JPH10148628A - Microchip electrophoresis device - Google Patents

Microchip electrophoresis device

Info

Publication number
JPH10148628A
JPH10148628A JP8324729A JP32472996A JPH10148628A JP H10148628 A JPH10148628 A JP H10148628A JP 8324729 A JP8324729 A JP 8324729A JP 32472996 A JP32472996 A JP 32472996A JP H10148628 A JPH10148628 A JP H10148628A
Authority
JP
Japan
Prior art keywords
sample
microchip
electrophoresis
needle
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8324729A
Other languages
Japanese (ja)
Other versions
JP3661320B2 (en
Inventor
Akihiro Arai
昭博 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP32472996A priority Critical patent/JP3661320B2/en
Publication of JPH10148628A publication Critical patent/JPH10148628A/en
Application granted granted Critical
Publication of JP3661320B2 publication Critical patent/JP3661320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To automate the operation of electrophoresis of a microchip. SOLUTION: In a microchip 1 in a dry state, a sample injecting opening S1 and an electrophoresis liquid reservoir B1 are positioned at a location P, where a rod 13 is lowered and at a location I, where a needle 12 is lowered respectively by the movement of a tray 10 in Y directions. After the needle 12 and rod 13 are each lowered to the locations I and P on the microchip 1 to fill a separating channel 2-1 and sample introducing channel 3-1 with a electrophoresis liquid, A sample is injected into the sample injection opening S1 from a syringe 22. Then the needle 12 and rod 13 are raised, and the tray 10 on which the microchip 1 is fixed is again moved in Y directions to match the detection point Ml of the channels to the location of a part to be detected and to perform a regular analysis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、極微量のタンパク
質や核酸などを高速、かつ高分解能に分析する装置に関
し、更に詳しくは、一対の透明板状部材を備え、少なく
とも一方の板状部材の表面に液が流れる溝が形成され、
他方の板状部剤にはその溝に対応する位置に貫通穴が設
けられ、これら板状部材が前記溝を内側にして張り会わ
されてその溝により互いに交差する分離流路と試料導入
流路が形成されているマイクロチップを用い、分離流路
に泳動液を満たし、試料導入流路から分離流路に試料を
導入し、分離流路の両端間に泳動電圧を印加して試料を
分離流路で電気泳動分離させるマイクロチップ電気泳動
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for analyzing very small amounts of proteins and nucleic acids at high speed and with high resolution. More specifically, the present invention provides a pair of transparent plate-like members, A groove through which the liquid flows is formed on the surface,
The other plate-shaped agent is provided with a through-hole at a position corresponding to the groove, and these plate-shaped members are opposed to each other with the groove inside, and the separation channel and the sample introduction channel cross each other by the groove. The separation channel is filled with the electrophoresis liquid using the microchip on which the sample is formed, the sample is introduced from the sample introduction channel into the separation channel, and the sample is separated by applying an electrophoresis voltage between both ends of the separation channel. The present invention relates to a microchip electrophoresis apparatus for performing electrophoretic separation on a path.

【0002】[0002]

【従来の技術】極微量のタンパク質や核酸などを分析す
る場合には、従来から電気泳動装置が用いられており、
その代表的なものとしてキャピラリ電気泳動装置があ
る。キャピラリ電気泳動装置は、内径が50μm程度又
はそれ以下のガラスキャピラリー内に泳動バッファを充
填し、一端側に試料を導入した後、両端間に高電圧を印
加して分析対象物をキャピラリー内で展開させるもので
ある。キャピラリー内は容積に対して表面積が大きい、
すなわち冷却効率が高いことから、高電圧の印加が可能
となり、DNAなどの極微量試料を高速、かつ高分解能
にて分析することができる。
2. Description of the Related Art Electrophoresis apparatuses have been used to analyze very small amounts of proteins and nucleic acids.
A typical example is a capillary electrophoresis apparatus. The capillary electrophoresis device is a glass capillary with an inner diameter of about 50 μm or less filled with an electrophoresis buffer, a sample is introduced at one end, and a high voltage is applied between both ends to expand an analyte in the capillary. It is to let. The surface area is large relative to the volume inside the capillary,
That is, since the cooling efficiency is high, a high voltage can be applied, and a very small amount of sample such as DNA can be analyzed at high speed and with high resolution.

【0003】キャピラリーはその外形が数10μm〜1
00μm程度と細く破損しやすいため、ユーザーが行な
うべきキャピラリー交換時の取扱いが容易でない問題を
有する。そのため、D. J. Harrison et al./ Anal. Chi
m. Acta 283 (1993) 361-366に示されているように、2
枚の基板を接合して形成されたキャピラリー電気泳動チ
ップ(マイクロチップという)が提案されている。その
マイクロチップの例を図1に示す。一対の透明ガラス基
板51,52からなり、一方の基板52の表面にエッチ
ングにより互いに交差する泳動用キャピラリー溝54,
55を形成し、他方の基板51にはその溝54,55の
端に対応する位置に貫通穴53を設けたものである。
A capillary has an outer shape of several tens μm to 1 μm.
Since it is as thin as about 00 μm and easily broken, there is a problem that it is not easy for the user to handle the capillary when replacing it. Therefore, DJ Harrison et al./Anal. Chi
m. As indicated in Acta 283 (1993) 361-366, two
A capillary electrophoresis chip (referred to as a microchip) formed by joining two substrates has been proposed. FIG. 1 shows an example of the microchip. A pair of transparent glass substrates 51, 52, and electrophoresis capillary grooves 54, crossing each other by etching on the surface of one substrate 52.
The other substrate 51 is provided with through holes 53 at positions corresponding to the ends of the grooves 54 and 55.

【0004】このマイクロチップを使用するときは、両
基板51,52を(C)に示すように重ね、いずれかの
貫通孔53から泳動液を溝54,55中に注入する。そ
の後、短い方の溝54の一方の端の貫通孔53に試料を
注入しその溝54の両端の貫通孔53,53間に電極を
差し込んで所定時間だけ高電圧を印加する。これによ
り、試料は溝54中に分散される。
When this microchip is used, both substrates 51 and 52 are overlapped as shown in FIG. 1C, and the electrophoresis running liquid is injected into the grooves 54 and 55 from one of the through holes 53. Thereafter, a sample is injected into the through hole 53 at one end of the shorter groove 54, an electrode is inserted between the through holes 53 at both ends of the groove 54, and a high voltage is applied for a predetermined time. As a result, the sample is dispersed in the groove 54.

【0005】次に、長い方の溝55の両端の貫通孔5
3,53に電極を差し込み、泳動電圧を印加する。これ
により、両溝54,55の交差部分56に存在する試料
が溝55内を電気泳動する。溝55の適当な位置に紫外
可視分光光度計、蛍光光度計、電気化学検出器等の検出
器を配置しておくことにより、分離成分の検出を行な
う。このようなマイクロチップを用いた電気泳動は、高
速動作が可能、極微量分析が可能、小型などの特徴を持
つことが知られており、その装置化技術が進歩すれば、
これまでにないユニ−クな分析装置となる可能性を秘め
ている。
Next, the through holes 5 at both ends of the longer groove 55
Electrodes are inserted into 3, 53, and a migration voltage is applied. Thus, the sample existing at the intersection 56 between the two grooves 54 and 55 electrophoreses in the groove 55. The separation component is detected by disposing a detector such as an ultraviolet-visible spectrophotometer, a fluorometer, and an electrochemical detector at an appropriate position in the groove 55. Electrophoresis using such a microchip is known to have features such as high-speed operation, ultra-trace analysis, and small size.
It has the potential to be an unprecedented unique analyzer.

【0006】これまでのマイクロチップを用いた技術で
は、分析前に必要不可欠な泳動液用の貫通孔53から流
路54,55への泳動液の充填、及び試料注入用の貫通
孔53への試料の注入は全て手操作によっている。泳動
液用の貫通穴は泳動液のリザ−バの役割を果たし、試料
を注入する貫通穴は試料容器に相当する。分析前の操作
として、泳動液をどれか一つの貫通穴53からシリンジ
などで手で送液し、試料は試料導入用の溝54の一端の
貫通穴53から別のシリンジで注入している。
In the conventional technology using a microchip, filling of the electrophoresis liquid into the flow paths 54 and 55 from the electrophoresis liquid through hole 53, which is indispensable before analysis, and filling the electrophoresis liquid into the through hole 53 for sample injection. All sample injections are manual. The through-hole for the electrophoresis running liquid serves as a reservoir for the electrophoresis running fluid, and the through-hole for injecting the sample corresponds to a sample container. As an operation before analysis, the electrophoresis running liquid is manually sent from one of the through holes 53 using a syringe or the like, and the sample is injected from another through hole 53 at one end of the sample introduction groove 54 with another syringe.

【0007】[0007]

【発明が解決しようとする課題】泳動液の充填や試料注
入の操作は、煩雑であるだけでなく、泳動液や試料の注
入も含めた全体の分析時間を長くする結果となり、秒単
位で分離が可能というマイクロチップ電気泳動の特徴を
活かすことにならない。そこで、本発明はマイクロチッ
プ電気泳動の操作を自動化して容易にすることを目的と
するものである。
The operation of filling the electrophoretic solution and injecting the sample is not only complicated, but also results in a longer overall analysis time including the injection of the electrophoretic solution and the sample. Does not take advantage of the characteristics of microchip electrophoresis that is possible. Accordingly, an object of the present invention is to automate and facilitate the operation of microchip electrophoresis.

【0008】[0008]

【課題を解決するための手段】本発明のマイクロチップ
電気泳動装置では、マイクロチップへの泳動液の充填と
試料注入を自動化するために、マイクロチップを上記の
平行線に平行に移動させる移動機構と、試料を供給する
ニードルがマイクロチップの試料注入孔の移動軌跡上で
上下に移動して試料注入孔に試料を注入する試料注入機
構と、泳動液を供給する泳動液供給口がマイクロチップ
の泳動液注入孔の移動軌跡上で上下に移動して泳動液注
入孔に泳動液を注入する泳動液注入機構と、試料注入孔
を試料注入機構のニードル直下の位置、泳動液注入孔を
泳動液注入機構の泳動液供給口直下の位置、及び検出点
を検出部の位置にそれぞれ位置決めするように移動機構
によるマイクロチップの移動の制御、並びに試料注入機
構と泳動液注入機構の動作の制御を行なう制御部とを備
えている。
In the microchip electrophoresis apparatus of the present invention, a moving mechanism for moving the microchip in parallel with the above-mentioned parallel line in order to automate the filling of the microchip with the electrophoresis liquid and the injection of the sample. And a sample injection mechanism for moving the sample supply needle up and down on the movement trajectory of the sample injection hole of the microchip to inject the sample into the sample injection hole, and an electrophoresis solution supply port for supplying the electrophoresis solution to the microchip. An electrophoretic liquid injection mechanism that moves up and down on the movement trajectory of the electrophoretic liquid injection hole and injects the electrophoretic liquid into the electrophoretic liquid injection hole, the sample injection hole is located just below the needle of the sample injection mechanism, and the electrophoretic liquid injection hole is Control of the movement of the microchip by the movement mechanism so as to position the position just below the electrophoresis liquid supply port of the injection mechanism and the detection point at the position of the detection unit, respectively, and the sample injection mechanism and the electrophoresis liquid injector And a control unit for controlling the operation.

【0009】流路に泳動液が充填されていないドライの
状態で、マイクロチップが移動機構に装着され、動作が
開始されると、移動機構によりマイクロチップの試料注
入孔と泳動液注入孔がそれぞれ試料供給用ニードル直下
と泳動液供給口直下に位置決めされる。試料供給用ニー
ドルと泳動液供給口がマイクロチップへ降下し、泳動液
の充填と試料注入が行なわれる。
When the microchip is mounted on the moving mechanism in a dry state where the flow path is not filled with the electrophoretic liquid and the operation is started, the moving mechanism moves the sample injection hole and the electrophoretic liquid injection hole of the microchip respectively. It is positioned just below the sample supply needle and just below the electrophoresis liquid supply port. The sample supply needle and the electrophoresis liquid supply port are lowered to the microchip, and the electrophoresis liquid is filled and the sample is injected.

【0010】その後、試料供給用ニードルと泳動液供給
口がともに上昇し、マイクロチップは移動機構により移
動させられて検出点が検出部の位置に位置決めされ、分
析が行なわれる。分析終了後、マイクロチップはさらに
移動機構により移動させられて、未使用の流路を用い
て、同様に泳動液の充填、試料注入、分析が繰り返され
る。
Thereafter, the sample supply needle and the electrophoretic solution supply port are both raised, the microchip is moved by the moving mechanism, the detection point is positioned at the position of the detection section, and the analysis is performed. After the analysis, the microchip is further moved by the moving mechanism, and the filling of the electrophoresis liquid, the sample injection, and the analysis are similarly repeated using the unused flow path.

【0011】[0011]

【実施例】図2に、一実施例で使用するマイクロチップ
を示す。マイクロチップ1は図1に示されたものと同様
に、一対の透明ガラス基板の一方の表面にエッチングに
より互いに交差するキャピラリー溝2−1,3−1の組
と、2−2,3−2の組を形成し、他方の基板にはそれ
らの溝の端に対応する位置に貫通穴B1,D1,S1,
W1,B2,D2,S2,W2を設けたものである。キ
ャピラリー溝2−1は分離流路でその両端に泳動液リザ
ーバB1,D1がそれぞれ配置され、キャピラリー溝3
−1は試料導入流路でその一端に試料注入口S1、他端
に試料廃液溜めW1が配置されている。この2つの流路
2−1と3−1の組を1組目の流路セットとし、それら
の流路2−1と3−1の交差部分の体積の試料が分析さ
れる。同様にキャピラリー溝2−2は分離流路でその両
端に泳動液リザーバB2,D2がそれぞれ配置され、キ
ャピラリー溝3−2は試料導入流路でその一端に試料注
入口S2、他端に試料廃液溜めW2が配置されている。
この2つの流路2−2と3−2の組を2組目の流路セッ
トとし、それらの流路2−2と3−2の交差部分の体積
の試料が分析される。
FIG. 2 shows a microchip used in one embodiment. As shown in FIG. 1, the microchip 1 has a set of capillary grooves 2-1 and 3-1 intersecting each other on one surface of a pair of transparent glass substrates by etching, and 2-2 and 3-2. Are formed on the other substrate, and the through holes B1, D1, S1,
W1, B2, D2, S2, and W2 are provided. The capillary groove 2-1 is a separation channel, and the electrophoresis solution reservoirs B1 and D1 are disposed at both ends thereof, respectively.
Reference numeral -1 denotes a sample introduction channel, in which a sample injection port S1 is arranged at one end and a sample waste liquid reservoir W1 is arranged at the other end. The set of the two flow paths 2-1 and 3-1 is set as a first flow path set, and a sample having a volume at the intersection of the flow paths 2-1 and 3-1 is analyzed. Similarly, the capillary groove 2-2 is a separation channel, and electrophoresis liquid reservoirs B2 and D2 are respectively disposed at both ends thereof. The capillary groove 3-2 is a sample introduction channel and a sample inlet S2 is provided at one end and a sample waste liquid is provided at the other end. The reservoir W2 is arranged.
The set of the two flow paths 2-2 and 3-2 is used as a second flow path set, and a sample having a volume at the intersection of the flow paths 2-2 and 3-2 is analyzed.

【0012】このマイクロチップ1では2組の流路の組
が形成されており、各組の試料注入口S1とS2、泳動
液リザーバD1とD2、検出点M1とM2はそれぞれ同
じ直線上に配置されており、それらの直線は互いに平行
である。それらの直線の方向をY方向とする。マイクロ
チップ1は、後述の移動機構によりその直線方向(Y方
向)に移動させられる。
In the microchip 1, two sets of flow paths are formed, and the sample injection ports S1 and S2, the electrophoresis solution reservoirs D1 and D2, and the detection points M1 and M2 of each set are arranged on the same straight line. And the straight lines are parallel to each other. The direction of those straight lines is defined as the Y direction. The microchip 1 is moved in its linear direction (Y direction) by a moving mechanism described later.

【0013】図3(A),(B)は各貫通穴B1,D1,
S1,W1,B2,D2,S2,W2に電圧を印加する
ための電極パターン4を示したものである。(A)は平
面図、(B)はそのA−A’線位置での断面図である。
各貫通穴につながる電極パターン4は1ヶ所のコネクタ
部5に集約され、コネクタ部5から電源装置に接続する
ことにより操作性を向上させている。電極パターン4は
マイクロチップ1の表面に蒸着などの方法により形成し
たものである。
FIGS. 3A and 3B show respective through holes B1, D1, D1 and D2.
FIG. 3 shows an electrode pattern 4 for applying a voltage to S1, W1, B2, D2, S2, and W2. (A) is a plan view, and (B) is a cross-sectional view taken along the line AA '.
The electrode patterns 4 connected to the through holes are gathered in one connector section 5 and operability is improved by connecting the connector section 5 to a power supply device. The electrode pattern 4 is formed on the surface of the microchip 1 by a method such as vapor deposition.

【0014】図3の例では、同じ機能をもつリザーバど
うしが導通しているため、同じ機能をもつリザーバには
同時に電圧が印加される。そのため、1つの流路セット
に試料を注入した後、その流路セットの泳動を行ない、
その後に次の流路セットに試料を注入するというよう
に、同じマイクロチップの流路セットであっても試料注
入をまとめて行なっておくことはできない。
In the example of FIG. 3, since the reservoirs having the same function are conducting, a voltage is simultaneously applied to the reservoirs having the same function. Therefore, after injecting the sample into one channel set, the electrophoresis of the channel set is performed,
After that, even if the sample is injected into the next channel set, the sample injection cannot be performed collectively even in the channel set of the same microchip.

【0015】一方、図4は流路セットごとに別の電極が
設けられた例である。この例では、各流路セットで独立
した端子が使われるので、マイクロチップの両方の流路
セットに試料を注入しておき、順次に電圧を印加して泳
動を行なうことができる。1つのマイクロチップに設け
る流路セットの数は2つに限らない。図5(A)のよう
に1組であってもよく、(B)のように3組以上であっ
てもよい。
FIG. 4 shows an example in which another electrode is provided for each channel set. In this example, since an independent terminal is used in each flow channel set, a sample can be injected into both flow channel sets of the microchip, and electrophoresis can be performed by sequentially applying a voltage. The number of flow channel sets provided in one microchip is not limited to two. One set may be provided as shown in FIG. 5A, or three or more sets may be provided as shown in FIG.

【0016】図6と図7により一実施例を示す。10は
マイクロチップローディング用トレイであり、マイクロ
チップ1を装着して固定することができる。トレイ10
はY方向に移動できるように支持されている。トレイ1
0の側部にはギア10aが形成され、そのギア10a
が、モータM1により回転が駆動されるギア11bと噛
み合っていることにより、トレイ10がY方向に移動す
る。トレイ10の移動によりマイクロチップ1の試料注
入口S1とS2が試料注入用ニードル12が降下する位
置Iに、泳動液リザーバB1とB2が泳動液加圧送液用
ロッド13が降下する位置Pに、検出点M1とM2が検
出部の位置にそれぞれ位置決めされる。
FIG. 6 and FIG. 7 show an embodiment. Reference numeral 10 denotes a microchip loading tray on which the microchip 1 can be mounted and fixed. Tray 10
Are supported so as to be movable in the Y direction. Tray 1
The gear 10a is formed on the side of the gear 10a.
Are engaged with the gear 11b driven to rotate by the motor M1, so that the tray 10 moves in the Y direction. The sample injection ports S1 and S2 of the microchip 1 are moved to the position I where the sample injection needle 12 is lowered by the movement of the tray 10, and the electrophoretic solution reservoirs B1 and B2 are positioned at the position P where the electrophoretic solution pressurized liquid sending rod 13 is lowered. The detection points M1 and M2 are respectively positioned at the positions of the detection units.

【0017】泳動液供給口をもつロッド13はその先端
にマイクロチップ1の表面と接触して気密性を保つため
のシール部材14を備えている。ニードル12とロッド
13は1つのブロック15に固定され、そのブロック1
5はX方向に移動するXマウント16と、上下方向に移
動するZマウント17のアームによって、X方向の水平
移動と垂直方向の上下移動可能に支持されている。
The rod 13 having the electrophoresis liquid supply port is provided with a seal member 14 at the tip thereof for keeping airtight by contacting the surface of the microchip 1. The needle 12 and the rod 13 are fixed to one block 15, and the block 1
Reference numeral 5 denotes an X mount 16 that moves in the X direction and an arm of a Z mount 17 that moves in the vertical direction, and is supported so as to be able to move horizontally in the X direction and up and down in the vertical direction.

【0018】ロッド13とブロック15の間には、先端
のシール部材14を適度の圧力でマイクロチップ1の表
面に押しつけるためのバネ18が設けられており、ニー
ドル12とブロック15の間には、ニードル12の先端
をマイクロチップ1の試料注入口S1,S2の底部に接
触させるための弱いバネ19が設けられている。
A spring 18 is provided between the rod 13 and the block 15 to press the sealing member 14 at the tip against the surface of the microchip 1 with an appropriate pressure. A weak spring 19 is provided for bringing the tip of the needle 12 into contact with the bottom of the sample inlets S1 and S2 of the microchip 1.

【0019】ロッド13の基端部はバルブ21を介して
泳動液を吸入しているシリンジ20に接続されている。
バルブ21が開かれ、シリンジ20が押し込まれること
によりロッド13の先端から泳動液が吐出される。ロッ
ド13、シール部材14、バルブ21及びシリンジ20
により泳動液注入機構を構成している。ニードル12の
基端部はシリンジ20に接続されており、そのシリンジ
20により試料を吸入し、吐出できるようになってい
る。
The proximal end of the rod 13 is connected via a valve 21 to a syringe 20 which sucks the electrophoresis running liquid.
When the valve 21 is opened and the syringe 20 is pushed in, the electrophoresis running liquid is discharged from the tip of the rod 13. Rod 13, seal member 14, valve 21, and syringe 20
Constitutes an electrophoresis liquid injection mechanism. The base end of the needle 12 is connected to a syringe 20 so that the syringe 20 can suck and discharge a sample.

【0020】トレイ10の側方には洗浄瓶23とサンプ
ルトレイ24に配置された試料容器25が配置されてお
り、洗浄瓶23にはロッド13とニードル12がそれぞ
れ移動してきて浸されて洗浄され、試料容器25にはニ
ードル12が移動してきて浸されて試料吸引がなされ
る。試料容器25には標準試料又は分析試料が収容さ
れ、ニードルには1μl程度の試料が吸引される。
A washing bottle 23 and a sample container 25 arranged on a sample tray 24 are arranged on the side of the tray 10, and the rod 13 and the needle 12 move in the washing bottle 23 to be immersed and washed. Then, the needle 12 moves and is immersed in the sample container 25 to suck the sample. The sample container 25 contains a standard sample or an analysis sample, and about 1 μl of the sample is sucked into the needle.

【0021】モータM1、Xマウント16、Zマウント
17、シリンジ20,22、及びバルブ21の動作は駆
動回路26によりなされ、その駆動回路26は制御部に
該当するCPUにより制御されている。なお、図6では
ニードル12とロッド13の組が2組あるように描かれ
ているが、実際には1組のみが備えられており、図は移
動した状態を表わしたものである。
The operation of the motor M1, the X mount 16, the Z mount 17, the syringes 20, 22 and the valve 21 is performed by a drive circuit 26, which is controlled by a CPU corresponding to a control unit. In FIG. 6, two sets of the needle 12 and the rod 13 are illustrated, but only one set is actually provided, and the figure shows a state of movement.

【0022】次に、この実施例の動作について説明す
る。トレイ10にドライ状態のマイクロチップ1を装着
し、動作を開始させると、モータM1によりトレイ10
がY方向に移動させられ、マイクロチップ1の試料注入
口S1と泳動液リザーバB1がそれぞれロッド13が降
下する位置Pとニードル12が降下する位置Iに位置決
めされる。一方、ニードル12が試料容器25から試料
を吸入した後、ニードル12とロッド13がそれぞれ
I,Pの位置に移動する。ニードル12とロッド13は
マイクロチップ1上に降下して、ロッド13はバネ18
により先端のシール部材がマイクロチップ1の表面に押
しつけられ、ニードル12の先端はバネ19により試料
注入口S1の底部に接触させられる。その状態でシリン
ジ20により泳動液が送液され、マイクロチップ1の分
離流路2−1と試料導入流路3−1が泳動液で満たされ
た後、シリンジ22から試料がニードル12により試料
注入口S1に注入される。
Next, the operation of this embodiment will be described. When the dry microchip 1 is mounted on the tray 10 and the operation is started, the tray 10 is driven by the motor M1.
Is moved in the Y direction, and the sample inlet S1 and the electrophoresis solution reservoir B1 of the microchip 1 are positioned at the position P where the rod 13 descends and the position I where the needle 12 descends, respectively. On the other hand, after the needle 12 sucks the sample from the sample container 25, the needle 12 and the rod 13 move to positions I and P, respectively. The needle 12 and the rod 13 descend on the microchip 1, and the rod 13 is
As a result, the sealing member at the tip is pressed against the surface of the microchip 1, and the tip of the needle 12 is brought into contact with the bottom of the sample inlet S1 by the spring 19. In this state, the electrophoresis running liquid is sent by the syringe 20 and the separation channel 2-1 and the sample introduction channel 3-1 of the microchip 1 are filled with the electrophoresis running solution. It is injected into the inlet S1.

【0023】その後、Zマウント17によりニードル1
2とロッド13が上昇させられ、マイクロチップ1を固
定したトレイ10が再度Y方向に移動し、流路の検出点
M1を検出部の位置に合わせにいく。分析は従来どお
り、試料注入口S1と試料廃液溜めW1に電圧を所定時
間印加し、次いで泳動液リザーバB1とD1に電圧を切
り換えることで、両流路2−1と3−1の交差部分のサ
ンプルが分離流路2−1方向にプラグ状で導入され、分
離されて検出される。
Thereafter, the needle 1 is moved by the Z mount 17.
2 and the rod 13 are raised, the tray 10 on which the microchip 1 is fixed moves again in the Y direction, and the detection point M1 of the flow path is adjusted to the position of the detection unit. As in the conventional analysis, a voltage is applied to the sample inlet S1 and the sample waste liquid reservoir W1 for a predetermined period of time, and then the voltage is switched to the electrophoresis solution reservoirs B1 and D1, so that the intersection of the two flow paths 2-1 and 3-1 can be analyzed. The sample is introduced in the form of a plug in the direction of the separation channel 2-1 and is separated and detected.

【0024】ニードル12とロッド13は洗浄瓶23の
方向に移動し、まずニードル12が洗浄瓶23で洗浄さ
れた後、ロッド13が洗浄瓶23に、ニードル12が試
料容器25にそれぞれ挿入され、ロッド13の洗浄とニ
ードル12への次の試料の吸入がなされる。
The needle 12 and the rod 13 move in the direction of the washing bottle 23. First, after the needle 12 is washed by the washing bottle 23, the rod 13 is inserted into the washing bottle 23 and the needle 12 is inserted into the sample container 25, respectively. The cleaning of the rod 13 and the suction of the next sample into the needle 12 are performed.

【0025】モータM1によりトレイ10が再度Y方向
に移動させられ、マイクロチップ1の試料注入口S2と
泳動液リザーバB2がそれぞれロッド13が降下する位
置Pとニードル12が降下する位置Iに位置決めされ、
1組目の流路セットへの泳動液の充填、試料注入、分析
と同様にして、2組目の流路セットへの泳動液の充填、
試料注入、分析が行なわれる。
The tray 10 is moved again in the Y direction by the motor M1, and the sample inlet S2 and the electrophoresis solution reservoir B2 of the microchip 1 are positioned at the position P where the rod 13 descends and the position I where the needle 12 descends, respectively. ,
Filling the electrophoresis liquid into the first set of flow paths, filling the electrophoresis liquid into the second set of flow paths,
Sample injection and analysis are performed.

【0026】本発明は、他の局面として次のものを含ん
でいる。マイクロチップは互いに交差する分離流路と試
料導入流路の組を少なくとも2組備えており、かつそれ
らの組の泳動液注入孔、試料導入流路の試料注入孔、及
び検出点が互いに平行な線上に位置するように配置され
たものである。さらに、実際の分析では標準試料と実試
料の最低2回は分析する必要があるため、試料導入路と
分離流路を1組のみ備えたマイクロチップでは、分析途
中で流路をいったん洗浄する必要があり、マニュアル操
作では更に時間を要する結果となる。
The present invention includes the following as another aspect. The microchip has at least two sets of a separation channel and a sample introduction channel that intersect each other, and the electrophoretic solution injection hole, the sample injection hole of the sample introduction channel, and the detection point of those sets are parallel to each other. They are arranged so as to be located on a line. Furthermore, in an actual analysis, it is necessary to analyze at least two times of the standard sample and the actual sample. Therefore, in a microchip provided with only one set of the sample introduction channel and the separation channel, it is necessary to wash the channel once during the analysis. The manual operation results in a longer time.

【0027】そこで、マイクロチップに2組以上の流路
セットが設けられている場合には、1組目の流路セット
で標準試料を分析し、他の流路セットで未知試料を分析
するように使用することができるなど、同一のマイクロ
チップで複数の試料を順次連続して分析することが可能
になる。マイクロチップの流路に泳動液が充填され、試
料が注入された後は、分析に要する時間は極めて短かい
ため、標準試料と未知試料を1枚のマイクロチップの別
々の流路で分析する場合でも、全体としての分析時間は
短かくてすむ。
When two or more channel sets are provided in the microchip, the standard sample is analyzed in the first channel set, and the unknown sample is analyzed in the other channel sets. For example, a plurality of samples can be sequentially and continuously analyzed using the same microchip. After the electrophoresis liquid is filled into the flow path of the microchip and the sample is injected, the time required for analysis is extremely short, so when analyzing the standard sample and the unknown sample in separate flow paths of one microchip However, the overall analysis time is short.

【0028】[0028]

【発明の効果】本発明では、マイクロチップを移動させ
る機構、マイクロチップの流路に泳動液を自動的に供給
する機構、及びマイクロチップの流路に試料を自動的に
注入する機構を備えたので、マイクロチップを用いた電
気泳動操作を容易に行なうことができるようになる。ま
た、マイクロチップを分離流路に対して直交する方向に
移動させることにより、検出点の位置決め機構を兼ねる
ことができる。
According to the present invention, there are provided a mechanism for moving the microchip, a mechanism for automatically supplying the electrophoretic solution to the flow path of the microchip, and a mechanism for automatically injecting the sample into the flow path of the microchip. Therefore, the electrophoresis operation using the microchip can be easily performed. In addition, by moving the microchip in a direction perpendicular to the separation channel, it can also serve as a detection point positioning mechanism.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のマイクロチップを示す図であり、(A)
と(B)はマイクロチップを構成する透明板状部材を示
す平面図、(C)は正面図である。
FIG. 1 is a view showing a conventional microchip, and FIG.
(B) is a plan view showing a transparent plate member constituting the microchip, and (C) is a front view.

【図2】一実施例で使用するマイクロチップを示す平面
図である。
FIG. 2 is a plan view showing a microchip used in one embodiment.

【図3】図2のマイクロチップの各貫通穴に電圧を印加
する電極パターンの一例を示す図であり、(A)は平面
図、(B)は(A)のA−A’線位置での断面図であ
る。
3A and 3B are diagrams showing an example of an electrode pattern for applying a voltage to each through hole of the microchip of FIG. 2; FIG. 3A is a plan view, and FIG. FIG.

【図4】図2のマイクロチップの各貫通穴に電圧を印加
する電極パターンの他の例を示す平面図である。
FIG. 4 is a plan view showing another example of an electrode pattern for applying a voltage to each through hole of the microchip of FIG. 2;

【図5】(A)と(B)はそれぞれ各貫通穴に電圧を印
加する電極を備えたマイクロチップの他の例を示す平面
図である。
FIGS. 5A and 5B are plan views showing another example of a microchip provided with an electrode for applying a voltage to each through hole.

【図6】一実施例を示す斜視図である。FIG. 6 is a perspective view showing one embodiment.

【図7】同実施例の制御系を示す概略構成図である。FIG. 7 is a schematic configuration diagram showing a control system of the embodiment.

【符号の説明】 1 マイクロチップ 2−1,2−2 分離流路 3−1,3−2 試料導入流路 4 電極パターン 5 コネクタ部 10 マイクロチップローディング用トレイ 12 試料注入用ニードル 13 泳動液加圧送液用ロッド 16 Xマウント 17 Zマウント 20,22 シリンジ 26 駆動回路 B1,B2 泳動液リザーバ S1,S2 試料注入口[Description of Signs] 1 Microchip 2-1, 2-2 Separation flow path 3-1, 3-2 Sample introduction flow path 4 Electrode pattern 5 Connector section 10 Microchip loading tray 12 Sample injection needle 13 Electrophoresis liquid addition Rod for pumping liquid 16 X mount 17 Z mount 20, 22 Syringe 26 Drive circuit B1, B2 Electrophoresis liquid reservoir S1, S2 Sample injection port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一対の透明板状部材を備え、少なくとも
一方の板状部材の表面に液が流れる溝が形成され、他方
の板状部剤にはその溝に対応する位置に貫通穴が設けら
れ、これら板状部材が前記溝を内側にして張り会わされ
てその溝により互いに交差する分離流路と試料導入流路
が形成されているマイクロチップを用い、分離流路に泳
動液を満たし、試料導入流路から分離流路に試料を導入
し、分離流路の両端間に泳動電圧を印加して試料を分離
流路で電気泳動分離させるマイクロチップ電気泳動装置
において、 前記マイクロチップを前記平行線に平行に移動させる移
動機構と、 試料を供給するニードルが前記試料注入孔の移動軌跡上
で上下に移動して試料注入孔に試料を注入する試料注入
機構と、 泳動液を供給する泳動液供給口が前記泳動液注入孔の移
動軌跡上で上下に移動して泳動液注入孔に泳動液を注入
する泳動液注入機構と、 前記試料注入孔を試料注入機構の前記ニードル直下の位
置、前記泳動液注入孔を泳動液注入機構の泳動液供給口
直下の位置、及び前記検出点を検出部の位置にそれぞれ
位置決めするように前記移動機構によるマイクロチップ
の移動の制御、並びに前記試料注入機構と前記泳動液注
入機構の動作の制御を行なう制御部と、を備えたことを
特徴とするマイクロチップ電気泳動装置。
1. A pair of transparent plate members are provided, a groove through which a liquid flows is formed on at least one of the plate members, and a through hole is provided in a position corresponding to the groove in the other plate member. Using a microchip in which a separation channel and a sample introduction channel are formed in which these plate-shaped members are faced with the groove inside and cross each other by the groove, the separation channel is filled with the electrophoresis liquid, In a microchip electrophoresis apparatus for introducing a sample from a sample introduction channel to a separation channel and applying an electrophoresis voltage between both ends of the separation channel to electrophoretically separate the sample in the separation channel, A moving mechanism for moving the sample in parallel with the line, a sample injection mechanism for moving a needle for supplying the sample up and down on the movement trajectory of the sample injection hole to inject the sample into the sample injection hole, and an electrophoretic solution for supplying the electrophoretic solution Supply port is the electrophoresis An electrophoretic liquid injection mechanism that moves up and down on the movement trajectory of the liquid injection hole to inject the electrophoretic liquid into the electrophoretic liquid injection hole; and a position where the sample injection hole is located immediately below the needle of the sample injection mechanism and the electrophoretic liquid injection hole. Control of the movement of the microchip by the moving mechanism so as to position the position immediately below the electrophoretic liquid supply port of the electrophoretic liquid injection mechanism and the detection point at the position of the detection unit, respectively, and the sample injection mechanism and the electrophoretic liquid injection mechanism And a control unit for controlling the operation of the microchip electrophoresis apparatus.
JP32472996A 1996-11-19 1996-11-19 Microchip electrophoresis device Expired - Fee Related JP3661320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32472996A JP3661320B2 (en) 1996-11-19 1996-11-19 Microchip electrophoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32472996A JP3661320B2 (en) 1996-11-19 1996-11-19 Microchip electrophoresis device

Publications (2)

Publication Number Publication Date
JPH10148628A true JPH10148628A (en) 1998-06-02
JP3661320B2 JP3661320B2 (en) 2005-06-15

Family

ID=18169057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32472996A Expired - Fee Related JP3661320B2 (en) 1996-11-19 1996-11-19 Microchip electrophoresis device

Country Status (1)

Country Link
JP (1) JP3661320B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310614A (en) * 1999-02-26 2000-11-07 Hitachi Chem Co Ltd Chip for electrophoresis, its manufacture, and electrophoresis device and chargeable material separating method using the same
JP2000310613A (en) * 1999-02-26 2000-11-07 Hitachi Chem Co Ltd Chip for electrophoresis, its manufacture, electrophoresis device and chargeable material separating method using the same
JP2000310615A (en) * 1999-02-26 2000-11-07 Hitachi Chem Co Ltd Chip for electrophoresis, its manufacture, electrophoresis device and chargeable material separating method using the same
JP2001242138A (en) * 2000-02-29 2001-09-07 Hitachi Chem Co Ltd Microchip electrophresis apparatus
JP2001523000A (en) * 1997-11-07 2001-11-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Microfabricated capillary array electrophoresis apparatus and method
JP2002525574A (en) * 1998-09-14 2002-08-13 ピーイー コーポレイション (エヌワイ) Sample handling system for multi-channel capillary electrophoresis device
WO2002089981A3 (en) * 2000-12-13 2003-06-19 Amersham Biosciences Sv Corp Apparatus and method for filling and cleaning channels and inlet ports in microchips used for biological analysis
US6627446B1 (en) * 1998-07-02 2003-09-30 Amersham Biosciences (Sv) Corp Robotic microchannel bioanalytical instrument
JP2005274512A (en) * 2004-03-26 2005-10-06 Aida Eng Ltd Electrophoretic microchip
US7033475B2 (en) 2000-10-25 2006-04-25 Shimadzu Corporation Electrophoretic apparatus
JP2007107916A (en) * 2005-10-11 2007-04-26 Shimadzu Corp Device for filling separation buffer liquid into microchip and microchip processor equipped therewith
JP2007155560A (en) * 2005-12-06 2007-06-21 Norio Okuyama Electrophoresis apparatus, and electrophoresis system
JP2008530524A (en) * 2005-02-08 2008-08-07 ラブ901 リミテッド Analytical instrument
US7678254B2 (en) * 2004-01-28 2010-03-16 Shimadzu Corporation Microchip processing method and apparatus
US8097470B2 (en) * 2006-07-18 2012-01-17 Shimadzu Corporation Microchip analysis method and apparatus
JP2012026739A (en) * 2010-07-20 2012-02-09 Arkray Inc Analyzer and analytic method
WO2013038727A1 (en) * 2011-09-14 2013-03-21 株式会社 島津製作所 Solution filling mechanism
JP2014132276A (en) * 2014-04-14 2014-07-17 Arkray Inc Analyser and analytical method
JP2015081810A (en) * 2013-10-22 2015-04-27 株式会社島津製作所 Capillary electrophoresis apparatus
JP2015175781A (en) * 2014-03-17 2015-10-05 島津エンジニアリング株式会社 Automatic seal device
WO2016146482A1 (en) * 2015-03-13 2016-09-22 Ge Healthcare Limited Apparatus for the production of a radiopharmaceutical comprising a piercing device
JP2016212090A (en) * 2015-05-13 2016-12-15 アークレイ株式会社 Analysis tool and analysis system
US10088449B2 (en) 2015-12-18 2018-10-02 Shimadzu Corporation Electrophoresis device
US10605772B2 (en) 2015-05-13 2020-03-31 Arkray, Inc. Analytical tool and analytical system
JPWO2021171508A1 (en) * 2020-02-27 2021-09-02
CN117890452A (en) * 2024-03-18 2024-04-16 深圳市真迈生物科技有限公司 Chip transfer device, equipment and analysis system
CN117907408A (en) * 2024-03-18 2024-04-19 深圳市真迈生物科技有限公司 Chip, chip transfer device and analysis system

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523000A (en) * 1997-11-07 2001-11-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Microfabricated capillary array electrophoresis apparatus and method
US6787111B2 (en) 1998-07-02 2004-09-07 Amersham Biosciences (Sv) Corp. Apparatus and method for filling and cleaning channels and inlet ports in microchips used for biological analysis
US6627446B1 (en) * 1998-07-02 2003-09-30 Amersham Biosciences (Sv) Corp Robotic microchannel bioanalytical instrument
JP2002525574A (en) * 1998-09-14 2002-08-13 ピーイー コーポレイション (エヌワイ) Sample handling system for multi-channel capillary electrophoresis device
JP2000310613A (en) * 1999-02-26 2000-11-07 Hitachi Chem Co Ltd Chip for electrophoresis, its manufacture, electrophoresis device and chargeable material separating method using the same
JP2000310615A (en) * 1999-02-26 2000-11-07 Hitachi Chem Co Ltd Chip for electrophoresis, its manufacture, electrophoresis device and chargeable material separating method using the same
JP2000310614A (en) * 1999-02-26 2000-11-07 Hitachi Chem Co Ltd Chip for electrophoresis, its manufacture, and electrophoresis device and chargeable material separating method using the same
JP2001242138A (en) * 2000-02-29 2001-09-07 Hitachi Chem Co Ltd Microchip electrophresis apparatus
US7033475B2 (en) 2000-10-25 2006-04-25 Shimadzu Corporation Electrophoretic apparatus
WO2002089981A3 (en) * 2000-12-13 2003-06-19 Amersham Biosciences Sv Corp Apparatus and method for filling and cleaning channels and inlet ports in microchips used for biological analysis
US7678254B2 (en) * 2004-01-28 2010-03-16 Shimadzu Corporation Microchip processing method and apparatus
US8187442B2 (en) 2004-01-28 2012-05-29 Shimadzu Corporation Microchip processing method and apparatus
JP2005274512A (en) * 2004-03-26 2005-10-06 Aida Eng Ltd Electrophoretic microchip
JP2008530524A (en) * 2005-02-08 2008-08-07 ラブ901 リミテッド Analytical instrument
JP2007107916A (en) * 2005-10-11 2007-04-26 Shimadzu Corp Device for filling separation buffer liquid into microchip and microchip processor equipped therewith
JP2007155560A (en) * 2005-12-06 2007-06-21 Norio Okuyama Electrophoresis apparatus, and electrophoresis system
US8097470B2 (en) * 2006-07-18 2012-01-17 Shimadzu Corporation Microchip analysis method and apparatus
JP2012026739A (en) * 2010-07-20 2012-02-09 Arkray Inc Analyzer and analytic method
WO2013038727A1 (en) * 2011-09-14 2013-03-21 株式会社 島津製作所 Solution filling mechanism
JP2013061281A (en) * 2011-09-14 2013-04-04 Shimadzu Corp Solution filling mechanism
JP2015081810A (en) * 2013-10-22 2015-04-27 株式会社島津製作所 Capillary electrophoresis apparatus
JP2015175781A (en) * 2014-03-17 2015-10-05 島津エンジニアリング株式会社 Automatic seal device
JP2014132276A (en) * 2014-04-14 2014-07-17 Arkray Inc Analyser and analytical method
WO2016146482A1 (en) * 2015-03-13 2016-09-22 Ge Healthcare Limited Apparatus for the production of a radiopharmaceutical comprising a piercing device
US10525435B2 (en) 2015-03-13 2020-01-07 Ge Healthcare Limited Piercing device
JP2018507731A (en) * 2015-03-13 2018-03-22 ジーイー・ヘルスケア・リミテッド Apparatus for the production of radiopharmaceuticals comprising a perforation device
JP2018072350A (en) * 2015-05-13 2018-05-10 アークレイ株式会社 Analysis system
JP2016212090A (en) * 2015-05-13 2016-12-15 アークレイ株式会社 Analysis tool and analysis system
US10605772B2 (en) 2015-05-13 2020-03-31 Arkray, Inc. Analytical tool and analytical system
US10866212B2 (en) 2015-05-13 2020-12-15 Arkray, Inc. Analytical tool and analytical system
US10088449B2 (en) 2015-12-18 2018-10-02 Shimadzu Corporation Electrophoresis device
JPWO2021171508A1 (en) * 2020-02-27 2021-09-02
WO2021171508A1 (en) * 2020-02-27 2021-09-02 株式会社島津製作所 Column accommodation device and liquid chromatograph
CN117890452A (en) * 2024-03-18 2024-04-16 深圳市真迈生物科技有限公司 Chip transfer device, equipment and analysis system
CN117907408A (en) * 2024-03-18 2024-04-19 深圳市真迈生物科技有限公司 Chip, chip transfer device and analysis system

Also Published As

Publication number Publication date
JP3661320B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
JP3661320B2 (en) Microchip electrophoresis device
US8187442B2 (en) Microchip processing method and apparatus
ES2323408T3 (en) APPLIANCE AND PROCEDURE FOR FILLING AND CLEANING CHANNELS AND MICROCHIPS INPUT HOLES USED FOR BIOLOGICAL ANALYSIS.
US20020168780A1 (en) Method and apparatus for sample injection in microfabricated devices
US20020033337A1 (en) High throughput separations based analysis systems
AU2001280951A1 (en) High throughput separations based analysis systems
JPH1010088A (en) Capillary electrophoretic device
US20020144907A1 (en) Apparatus and method of introducing a sample in a microchip electrophoresis
JP4831232B2 (en) Electrophoresis apparatus and electrophoresis method
EP1895308A1 (en) Droplet-based fluidic coupling
JP3562460B2 (en) Electrophoresis device
JP2007506092A (en) Electrophoresis apparatus and method, and electrophoresis member and sample dispensing probe
US20070175757A1 (en) Device for charging separation buffer liquid to microchip, and microchip processing device equipped with the charging device, electrophoresis method in capillary channel and its microchip processing device
JP4457919B2 (en) Electrophoresis plate
JP2002310990A (en) Electrophoretic equipment
JP3887943B2 (en) Microchip electrophoresis device
JP7276439B2 (en) Microchip electrophoresis method and microchip electrophoresis apparatus
JP2003156475A (en) Chip type electrophoresis device
JP2010523942A (en) Microchannel cleaning method
US6994778B2 (en) Microfluidic device and analyzing method using the same
JP5310605B2 (en) Microchip electrophoresis method and apparatus
US20060201809A1 (en) Sample injection method using capillary plate
US8043492B2 (en) Method for pretreatment of electrophoresis, substrate for analysis, and pretreatment apparatus for electrophoresis
CN208206865U (en) A kind of interchangeable capillary electrophoresis
US20100096267A1 (en) System and method for performing microfluidic manipulation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees