WO2013038727A1 - Solution filling mechanism - Google Patents

Solution filling mechanism Download PDF

Info

Publication number
WO2013038727A1
WO2013038727A1 PCT/JP2012/055033 JP2012055033W WO2013038727A1 WO 2013038727 A1 WO2013038727 A1 WO 2013038727A1 JP 2012055033 W JP2012055033 W JP 2012055033W WO 2013038727 A1 WO2013038727 A1 WO 2013038727A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
hole
seal pin
reservoir
nozzle
Prior art date
Application number
PCT/JP2012/055033
Other languages
French (fr)
Japanese (ja)
Inventor
松本 博幸
Original Assignee
株式会社 島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 島津製作所 filed Critical 株式会社 島津製作所
Publication of WO2013038727A1 publication Critical patent/WO2013038727A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present invention relates to a solution filling mechanism for filling a capillary with a small inner diameter in addition to a flow path provided in a microchip.
  • Electrophoresis analyzers are provided with a mechanism for filling an electrophoresis medium into a capillary serving as an electrophoresis channel for performing electrophoresis (see Patent Document 1).
  • a capillary such as a capillary having a diameter of about 0.05 mm or a glass capillary is generally used.
  • the filling solution In order to fill a solution into a capillary having such a small inner diameter, the filling solution must be pushed into the capillary at a high pressure. When the solution filling the capillary has a high viscosity, the pressure is further increased. .
  • FIG. 5 shows an example of a solution filling mechanism of the electrophoresis analyzer.
  • the solution filling mechanism (A) a nozzle 102 for injecting a liquid into an injection port of a capillary serving as an electrophoresis channel is connected to a suction / discharge port of a syringe pump 118 via a pipe 104.
  • the nozzle 102 can be moved in the horizontal direction and the vertical direction by a driving mechanism (not shown).
  • the syringe pump 118 sucks and discharges the liquid through the nozzle 102 by driving the plunger 120.
  • the solution to be filled in the capillary is sucked by the nozzle, and the nozzle is moved to the position of the capillary inlet to fill the solution.
  • the nozzle is moved to the position of the cleaning liquid reservoir, the cleaning liquid is sucked, discharged to the waste liquid port, and discharged to clean the nozzle 102 and the pipe 104.
  • the suction / discharge port of the syringe pump 118 is connected to the common port of the three-way valve 110.
  • a pipe 104 leading to the nozzle 102 and a pipe 105 leading to the reservoir 112 storing the cleaning liquid are connected to the remaining ports of the three-way valve 110.
  • the three-way valve 110 switches and connects the suction / discharge port of the syringe pump 118 to either the nozzle 102 or the reservoir 112.
  • the three-way valve 110 is switched to connect the syringe pump 118 to the reservoir 112 and the syringe pump 118. Then, the inside of the nozzle 102 and the inside of the pipe 104 are cleaned by inhaling the cleaning liquid, switching the three-way valve 110, connecting the syringe pump 118 to the nozzle, and discharging the cleaning liquid from the tip of the nozzle 102.
  • FIG. 5B solves the above problem by sucking the cleaning liquid into the syringe pump 118 from a different route from the pipe 104.
  • the solution to be filled in the capillary is a highly viscous solution of about 10,000 cP
  • a pressure of several MPa is required to fill the capillary with a diameter of about 0.05 mm in a short time.
  • an object of the present invention is to provide a solution filling mechanism that can fill a capillary with a high-viscosity solution and can sufficiently perform the washing of the solution feeding path in a short time.
  • a first solution filling mechanism of the present invention includes a nozzle, a drive unit for moving the nozzle to a position of a solution injection port of a capillary to be filled with a solution, a storage block including a reservoir for storing a cleaning liquid, and a reservoir It has a conical shape with a provided hole, a tip part having a diameter smaller than the diameter of the hole, and the diameter gradually increases from the tip side to the base end side, and the tip part is inserted into the channel from the reservoir side.
  • a cleaning liquid storage unit provided with a seal pin driving mechanism for driving the seal pin, a syringe pump having one suction / discharge port for sucking and discharging fluid, and a suction / discharge port, A first flow path for connecting the nozzle, a second flow path for connecting the suction / discharge port and the hole, and a first flow path opening / closing section for opening and closing the first flow path;
  • the hole is open Control for controlling the seal pin drive mechanism and the first flow path opening / closing section so that the first flow path is closed when the hole is sealed and the first flow path is opened when the hole is sealed Part.
  • the second solution filling mechanism of the present invention includes a nozzle, a drive unit for moving the nozzle to the position of the solution inlet of the capillary to be filled with the solution, a storage block including a reservoir for storing the cleaning liquid, and a reservoir It has a conical shape with a provided hole, a tip part having a diameter smaller than the diameter of the hole, and the diameter gradually increases from the tip side to the base end side, and the tip part is inserted into the channel from the reservoir side.
  • a cleaning liquid storage unit having a seal pin for closing the hole and a seal pin drive mechanism for driving the seal pin, a syringe pump having two suction / discharge ports for sucking and discharging fluid, and one suction of the syringe pump A first flow path for connecting the discharge port and the nozzle, a second flow path for connecting the other suction / discharge port of the syringe pump and the hole, and opening and closing the first flow path.
  • First flow channel opening and closing portion and a seal pin so that the first flow channel is closed when the hole is opened, and the first flow channel is opened when the hole is sealed
  • a control unit for controlling the drive mechanism and the first flow path opening / closing unit.
  • the two solution filling mechanisms include a cleaning liquid storage unit, and the first liquid flow path is obtained by sucking the cleaning liquid from the reservoir of the cleaning liquid storage unit with a syringe pump and sending the cleaning liquid to the first flow path connected to the nozzle.
  • the inside and the inside of the nozzle can be cleaned.
  • the cleaning liquid storage unit includes a valve mechanism that can seal the hole by inserting a conical seal pin into the hole provided in the bottom of the reservoir. This valve mechanism cuts off the connection between the reservoir and the syringe pump by inserting a seal pin into the hole at the bottom of the reservoir and sealing it.
  • a drive mechanism for driving the seal pin for example, a solenoid, 3 in FIG.
  • a small and inexpensive one can be used.
  • the nozzle is connected to the syringe pump via the first flow path and the cleaning liquid storage unit is connected via the second flow path, so that the nozzle and the first flow path are not connected. Then, the cleaning liquid can be sucked into the syringe pump, and the cleaning liquid can be discharged to the nozzle side.
  • the inside of the first flow path and the nozzle which are the liquid supply path for the solution filled in the capillary, can be efficiently washed, and cross contamination can be prevented.
  • the cleaning liquid storage unit includes a valve mechanism that can seal a hole by inserting a conical seal pin into a hole provided at the bottom of the reservoir, and the seal pin is inserted into the hole at the bottom of the reservoir and sealed. Since the connection between the reservoir and the syringe pump is cut off by stopping, the force required to maintain the cut off of the connection between the reservoir and the syringe pump is small, and the seal pin is driven. Therefore, a small and inexpensive drive mechanism can be used.
  • the first solution filling mechanism uses a syringe pump having only one suction / discharge port
  • the second solution filling mechanism uses a syringe pump having two suction / discharge ports. It is. Any of the solution filling mechanisms has the above-described effects, but the second solution filling mechanism sucks in from the vicinity of the bottom dead center of the syringe pump and discharges from the top dead center. It is difficult for bubbles to accumulate in the syringe pump, the suction / discharge amount can be stabilized, and the liquid feeding pressure can be stabilized.
  • FIG. 1 It is a schematic block diagram which shows the further another Example of a solution filling mechanism. It is a schematic block diagram which shows an example of a solution filling mechanism, (A) is an example which is not provided with the reservoir of cleaning liquid, (B) is an example which is provided with the reservoir of cleaning liquid.
  • a hole for inserting a seal pin is provided in the bottom surface of the reservoir.
  • the hole can be opened and closed only by driving the seal pin in the vertical direction, and the configuration of the seal pin drive mechanism can be simplified.
  • the edge of the hole of the reservoir into which the seal pin is inserted has a tapered shape. Therefore, the sealing force when a seal pin is inserted can be improved.
  • a preferable example of the seal pin drive mechanism is one having a solenoid.
  • the first flow path opening / closing part may be configured by a sealing port that seals the tip of the nozzle by inserting the driving part and the tip of the nozzle.
  • the first flow path can be opened and closed without incorporating a valve mechanism on the first flow path, so that the cost of the apparatus can be reduced.
  • the sealing port may be formed in a storage block. If it does so, the number of parts which comprise the solution filling mechanism concerned can be reduced, and cost reduction can be aimed at.
  • the storage block preferably includes an internal flow path that communicates with the hole of the reservoir and forms part of the first flow path or the second flow path, and a pressure sensor that detects the pressure in the internal flow path. Then, the pressure in the flow path when filling the capillary with the solution can be detected.
  • This solution filling mechanism includes a nozzle 2, a cleaning liquid storage unit 3, and a syringe pump 18.
  • a drive unit for driving the nozzle 2 in the horizontal direction and the vertical direction is provided, and the nozzle 2 can be moved to a predetermined position.
  • a sealing port 17 is provided in the movable range of the nozzle 2. By inserting the tip of the nozzle 2 into the sealing port 17, the suction / discharge port of the nozzle 2 is sealed.
  • this solution filling mechanism includes a waste liquid port for draining the cleaning liquid discharged from the nozzle 2.
  • the waste liquid port can also be realized by a common port with the sealing port 17. Specifically, it is configured so that one port can be connected to the drain by a switching valve or not connected to any connection destination, and when used as a waste liquid port, that port is connected to the drain and sealed. When used as a stop port 17, it is realized by not connecting to any connection destination.
  • the nozzle 2 is connected to one end of the pipe 4 (first flow path).
  • the other end of the pipe 4 is connected to the pipe connection portion 8 a of the storage block 6 of the cleaning liquid storage unit 3.
  • the suction / discharge port of the syringe pump 18 is connected to the pipe connection portion 8 b of the storage block 6 of the cleaning liquid storage unit 3.
  • the cleaning liquid unit 3 is provided with a drive mechanism 16 for driving the seal pin 14 and the seal pin 14 in the vertical direction in addition to the storage block 6.
  • the storage block 6 includes a reservoir 12 for storing the cleaning liquid, and a hole 13 is provided on the bottom surface of the reservoir 12.
  • a flow path 10b (second flow path) that connects the hole 13 and the pipe connection portion 8b is provided below the reservoir 12 of the storage block 6.
  • a flow path 10a communicating with the pipe connection portion 8a joins in the middle of the flow path 10b.
  • the seal pin 14 is a conical stainless steel member that is inserted into the reservoir 12 from the lower end to a certain height and gradually increases in thickness from the lower end to the top.
  • the diameter of the lower end portion of the seal pin 14 is smaller than the inner diameter of the flow path 10 b communicating with the hole 13 at the bottom of the reservoir 12.
  • the horizontal position of the seal pin 14 is fixed at a position where the lower end portion of the seal pin 14 can be inserted into the hole 13 at the bottom of the reservoir 12.
  • the seal pin 14 is driven in the vertical direction by the drive mechanism 16.
  • the seal pin 14 In the cleaning liquid storage unit 3, when sealing the hole 13 at the bottom of the reservoir 12, the seal pin 14 is lowered and the tip is inserted into the hole 13 as shown in FIG. Conversely, when opening the hole 13 at the bottom of the reservoir 12, the seal pin 14 rises and the tip is extracted from the hole 13 as shown in FIG. In the state where the hole 13 is sealed, the connection between the reservoir 12 and the flow path 10b is cut off. In a state where the hole 13 is opened, the reservoir 12 and the flow path 10b are connected.
  • the edge of the hole 13 at the bottom of the reservoir 12 is formed in a tapered shape, and the sealing performance when the seal pin 14 is inserted into the hole 13 is enhanced.
  • the inclination of the outer peripheral surface of the seal pin 14 is, for example, about 15 ° with respect to the axis of the seal pin 14, and the taper angle of the edge of the hole 13 is, for example, about 60 °.
  • the seal pin 14 is inserted into the hole 13 at the bottom of the reservoir 12 to seal the hole 13 so that the syringe pump 18 is connected only to the nozzle 2.
  • the syringe pump 18 By driving the syringe pump 18 from the tip of the nozzle 2 to the suction side, a predetermined amount of solution to be filled in the capillary is sucked, and then the nozzle 2 is moved to the position of the capillary inlet, and the syringe pump 18 is driven to the discharge side. As a result, the capillary is filled with the solution.
  • the tip of the nozzle 2 is inserted into the sealing port 17 to seal the suction / discharge port of the nozzle 2.
  • the seal pin 14 is pulled out from the hole 13 to connect between the syringe pump 18 and the reservoir 12.
  • the hole 13 is sealed by the seal pin 14.
  • FIG. 1 As a drive mechanism for driving the seal pin 14 in the vertical direction, a solenoid 22, a beam 24, a fulcrum 26, and an elastic body 27 are provided.
  • the solenoid 22 is a mechanism including a drive unit that is driven in one direction when a voltage is applied.
  • One end of the beam 24 is attached to the drive shaft of the solenoid 22.
  • the beam 24 is supported by a fulcrum 26 so as to be tiltable about the fulcrum 26 at a position other than the end.
  • the other end of the beam 24 is biased from above by a spring 27 that is an elastic body.
  • a seal pin 14 is attached between the other end of the beam 24 and the fulcrum 26.
  • a pressure sensor 11 is provided in the vicinity of the flow path 10a so that the pressure applied to the flow path when the solution is filled in the capillary can be monitored.
  • the drive portion of the solenoid 22 protrudes to the maximum when the solenoid 22 is off.
  • the seal pin 14 is pushed downward by the lever principle, and the tip portion is inserted into the hole 13 at the bottom of the reservoir 12.
  • the solenoid 22 is turned on, as shown in (B)
  • the drive part of the solenoid 22 is drawn into the inside of the main body, whereby the beam 24 is inclined and the seal pin 14 is pulled upward, and the tip part is It is pulled out from the hole 13.
  • the syringe pump 28 has two ports 29a and 29b.
  • the storage block 36 of the cleaning liquid storage unit 3 includes only one flow path 36 a as a flow path leading to the hole 13 at the bottom of the reservoir 12.
  • the flow path 36a is connected to the port 28b of the syringe pump 28 via a pipe.
  • a port 29 a of the syringe pump 28 is connected to the nozzle 2 via the pipe 4.
  • FIG. 1 An example of such a configuration is shown in FIG.
  • the reservoir 12 is provided in the storage block 37.
  • a sealing port 38 is also provided on the upper surface of the storage block 37 and is integrated with the reservoir 12, thereby reducing the construction cost of the solution filling mechanism.
  • a port 29 b of the syringe pump 28 having two ports is connected to a flow path 37 a communicating with the hole 13 at the bottom of the reservoir 12.
  • a pressure sensor 11 for measuring the internal pressure of the flow path 37a is provided.
  • a sealing port 38 for sealing the tip of the nozzle 2 is provided at a position below one end of the beam 24, and the nozzle 2 is connected to the beam 24 when the tip of the nozzle 2 is inserted into the sealing port 38. It descends while pushing down one end.
  • a hole for penetrating the tip of the nozzle 2 is provided at one end of the beam 24, and the tip of the nozzle 2 penetrates the hole so that the outer peripheral surface of the nozzle 2 and one end of the beam 24 are engaged.
  • the beam 24 is driven in accordance with the lowering operation of the nozzle 2. Thereby, one end of the beam 24 is pushed down by using a lowering operation when the nozzle 2 is inserted into the sealing port 28, whereby the seal pin 14 is pulled upward.

Abstract

[Problem] To provide a solution filling mechanism which can fill a capillary with a highly viscous solution and which can sufficiently clean a delivery path for the solution in a short time. [Solution] A holding block (6) is provided with a reservoir (12) for holding a cleaning solution, and a hole (13) is formed in the bottom of the reservoir (12). A seal pin (14) is inserted into the reservoir (12) up to a position at a specific height from the lower end of the seal pin (14), and the seal pin (14) is a circular conical member having a shape gradually expanding upward from the lower end thereof. The diameter of the lower end of the seal pin (14) is smaller than the inner diameter of a flow path (8b) connecting to the hole (13) in the bottom of the reservoir (12). The horizontal position of the seal pin (14) is affixed at a point at which the lower end of the seal pin (14) can be inserted into the hole (13) in the bottom of the reservoir (12). The seal pin (14) is driven vertically by a drive mechanism (16).

Description

溶液充填機構Solution filling mechanism
 本発明は、マイクロチップに設けられた流路のほか、内径の小さい毛管に溶液を充填するための溶液充填機構に関するものである。 The present invention relates to a solution filling mechanism for filling a capillary with a small inner diameter in addition to a flow path provided in a microchip.
 電気泳動分析装置では、電気泳動を行なうための泳動流路となるキャピラリ内に泳動媒体を充填するための機構が設けられている(特許文献1参照)。泳動流路としては、直径が0.05mm程度のキャピラリやガラスキャピラリなどの毛管が使用されることが一般的である。そのような内径の小さいキャピラリ内へ溶液を充填するためには、充填溶液を高圧でキャピラリ内へ押し込まなければならず、キャピラリに充填する溶液が高粘度である場合にはその圧力はさらに高くなる。 Electrophoresis analyzers are provided with a mechanism for filling an electrophoresis medium into a capillary serving as an electrophoresis channel for performing electrophoresis (see Patent Document 1). As the electrophoresis channel, a capillary such as a capillary having a diameter of about 0.05 mm or a glass capillary is generally used. In order to fill a solution into a capillary having such a small inner diameter, the filling solution must be pushed into the capillary at a high pressure. When the solution filling the capillary has a high viscosity, the pressure is further increased. .
 図5に電気泳動分析装置の溶液充填機構の例を示す。
 まず、最も簡単な構成の溶液充填機構として、同図(A)に示されているものがある。
(A)の溶液充填機構は、泳動流路となるキャピラリの注入口に液を注入するためのノズル102が配管104を介してシリンジポンプ118の吸入・吐出口に接続されている。ノズル102は、駆動機構(図示は省略)により水平方向と垂直方向に移動することができる。シリンジポンプ118はプランジャ120の駆動によりノズル102を介して液の吸入と吐出を行なうようになっている。
FIG. 5 shows an example of a solution filling mechanism of the electrophoresis analyzer.
First, the simplest solution filling mechanism is shown in FIG.
In the solution filling mechanism (A), a nozzle 102 for injecting a liquid into an injection port of a capillary serving as an electrophoresis channel is connected to a suction / discharge port of a syringe pump 118 via a pipe 104. The nozzle 102 can be moved in the horizontal direction and the vertical direction by a driving mechanism (not shown). The syringe pump 118 sucks and discharges the liquid through the nozzle 102 by driving the plunger 120.
 この溶液充填機構では、キャピラリに充填する溶液をノズルで吸入し、ノズルをキャピラリの注入口の位置まで移動させて溶液を充填する。キャピラリに溶液を充填した後、ノズルを洗浄液の貯留部の位置まで移動させて洗浄液を吸入し廃液ポートに吐出して廃液することで、ノズル102内と配管104内を洗浄する。 In this solution filling mechanism, the solution to be filled in the capillary is sucked by the nozzle, and the nozzle is moved to the position of the capillary inlet to fill the solution. After the capillary is filled with the solution, the nozzle is moved to the position of the cleaning liquid reservoir, the cleaning liquid is sucked, discharged to the waste liquid port, and discharged to clean the nozzle 102 and the pipe 104.
 また、(B)の溶液充填機構は、シリンジポンプ118の吸入・吐出口が3方バルブ110の共通ポートに接続されている。3方バルブ110の残りのポートにノズル102に通じる配管104と洗浄液を貯留するリザーバ112に通じる配管105が接続されている。3方バルブ110は、シリンジポンプ118の吸入・吐出口をノズル102とリザーバ112のいずれか一方に切り替えて接続する。 In the solution filling mechanism (B), the suction / discharge port of the syringe pump 118 is connected to the common port of the three-way valve 110. A pipe 104 leading to the nozzle 102 and a pipe 105 leading to the reservoir 112 storing the cleaning liquid are connected to the remaining ports of the three-way valve 110. The three-way valve 110 switches and connects the suction / discharge port of the syringe pump 118 to either the nozzle 102 or the reservoir 112.
 この溶液充填機構では、シリンジポンプ118をノズル102に接続した状態でキャピラリへの溶液の充填動作を行なった後は、3方バルブ110を切り替えてシリンジポンプ118をリザーバ112に接続してシリンジポンプ118に洗浄液を吸入し、さらに3方バルブ110を切り替えてシリンジポンプ118をノズルに接続してノズル102の先端から洗浄液を吐出することで、ノズル102内と配管104内を洗浄する。 In this solution filling mechanism, after the syringe is filled with the solution while the syringe pump 118 is connected to the nozzle 102, the three-way valve 110 is switched to connect the syringe pump 118 to the reservoir 112 and the syringe pump 118. Then, the inside of the nozzle 102 and the inside of the pipe 104 are cleaned by inhaling the cleaning liquid, switching the three-way valve 110, connecting the syringe pump 118 to the nozzle, and discharging the cleaning liquid from the tip of the nozzle 102.
特開2000-9690号公報Japanese Unexamined Patent Publication No. 2000-9690
 図5(A)の構成では、ノズル102内と配管104内の洗浄の際、配管104内の壁面に付着した高粘度の溶液が洗浄液の吸入時にシリンジポンプ118側へ引き込まれて洗浄後も配管104内にその溶液が残ってしまい、クロスコンタミネーションを引き起こす可能性がある。そのような不具合を防止するためには、その影響がなくなるまで洗浄液の吸入と吐出を繰り返して行なう必要があり、洗浄動作に長時間を要する。 5A, when cleaning the inside of the nozzle 102 and the pipe 104, the high-viscosity solution adhering to the wall surface in the pipe 104 is drawn into the syringe pump 118 side when the cleaning liquid is inhaled, and the pipe is cleaned even after cleaning. The solution may remain in 104 and cause cross contamination. In order to prevent such a problem, it is necessary to repeatedly suck and discharge the cleaning liquid until the influence is eliminated, and the cleaning operation takes a long time.
 図5(B)は、シリンジポンプ118内に配管104とは別の経路から洗浄液を吸入することで上記問題を解決したものである。しかし、キャピラリに充填する溶液が10000cP程度の高粘性溶液である場合、その溶液を直径が0.05mm程度の毛管に短時間で充填するためには数MPaの圧力が必要となり、数MPaの圧力がバルブ110にかかることとなるが、現状では、そのような高圧に耐え得る安価で小型のバルブは存在していない。 FIG. 5B solves the above problem by sucking the cleaning liquid into the syringe pump 118 from a different route from the pipe 104. However, when the solution to be filled in the capillary is a highly viscous solution of about 10,000 cP, a pressure of several MPa is required to fill the capillary with a diameter of about 0.05 mm in a short time. However, at present, there is no inexpensive and small-sized valve that can withstand such a high pressure.
 そこで、本発明は、キャピラリに高粘度の溶液を充填できるとともに、その溶液の送液経路の洗浄を短時間で十分に行なうことができる溶液充填機構を提供することを目的とするものである。 Therefore, an object of the present invention is to provide a solution filling mechanism that can fill a capillary with a high-viscosity solution and can sufficiently perform the washing of the solution feeding path in a short time.
 本発明の第1の溶液充填機構は、ノズルと、ノズルを溶液を充填すべきキャピラリの溶液注入口の位置へ移動させるための駆動部と、洗浄液を貯留するリザーバを備えた貯留ブロック、リザーバに設けられた穴、穴の径よりも小さい径の先端部を有し、その先端側から基端側へ徐々に径が大きくなる円錐形状であり、リザーバ側から前記流路に先端部が挿入されることによって穴を塞ぐシールピン及びそのシールピンを駆動するシールピン駆動機構を備えた洗浄液貯留ユニットと、流体の吸入と吐出を行なうための1つの吸入・吐出口を有するシリンジポンプと、吸入・吐出口と前記ノズルとを接続するための第1流路と、吸入・吐出口と前記穴とを接続するための第2流路と、第1流路の開閉を行なうための第1流路開閉部と、穴が開放されているときに第1流路を閉じた状態にし、穴が封止されているときは第1流路を開放した状態にするようにシールピン駆動機構及び第1流路開閉部を制御する制御部と、を備えたものである。 A first solution filling mechanism of the present invention includes a nozzle, a drive unit for moving the nozzle to a position of a solution injection port of a capillary to be filled with a solution, a storage block including a reservoir for storing a cleaning liquid, and a reservoir It has a conical shape with a provided hole, a tip part having a diameter smaller than the diameter of the hole, and the diameter gradually increases from the tip side to the base end side, and the tip part is inserted into the channel from the reservoir side. And a cleaning liquid storage unit provided with a seal pin driving mechanism for driving the seal pin, a syringe pump having one suction / discharge port for sucking and discharging fluid, and a suction / discharge port, A first flow path for connecting the nozzle, a second flow path for connecting the suction / discharge port and the hole, and a first flow path opening / closing section for opening and closing the first flow path; , The hole is open Control for controlling the seal pin drive mechanism and the first flow path opening / closing section so that the first flow path is closed when the hole is sealed and the first flow path is opened when the hole is sealed Part.
 本発明の第2の溶液充填機構は、ノズルと、ノズルを溶液を充填すべきキャピラリの溶液注入口の位置へ移動させるための駆動部と、洗浄液を貯留するリザーバを備えた貯留ブロック、リザーバに設けられた穴、穴の径よりも小さい径の先端部を有し、その先端側から基端側へ徐々に径が大きくなる円錐形状であり、リザーバ側から流路に先端部が挿入されることによって穴を塞ぐシールピン及びそのシールピンを駆動するシールピン駆動機構を備えた洗浄液貯留ユニットと、流体の吸入と吐出を行なうための2つの吸入・吐出口を有するシリンジポンプと、シリンジポンプの一方の吸入・吐出口とノズルとを接続するための第1流路と、シリンジポンプの他方の吸入・吐出口と穴とを接続するための第2流路と、第1流路の開閉を行なうための第1流路開閉部と、穴が開放されているときに第1流路を閉じた状態にし、穴が封止されているときは第1流路を開放した状態にするようにシールピン駆動機構及び第1流路開閉部を制御する制御部と、を備えたものである。 The second solution filling mechanism of the present invention includes a nozzle, a drive unit for moving the nozzle to the position of the solution inlet of the capillary to be filled with the solution, a storage block including a reservoir for storing the cleaning liquid, and a reservoir It has a conical shape with a provided hole, a tip part having a diameter smaller than the diameter of the hole, and the diameter gradually increases from the tip side to the base end side, and the tip part is inserted into the channel from the reservoir side. And a cleaning liquid storage unit having a seal pin for closing the hole and a seal pin drive mechanism for driving the seal pin, a syringe pump having two suction / discharge ports for sucking and discharging fluid, and one suction of the syringe pump A first flow path for connecting the discharge port and the nozzle, a second flow path for connecting the other suction / discharge port of the syringe pump and the hole, and opening and closing the first flow path. First flow channel opening and closing portion and a seal pin so that the first flow channel is closed when the hole is opened, and the first flow channel is opened when the hole is sealed And a control unit for controlling the drive mechanism and the first flow path opening / closing unit.
 上記2つの溶液充填機構は洗浄液貯留ユニットを備えており、シリンジポンプで洗浄液貯留ユニットのリザーバから洗浄液を吸入し、ノズルの接続された第1流路へその洗浄液を送ることで、第1流路内及びノズル内の洗浄を行なうことができるようになっている。洗浄液貯留ユニットは、リザーバの底部に設けられた穴に円錐形状のシールピンを挿入することによって穴を封止できるバルブ機構を備えている。このバルブ機構は、リザーバの底部の穴にシールピンを挿入して封止することによって、リザーバとシリンジポンプとの間の接続を遮断するものである。この構造では、リザーバとシリンジポンプとの間の接続の遮断を維持するために必要な力が小さくて済むため、シールピンを駆動するための駆動機構として、例えばソレノイドなど、図5(B)の3方バルブ110に比べ、小型で安価なものを使用することができる。 The two solution filling mechanisms include a cleaning liquid storage unit, and the first liquid flow path is obtained by sucking the cleaning liquid from the reservoir of the cleaning liquid storage unit with a syringe pump and sending the cleaning liquid to the first flow path connected to the nozzle. The inside and the inside of the nozzle can be cleaned. The cleaning liquid storage unit includes a valve mechanism that can seal the hole by inserting a conical seal pin into the hole provided in the bottom of the reservoir. This valve mechanism cuts off the connection between the reservoir and the syringe pump by inserting a seal pin into the hole at the bottom of the reservoir and sealing it. In this structure, since the force required to maintain the disconnection between the reservoir and the syringe pump is small, a drive mechanism for driving the seal pin, for example, a solenoid, 3 in FIG. Compared to the one-way valve 110, a small and inexpensive one can be used.
 本発明の溶液充填機構では、シリンジポンプに、第1流路を介してノズルが接続され、第2流路を介して洗浄液貯留ユニットが接続されているので、ノズル及び第1流路を介さずにシリンジポンプに洗浄液を吸入し、その洗浄液をノズル側へ吐出することができる。これにより、キャピラリ内に充填する溶液の送液経路である第1流路内及びノズル内を効率よく洗浄することができ、クロスコンタミネーションを防止できる。
上述のように、洗浄液貯留ユニットは、リザーバの底部に設けられた穴に円錐形状のシールピンを挿入することによって穴を封止できるバルブ機構を備え、リザーバの底部の穴にシールピンを挿入して封止することによって、リザーバとシリンジポンプとの間の接続を遮断する構造であるので、リザーバとシリンジポンプとの間の接続の遮断を維持するために必要な力が小さくて済み、シールピンを駆動するための駆動機構として小型で安価なものを使用することができる。
In the solution filling mechanism of the present invention, the nozzle is connected to the syringe pump via the first flow path and the cleaning liquid storage unit is connected via the second flow path, so that the nozzle and the first flow path are not connected. Then, the cleaning liquid can be sucked into the syringe pump, and the cleaning liquid can be discharged to the nozzle side. As a result, the inside of the first flow path and the nozzle, which are the liquid supply path for the solution filled in the capillary, can be efficiently washed, and cross contamination can be prevented.
As described above, the cleaning liquid storage unit includes a valve mechanism that can seal a hole by inserting a conical seal pin into a hole provided at the bottom of the reservoir, and the seal pin is inserted into the hole at the bottom of the reservoir and sealed. Since the connection between the reservoir and the syringe pump is cut off by stopping, the force required to maintain the cut off of the connection between the reservoir and the syringe pump is small, and the seal pin is driven. Therefore, a small and inexpensive drive mechanism can be used.
 なお、第1の溶液充填機構は吸入・吐出口を1つのみ備えたシリンジポンプを使用するものであり、第2の溶液充填機構は吸入・吐出口を2つ備えたシリンジポンプを使用するものである。いずれの溶液充填機構においても上記の作用効果を有するが、第2の溶液充填機構では、シリンジポンプの下死点付近から吸入し、上死点から吐出するため、第1の溶液充填機構よりもシリンジポンプ内に気泡が溜まりにくく、吸入・吐出量を安定させることができるとともに送液圧力を安定させることができる。 The first solution filling mechanism uses a syringe pump having only one suction / discharge port, and the second solution filling mechanism uses a syringe pump having two suction / discharge ports. It is. Any of the solution filling mechanisms has the above-described effects, but the second solution filling mechanism sucks in from the vicinity of the bottom dead center of the syringe pump and discharges from the top dead center. It is difficult for bubbles to accumulate in the syringe pump, the suction / discharge amount can be stabilized, and the liquid feeding pressure can be stabilized.
溶液充填機構の一実施例を示す図であり、(A)は概略構成図、(B)は洗浄液貯留ユニットのリザーバの穴を封止した状態の断面図、(C)は洗浄液貯留ユニットのリザーバの穴を開放した状態の断面図である。It is a figure which shows one Example of a solution filling mechanism, (A) is a schematic block diagram, (B) is sectional drawing of the state which sealed the hole of the reservoir of a washing | cleaning liquid storage unit, (C) is a reservoir of a washing | cleaning liquid storage unit It is sectional drawing of the state which open | released this hole. 同実施例の駆動機構の構成の一例を示す概略構成図であり、(A)は洗浄液貯留ユニットのリザーバの穴を封止した状態、(B)は洗浄液貯留ユニットのリザーバの穴を開放した状態の図である。It is a schematic block diagram which shows an example of a structure of the drive mechanism of the Example, (A) is the state which sealed the hole of the reservoir of the washing | cleaning liquid storage unit, (B) is the state which opened the hole of the reservoir of the washing | cleaning liquid storage unit FIG. 溶液充填機構の他の実施例を示す概略構成図である。It is a schematic block diagram which shows the other Example of a solution filling mechanism. 溶液充填機構のさらに他の実施例を示す概略構成図である。It is a schematic block diagram which shows the further another Example of a solution filling mechanism. 溶液充填機構の一例を示す概略構成図であり、(A)は洗浄液のリザーバを備えていない例であり、(B)は洗浄液のリザーバを備えている例である。It is a schematic block diagram which shows an example of a solution filling mechanism, (A) is an example which is not provided with the reservoir of cleaning liquid, (B) is an example which is provided with the reservoir of cleaning liquid.
 本発明の溶液充填機構の好ましい実施形態では、リザーバの底面にシールピンを挿入するための穴が設けられている。これにより、シールピンを上下方向に駆動するだけで穴の開閉が可能になり、シールピン駆動機構の構成を簡単にすることができる。 In a preferred embodiment of the solution filling mechanism of the present invention, a hole for inserting a seal pin is provided in the bottom surface of the reservoir. Thus, the hole can be opened and closed only by driving the seal pin in the vertical direction, and the configuration of the seal pin drive mechanism can be simplified.
 さらに、シールピンが挿入されるリザーバの穴の縁がテーパ形状となっていることが好ましい。これにより、シールピンを挿入したときの封止力を向上させることができる。 Furthermore, it is preferable that the edge of the hole of the reservoir into which the seal pin is inserted has a tapered shape. Thereby, the sealing force when a seal pin is inserted can be improved.
 シールピン駆動機構の好ましい一例としてソレノイドを備えたものが挙げられる。 A preferable example of the seal pin drive mechanism is one having a solenoid.
 また、第1流路開閉部は、駆動部及びノズルの先端を挿入することによりノズルの先端を封止する封止ポートにより構成されるようにしてもよい。これにより、第1流路上にバルブ機構を組み込むことなく第1流路を開閉することができるので、装置コストの低減を図ることができる。 Further, the first flow path opening / closing part may be configured by a sealing port that seals the tip of the nozzle by inserting the driving part and the tip of the nozzle. As a result, the first flow path can be opened and closed without incorporating a valve mechanism on the first flow path, so that the cost of the apparatus can be reduced.
 上記封止ポートは貯留ブロックに形成されているようにしてもよい。そうすれば、当該溶液充填機構を構成する部品点数を減らすことができ、コストの低減を図ることができる。 The sealing port may be formed in a storage block. If it does so, the number of parts which comprise the solution filling mechanism concerned can be reduced, and cost reduction can be aimed at.
また、貯留ブロックは、リザーバの穴に通じるとともに第1流路又は第2流路の一部をなす内部流路と、内部流路内の圧力を検知する圧力センサを備えていることが好ましい。そうすれば、キャピラリに溶液を充填する際の流路内の圧力を検知することができる。 In addition, the storage block preferably includes an internal flow path that communicates with the hole of the reservoir and forms part of the first flow path or the second flow path, and a pressure sensor that detects the pressure in the internal flow path. Then, the pressure in the flow path when filling the capillary with the solution can be detected.
 以下、本発明の溶液充填機構の一実施例について図1を参照して説明する。
この溶液充填機構は、ノズル2、洗浄液貯留ユニット3及びシリンジポンプ18を備えている。図示は省略されているが、ノズル2を水平方向と垂直方向へ駆動するための駆動部が設けられており、ノズル2を所定の位置へ移動させることができる。ノズル2の移動可能範囲内に封止ポート17が設けられている。ノズル2の先端部が封止ポート17に挿入されることで、ノズル2の吸入・吐出口が封止される。
Hereinafter, an embodiment of the solution filling mechanism of the present invention will be described with reference to FIG.
This solution filling mechanism includes a nozzle 2, a cleaning liquid storage unit 3, and a syringe pump 18. Although not shown, a drive unit for driving the nozzle 2 in the horizontal direction and the vertical direction is provided, and the nozzle 2 can be moved to a predetermined position. A sealing port 17 is provided in the movable range of the nozzle 2. By inserting the tip of the nozzle 2 into the sealing port 17, the suction / discharge port of the nozzle 2 is sealed.
 図示は省略されているが、この溶液充填機構はノズル2から吐出される洗浄液を廃液するための廃液ポートを備えている。なお、廃液ポートは封止ポート17と共通のポートで実現することもできる。具体的には、1つのポートを切替バルブによってドレインに接続した状態又はいずれの接続先にも接続しない状態にできるように構成し、廃液ポートとして使用するときはそのポートをドレインに接続し、封止ポート17として使用するときはいずれの接続先にも接続しないようにすることで実現する。 Although not shown, this solution filling mechanism includes a waste liquid port for draining the cleaning liquid discharged from the nozzle 2. The waste liquid port can also be realized by a common port with the sealing port 17. Specifically, it is configured so that one port can be connected to the drain by a switching valve or not connected to any connection destination, and when used as a waste liquid port, that port is connected to the drain and sealed. When used as a stop port 17, it is realized by not connecting to any connection destination.
 ノズル2は配管4(第1流路)の一端に接続されている。配管4の他端は洗浄液貯留ユニット3の貯留ブロック6の配管接続部8aに接続されている。シリンジポンプ18の吸入・吐出口は洗浄液貯留ユニット3の貯留ブロック6の配管接続部8bに接続されている。 The nozzle 2 is connected to one end of the pipe 4 (first flow path). The other end of the pipe 4 is connected to the pipe connection portion 8 a of the storage block 6 of the cleaning liquid storage unit 3. The suction / discharge port of the syringe pump 18 is connected to the pipe connection portion 8 b of the storage block 6 of the cleaning liquid storage unit 3.
 洗浄液ユニット3は、貯留ブロック6のほか、シールピン14とシールピン14を上下方向に駆動するための駆動機構16を備えている。貯留ブロック6は洗浄液を貯留するためのリザーバ12を備えており、リザーバ12の底面に穴13が設けられている。貯留ブロック6のリザーバ12の下部に穴13と配管接続部8bとを接続する流路10b(第2流路)が設けられている。流路10bの途中に配管接続部8aに通じる流路10aが合流している。 The cleaning liquid unit 3 is provided with a drive mechanism 16 for driving the seal pin 14 and the seal pin 14 in the vertical direction in addition to the storage block 6. The storage block 6 includes a reservoir 12 for storing the cleaning liquid, and a hole 13 is provided on the bottom surface of the reservoir 12. A flow path 10b (second flow path) that connects the hole 13 and the pipe connection portion 8b is provided below the reservoir 12 of the storage block 6. A flow path 10a communicating with the pipe connection portion 8a joins in the middle of the flow path 10b.
 シールピン14はリザーバ12内に下端部から一定の高さの位置までが挿入されており、下端部から上にいくに従って徐々に太くなる円錐形状のステンレス製の部材である。シールピン14の下端部の直径はリザーバ12の底部の穴13に通じる流路10bの内径よりも小さくなっている。シールピン14の水平方向の位置はシールピン14の下端部がリザーバ12の底部の穴13に挿入され得る位置に固定されている。シールピン14は駆動機構16により上下方向に駆動される。 The seal pin 14 is a conical stainless steel member that is inserted into the reservoir 12 from the lower end to a certain height and gradually increases in thickness from the lower end to the top. The diameter of the lower end portion of the seal pin 14 is smaller than the inner diameter of the flow path 10 b communicating with the hole 13 at the bottom of the reservoir 12. The horizontal position of the seal pin 14 is fixed at a position where the lower end portion of the seal pin 14 can be inserted into the hole 13 at the bottom of the reservoir 12. The seal pin 14 is driven in the vertical direction by the drive mechanism 16.
 この洗浄液貯留ユニット3において、リザーバ12の底部の穴13を封止する際は、図1(B)に示されているように、シールピン14が下降して先端部が穴13に挿入される。逆に、リザーバ12の底部の穴13を開放する際は、同図(C)に示されているように、シールピン14が上昇して先端部が穴13から抜き出される。穴13が封止された状態では、リザーバ12と流路10bとの間の接続が遮断される。穴13が開放された状態では、リザーバ12と流路10bとの間が接続される。 In the cleaning liquid storage unit 3, when sealing the hole 13 at the bottom of the reservoir 12, the seal pin 14 is lowered and the tip is inserted into the hole 13 as shown in FIG. Conversely, when opening the hole 13 at the bottom of the reservoir 12, the seal pin 14 rises and the tip is extracted from the hole 13 as shown in FIG. In the state where the hole 13 is sealed, the connection between the reservoir 12 and the flow path 10b is cut off. In a state where the hole 13 is opened, the reservoir 12 and the flow path 10b are connected.
 この実施例では、リザーバ12の底部の穴13の縁がテーパ形状に形成されており、穴13にシールピン14が挿入されたときの封止性能を高めている。シールピン14の外周面の傾きはシールピン14の軸に対して例えば15°程度であり、穴13の縁のテーパ角は例えば60°程度である。 In this embodiment, the edge of the hole 13 at the bottom of the reservoir 12 is formed in a tapered shape, and the sealing performance when the seal pin 14 is inserted into the hole 13 is enhanced. The inclination of the outer peripheral surface of the seal pin 14 is, for example, about 15 ° with respect to the axis of the seal pin 14, and the taper angle of the edge of the hole 13 is, for example, about 60 °.
 同実施例の動作について説明する。
 まず、シールピン14をリザーバ12の底部の穴13に挿入して穴13を封止し、シリンジポンプ18がノズル2にのみ接続された状態にする。ノズル2の先端からシリンジポンプ18を吸入側へ駆動することでキャピラリに充填すべき溶液を所定量吸入した後、ノズル2をキャピラリの注入口の位置へ移動させ、シリンジポンプ18を吐出側へ駆動することでキャピラリに溶液を充填する。
The operation of the embodiment will be described.
First, the seal pin 14 is inserted into the hole 13 at the bottom of the reservoir 12 to seal the hole 13 so that the syringe pump 18 is connected only to the nozzle 2. By driving the syringe pump 18 from the tip of the nozzle 2 to the suction side, a predetermined amount of solution to be filled in the capillary is sucked, and then the nozzle 2 is moved to the position of the capillary inlet, and the syringe pump 18 is driven to the discharge side. As a result, the capillary is filled with the solution.
 次に、ノズル2の先端を封止ポート17に挿入してノズル2の吸入・吐出口を封止する。そして、シールピン14を穴13から引き抜いてシリンジポンプ18とリザーバ12との間を接続する。シリンジポンプ18でリザーバ12内の洗浄液を吸入した後、シールピン14により穴13を封止する。ノズル2を廃液ポート(図示は省略)に移動させてシリンジポンプ18を吐出側へ駆動することで、洗浄液をノズル2の先端から廃液ポートに吐出して廃液し、配管4内やノズル2内の洗浄を行なう。この洗浄動作は1回のみ行なうようになっていてもよいし、複数回繰り返し行なうようになっていてもよい。 Next, the tip of the nozzle 2 is inserted into the sealing port 17 to seal the suction / discharge port of the nozzle 2. Then, the seal pin 14 is pulled out from the hole 13 to connect between the syringe pump 18 and the reservoir 12. After the cleaning liquid in the reservoir 12 is sucked by the syringe pump 18, the hole 13 is sealed by the seal pin 14. By moving the nozzle 2 to a waste liquid port (not shown) and driving the syringe pump 18 to the discharge side, the cleaning liquid is discharged from the tip of the nozzle 2 to the waste liquid port to be discharged, and the pipe 4 or the nozzle 2 Wash. This cleaning operation may be performed only once, or may be repeated a plurality of times.
 図2を用いて図1の実施例をより具体的に説明する。
 シールピン14を上下方向へ駆動するための駆動機構として、ソレノイド22、梁24、支点26及び弾性体27が設けられている。ソレノイド22は電圧が印加されることによって一方向に駆動される駆動部を備えた機構である。梁24の一端はソレノイド22の駆動軸に取り付けられている。梁24は端部でない位置において支点26により該支点26を中心に傾斜可能に支持されている。梁24の他端は上方から弾性体であるバネ27によって付勢されている。梁24の他端と支点26との間にシールピン14が取り付けられている。また、この例では、流路10aの近傍に圧力センサ11が設けられており、溶液をキャピラリに充填する際に流路にかかる圧力をモニタできるようになっている。
The embodiment of FIG. 1 will be described more specifically with reference to FIG.
As a drive mechanism for driving the seal pin 14 in the vertical direction, a solenoid 22, a beam 24, a fulcrum 26, and an elastic body 27 are provided. The solenoid 22 is a mechanism including a drive unit that is driven in one direction when a voltage is applied. One end of the beam 24 is attached to the drive shaft of the solenoid 22. The beam 24 is supported by a fulcrum 26 so as to be tiltable about the fulcrum 26 at a position other than the end. The other end of the beam 24 is biased from above by a spring 27 that is an elastic body. A seal pin 14 is attached between the other end of the beam 24 and the fulcrum 26. In this example, a pressure sensor 11 is provided in the vicinity of the flow path 10a so that the pressure applied to the flow path when the solution is filled in the capillary can be monitored.
 この例では、図2(A)に示されているように、ソレノイド22はオフの状態のときにその駆動部が最大限突出するようになっている。このとき、シールピン14はテコの原理によって下方へ押され、先端部がリザーバ12の底部の穴13に挿入される。ソレノイド22をオンにすると、(B)に示されているように、ソレノイド22の駆動部が本体の内部に引き込まれ、それによって梁24が傾斜してシールピン14が上方へ引き上げられ、先端部が穴13から引き抜かれる。 In this example, as shown in FIG. 2A, the drive portion of the solenoid 22 protrudes to the maximum when the solenoid 22 is off. At this time, the seal pin 14 is pushed downward by the lever principle, and the tip portion is inserted into the hole 13 at the bottom of the reservoir 12. When the solenoid 22 is turned on, as shown in (B), the drive part of the solenoid 22 is drawn into the inside of the main body, whereby the beam 24 is inclined and the seal pin 14 is pulled upward, and the tip part is It is pulled out from the hole 13.
 なお、上記の実施例では、ポート(吸入・吐出口)が1つのみのシリンジポンプ18を用いる場合について説明したが、2つのポートを備えたシリンジポンプを使用して溶液充填機構を構成することも可能である。その一例を図3に示す。なお、シールピン14を駆動するための駆動機構の構成については図2の例と同じであるので、ここでの説明は省略する。 In the above-described embodiment, the case where the syringe pump 18 having only one port (suction / discharge port) is used has been described. However, the solution filling mechanism is configured by using a syringe pump having two ports. Is also possible. An example is shown in FIG. The configuration of the drive mechanism for driving the seal pin 14 is the same as that in the example of FIG.
 シリンジポンプ28は2つのポート29a、29bを備えている。洗浄液貯留ユニット3の貯留ブロック36はリザーバ12の底部の穴13に通じる流路として1つの流路36aのみを備えている。流路36aは配管を介してシリンジポンプ28のポート28bに接続されている。シリンジポンプ28のポート29aは配管4を介してノズル2に接続されている。 The syringe pump 28 has two ports 29a and 29b. The storage block 36 of the cleaning liquid storage unit 3 includes only one flow path 36 a as a flow path leading to the hole 13 at the bottom of the reservoir 12. The flow path 36a is connected to the port 28b of the syringe pump 28 via a pipe. A port 29 a of the syringe pump 28 is connected to the nozzle 2 via the pipe 4.
 このように構成することで、シリンジポンプ28の下死点のポート29bから洗浄液を吸入し、上死点のポート29aから吐出するため、シリンジポンプ内に気泡が溜まりにくく、吸入・吐出量を安定させることができるとともに送液圧力を安定させることができる。 With this configuration, since the cleaning liquid is sucked from the bottom dead center port 29b of the syringe pump 28 and discharged from the top dead center port 29a, bubbles are unlikely to accumulate in the syringe pump, and the suction and discharge amount is stable. In addition, the liquid feeding pressure can be stabilized.
 また、シールピン14の駆動をノズル2の上下動を利用して行なうことも可能である。そのように構成した一例を図4に示す。
リザーバ12は貯留ブロック37に設けられている。貯留ブロック37の上面に封止ポート38も設けられてリザーバ12と一体化されており、溶液充填機構の構成コストの低減が図られている。2つのポートを有するシリンジポンプ28のポート29bがリザーバ12の底部の穴13に通じる流路37aに接続されている。流路37aの内圧を計測する圧力センサ11が設けられている。
It is also possible to drive the seal pin 14 using the vertical movement of the nozzle 2. An example of such a configuration is shown in FIG.
The reservoir 12 is provided in the storage block 37. A sealing port 38 is also provided on the upper surface of the storage block 37 and is integrated with the reservoir 12, thereby reducing the construction cost of the solution filling mechanism. A port 29 b of the syringe pump 28 having two ports is connected to a flow path 37 a communicating with the hole 13 at the bottom of the reservoir 12. A pressure sensor 11 for measuring the internal pressure of the flow path 37a is provided.
シールピン14を駆動するための駆動機構として、図2の例と同様に梁24、支点26及びバネ27を備えているが、ソレノイド22が設けられていない。ノズル2の先端を封止するための封止ポート38が梁24の一端の下方の位置に設けられており、ノズル2の先端部を封止ポート38に挿入する際にノズル2が梁24の一端を押し下げながら下降するようになっている。 As a drive mechanism for driving the seal pin 14, the beam 24, the fulcrum 26 and the spring 27 are provided as in the example of FIG. 2, but the solenoid 22 is not provided. A sealing port 38 for sealing the tip of the nozzle 2 is provided at a position below one end of the beam 24, and the nozzle 2 is connected to the beam 24 when the tip of the nozzle 2 is inserted into the sealing port 38. It descends while pushing down one end.
 梁24の一端にノズル2の先端部を貫通させるための穴が設けられており、ノズル2の先端がその穴を貫通することで、ノズル2の外周面と梁24の一端とが係合し、ノズル2の下降動作に応じて梁24が駆動される。これにより、ノズル2を封止ポート28に挿入する際の下降動作を利用して梁24の一端を押し下げ、それによってシールピン14が上方へ引き抜かれる。 A hole for penetrating the tip of the nozzle 2 is provided at one end of the beam 24, and the tip of the nozzle 2 penetrates the hole so that the outer peripheral surface of the nozzle 2 and one end of the beam 24 are engaged. The beam 24 is driven in accordance with the lowering operation of the nozzle 2. Thereby, one end of the beam 24 is pushed down by using a lowering operation when the nozzle 2 is inserted into the sealing port 28, whereby the seal pin 14 is pulled upward.
 このように、ノズル2の下降動作を利用してシールピン14を駆動するように構成することで、ソレノイドなどシールピン14を駆動するための専用の機構を不要にし、コストの低減を図ることができる。 In this way, by configuring the seal pin 14 to be driven by using the lowering operation of the nozzle 2, a dedicated mechanism for driving the seal pin 14 such as a solenoid is not required, and the cost can be reduced.
   2   ノズル
   3   洗浄液貯留ユニット
   4   配管
   6   貯留ブロック
  8a、8b   配管接続部
  10a、10b   流路
  11              圧力センサ
  12   リザーバ
  13   リザーバ底部の穴
  14   シールピン
  16   駆動機構
  17   封止ポート
  18   シリンジポンプ
  20   プランジャ
  22   ソレノイド
  24   梁
  26   支点
  27   バネ
2 Nozzle 3 Cleaning liquid storage unit 4 Pipe 6 Storage block 8a, 8b Pipe connection part 10a, 10b Flow path 11 Pressure sensor 12 Reservoir 13 Reservoir bottom hole 14 Seal pin 16 Drive mechanism 17 Sealing port 18 Syringe pump 20 Plunger 22 Solenoid 24 Beam 26 fulcrum 27 spring

Claims (8)

  1.  ノズルと、
    前記ノズルを溶液を充填すべきキャピラリの溶液注入口の位置へ移動させるための駆動部と、
     洗浄液を貯留するリザーバを備えた貯留ブロック、前記リザーバに設けられた穴、前記穴の径よりも小さい径の先端部を有し、その先端側から基端側へ徐々に径が大きくなる円錐形状であり、前記リザーバ側から前記流路に先端部が挿入されることによって前記穴を塞ぐシールピン及びそのシールピンを駆動するシールピン駆動機構を備えた洗浄液貯留ユニットと、
    流体の吸入と吐出を行なうための1つの吸入・吐出口を有するシリンジポンプと、
     前記吸入・吐出口と前記ノズルとを接続するための第1流路と、
     前記吸入・吐出口と前記穴とを接続するための第2流路と、
    前記第1流路の開閉を行なうための第1流路開閉部と、
     前記穴が開放されているときに前記第1流路を閉じた状態にし、前記穴が封止されているときは前記第1流路を開放した状態にするように前記シールピン駆動機構及び第1流路開閉部を制御する制御部と、を備えた溶液充填機構。
    A nozzle,
    A drive unit for moving the nozzle to the position of the solution inlet of the capillary to be filled with the solution;
    A storage block having a reservoir for storing a cleaning liquid, a hole provided in the reservoir, a tip portion having a diameter smaller than the diameter of the hole, and a conical shape in which the diameter gradually increases from the tip side to the base end side A cleaning liquid storage unit including a seal pin that closes the hole by inserting a tip portion into the flow path from the reservoir side, and a seal pin driving mechanism that drives the seal pin;
    A syringe pump having one suction / discharge port for sucking and discharging fluid;
    A first flow path for connecting the suction / discharge port and the nozzle;
    A second flow path for connecting the suction / discharge port and the hole;
    A first flow path opening and closing portion for opening and closing the first flow path;
    When the hole is open, the first flow path is closed, and when the hole is sealed, the seal pin drive mechanism and the first flow path are open. A solution filling mechanism comprising: a control unit that controls the channel opening and closing unit.
  2.  ノズルと、
    前記ノズルを溶液を充填すべきキャピラリの溶液注入口の位置へ移動させるための駆動部と、
     洗浄液を貯留するリザーバを備えた貯留ブロック、前記リザーバに設けられた穴、前記穴の径よりも小さい径の先端部を有し、その先端側から基端側へ徐々に径が大きくなる円錐形状であり、前記リザーバ側から前記流路に先端部が挿入されることによって前記穴を塞ぐシールピン及びそのシールピンを駆動するシールピン駆動機構を備えた洗浄液貯留ユニットと、
    流体の吸入と吐出を行なうための2つの吸入・吐出口を有するシリンジポンプと、
     前記シリンジポンプの一方の前記吸入・吐出口と前記ノズルとを接続するための第1流路と、
     前記シリンジポンプの他方の前記吸入・吐出口と前記穴とを接続するための第2流路と、
    前記第1流路の開閉を行なうための第1流路開閉部と、
     前記穴が開放されているときに前記第1流路を閉じた状態にし、前記穴が封止されているときは前記第1流路を開放した状態にするように前記シールピン駆動機構及び第1流路開閉部を制御する制御部と、を備えた溶液充填機構。
    A nozzle,
    A drive unit for moving the nozzle to the position of the solution inlet of the capillary to be filled with the solution;
    A storage block having a reservoir for storing a cleaning liquid, a hole provided in the reservoir, a tip portion having a diameter smaller than the diameter of the hole, and a conical shape in which the diameter gradually increases from the tip side to the base end side A cleaning liquid storage unit including a seal pin that closes the hole by inserting a tip portion into the flow path from the reservoir side, and a seal pin driving mechanism that drives the seal pin;
    A syringe pump having two suction / discharge ports for sucking and discharging fluid;
    A first flow path for connecting one of the suction / discharge ports of the syringe pump and the nozzle;
    A second flow path for connecting the other suction / discharge port of the syringe pump and the hole;
    A first flow path opening and closing portion for opening and closing the first flow path;
    When the hole is open, the first flow path is closed, and when the hole is sealed, the seal pin drive mechanism and the first flow path are open. A solution filling mechanism comprising: a control unit that controls the channel opening and closing unit.
  3. 前記穴は前記リザーバの底面に設けられており、
     前記シールピン駆動機構は前記シールピンを上下方向に駆動するものである請求項1又は2に記載の溶液充填機構。
    The hole is provided in the bottom of the reservoir;
    The solution filling mechanism according to claim 1, wherein the seal pin driving mechanism drives the seal pin in a vertical direction.
  4.  前記シールピン駆動機構はソレノイドを備えたものである請求項3に記載の溶液充填機構。 4. The solution filling mechanism according to claim 3, wherein the seal pin driving mechanism includes a solenoid.
  5. 前記穴の縁はテーパ形状である請求項1から4のいずれか一項に記載の溶液充填機構。 The solution filling mechanism according to any one of claims 1 to 4, wherein an edge of the hole has a tapered shape.
  6.  前記第1流路開閉部は、前記ノズルの先端を挿入することにより前記ノズルの先端を封止する封止ポートにより構成される請求項1から5のいずれか一項に記載の溶液充填機構。 The solution filling mechanism according to any one of claims 1 to 5, wherein the first flow path opening / closing portion is configured by a sealing port that seals the tip of the nozzle by inserting the tip of the nozzle.
  7.  前記封止ポートは前記貯留ブロックに形成されている請求項6に記載の溶液充填機構。 The solution filling mechanism according to claim 6, wherein the sealing port is formed in the storage block.
  8.  前記貯留ブロックは、前記穴に通じるとともに前記第1流路又は前記第2流路の一部をなす内部流路と、前記内部流路内の圧力を検知する圧力センサを備えている請求項1から7のいずれか一項に記載の溶液充填機構。 2. The storage block includes an internal flow path that communicates with the hole and forms part of the first flow path or the second flow path, and a pressure sensor that detects a pressure in the internal flow path. The solution filling mechanism according to claim 1.
PCT/JP2012/055033 2011-09-14 2012-02-29 Solution filling mechanism WO2013038727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011200782A JP5708394B2 (en) 2011-09-14 2011-09-14 Solution filling mechanism
JP2011-200782 2011-09-14

Publications (1)

Publication Number Publication Date
WO2013038727A1 true WO2013038727A1 (en) 2013-03-21

Family

ID=47882975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055033 WO2013038727A1 (en) 2011-09-14 2012-02-29 Solution filling mechanism

Country Status (2)

Country Link
JP (1) JP5708394B2 (en)
WO (1) WO2013038727A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114414323A (en) * 2021-12-13 2022-04-29 通标标准技术服务(天津)有限公司 Pretreatment device for detection of nitrosamine in food

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832365U (en) * 1981-08-19 1983-03-02 株式会社島津製作所 Pipetta nozzle cleaning device
JPS63500156A (en) * 1985-03-25 1988-01-21 ジヨン・レ−ン(インタ−ナシヨナル)リミテツド fluid applicator
JPH02269953A (en) * 1989-04-12 1990-11-05 Yokogawa Electric Corp Capillary electrophoresis device
JPH05264412A (en) * 1992-01-30 1993-10-12 Boehringer Mannheim Gmbh Analytical liquid supply system
JPH10148628A (en) * 1996-11-19 1998-06-02 Shimadzu Corp Microchip electrophoresis device
JP2007263705A (en) * 2006-03-28 2007-10-11 Fujifilm Corp Liquid feeder, measuring instrument, and hermeticity checking method
JP2010071765A (en) * 2008-09-17 2010-04-02 Olympus Corp Dispensing probe cleaning method and automatic analyzing apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS453252Y1 (en) * 1965-04-08 1970-02-13
JPS61114345U (en) * 1984-12-28 1986-07-19
JP3694370B2 (en) * 1996-10-14 2005-09-14 アロカ株式会社 Dispensing device
JP3752417B2 (en) * 2000-09-07 2006-03-08 株式会社日立製作所 Nucleic acid purification method and purification apparatus
JP4442252B2 (en) * 2004-02-25 2010-03-31 株式会社島津製作所 Cell-free protein synthesizer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832365U (en) * 1981-08-19 1983-03-02 株式会社島津製作所 Pipetta nozzle cleaning device
JPS63500156A (en) * 1985-03-25 1988-01-21 ジヨン・レ−ン(インタ−ナシヨナル)リミテツド fluid applicator
JPH02269953A (en) * 1989-04-12 1990-11-05 Yokogawa Electric Corp Capillary electrophoresis device
JPH05264412A (en) * 1992-01-30 1993-10-12 Boehringer Mannheim Gmbh Analytical liquid supply system
JPH10148628A (en) * 1996-11-19 1998-06-02 Shimadzu Corp Microchip electrophoresis device
JP2007263705A (en) * 2006-03-28 2007-10-11 Fujifilm Corp Liquid feeder, measuring instrument, and hermeticity checking method
JP2010071765A (en) * 2008-09-17 2010-04-02 Olympus Corp Dispensing probe cleaning method and automatic analyzing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114414323A (en) * 2021-12-13 2022-04-29 通标标准技术服务(天津)有限公司 Pretreatment device for detection of nitrosamine in food
CN114414323B (en) * 2021-12-13 2023-08-18 通标标准技术服务(天津)有限公司 Pretreatment device for detecting nitrosamine in food

Also Published As

Publication number Publication date
JP2013061281A (en) 2013-04-04
JP5708394B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
US9057370B2 (en) Negative dead volume syringe
EP2245468B1 (en) Apparatus and method for cleaning a liquid handling probe
US7814805B2 (en) Automated pipette machine
TWI519355B (en) A bubble mixing prevention mechanism and a liquid material discharge device and a liquid material discharge method including the same
US20220026399A1 (en) Sample pre-compression valve for liquid chromatography
JP6398867B2 (en) Autosampler
KR20190063236A (en) LIQUID SYRINGE of FILLING MACHINE FOR REMOVING AND PREVENTING AIR BUBBLE
US20090226346A1 (en) Dispensing device
JP5947953B2 (en) Dispensing device and dispensing system
JP5708394B2 (en) Solution filling mechanism
JP2010065584A (en) Liquid sending pump and liquid sending method by this pump
US8758705B2 (en) Dispenser
CN217007339U (en) Bubble elimination system and sample analyzer
KR200383098Y1 (en) Nozzle Opening and Shutting Apparatus of Cosmetic Bottle
JPH07218513A (en) Nozzle cleaning method
JP3863820B2 (en) Precision dispensing device
JP2009190737A (en) Method for making liquid level flush when filling by double structure nozzle
JP2010284876A (en) Gas suck-out apparatus, liquid ejector equipped with the same, and gas suck-out method
JP5024148B2 (en) Viscous material suction device
JP4413834B2 (en) Liquid supply apparatus and method
JPH1123583A (en) Reagent dispensing device and reagent syringe used therefor
KR102492171B1 (en) Liquid substance infusion device for syringe-shaped containers
JPH11102692A (en) Liquid injection head and liquid injection device
CN219440146U (en) Negative pressure drainage lavage device
JP2005227102A (en) Dispenser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832436

Country of ref document: EP

Kind code of ref document: A1