成されることが必要である。但し、この電極(F)を接合面側に設けるとシールが不完全となり、注入孔(C)及び排出孔(D)からの液漏れの不具合が発生しやすくなる。そこで、接合面側に設けた電極は、スルーホール構造にしてその一部をシール部材(B)の反対面側に回し、すきまがないように成形することが好ましい。
【0018】
電極(F)への電圧印加には、パワーサプライ等の高電圧供給源から白金等の配線を用いて行うことが可能であるが、操作の簡便性の観点から、シール部材(B)にさらに電気回路(G)を形成することが好ましい。電気回路(G)は、電極(F)に密接するように形成されることが必要である。本発明においては、溝(E)形成面にシール部材(B)が接合しており、この面に回路形成するとシールが不完全となる場合が生じ、液漏れの不具合を招き易いため、電気回路(G)はその大部分がシール部材(B)の接合面とは反対側の面上に形成されることが好ましいが、電極(F)と接触させるために一部が接合面に出ていてもよい。電極(F)を接合面のみに形成しておき、電気回路(G)をスルーホール回路の構造にして、接合面の電極(F)部からシール部材(B)の反対面に回りこむよう成形してもよい。
【0019】
電極(F)及び電気回路(G)の形成方法としては、特に限定はなく、メッキ工法、印刷工法、蒸着工法等従来からある種々の工法が適用できるが、メッキ工法は板状部材(A)が透明樹脂の場合は薬液に対する保護等の面で取り扱いが難しく、生産性の観点から印刷工法又は蒸着工法が好ましい。中でも真空蒸着、スパッタリング、イオンプレーティング等の蒸着工法が好ましい。スルーホール部については密着性を考慮した設計を適用することが好ましい。電極(F)及び電気回路(G)は、両者が一体化した形の一体化物として形成してもよい。
電極(F)及び電気回路(G)の材質は、導電性のある材料であれば特に限定はなく、例えば、金、銀、銅、白金、アルミニウム、カーボン等が挙げられる。中でも、電極(F)の材質は、電極表面部での液による腐食等で接触電気抵抗が変化すると泳動条件に悪影響を及ぼす可能性があるため、金、銀、白金、カーボン等の耐食性の良い材料が好ましい。電気回路(G)の材質は、価格や使い易さの観点から銀、白金、銅、アルミニウムが好ましく、銀、白金がより好ましい。板状部材(A)及び/又はシール部材(B)が樹脂製の場合には、この樹脂と密着性のよい樹脂系のバインダーを用いた銀ペースト等が好ましい。
電極(F)及び電気回路(G)の厚みは、通電に支障がなければ特に限定されるものではないが、印刷工法の導電膜の場合、1〜100μmが好ましく、5μm〜50μmがより好ましい。スパッタリングまたはイオンプレーティングの金属膜の場合、0.005μm〜20μmが好ましく、0.01μm〜5μmがより好ましい。電極(F)及び電気回路(G)の幅は、0.1mm〜20mmが好ましく、0.5mm〜10mmがより好ましく、1〜5mmがさらに好ましい。
【0020】
シール部材(B)に電極(F)が形成されることで、従来の煩わしい電極接続作業をすることなく、簡単に電気泳動チップ上の電極と配線とを接触させることができる。また、電気回路(G)が形成されることで配線もさらに簡便化され、試料液に配線が直接触れないために分析毎の洗浄も不要となる。
【0021】
シール部材(B)と板状部材(A)とを接合させる方法としては、両者が密着して溝(E)の開口部がシール部材によって封鎖されてキャピラリーが形成され、注入孔(C)と排出孔(D)の開口部の少なくとも一方がシール部材によって封鎖されて液溜め部が形成される方法であれば特に限定はないが、例えば、機械的に対向する面を圧接させるように接合させる方法、接着剤を用いる方法、熱融着による方法等が挙げられる。シール部材(B)が弾力性を持つ場合は、別の部材を介してシール部材(B)を板状部材(A)に押し付け固定するか、または、シール部材を変移(圧縮)させた状態で固定する等の方法により、溝(E)、電極(F)及び電気回路(G)の周りでの密着したシールが容易にでき、キャピラリー形成ができる。接着剤を用いてシール部材(B)と板状部材(A)とを接合させる場合は、溝(E)のサイズによっては接着剤が流れ込み管路が消失或いは大きく変化する心配があり、微細な溝には適用が難しい。
本発明の板状部材(A)は、液溜まり用の注入孔(C)及び排出孔(D)と溝(E)とを有するので、従来の溝を有する部材と液溜まり孔を有する部材とを貼り合わせたマイクロチップと比較して溝と孔の位置を合わせるなどの手間が省け、シール部材(B)を板状部材(A)に接合する際の位置決めが容易で、自由度の高い設計、選択ができる。また、再現性が高く、分析精度が向上する利点を有する。
【0022】
シール部材(B)の形状は、シールできる形状であれば特に限定はなく、板状、フィルム状等が挙げられるが、成形性の観点からは、フィルム状が好ましい。特に、シール部材(B)と板状部材(A)とを熱融着により接合させる場合は、フィルム状のシール部材を用いることが好ましい。フィルムは薄くすることで低い熱量で熱融着でき、しかも低熱量であるために溝(E)を変形させることも少ない。また、蛍光やUV吸光による検出時のノイズ低減の観点からもフィルム状であることが好ましい。溝(E)が微細な溝の場合にもフィルム状のシール部材が好適である。
シール部材(B)のサイズは、接合する板状部材(A)と同程度の大きさが好ましい。シール部材(B)の厚みは、成形性、密着性の観点から、フィルム状の場合は1〜250μm程度が好ましく、5〜100μmがより好ましく、10μm〜80μmがさらに好ましい。板状の場合は、0.05mm〜10mm程度の厚さが好ましく、0.2mm〜5mmがより好ましく、0.5mm〜2mmがさらに好ましい。
【0023】
シール部材(B)の成形方法は、シールしやすい形に成形されれば特に限定はないが、例えば、金型を用いて射出成形、注入成形、プレス成形等で成形する方法や、機械加工で成形する方法、インフレーション成形、カレンダー成形、ダイ押出成形等のフィルム状に成形される方法などが挙げられ、中でもフィルム状に成形される方法が好ましい。板状に成形する場合には、金型を用いる方法が寸法、形状共に再現性が高いものが得られるために好ましい。
また、フィルム状に成形された市販の材料をシール部材(B)として用いることもできる。
【0024】
本発明の電気泳動用チップは、板状部材(A)とシール部材(B)とを、板状部材(A)の溝(E)形成面を内側にして接合し、溝(E)の開口部がシール部材によって封鎖されてキャピラリーが形成されればよく、いかなる方法においても製造することができるが、例えば次のような方法が挙げられる。注入孔(C)、排出孔(D)及び溝(E)を形成した板状部材(A)と電極(F)を形成したシール部材(B)とを接合する方法、注入孔(C)、排出孔(D)及び溝(E)を形成した板状部材(A)と電極(F)及び電気回路(G)を形成したシール部材(B)とを接合する方法、注入孔(C)、排出孔(D)及び溝(E)を形成した板状部材(A)と電極(F)を形成したシール部材(B)とを接合した後に、シール部材(B)に電気回路(G)を形成する方法、注入孔(C)、排出孔(D)及び溝(E)を形成した板状部材(A)とシール部材(B)とを接合した後に、シール部材(B)に電極(F)及び電気回路(G)を形成する方法等が挙げられる。
本発明の電気泳動用チップは、電気泳動用緩衝液や分子ふるい用ポリマ等の分離用媒体があらかじめ充填されていてもよい。
【0025】
本発明の電気泳動用チップを用いて分析を行う電気泳動用装置は、分析対象物質を含む試料の導入流路または分離流路の両端に電位差を与えて分析対象物質を電気泳動させるために電極(F)又は電気回路(G)に電圧を印加するための手段、分析対象物質に光を照射するための手段、分析対象物質からの検出光を測定するための手段、電気泳動用チップを位置決めする手段とを備えるものである。
【0026】
電圧を印加するための手段は、パワーサプライ等の電圧を発生させるための
電源と配線を備えるもので、電源は装置と一体化したものでなくてもよいが、装置を小型化する観点からは装置の中に一体に組み込まれたものが好ましい。
【0027】
分析対象物質に光を照射するための手段は、少なくとも光を発生するための光源を備えるもので、光源から発せられる光を効率的に照射するためには集光手段も備えていることが好ましい。光源としては特に制限はないが、例えば、水銀ランプ、QIランプ(石英ーヨウ素ランプ)、フォトダイオード、発光ダイオード(LED)、EL(electroluminescence)等が挙げられる。また、レーザ光源も用いることができる。集光手段も特に制限はないが、例えば、ダイクロイックミラー、光フィルタ、対物レンズ、プリズムレンズ等のレンズ、マイクロレンズ、光ファイバーなどが挙げられ、これらを1種あるいは2種以上組み合わせて用いることができる。集光手段としてレンズを用いる場合、球面レンズと非球面レンズのどちらを用いてもかまわないが、焦点の合わせやすさの観点から集光面積が小さい場合には非球面レンズが好ましく、これらレンズは集光面積に応じて1枚又は2枚以上複数重ねて用いることができる。励起光を照射する場合には、ダイクロイックミラーや光フィルタを用いることが好ましい。レーザ光源を用いる場合には、複数のプリズムレンズを備えてドット状のレーザ光源を拡大して全走査線を含有するようにすることが好ましい。
【0028】
分析対象物質からの検出光を測定するための手段は、少なくとも光検出器を備えるもので、測定感度の観点からは集光手段を備えていることが好ましい。
励起光が照射される場合には検出する光は蛍光となる。光検出器は特に限定はないが、例えば、蛍光検出器、光電子倍増管(フォトマル)、CCD、フォトダイオード等が挙げられる。集光手段も特に制限はないが、例えば、ダイクロイックミラー、光フィルタ、球面又は非球面のレンズ、マイクロレンズ等が挙げられる。
【0029】
電気泳動用チップを位置決めする手段としては特に制限はないが、例えば、電気泳動用チップの形状に合うように設計された突起、凹み、穴、ピン等の位置決め用の型や、コイル、バネ状物質等を挙げることができる。これらは1種類1個でも複数でも、複数種類の手段を併設してもよく、必要に応じて用いることができる。
【0030】
本発明の電気泳動用装置は、電気泳動用チップを移動させての分析も可能なように電気泳動用チップの移動手段を備えていてもよい。また、光照射部や検出部の位置を変更可能なように光を照射するための手段及び/又は検出光を測定するための手段に移動手段を備えていてもよい。測定した検出光を分析するための解析器を装置の内部に一体化して、または外部に接続して備えていてもよい。
【0031】
本発明の電気泳動用チップは、電気泳動装置に簡便にセット位置決めされることが好ましい。電気泳動用チップは、前記の電気泳動用装置の位置決め手段に板状部材(A)の端面を接触することにより通常位置決めされる。電気泳動用チップを測定時に動かないよう固定するためには、電気泳動装置側だけでなく、電気泳動用チップ側にも位置決めの手段を有していることが好ましい。この場合、電気泳動用装置の位置決め手段と電気泳動用チップの位置決め手段の形状との一致していることが有効である。電気泳動用チップの位置決め手段としては特に限定はないが、板状部材(A)に位置決めのための突起、凹み及び穴のうちいずれか1つ以上を有していることが好ましい。この突起、凹み及び穴のサイズは任意に設計できるが、単一の形状であれば内径1〜5mm程度のもの、ライン状の形状であれば幅1〜3mm程度のものが好ましい。
【0032】
本発明の電気泳動用チップは、イオン、有機酸、アミノ酸等の低分子や、タンパク質、核酸、糖等の高分子からなる荷電性分子、ウイルス、細胞等の荷電性粒子、などの荷電性物質を分離して、対象物質を分析するのに有効な手段として用いることができる。また、本発明の電気泳動用チップは、荷電性ラテックスビーズを利用して間接的に分析対象物質を分析する方法にも利用可能である。
具体的には、本発明の電気泳動用チップの溝(E)の中に分離用緩衝液、分離用高分子ゲル、分離用等電性フォーカッシング緩衝液等の分離用媒体を充填させて、分析対象物質を含む試料を注入し、溝(E)の両端に電圧を印加することによって、分離用媒体中で分析対象物質を電位差で移動させて分離することができる。
【0033】
分離用媒体を電気泳動用チップの溝(E)に充填するためには、注入孔(C)と排出孔(D)の液溜まり部に分離用媒体を介して溝(E)に注入すればよい。注入方法としては特に制限はないが、例えば、毛細管現象を利用する方法、注射筒等を用いる加圧注入法、一方の液溜まり部に滴下した媒体をもう一方の液溜まり部から水流ポンプ、真空ポンプ等を用いて減圧することによって注入する減圧注入法などが挙げられる。この際、気泡やホコリ等のその他の夾雑物が溝(E)に入らないようにすることが重要である。
【0034】
荷電性物質等の分離対象物質は、分離流路用の溝(E)に一定量導入されることが必要である。分離対象物質を溝(E)に導入する方法としては、例えば、動電学的導入法(electrokinetic injection)や動水力学的導入法(hydrodynamic injection)等が挙げられる。動電学的導入法は、試料の導入流路と分離流路とを別にして、試料導入用液溜まり部に荷電性物質を含む試料溶液を少量滴下し、この液溜まり部と導入流路を挟んで逆端に位置する液溜まり部とに適当な電界をかけることによって、試料を導入流路と直交する分離流路の溝交差部に移動させて、試料を導入する方法である。この方法は、シャープな検出像が得られるので好ましい。
本電気泳動用チップを用いて電気泳動分離した荷電性物質は、その光学的特性や電気化学的特性等を利用して検出することができる。例えば、核酸分子の有するUV吸収特性を利用して吸光度を測定したり、核酸分子に蛍光色素を標識して蛍光を測定することにより検出することが可能で、DNAやRNAのような核酸断片を分離してその断片の大きさを分析することができる。
【0035】
【実施例】
次に、実施例により本発明を説明するが、本発明の範囲はこれら実施例に限定されるものではない。
【0036】
実施例1 電気泳動用チップの作製1
50トン射出成形機で、成形温度240℃、射出圧力400kg/cm2の成形条件で透明樹脂材料であるPMMA(ポリメチルメタクリレート)樹脂(三菱レーヨン株式会社製アクリペットVH)を成形し、内径5mmの2個の注入孔4(4a、4b)、内径5mmの2個の貫通した排出孔5(5a、5b)と、片側表面に100μm幅、40μm深の溝3(3a、3b)を有する、外形寸法20mm×75mm×1mm厚の図1に示す板状部材1を得た。溝3の長さは、長い方の3aが45mm、短い方の3bが6mmで、3aと3bの交差部から4a、4cの外周部までの長さはそれぞれ3mmである。外形成形及び溝3、注入孔4及び排出孔5の形成は、一度の射出成形で同時に行った。次に、シール部材(B)としてPMMA製の50μmフィルム2(三菱レーヨン株式会社製アクリプレン)を用いて、これに20μm厚の電極と15μm厚の電気回路の形成を行った。まず、図2の左図に示すように板状部材とシール部材とを接合した時に注入孔4及び排出孔5の開口部に対応する位置の中心にそれぞれ内径1mmの貫通孔6を開け、次に、図2の右図に示すように、ここにエポキシ系のバインダを用いた銀ペーストを塗布、乾燥しフィルムの厚み方向に導通するスルーホール電気回路7を形成させると同時に配線電気回路8を形成し、続けて、スルーホール電気回路7の接合面側の銀ペースト電極の上にカーボン電極9を形成して、電極及び電気回路が形成されたフィルムシール部材を得た。次に、この電極及び電気回路が形成されたフィルムを、プレス圧1kg/cm2、104℃の条件で、板状部材1の溝3がある平面側に熱融着させることによって接合させて、電気泳動用チップを得た。得られた電気泳動用チップの断面図を図3に、フィルム側から見た平面図を図4にそれぞれ示す。
【0037】
実施例2 電気泳動用チップの作製2
実施例1と同様にして図5に示す板状部材11を得た。板状部材11には電気泳動装置に位置決めするための貫通孔12が設けてある。貫通孔12の形成も射出成形により、外形成形と溝3、注入孔4及び排出孔5の形成と同時に行った。次に、シール部材(B)として位置決め孔12用の逃げ形状13を設けた図6に示すフィルムを用いた以外は実施例1と同様にして、電極及び電気回路の形成、板状部材とシール部材との接合を行い、図7に示す電気泳動用チップを得た。
【0038】
実施例3 ΦX174HaeIII分解断片の分離
0.5g/Lハイドロキシプロピルメチルセルロース(Aldrich社製、平均分子量90,000)、5mg/Lエチジウムブロマイド、44.75mM TRIS(2−アミノー2−ヒドロキシメチルー1,3−プロパンジオール)、44.75mMホウ酸(pH8.2)を含む分離用ゲル緩衝液を用いてΦX174(DNA)のHaeIII分解断片を分離した。ΦX174のHaeIII分解断片は、DNA鎖長で72bpから1353bpの11個の断片から構成されている。分離は実施例1で作製した電気泳動用チップ10を用いて行った。2本の溝3のうち、3aを分離流路、3bを試料導入流路として使用した。まず、上記分離用ゲル緩衝液を、泳動液導入用液溜まり4dに12.5μl、4cと4bに各12.5μl滴下し、毛細管現象を利用して分離流路3a及び試料導入流路3bに緩衝液を充填した。次に、ΦX174のHaeIII分解断片を分離用ゲル緩衝液に溶解(40μg/ml)し、3μLを試料導入用液溜まり4aに滴下し、試料導入用溝3bの両端に1000V/cmの電圧を印加して、試料を溝交差部まで移動させ分離用溝3aに導入し、続けて分離用溝3aの両端に300V/cmの電圧を印加して電気泳動を実施し、DNA断片を分離した。分離したDNA断片の検出は水銀ランプ、ダイクロイックミラー、対物レンズを有する蛍光顕微鏡(オリンパス光学工業株式会社製)と光電子倍増管(Photon Technology International社製)を組み合わせた検出系で検出した。水銀ランプからダイクロイックミラー、対物レンズを通して545nmの励起光を分離用溝3aの溝交差部から2.5cm離れた位置に照射し、DNAにインターカレートしたエチジウムブロマイドの蛍光を蛍光フィルタを通して光電子倍増管に送り検出した検出結果を図8に示す。
【0039】
実施例4 細胞抽出総RNAの分離
ヒト肺ガン細胞CRL5800株培養細胞から全自動RNA抽出機(MFX−2000、東洋紡績株式会社製商品名)を用いて総RNAを抽出した。抽出RNAをジエチルピロカーボネート(RNase阻害剤)処理して、0.4g/Lハイドロキシプロピルメチルセルロース(Aldrich社製、平均分子量90,000)、5mg/Lエチジウムブロマイド、44.75mM TRIS、44.75mMホウ酸(pH8.2)を含む分離用ゲル緩衝液に25μg/ml濃度となるよう溶解した試料液とし、分離用溝3aの両端に印加する電圧を200V/cmとし、蛍光照射位置(検出位置)を溝交差部から1cmとした以外は実施例3と同様にして電気泳動による分離を行い、検出した。検出結果を図9に示す。
【0040】
この実施例1及び実施例2で作製された電気泳動用チップは、キャピラリーが内蔵された板状形態であるので、取り扱いが簡便で、容易に電気泳動装置にセットすることが可能である。また、電極及び電気回路を備えているので、電気泳動装置に用意された電極とコンタクトプローブ等で接触させるなどして、高電圧供給源と接続するだけで容易に電気泳動に供することができ、従来の接続配線等の洗浄作業が不要となり、配線等が直接試料に触れない構造なので、ここからのコンタミの心配もなくなった。
また、実施例1で作製した電気泳動用チップを使用して、実施例3、実施例4で示したように、DNA、RNAといった核酸の分離分析を簡便に行うことができた。RNAの分析に際しては、RNase(RNA分解酵素)による分解に特に注意が必要であるが、本発明の電気泳動用チップは上述したようにコンタミを受けにくい構造のため、分析の過程でのRNaseコンタミによる分解が起こりにくくなっている。
実施例3では、図8に示したように、ΦX174HaeIII分解断片DNAの全ての断片の分離が確認できた。271bpと281bpのHaeIII分解断片DNAが分離できているので、10bp以上の分離解像度(検出感度)が得られた。
実施例4では、図9に示したように、5s、18s及び28sのリボゾームRNAの分離が確認できた。これらの分離は、1cmの泳動距離で十分可能でであった。
【0041】
【発明の効果】
実施例に示したように、本発明によって取り扱い易く、しかも再現性と生産性の良い電気泳動用チップの製造が可能となり、またこの電気泳動用チップを用いることによってDNA、RNA等の核酸などの荷電性物質を簡便に分離分析することができるので、その工業的価値は大である。
最近、メッセンジャーRNAを用いた遺伝子解析が多く実施されているが、
メッセンジャーRNAは極微量しか存在しないために、生体試料等から抽出したメッセンジャーRNAがRNaseによる分解をうけていないことの確認が困難である。本発明の電気泳動用チップを用いた分離を行えば、実施例で示したように微量の試料で高感度の分析が可能であるので、メッセンジャーRNAを直接分析することにより、あるいはメッセンジャーRNAと共存する大過剰のリボゾームRNAを分析することにより間接的に、簡便にメッセンジャーRNAの分解の有無を調べることが可能となり、この分野における利用も期待できる。
【図面の簡単な説明】
【図1】実施例1で作製した板状部材の全体像を示す斜視図
【図2】実施例1のシール部材作製の工程を示すシール部材の断面図
【図3】実施例1で作製した電気泳動用チップの一部を示す拡大断面図
【図4】実施例1で作製した電気泳動用チップの電極及び電気回路の形成パターンを示す平面図
【図5】実施例2で作製した板状部材の全体像を示す斜視図
【図6】実施例2で作製したシール部材の全体像を示す斜視図
【図7】実施例2で作製した電気泳動用チップの一部を示す拡大断面図
【図8】実施例3のΦX174HaeIII分解断片の検出結果を示す図
【図9】実施例4の細胞抽出総RNAの検出結果を示す図
【符号の説明】
1:実施例1の板状部材(A)
2:シール部材(B)
3(3a、3b):溝(C)
4(4a、4b):注入孔(D)
5(5a、5b):排出孔(E)
6:貫通孔
7:スルーホール電気回路(G)
8:配線電気回路(G)
9:カーボン電極(F)
10:実施例1の電気泳動用チップ
11:実施例2の板状部材(B)
12:位置決め用貫通孔
13:実施例2のシール部材の位置決め貫通孔用の逃げ形状
14:実施例2の電気泳動用チップ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophoresis chip used for capillary electrophoresis, a method for manufacturing the same, an electrophoresis apparatus using the electrophoresis chip, and a method for separating a charged substance.
[0002]
[Prior art]
Electrophoresis is widely used as a general method for separating charged substances such as ions, organic acids, amino acids, proteins, nucleic acids, sugars, viruses, and cells. In particular, there is capillary electrophoresis as a technique for separating and identifying a very small amount of substances such as biological substances such as nucleic acids and proteins, and other low-molecular substances. This is done using a glass capillary (capillary) with an inner diameter of about 100 microns or less, filled with a separation medium such as an electrophoresis buffer or a polymer for molecular sieving, and a sample is introduced into one end of the capillary. A high voltage is applied to both ends to move the sample in the capillary, and the sample is separated by the difference in charge or molecular weight, and this is detected by UV absorption or fluorescence.
The advantages of this capillary electrophoresis method are: 1) Only a very small amount of sample is required, 2) Excellent separation characteristics, 3) High-speed separation is possible, 4) A wide range of sample analysis is possible with various separation modes, etc. Conventionally, since the capillary has a fiber shape with an inner diameter of about 100 microns or less, its strength is very low, and operations such as replacement of the capillary have been extremely difficult to handle. Moreover, in order to use a caliper several times, it is necessary to wash each time, and there is a problem in terms of user convenience as an analysis method.
[0003]
On the other hand, a technique called “microchip chemistry” that further promotes the concept of capillary electrophoresis has been proposed (DJHarrison et al .: Analytical Chemistry, 1992, 64, 1926-1932). In this method, a fine groove is formed on a glass substrate, and this is bonded to another substrate to form a capillary, and capillary electrophoresis is performed in this flow path. A combination of glass substrates with capillaries is called a microchip. The structure generally has a reservoir for supplying an electrophoresis buffer, molecular sieving polymer, and analysis sample at the end of a capillary formed by bonding two glass substrates together Is.
[0004]
[Problems to be solved by the invention]
In the above-mentioned technique called microchip chemistry, since the capillaries are formed in the microchip, the handleability is greatly improved compared to the conventional capillary electrophoresis method. For this reason, it is accompanied by troublesome accompanying work such as electrode joining and fixing to the apparatus, which is not sufficient. For example, electrode joining requires the work of inserting and fixing a platinum wire of an electrical terminal from an analyzer or a high voltage power supply into the liquid reservoir, and is troublesome in that an expensive platinum wire is washed and used for each analysis. If the cleaning operation is insufficient, there is a concern about contamination other than the analysis target substance. Further, due to the difficulty in drilling the glass substrate, the conventional chip has a groove in one of the two glass substrates for forming a capillary and a hole for collecting liquid in the other substrate member. It was. For this reason, each member needs to have a thickness of about 1 mm and high rigidity from the required strength as a structure. There is a problem such as air tightness during bonding, and there is a problem such as air entrainment. The sex was low.
[0005]
The present invention has been made in view of such a situation, and is an electrophoresis chip having a capillary suitable for separation of chargeable substances, having both handleability and simplicity, and having good reproducibility and productivity, and a method for producing the same An electrophoresis apparatus using the electrophoresis chip and a method for separating a charged substance are provided.
[0006]
[Means for Solving the Problems]
As a result of intensive studies in order to solve the above problems, the inventors have developed an electrophoresis chip in which an injection hole and a discharge hole, a plate-like member having a groove connecting them, and a seal member having an electrode are joined. It has been found that the above object can be achieved by manufacturing, and the present invention has been completed.
[0007]
That is, the present invention
(1) It consists of a plate member (A) and a seal member (B), and the plate member (A)
One or more injection holes (C) penetrating in the plate thickness direction, one or more discharge holes (D) penetrating or non-penetrating in the plate thickness direction, and an injection hole (C) formed on one surface One or more grooves (E) connecting the discharge holes (D), the seal member (B) has an electrode (F), and the seal member (B) is a groove in the plate-like member (A). An electrophoresis chip characterized by being bonded to a forming surface;
(2) Two or more injection holes (C) and two or more discharge holes (D), two or more grooves (E), and at least two of the grooves (E) intersect. An electrophoresis chip as described in (1) above,
(3) On the joint surface of the seal member (B) corresponding to the opening of the injection hole (C) and the discharge hole (D) of the plate-like member (A) to which the electrode (F) is joined and / or its peripheral part. The electrophoresis chip as described in (1) or (2) above,
(4) The electrophoresis chip according to any one of (1) to (3), wherein the seal member (B) further has an electric circuit (G) in close contact with the electrode (F),
(5) The electrophoresis chip as described in any one of (1) to (4) above, wherein the plate-like member (A) and / or the seal member (B) is made of acrylic resin or styrene resin. ,
(6) The electrophoresis chip according to any one of (1) to (5) above, wherein the sealing member (B) is a film.
(7) Any of (1) to (6) above, wherein the plate-like member (A) has any one or more of protrusions, dents and holes for positioning on the electrophoresis apparatus. Such electrophoresis chip,
(8) One or more injection holes (C) penetrating in the plate thickness direction, one or more discharge holes (D) penetrating or not penetrating in the plate thickness direction, and injection holes (C) and discharge on one side The plate-like member (A) in which one or more grooves (E) that connect the holes (D) are formed, with the groove (E) forming surface inside, the injection holes (C) and the discharge holes (D) A method for producing an electrophoresis chip, characterized in that it is produced by joining with a sealing member (B) having an electrode (F) formed at a position corresponding to the opening and / or the peripheral part thereof,
(9) The method for producing an electrophoresis chip as described in (8) above, wherein the electrode (F) is formed by any one of printing, vacuum deposition, sputtering and ion plating,
(10) One or more injection holes (C) penetrating in the plate thickness direction, one or more discharge holes (D) penetrating or not penetrating in the plate thickness direction, and an injection hole (C) and discharge on one side The plate-like member (A) in which one or more grooves (E) that connect the holes (D) are formed, with the groove (E) forming surface inside, the injection holes (C) and the discharge holes (D) Are joined to the sealing member (B) in which the electrode (F) is formed at a position corresponding to the opening and / or the peripheral portion thereof, and then the electric circuit (G) is placed on the surface opposite to the joining surface of the sealing member (B). Forming the electrode (F) in close contact with the electrode, and manufacturing the electrophoresis chip,
(11) The method for producing an electrophoresis chip as described in (10) above, wherein the electrode (F) and the electric circuit (G) are formed by any one of printing, vacuum deposition, sputtering and ion plating,
(12) The method for producing an electrophoresis chip as described in any one of (8) to (11) above, wherein the plate member (A) and the seal member (B) are joined by heat fusion. ,
(13) An electrophoresis apparatus using the electrophoresis chip according to any one of (1) to (7) above or the electrophoresis chip obtained by any one of the manufacturing methods according to (8) to (12) above. ,
(14) The electrophoresis chip according to any one of (1) to (7) above or the electrophoresis chip obtained by any of the production methods according to (8) to (12) above is used. To separate charged substances.
(15) A method for separating a charged substance, characterized by using the electrophoresis apparatus according to (13).
(16) The method for separating a charged substance according to (14) or (15), wherein the charged substance is a charged molecule or a charged particle,
(17) The method for separating a charged substance according to (16), wherein the charged molecule is any one of an ion, an organic acid, an amino acid, a protein, a nucleic acid, and a sugar, and the charged particle is a virus or a cell.
(18) The method for separating a charged substance according to any one of (14) to (17) above, wherein a polymer gel is used as the separation medium,
(19) The method for separating a charged substance according to (18), wherein the polymer gel is a non-crossing polymer gel,
(20) Non-crossover type polymer gel is linear polyacrylamide, linear hydroxyethyl cellulose, linear hydroxypropyl methylcellulose, linear hydroxypropyl cellulose, linear methylcellulose, linear polyethylene glycol and linear The method for separating a charged substance according to the above (19), which is any one of polyethylene oxides,
It is.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The plate-like member (A) used in the present invention is a member having an injection hole (C) penetrating in the plate thickness direction, a through or non-penetrating discharge hole (D), and a groove (E) connecting them. It is.
[0009]
The material used for the plate-like member (A) needs to be a transparent or translucent material in consideration of detection by UV absorption or fluorescence, but is not particularly limited. From the viewpoint of improving reproducibility, those that can be molded with a mold such as castable glass, thermosetting resin, and thermoplastic resin are preferable. A resin material is more preferable in terms of insulation and flexibility in molding. In addition, since the resin material has elasticity, the contact area can be secured by the surface pressure, which is preferable because the electrical condition is more advantageous than that of the glass substrate. In particular, thermoplastic resin materials are effective from the viewpoint of productivity, and acrylic resins such as polymethyl methacrylate and polyacrylate, styrene resins such as polystyrene and styrene copolymer, polycarbonate, nylon 6, nylon 66, polyethylene terephthalate, and the like. preferable. Of these, acrylic resins and styrene resins are more preferable, and polymethyl methacrylate and polystyrene are more preferable in terms of transparency and fluorescence characteristics. In addition, the electrophoresis chip of the present invention can be used as a disposable product in order to handle a chemical specimen with high productivity. From such a viewpoint, a biodegradable plastic is preferable. Examples of biodegradable plastics include polymers using starch such as Matterby (trade name, manufactured by Novamont (Italy)), Cell Green P-CA (trade name, manufactured by Daicel Chemical Industries, Ltd.), Lunar ZT (Nippon Shokubai Chemical). Cellulose ester polymers such as Kogyo Co., Ltd. (trade name), aliphatic polyester polymers such as Bionore (Showa Polymer Co., Ltd.), polylactic acid polymers such as Ecopre (trade name manufactured by Cargill (USA)), Examples thereof include microbial polyesters such as polyhydroxybutyrate / valerate.
[0010]
The size of the plate member (A) is preferably about 10 mm square to 150 mm square so that it can be easily handled with one hand, more preferably 20 mm square to 100 mm square, and 30 mm square to 50 mm from the viewpoint of downsizing the electrophoresis apparatus. More preferred are corners. Further, the plate thickness of the plate-like member (A) is preferably about 0.2 mm to 5 mm, and more preferably 1 mm to 2 mm from the viewpoints of moldability and handleability.
The method for molding the plate-like member (A) is not particularly limited, and examples thereof include a method of molding by injection molding, injection molding, press molding and the like using a mold, and a method of molding by machining. However, the method using a mold is preferable because a product having high reproducibility in both dimensions and shape can be obtained.
[0011]
The injection hole (C) formed in the plate-like member (A) is used for supplying an electrophoresis solution containing a separation medium such as an electrophoresis buffer and a polymer for molecular sieving, a sample solution containing a substance to be analyzed, and the like. It is a liquid reservoir, and it is necessary that one or more holes be formed in a shape penetrating in the plate thickness direction. The size of the injection hole (C) is not particularly limited as long as the electrophoresis solution or the sample solution can be injected, but the inner diameter is preferably set in the range of 0.5 to 10 mm from the viewpoint of injection work. 1-5 mm is more preferable.
[0012]
The discharge hole (D) formed in the plate-like member (A) is used for discharging an electrophoresis solution containing a separation medium such as an electrophoresis buffer and a molecular sieve polymer, a sample solution containing a substance to be analyzed, and the like. It is a liquid reservoir part, and it is necessary to form one or more holes in a form penetrating or non-penetrating in the plate thickness direction. The size of the discharge hole (D) is not particularly limited as long as the electrophoresis solution or the sample liquid injected into the injection hole (C) can be sufficiently discharged, but the inner diameter is in the range of 1 to 10 mm from the viewpoint of work. Is preferably set to 2 to 5 mm.
[0013]
The groove (E) formed in the plate-like member (A) is used for introducing or separating an electrophoresis solution containing a separation medium such as a sample to be analyzed, a buffer solution for electrophoresis, and a polymer for molecular sieve. This is to be a flow path (introduction flow path or separation flow path) and needs to be formed so as to connect the injection hole (C) and the discharge hole (D). A separation channel for separating the sample is indispensable, but since this separation channel can also serve as the introduction channel, at least one groove (E) is formed in the plate member (A). It is necessary.
Although the separation channel and the introduction channel can be used together, it is preferable that the separation channel and the introduction channel are separate grooves from the viewpoint of analysis accuracy. A technique for controlling the volume of the sample liquid to be analyzed is effective for improving the analysis accuracy. However, if the sample introduction channel and the separation channel are configured with the same groove, the sample is introduced into the separation channel. It is difficult to control the volume of sample liquid. If the separation channel and the introduction channel are separate grooves that are in contact with each other, it is possible to introduce a part of the introduced sample solution into the separation channel. Analysis accuracy is improved. From the viewpoint of controlling the amount of sample liquid, it is more preferable that the separation channel and the introduction channel intersect each other, and the intersection angle is not particularly limited, but the sample solution at the intersection is introduced into the separation channel. In view of this, the crossing space is preferably a rectangular shape rather than a rhombus shape, since the electrophoretic image becomes sharper and the crossing angle is preferably close to a right angle.
In addition, since the separation channel and the introduction channel can be provided separately or a plurality of separation channels and the introduction channel can be provided, two or more grooves (E) may be formed. By providing a plurality of separation channels, a plurality of analytes can be separated and analyzed simultaneously. It is preferable from the viewpoint of analysis sensitivity that the plurality of grooves (E) serving as the separation flow paths are formed in parallel, and are arranged substantially in parallel.
In the case of separating and analyzing a plurality of analytes at the same time, the injection hole (C) and the discharge hole (D), which are reservoirs for supplying and discharging the sample liquid containing the analyte, are separately provided for each analyte. In the two or more grooves (E) in which the separation channel also serves as the sample introduction channel, separate injection holes (C) and discharge holes (D) that are independent at both ends are provided. Are preferably linked to each other. When the sample introduction channel is prepared separately from the separation channel, the two or more grooves (E) serving as the introduction channel have separate injection holes (C) and discharge holes that are independent at both ends. (D) is preferably connected, but two or more grooves (E) serving as a separation channel are not provided with separate independent injection holes (C) and discharge holes (D). Also good. That is, there are two or more grooves (E) that connect one injection hole (C) and one discharge hole (D), and separate grooves (E) are the same injection hole (C) and discharge hole. (D) may be shared. In this case, the injection hole (C) and the discharge hole (D) connected to two or more grooves (E) can be used as a liquid reservoir for introducing or discharging the electrophoretic solution, but the substance to be analyzed It is not preferable to use it as a liquid reservoir for introducing a sample solution containing.
The shape of the groove (E) can be arbitrarily designed depending on the accuracy and form of analysis. For example, the shape of the groove (E) may be a linear shape, a loop shape, a square shape, or a complicated bent shape. When multiple grooves are formed, the grooves may be parallel to each other, intersected, or mixed with parallel and intersecting, and any design is possible. From the viewpoint, it is preferable to design the separation channel and the introduction channel of the analysis sample as separate grooves and to make them orthogonal to each other.
The size of the groove (E) is not particularly limited as long as the substance to be analyzed can be separated, and can be arbitrarily designed. However, the width is preferably 10 to 2000 μm from the viewpoint of handleability, moldability and downsizing of the electrophoresis apparatus, and is preferably 20 to 20 μm. 1000 μm is more preferable, and 30 μm to 500 μm is more preferable. The depth is preferably 5 to 1000 μm, more preferably 5 to 500 μm, and still more preferably 10 μm to 100 μm. The length is preferably about 5 mm to 150 mm, more preferably 10 mm to 100 mm, and still more preferably 15 to 50 mm.
[0014]
The method for forming the injection hole (C), the discharge hole (D) and the groove (E) is not particularly limited. For example, a highly productive method such as injection molding, injection molding, or press molding is used using a mold. By applying it, a product with high reproducibility in both dimensions and shape can be obtained, but it can also be formed by machining. The injection hole (C), the discharge hole (D), and the groove (E) may be formed in any order, but the technique of performing all at the same time in one molding reduces the number of steps and is simple. is there.
[0015]
The sealing member (B) used in the present invention is a member having an electrode (F), and is bonded to the surface of the plate-like member (A) where the groove (E) is formed in order to form a capillary. is required.
[0016]
The material of the seal member (B) is a transparent or translucent material in consideration of detection by UV absorption, fluorescence, or the like, and a resin material that can be formed into a film so as to be easily sealed is preferable. In particular, thermoplastic resin materials are effective from the viewpoint of productivity, and acrylic resins such as polymethyl methacrylate and polyacrylate, styrene resins such as polystyrene and styrene copolymer, polycarbonate, nylon 6, nylon 66, polyethylene terephthalate, and the like. preferable. Of these, acrylic resins and styrene resins are more preferable, and polymethyl methacrylate and polystyrene are more preferable in terms of transparency and fluorescence characteristics. Moreover, when using as a disposable product, a biodegradable plastic is preferable. Examples of biodegradable plastics include polymers using starch such as Matterby (trade name, manufactured by Novamont (Italy)), Cell Green P-CA (trade name, manufactured by Daicel Chemical Industries, Ltd.), Lunar ZT (Nippon Shokubai Chemical). Cellulose ester polymers such as Kogyo Co., Ltd. (trade name), aliphatic polyester polymers such as Bionore (Showa Polymer Co., Ltd.), polylactic acid polymers such as Ecopre (trade name manufactured by Cargill (USA)), Examples thereof include microbial polyesters such as polyhydroxybutyrate / valerate.
[0017]
The electrode (F) formed on the seal member (B) is used to separate a sample by applying a voltage and moving a sample to be analyzed through a channel (capillary) formed by a groove (E) by a potential difference. Since it is necessary to be in the vicinity of the reservoirs at both ends of the sample and electrophoresis solution introduction flow path and the separation flow path, that is, around the openings of the injection hole (C) and the discharge hole (D), When the member (A) and the seal member (B) are joined, it is necessary to be formed so as to come to positions corresponding to the openings of the injection hole (C) and the discharge hole (D). However, if this electrode (F) is provided on the joint surface side, the seal becomes incomplete, and the problem of liquid leakage from the injection hole (C) and the discharge hole (D) is likely to occur. Therefore, it is preferable that the electrode provided on the bonding surface side has a through-hole structure and a part thereof is turned to the opposite surface side of the seal member (B) so that there is no gap.
[0018]
The voltage application to the electrode (F) can be performed from a high voltage supply source such as a power supply using a wiring such as platinum. However, from the viewpoint of ease of operation, the seal member (B) is further provided. It is preferable to form an electric circuit (G). The electric circuit (G) needs to be formed in close contact with the electrode (F). In the present invention, the seal member (B) is joined to the groove (E) formation surface, and if a circuit is formed on this surface, the seal may be incomplete, and the liquid leakage is liable to occur. (G) is preferably formed mostly on the surface opposite to the bonding surface of the seal member (B), but part of it is exposed to the bonding surface in order to contact the electrode (F). Also good. The electrode (F) is formed only on the joining surface, and the electric circuit (G) is formed into a through-hole circuit structure so that the electrode (F) portion on the joining surface wraps around the opposite surface of the seal member (B). May be.
[0019]
The method for forming the electrode (F) and the electric circuit (G) is not particularly limited, and various conventional methods such as a plating method, a printing method, and a vapor deposition method can be applied. The plating method is a plate-like member (A). In the case of a transparent resin, it is difficult to handle in terms of protection against chemicals, and the printing method or vapor deposition method is preferable from the viewpoint of productivity. Of these, vapor deposition methods such as vacuum vapor deposition, sputtering, and ion plating are preferred. For the through-hole portion, it is preferable to apply a design in consideration of adhesion. The electrode (F) and the electric circuit (G) may be formed as an integrated product in which both are integrated.
The material of the electrode (F) and the electric circuit (G) is not particularly limited as long as it is a conductive material, and examples thereof include gold, silver, copper, platinum, aluminum, and carbon. Among them, the material of the electrode (F) has good corrosion resistance such as gold, silver, platinum, carbon, etc., because if the contact electrical resistance changes due to corrosion by the liquid on the electrode surface, it may adversely affect the electrophoretic conditions. Material is preferred. The material of the electric circuit (G) is preferably silver, platinum, copper, or aluminum, more preferably silver or platinum, from the viewpoints of price or ease of use. In the case where the plate member (A) and / or the seal member (B) is made of resin, a silver paste using a resin binder having good adhesion to the resin is preferable.
The thickness of the electrode (F) and the electric circuit (G) is not particularly limited as long as there is no problem with energization. However, in the case of a conductive film by a printing method, 1 to 100 μm is preferable, and 5 μm to 50 μm is more preferable. In the case of a metal film of sputtering or ion plating, 0.005 μm to 20 μm is preferable, and 0.01 μm to 5 μm is more preferable. The width of the electrode (F) and the electric circuit (G) is preferably 0.1 mm to 20 mm, more preferably 0.5 mm to 10 mm, and further preferably 1 to 5 mm.
[0020]
By forming the electrode (F) on the seal member (B), the electrode on the electrophoresis chip and the wiring can be easily brought into contact without performing the conventional troublesome electrode connection work. In addition, since the electric circuit (G) is formed, the wiring is further simplified, and since the wiring does not directly touch the sample solution, cleaning for each analysis becomes unnecessary.
[0021]
As a method of joining the sealing member (B) and the plate-like member (A), they are brought into close contact with each other and the opening of the groove (E) is sealed by the sealing member to form a capillary, and the injection hole (C) There is no particular limitation as long as at least one of the openings of the discharge hole (D) is sealed by a sealing member to form a liquid reservoir, but, for example, bonding is performed so that the mechanically opposed surfaces are pressed together. Examples thereof include a method, a method using an adhesive, and a method using heat fusion. When the seal member (B) has elasticity, the seal member (B) is pressed and fixed to the plate-like member (A) through another member, or the seal member is changed (compressed). By a method such as fixing, close sealing around the groove (E), the electrode (F), and the electric circuit (G) can be easily performed, and a capillary can be formed. When the sealing member (B) and the plate-like member (A) are bonded using an adhesive, the adhesive may flow in depending on the size of the groove (E), and the conduit may be lost or greatly changed. It is difficult to apply to grooves.
Since the plate-like member (A) of the present invention has the injection hole (C) and the discharge hole (D) for liquid reservoir and the groove (E), the member having the conventional groove and the member having the liquid reservoir hole, Compared to the microchip with the bonding, the position of the groove and hole is saved, and the positioning when joining the sealing member (B) to the plate-like member (A) is easy and the design is highly flexible. , You can choose. In addition, the reproducibility is high and the analysis accuracy is improved.
[0022]
The shape of the sealing member (B) is not particularly limited as long as it can be sealed, and examples thereof include a plate shape and a film shape. From the viewpoint of moldability, a film shape is preferable. In particular, when the sealing member (B) and the plate-like member (A) are joined by heat fusion, it is preferable to use a film-like sealing member. By making the film thin, it can be heat-sealed with a low amount of heat, and since it has a low amount of heat, the groove (E) is rarely deformed. Moreover, it is preferable that it is a film form also from a viewpoint of the noise reduction at the time of the detection by fluorescence or UV absorption. A film-like sealing member is also suitable when the groove (E) is a fine groove.
The size of the sealing member (B) is preferably the same size as the plate-like member (A) to be joined. The thickness of the sealing member (B) is preferably about 1 to 250 μm, more preferably 5 to 100 μm, and even more preferably 10 to 80 μm in the case of a film from the viewpoint of moldability and adhesion. In the case of a plate shape, a thickness of about 0.05 mm to 10 mm is preferable, 0.2 mm to 5 mm is more preferable, and 0.5 mm to 2 mm is more preferable.
[0023]
The molding method of the sealing member (B) is not particularly limited as long as it is molded into a shape that is easy to seal. For example, a molding method such as injection molding, injection molding, press molding, etc. using a mold, or machining Examples of the method include molding, inflation molding, calender molding, die extrusion molding, and the like. Among these, the film molding method is preferable. In the case of molding into a plate shape, a method using a mold is preferable because a product having high reproducibility in both dimensions and shape can be obtained.
Moreover, the commercially available material shape | molded by the film form can also be used as a sealing member (B).
[0024]
In the electrophoresis chip of the present invention, the plate-like member (A) and the seal member (B) are joined with the groove (E) forming surface of the plate-like member (A) inside, and the opening of the groove (E). The part may be sealed by a sealing member to form a capillary, and can be manufactured by any method. For example, the following method may be mentioned. A method of joining the plate member (A) in which the injection hole (C), the discharge hole (D) and the groove (E) are formed and the seal member (B) in which the electrode (F) is formed, the injection hole (C), A method of joining the plate-like member (A) in which the discharge hole (D) and the groove (E) are formed and the seal member (B) in which the electrode (F) and the electric circuit (G) are formed, the injection hole (C), After joining the plate-like member (A) in which the discharge hole (D) and the groove (E) are formed and the seal member (B) in which the electrode (F) is formed, the electric circuit (G) is connected to the seal member (B). After forming the injection member (C), the discharge hole (D), and the plate member (A) having the groove (E) and the seal member (B), the seal member (B) is joined to the electrode (F). ) And a method of forming an electric circuit (G).
The electrophoresis chip of the present invention may be preliminarily filled with a separation medium such as an electrophoresis buffer or a molecular sieving polymer.
[0025]
The electrophoresis apparatus for performing an analysis using the electrophoresis chip of the present invention has an electrode for causing the analyte to be electrophoresed by applying a potential difference to both ends of the introduction channel or the separation channel of the sample containing the analyte. (F) or means for applying a voltage to the electrical circuit (G), means for irradiating light to the analyte, means for measuring the detection light from the analyte, and positioning the electrophoresis chip Means.
[0026]
The means for applying the voltage is for generating a voltage such as a power supply.
A power source and wiring are provided, and the power source does not have to be integrated with the device. However, from the viewpoint of downsizing the device, it is preferable that the power source is integrated into the device.
[0027]
The means for irradiating the analysis target substance with light includes at least a light source for generating light, and preferably also includes a condensing means for efficiently irradiating light emitted from the light source. . Although there is no restriction | limiting in particular as a light source, For example, a mercury lamp, a QI lamp (quartz-iodine lamp), a photodiode, a light emitting diode (LED), EL (electroluminescence) etc. are mentioned. A laser light source can also be used. The condensing means is not particularly limited, and examples thereof include dichroic mirrors, optical filters, objective lenses, prism lenses and other lenses, microlenses, optical fibers, and the like, and these can be used alone or in combination of two or more. . When a lens is used as the condensing means, either a spherical lens or an aspherical lens may be used. However, an aspherical lens is preferable when the condensing area is small from the viewpoint of ease of focusing. Depending on the light collection area, one sheet or a plurality of two or more sheets can be used. When irradiating excitation light, it is preferable to use a dichroic mirror or an optical filter. In the case of using a laser light source, it is preferable to provide a plurality of prism lenses and enlarge the dot-shaped laser light source so as to contain all scanning lines.
[0028]
The means for measuring the detection light from the analysis target substance includes at least a photodetector, and preferably includes a light collecting means from the viewpoint of measurement sensitivity.
When the excitation light is irradiated, the detected light becomes fluorescence. The photodetector is not particularly limited, and examples thereof include a fluorescence detector, a photomultiplier tube (photomultiplier), a CCD, and a photodiode. The condensing means is not particularly limited, and examples thereof include a dichroic mirror, an optical filter, a spherical or aspherical lens, and a microlens.
[0029]
The means for positioning the electrophoresis chip is not particularly limited. For example, a positioning mold such as a protrusion, a dent, a hole, or a pin designed to fit the shape of the electrophoresis chip, a coil, or a spring shape. Examples include substances. These may be one type or a plurality of types, or may be provided with a plurality of types of means, and can be used as necessary.
[0030]
The electrophoresis apparatus of the present invention may include an electrophoresis chip moving means so that the analysis can be performed by moving the electrophoresis chip. Further, the means for irradiating the light and / or the means for measuring the detection light may be provided with a moving means so that the positions of the light irradiation part and the detection part can be changed. An analyzer for analyzing the measured detection light may be integrated in the apparatus or connected to the outside.
[0031]
It is preferable that the electrophoresis chip of the present invention is simply set and positioned on the electrophoresis apparatus. The electrophoresis chip is normally positioned by bringing the end face of the plate-like member (A) into contact with the positioning means of the electrophoresis apparatus. In order to fix the electrophoresis chip so that it does not move during measurement, it is preferable to have positioning means not only on the electrophoresis apparatus side but also on the electrophoresis chip side. In this case, it is effective that the positioning means of the electrophoresis apparatus matches the shape of the positioning means of the electrophoresis chip. The positioning means for the electrophoresis chip is not particularly limited, but the plate member (A) preferably has any one or more of positioning protrusions, dents and holes. The sizes of the protrusions, dents and holes can be designed arbitrarily, but those having an inner diameter of about 1 to 5 mm are preferable for a single shape, and those having a width of about 1 to 3 mm are preferable for a line shape.
[0032]
The electrophoresis chip of the present invention is a charged substance such as small molecules such as ions, organic acids and amino acids, charged molecules composed of polymers such as proteins, nucleic acids and sugars, and charged particles such as viruses and cells. Can be used as an effective means for analyzing the target substance. The electrophoresis chip of the present invention can also be used for a method of indirectly analyzing a substance to be analyzed using charged latex beads.
Specifically, the groove (E) of the electrophoresis chip of the present invention is filled with a separation medium such as a separation buffer solution, a separation polymer gel, a separation isoelectric focusing buffer solution, By injecting a sample containing an analysis target substance and applying a voltage to both ends of the groove (E), the analysis target substance can be moved and separated in the separation medium by a potential difference.
[0033]
In order to fill the separation medium with the groove (E) of the electrophoresis chip, the separation medium is injected into the groove (E) via the separation medium into the liquid reservoirs of the injection hole (C) and the discharge hole (D). Good. The injection method is not particularly limited. For example, a method using a capillary phenomenon, a pressure injection method using a syringe, etc., a medium dripped in one liquid reservoir, a water pump, a vacuum Examples thereof include a reduced pressure injection method in which injection is performed by reducing pressure using a pump or the like. At this time, it is important that other impurities such as bubbles and dust do not enter the groove (E).
[0034]
A substance to be separated such as a chargeable substance needs to be introduced into the separation channel groove (E) in a certain amount. Examples of the method for introducing the substance to be separated into the groove (E) include an electrokinetic injection method and a hydrodynamic injection method. In the electrokinetic introduction method, a small amount of a sample solution containing a charged substance is dropped into a liquid reservoir for sample introduction separately from a sample introduction flow path and a separation flow path. In this method, a sample is introduced by moving a sample to a groove crossing portion of a separation channel orthogonal to the introduction channel by applying an appropriate electric field to a liquid reservoir located at the opposite end across the substrate. This method is preferable because a sharp detection image can be obtained.
The charged substance electrophoretically separated using the present electrophoresis chip can be detected by utilizing its optical characteristics, electrochemical characteristics, and the like. For example, it is possible to detect the absorbance by measuring the absorbance by using the UV absorption property of the nucleic acid molecule, or by measuring the fluorescence by labeling the nucleic acid molecule with a fluorescent dye. The fragments can be separated and analyzed for size.
[0035]
【Example】
EXAMPLES Next, although an Example demonstrates this invention, the scope of the present invention is not limited to these Examples.
[0036]
Example 1 Production 1 of electrophoresis chip
50ton injection molding machine, molding temperature 240 ° C, injection pressure 400kg / cm 2 A PMMA (polymethylmethacrylate) resin (Acrypet VH manufactured by Mitsubishi Rayon Co., Ltd.), which is a transparent resin material, is molded under the molding conditions described above, two injection holes 4 (4a, 4b) with an inner diameter of 5 mm, and two with an inner diameter of 5 mm. The plate-like member 1 shown in FIG. 1 having an outer dimension of 20 mm × 75 mm × 1 mm having a discharge hole 5 (5a, 5b) penetrating through and a groove 3 (3a, 3b) having a width of 100 μm and a depth of 40 μm on one surface. Obtained. The length of the groove 3 is 45 mm for the longer 3 a and 6 mm for the shorter 3 b, and the length from the intersection of 3 a and 3 b to the outer periphery of 4 a and 4 c is 3 mm. The outer shape forming and the formation of the groove 3, the injection hole 4 and the discharge hole 5 were performed simultaneously by one injection molding. Next, a PMMA 50 μm film 2 (Acryprene manufactured by Mitsubishi Rayon Co., Ltd.) was used as the seal member (B), and a 20 μm thick electrode and a 15 μm thick electric circuit were formed thereon. First, as shown in the left diagram of FIG. 2, when the plate-like member and the seal member are joined, a through hole 6 having an inner diameter of 1 mm is opened at the center of the position corresponding to the opening of the injection hole 4 and the discharge hole 5, respectively. In addition, as shown in the right figure of FIG. 2, a silver paste using an epoxy binder is applied and dried to form a through-hole electric circuit 7 that conducts in the thickness direction of the film, and at the same time a wiring electric circuit 8 is formed. Then, the carbon electrode 9 was formed on the silver paste electrode on the bonding surface side of the through-hole electric circuit 7 to obtain a film seal member on which the electrode and the electric circuit were formed. Next, the film on which the electrode and the electric circuit are formed is pressed at a pressure of 1 kg / cm. 2 The chip for electrophoresis was obtained by bonding the plate-like member 1 by heat-sealing to the flat surface side where the groove 3 of the plate-like member 1 is present under the condition of 104 ° C. A sectional view of the obtained electrophoresis chip is shown in FIG. 3, and a plan view seen from the film side is shown in FIG.
[0037]
Example 2 Production of electrophoresis chip 2
A plate-like member 11 shown in FIG. The plate-like member 11 is provided with a through hole 12 for positioning in the electrophoresis apparatus. The formation of the through hole 12 was also performed simultaneously with the formation of the outer shape and the formation of the groove 3, the injection hole 4 and the discharge hole 5 by injection molding. Next, formation of electrodes and electric circuits, plate-like members and seals were carried out in the same manner as in Example 1 except that the film shown in FIG. 6 provided with relief shapes 13 for the positioning holes 12 was used as the seal member (B). Bonding with the member was performed, and the electrophoresis chip shown in FIG. 7 was obtained.
[0038]
Example 3 Separation of ΦX174HaeIII fragment
0.5 g / L hydroxypropyl methylcellulose (Aldrich, average molecular weight 90,000), 5 mg / L ethidium bromide, 44.75 mM TRIS (2-amino-2-hydroxymethyl-1,3-propanediol), 44.75 mM A HaeIII degradation fragment of ΦX174 (DNA) was separated using a gel buffer for separation containing boric acid (pH 8.2). The HaeIII degradation fragment of ΦX174 is composed of 11 fragments from 72 bp to 1353 bp in DNA chain length. Separation was performed using the electrophoresis chip 10 prepared in Example 1. Of the two grooves 3, 3a was used as a separation channel, and 3b was used as a sample introduction channel. First, 12.5 μl of the separation gel buffer solution is dropped into the electrophoresis solution introduction reservoir 4d, and 12.5 μl each of 4c and 4b, and the capillary is used to separate the separation channel 3a and the sample introduction channel 3b. Filled with buffer. Next, the HaeIII degradation fragment of ΦX174 is dissolved in the separation gel buffer (40 μg / ml), 3 μL is dropped into the sample introduction reservoir 4a, and a voltage of 1000 V / cm is applied to both ends of the sample introduction groove 3b. Then, the sample was moved to the groove crossing portion and introduced into the separation groove 3a, and subsequently, a voltage of 300 V / cm was applied to both ends of the separation groove 3a to perform electrophoresis, thereby separating DNA fragments. The separated DNA fragments were detected by a detection system combining a mercury lamp, a dichroic mirror, a fluorescence microscope having an objective lens (Olympus Optical Co., Ltd.) and a photomultiplier tube (Photon Technology International). Excitation light of 545 nm is irradiated from a mercury lamp through a dichroic mirror and an objective lens to a position 2.5 cm away from the groove intersection of the separation groove 3a, and fluorescence of ethidium bromide intercalated with DNA is passed through a fluorescence filter to a photomultiplier tube. FIG. 8 shows the result of detection detected by sending to.
[0039]
Example 4 Separation of cell extracted total RNA
Total RNA was extracted from cultured cells of human lung cancer cell CRL5800 using a fully automatic RNA extractor (MFX-2000, trade name, manufactured by Toyobo Co., Ltd.). The extracted RNA was treated with diethylpyrocarbonate (RNase inhibitor) to give 0.4 g / L hydroxypropylmethylcellulose (Aldrich, average molecular weight 90,000), 5 mg / L ethidium bromide, 44.75 mM TRIS, 44.75 mM boron. The sample solution was dissolved in a separation gel buffer containing acid (pH 8.2) to a concentration of 25 μg / ml, the voltage applied to both ends of the separation groove 3a was 200 V / cm, and the fluorescence irradiation position (detection position) Was separated by electrophoresis in the same manner as in Example 3 except that the distance between the grooves was 1 cm from the groove intersection. The detection result is shown in FIG.
[0040]
Since the electrophoresis chip produced in Examples 1 and 2 has a plate-like form with a built-in capillary, it is easy to handle and can be easily set in the electrophoresis apparatus. In addition, since it has an electrode and an electric circuit, it can be easily subjected to electrophoresis simply by connecting it to a high voltage supply source, for example, by contacting the electrode prepared in the electrophoresis apparatus with a contact probe or the like. The conventional cleaning work such as connection wiring is no longer necessary, and the wiring does not directly touch the sample, so there is no need to worry about contamination.
Further, using the electrophoresis chip produced in Example 1, as shown in Examples 3 and 4, separation and analysis of nucleic acids such as DNA and RNA could be easily performed. When RNA is analyzed, particular attention is required for degradation by RNase (RNA degrading enzyme). However, as described above, the electrophoresis chip of the present invention has a structure that is not susceptible to contamination, and thus RNase contamination during the analysis process. Decomposition is difficult to occur.
In Example 3, as shown in FIG. 8, separation of all fragments of the ΦX174HaeIII-degraded fragment DNA was confirmed. Since the 271 bp and 281 bp HaeIII degradation fragment DNAs were separated, a separation resolution (detection sensitivity) of 10 bp or more was obtained.
In Example 4, separation of 5s, 18s and 28s ribosomal RNA was confirmed as shown in FIG. These separations were sufficiently possible with a migration distance of 1 cm.
[0041]
【The invention's effect】
As shown in the examples, the present invention makes it possible to manufacture an electrophoresis chip that is easy to handle and has good reproducibility and productivity. By using this electrophoresis chip, nucleic acids such as DNA and RNA can be produced. Since the charged substance can be easily separated and analyzed, its industrial value is great.
Recently, many gene analyzes using messenger RNA have been carried out.
Since there is only a very small amount of messenger RNA, it is difficult to confirm that messenger RNA extracted from a biological sample or the like has not been degraded by RNase. If separation using the electrophoresis chip of the present invention is performed, highly sensitive analysis is possible with a very small amount of sample as shown in the examples, and therefore, by analyzing messenger RNA directly or coexisting with messenger RNA. By analyzing a large excess of ribosomal RNA, the presence or absence of messenger RNA degradation can be easily and indirectly examined, and utilization in this field can also be expected.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an overall image of a plate-like member produced in Example 1. FIG.
FIG. 2 is a cross-sectional view of a seal member showing a process for producing the seal member of Example 1
FIG. 3 is an enlarged cross-sectional view showing a part of the electrophoresis chip manufactured in Example 1;
4 is a plan view showing the formation pattern of electrodes and electric circuits of an electrophoresis chip manufactured in Example 1. FIG.
5 is a perspective view showing an overall image of a plate-like member manufactured in Example 2. FIG.
6 is a perspective view showing an entire image of a seal member manufactured in Example 2. FIG.
7 is an enlarged cross-sectional view showing a part of an electrophoresis chip manufactured in Example 2. FIG.
FIG. 8 is a diagram showing the detection results of the ΦX174HaeIII degradation fragment of Example 3.
FIG. 9 is a view showing the detection results of cell-extracted total RNA of Example 4.
[Explanation of symbols]
1: Plate-like member (A) of Example 1
2: Seal member (B)
3 (3a, 3b): groove (C)
4 (4a, 4b): injection hole (D)
5 (5a, 5b): discharge hole (E)
6: Through hole
7: Through-hole electrical circuit (G)
8: Wiring electric circuit (G)
9: Carbon electrode (F)
10: Chip for electrophoresis of Example 1
11: Plate-like member (B) of Example 2
12: Positioning through hole
13: Relief shape for positioning through hole of seal member of embodiment 2
14: Chip for electrophoresis of Example 2

Claims (15)

板状部材(A)とフィルム状のシール部材(B)とからなり、
板状部材(A)が、板厚方向に貫通した1個以上の注入孔(C)と、板厚方向に貫通又は非貫通の1個以上の排出孔(D)と、一方の面に形成される注入孔(C)と排出孔(D)とを連結する1本以上の溝(E)とを有し、
シール部材(B)が、一方の面に形成される電極(F)と、他方の面に形成され、スルーホールを介して電極(F)と接続される配線電気回路(G)とを有し、電極(F)が注入孔(C)及び排出孔(D)の開口部に位置するように板状部材(A)の溝形成面に接合されていることを特徴とする電気泳動用チップ。
It consists of a plate-like member (A) and a film-like seal member (B),
The plate-like member (A) is formed on one surface with one or more injection holes (C) penetrating in the plate thickness direction and one or more discharge holes (D) penetrating or non-penetrating in the plate thickness direction. Having one or more grooves (E) connecting the injection hole (C) and the discharge hole (D),
The seal member (B) has an electrode (F) formed on one surface and a wiring electric circuit (G) formed on the other surface and connected to the electrode (F) through a through hole. The electrophoresis chip, wherein the electrode (F) is joined to the groove forming surface of the plate-like member (A) so that the electrode (F) is positioned at the opening of the injection hole (C) and the discharge hole (D) .
注入孔(C)と排出孔(D)をそれぞれ2個以上有し、溝(E)を2本以上有し、かつ溝(E)のうちの少なくとも2本が交差していることを特徴とする請求項1記載の電気泳動チップ。  It has two or more injection holes (C) and discharge holes (D), two or more grooves (E), and at least two of the grooves (E) intersect. The electrophoresis chip according to claim 1. 板状部材(A)及び/又はシール部材(B)がアクリル系樹脂又はスチレン系樹脂製であることを特徴とする請求項1又は2記載の電気泳動用チップ。Plate member (A) and / or sealing member (B) is according to claim 1 or 2, wherein the electrophoresis chip, characterized in that is made of acrylic resin or styrene resin. 板状部材(A)が電気泳動用装置に位置決めされるための突起、凹み及び穴のうちのいずれかひとつ以上を有することを特徴とする請求項1〜のいずれか一項記載の電気泳動用チップ。Electrophoresis according to any one of claims 1 to 3 , characterized in that the plate-like member (A) has at least one of a protrusion, a recess and a hole for positioning the electrophoretic device. For chips. 板厚方向に貫通した1個以上の注入孔(C)と、板厚方向に貫通又は非貫通の1個以上の排出孔(D)と、一方の面に形成される注入孔(C)と排出孔(D)とを連結する1本以上の溝(E)とを形成した板状部材(A)の溝形成面に、一方の面に形成される電極(F)と、他方の面に形成され、スルーホールを介して電極(F)と接続される配線電気回路(G)と形成したシール部材(B)を、電極(F)が注入孔(C)及び排出孔(D)の開口部に位置するように接合することを特徴とする電気泳動用チップの製造方法。One or more injection holes (C) penetrating in the plate thickness direction, one or more discharge holes (D) penetrating or non-penetrating in the plate thickness direction, and an injection hole (C) formed on one surface On the groove forming surface of the plate-like member (A) formed with one or more grooves (E) connecting the discharge hole (D), the electrode (F) formed on one surface, and the other surface The seal member (B) formed with the wiring electrical circuit (G) connected to the electrode (F) through the through hole is formed, and the electrode (F) is formed between the injection hole (C) and the discharge hole (D). A method for manufacturing an electrophoresis chip, wherein bonding is performed so as to be positioned at an opening . 電極(F)及び配線電気回路(G)を印刷、真空蒸着、スパッタリング及びイオンプレーティングのいずれかにより形成することを特徴とする請求項記載の電気泳動用チップの製造方法。6. The method for manufacturing an electrophoresis chip according to claim 5, wherein the electrode (F) and the wiring electric circuit (G) are formed by any one of printing, vacuum deposition, sputtering, and ion plating. 板状部材(A)とシール部材(B)との接合が熱融着によりなされることを特徴とする請求項5又は6記載の電気泳動チップの製造方法。The method for manufacturing an electrophoresis chip according to claim 5 or 6, wherein the plate member (A) and the seal member (B) are joined by heat fusion. 請求項1〜のいずれか一項に記載の電気泳動チップ若しくは請求項のいずれか一項に記載の製造方法により得られる電気泳動チップを用いる電気泳動装置。An electrophoresis device using the electrophoresis chip according to any one of claims 1 to 4 or the electrophoresis chip obtained by the production method according to any one of claims 5 to 7 . 請求項1〜のいずれか一項に記載の電気泳動チップ若しくは請求項のいずれか一項に記載の製造方法により得られる電気泳動チップを用いる荷電性物質の分離方法。Method for separating charged substances using electrophoresis chip obtained by the method according to any one of claims 1 to electrophoresis chip or claim 5-7 according to any one of 4. 請求項に記載の電気泳動装置を用いることを特徴とする荷電性物質の分離方法。A method for separating a charged substance, wherein the electrophoresis apparatus according to claim 8 is used. 荷電性物質が荷電性分子又は荷電性粒子である請求項又は10記載の荷電性物質の分離方法。The method for separating a charged substance according to claim 9 or 10 , wherein the charged substance is a charged molecule or a charged particle. 荷電性分子がイオン、有機酸、アミノ酸、タンパク質、核酸及び糖のいずれかで、荷電性粒子がウイルス又は細胞である請求項11記載の荷電性物質の分離方法。The method for separating a charged substance according to claim 11 , wherein the charged molecule is any one of an ion, an organic acid, an amino acid, a protein, a nucleic acid, and a sugar, and the charged particle is a virus or a cell. 分離用媒体として高分子ゲルを用いることを特徴とする請求項12のいずれか一項記載の荷電性物質の分離方法。The method for separating a charged substance according to any one of claims 9 to 12, wherein a polymer gel is used as the separation medium. 高分子ゲルが非交差型高分子ゲルであることを特徴とする請求項13記載の荷電性物質の分離方法。14. The method for separating a charged substance according to claim 13, wherein the polymer gel is a non-crossing polymer gel. 非交差型高分子ゲルが直鎖状ポリアクリルアミド、直鎖状ハイドロキシエチルセルロース、直鎖状ハイドロキシプロピルメチルセルロース、直鎖状ハイドロキシプロピルセルロース、直鎖状メチルセルロース、直鎖状ポリエチレングリコール及び直鎖状ポリエチレンオキサイドのいずれかであることを特徴とする請求項14記載の荷電性 物質の分離方法。Non-crossover type polymer gel is composed of linear polyacrylamide, linear hydroxyethyl cellulose, linear hydroxypropyl methyl cellulose, linear hydroxypropyl cellulose, linear methyl cellulose, linear polyethylene glycol and linear polyethylene oxide. method for separating charged substances according to claim 14, wherein a is either.
JP09345199A 1999-02-26 1999-03-31 Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance Expired - Fee Related JP4178653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09345199A JP4178653B2 (en) 1999-02-26 1999-03-31 Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-51483 1999-02-26
JP5148399 1999-02-26
JP09345199A JP4178653B2 (en) 1999-02-26 1999-03-31 Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance

Publications (2)

Publication Number Publication Date
JP2000310613A JP2000310613A (en) 2000-11-07
JP4178653B2 true JP4178653B2 (en) 2008-11-12

Family

ID=26392030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09345199A Expired - Fee Related JP4178653B2 (en) 1999-02-26 1999-03-31 Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance

Country Status (1)

Country Link
JP (1) JP4178653B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438654A2 (en) 2017-08-03 2019-02-06 ARKRAY, Inc. Analysis chip
EP3608663A1 (en) 2018-08-08 2020-02-12 ARKRAY, Inc. Analysis chip device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3866183B2 (en) 2002-11-01 2007-01-10 Asti株式会社 Biochip
JP4400778B2 (en) 2003-08-08 2010-01-20 株式会社エンプラス Plastic plate and plate
JP2008188953A (en) * 2007-02-07 2008-08-21 Univ Of Electro-Communications Manufacturing method of plastic-made stamper, plastic-made stamper and manufacturing method of plastic-made substrate
CN101952731A (en) 2008-02-15 2011-01-19 柯尼卡美能达精密光学株式会社 Microchip and method for manufacturing the same
DE102008011862A1 (en) 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Miniature housing, carrier assembly with at least one miniature housing, and a method for producing a carrier assembly
EP2251698A1 (en) * 2008-03-07 2010-11-17 Konica Minolta Opto, Inc. Microchip and method of manufacturing same
WO2010021263A1 (en) 2008-08-22 2010-02-25 コニカミノルタオプト株式会社 Microchip and process for producing microchip
JP5723197B2 (en) * 2011-04-04 2015-05-27 株式会社エンプラス Fluid handling device and fluid handling system
JP5723198B2 (en) * 2011-04-04 2015-05-27 株式会社エンプラス Fluid handling device and fluid handling system
JP6047352B2 (en) * 2012-09-20 2016-12-21 株式会社エンプラス Fluid handling equipment
US10734216B2 (en) 2015-05-11 2020-08-04 The University Of North Carolina At Chapel Hill Pressure driven fluidic injection for chemical separations by electrophoresis
US9606082B2 (en) 2015-05-11 2017-03-28 The University Of North Carolina At Chapel Hill Pressure driven microfluidic injection for chemical separations
US9255905B1 (en) * 2015-05-11 2016-02-09 The University Of North Carolina At Chapel Hill Pressure driven microfluidic injection for chemical separations
US9728387B2 (en) 2015-10-20 2017-08-08 The University Of North Carolina At Chapel Hill Solid phase extraction with capillary electrophoresis

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176962B1 (en) * 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
JP2790067B2 (en) * 1994-12-27 1998-08-27 株式会社島津製作所 Electrophoresis device
JP3477918B2 (en) * 1995-05-29 2003-12-10 株式会社島津製作所 Capillary electrophoresis chip
JP3839524B2 (en) * 1995-06-07 2006-11-01 アジレント・テクノロジーズ・インク Miniaturized total analysis system
JPH1010088A (en) * 1996-06-26 1998-01-16 Hitachi Ltd Capillary electrophoretic device
JP3661320B2 (en) * 1996-11-19 2005-06-15 株式会社島津製作所 Microchip electrophoresis device
JPH10274638A (en) * 1997-03-31 1998-10-13 Shimadzu Corp Cataphoresis member and electric cataphoresis device using the same
US6803019B1 (en) * 1997-10-15 2004-10-12 Aclara Biosciences, Inc. Laminate microstructure device and method for making same
JPH11183437A (en) * 1997-12-22 1999-07-09 Shimadzu Corp Electrophoresis member and electrophoresis device using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438654A2 (en) 2017-08-03 2019-02-06 ARKRAY, Inc. Analysis chip
EP3608663A1 (en) 2018-08-08 2020-02-12 ARKRAY, Inc. Analysis chip device
US11513096B2 (en) 2018-08-08 2022-11-29 Arkray, Inc. Analysis chip device

Also Published As

Publication number Publication date
JP2000310613A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
JP4178653B2 (en) Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance
AU773950B2 (en) High density electrophoresis device and method
JP2004069430A (en) Chip for electrophoresis, method for production thereof and method for separating substance
US6974526B2 (en) Plastic microfluidics enabling two-dimensional protein separations in proteome analysis
US7641780B2 (en) Two-dimensional microfluidics for protein separations and gene analysis
EP1724018B1 (en) Substrate and device for bioassay and method for making the substrate
JP3866183B2 (en) Biochip
US20110120867A1 (en) Micro-channel chip for electrophoresis and method for electrophoresis
US20220226818A1 (en) Detection chip and detection system
JP2000310615A (en) Chip for electrophoresis, its manufacture, electrophoresis device and chargeable material separating method using the same
JP4178654B2 (en) Electrophoresis chip and method for producing the same, electrophoresis apparatus using the electrophoresis chip, and method for separating charged substance
JP3477918B2 (en) Capillary electrophoresis chip
EP2529211A2 (en) Bio-analysis using ball-ended incident and output optical fiber
US7527720B2 (en) Device for electrophoresis, electrophoresis equipment, electrophoretic method, and specimen detection method
CN1544923A (en) Preparing method of integrated capillary electrophoresis electrochemical luminescence detecting chip
US20070187251A1 (en) Variable geometry electrophoresis chips, modules and systems
WO2004038399A1 (en) Method of controlling migration of substance
JP3417143B2 (en) Capillary electrophoresis device
JP4415612B2 (en) Bonding method and bonding substrate for plastic substrate
US6731437B2 (en) Energy beam guide for an electrophoresis system
US20040163961A1 (en) Apparatus and method for using bi-directional capillary electrophoresis
JP3991008B2 (en) Electrophoresis apparatus, capillary array, and electrophoresis method
JP3938032B2 (en) Electrophoresis method and electrophoresis apparatus
JP2003121413A (en) Sampling structure of capillary array
JP2012103098A (en) Manufacturing method of microchip with electrode, and microchip with electrode manufactured by the manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees