WO2003058228A1 - Electrophoresis-use microchip - Google Patents

Electrophoresis-use microchip Download PDF

Info

Publication number
WO2003058228A1
WO2003058228A1 PCT/JP2002/013410 JP0213410W WO03058228A1 WO 2003058228 A1 WO2003058228 A1 WO 2003058228A1 JP 0213410 W JP0213410 W JP 0213410W WO 03058228 A1 WO03058228 A1 WO 03058228A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrophoresis
sample
microchannel
microchip
quantifying
Prior art date
Application number
PCT/JP2002/013410
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Adachi
Isamu Takeuchi
Yoshinobu Baba
Original Assignee
Cluster Technology Co., Ltd.
Millennium Gate Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cluster Technology Co., Ltd., Millennium Gate Technology Co., Ltd. filed Critical Cluster Technology Co., Ltd.
Priority to AU2002367338A priority Critical patent/AU2002367338A1/en
Publication of WO2003058228A1 publication Critical patent/WO2003058228A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus

Definitions

  • the present invention relates to a microchip for electrophoresis.
  • Microelectrophoresis for electrophoresis for measuring or quantifying trace chemicals or biological components.
  • the present invention relates to a tip, an electrophoresis apparatus including the microchip, and a method for detecting or quantifying a trace amount of a chemical substance or a biological component using the electrophoresis apparatus.
  • microchip-based genomic analysis technologies such as DNA chips, microarrays, and microcapillary electrophoresis chips are rapidly advancing, and devices have already been sold.
  • microchip-type capillary array electrophoresis in which 96 channels are arrayed has been developed (Shi, Y. et al., Anal. Chera. , 7 1: 5354-5361, 1999; Baba et al., Experimental Medicine, 18: 12 (extra number) 1595-1601, 2000).
  • the microchannel array is arranged radially, and the center can be scanned while rotating with a laser.
  • This structure requires wiring and a voltage controller to control the potential for each sample, and a small-sized microchip eventually becomes a large-scale device. Also, a large amount of sample to be supplied to the sample amount adjusting structure is required. Therefore, there is a need for a microchip for electrophoresis that is relatively compact and quantitative, and can be analyzed with a small amount of sample. Disclosure of the invention
  • the present invention has been made to solve the above problems, and the present inventors have developed a microchip for electrophoresis having no structure for adjusting a sample amount by using a droplet discharge device having a fine structure. Have been found to be available, and have completed the present invention.
  • the present invention provides a microchip for electrophoresis for analyzing or quantifying a chemical substance or a biological component.
  • the microchip has a width of 200 ⁇ or less and a depth of 100 ⁇ m / zm or less. It has a channel, does not have a microchannel for sample loading using an intersection of microchannels, and has electrodes connectable to a power source at both ends of the microphone opening channel.
  • the microchip further includes a sample loading hole having an opening having a size of 200 111 or less.
  • the microchannel contains a support for electrophoresis.
  • a gel capable of separating the sample.
  • a microstructure capable of separating samples in electrophoresis is provided in the microchannel.
  • the surfaces of the microchannel and the sample loading hole are water-repellent.
  • the present invention also provides an electrophoresis apparatus for analyzing or quantifying a chemical substance or a biological component, comprising any one of the microchips described above, a voltage controller for electrophoresis, and a droplet discharge device having a fine structure. I do.
  • the droplet discharging device is a device having an ink jet head capable of discharging a sample of 10 picoliters (pL) or less.
  • the present invention further provides a method for analyzing or quantifying a chemical substance or a biological component by electrophoresis, the method comprising the steps of: providing a microchannel or a sample loading hole in a microchip of any of the above microchips; Discharging a sample using a droplet discharging device; electrophoresis of the discharged sample in the microchannel; and detecting or quantifying a sample separated by the electrophoresis.
  • FIG. 1 is a conceptual diagram of a top view of a microchip having a sample loading hole according to the present invention, in which (a) is an example in which microchannels are arranged in parallel, (b) is arranged in columns, and (c) is arranged radially. Is shown.
  • FIG. 2 is a cross-sectional view (a) along the line AA and a cross-sectional view (b) along the line BB of the microchip having the sample loading hole of the present invention shown in FIG. 1 (a).
  • the microchip for electrophoresis of the present invention is a microchip for electrophoresis for analyzing or quantifying a chemical substance or a biological component, and the intersection of the microchannels that a conventional microchip for electrophoresis has. A small amount of sample can be electrophoresed in an accurate amount without the use of a sample volume adjustment structure that utilizes the method.
  • the electrophoresis microchip of the present invention will be described.
  • the substrate of the microchip for electrophoresis of the present invention is not particularly limited as long as it is a material usually used for electrophoresis, and examples thereof include glass, fused quartz, crystal quartz, silica, and plastic. It is preferable to use a non-conductive material such as glass and fused silica because a relatively high voltage can be applied.
  • microchannels described in detail below are formed by a fine processing technique. For example, it can be formed by irradiating synchrotron radiation, ion beam, microwave laser, femtosecond laser, and the like. Alternatively, it can be formed by optical lithography and chemical etching.
  • the substrate may be used as it is, or may be used after subjecting the surface to various treatments according to the purpose.
  • the surface treatment method for example, sputtering, CVD (microwave plasma vapor phase synthesis), ion plating, electroless plating, and the like can be mentioned.
  • CVD microwave plasma vapor phase synthesis
  • ion plating electroless plating
  • the surface treatment method for example, sputtering, CVD (microwave plasma vapor phase synthesis), ion plating, electroless plating, and the like can be mentioned.
  • CVD microwave plasma vapor phase synthesis
  • ion plating electroless plating
  • electroless plating electroless plating
  • the microchip for electrophoresis of the present invention is provided with a microchannel for separating and detecting a sample by electrophoresis.
  • the microchannel may be groove-shaped, slit-shaped or tunnel-shaped.
  • the shape of the cross section of the microchannel is not particularly limited, and is appropriately determined depending on the purpose, and may be a concave shape, a U shape, a V shape, or the like.
  • the microchannel can be shaped as shown in FIG. 2 (a).
  • the width of the microchannel is less than 200 / xm and the maximum width is 0.3 ⁇ ! 200200 // m, more preferably 12 ⁇ m to 150 ⁇ m.
  • the depth is ⁇ ⁇ ⁇ or less, preferably 50 ⁇ or less, more preferably 0.3 / zm to 50 ⁇ , and 12 ⁇ ! More preferably, it is 50.
  • the length can be determined as appropriate depending on the sample to be analyzed, the medium used, and the like.
  • the number and arrangement of the microchannels are not particularly limited, but a plurality of microchannels are preferably provided. For example, they can be arranged arbitrarily, such as parallel, tandem, radial, etc. as shown in (a) to (c) of FIG.
  • Droplet force discharged from a droplet discharge device having a fine structure into a microchannel The droplet force adheres to the inner wall of the microchannel due to surface tension, and may not reach the electrophoresis channel in the microchannel.
  • the surface of the microchannel or the surface of the microchip may be subjected to a water-repellent treatment as necessary.
  • the water-repellent treatment may be performed by any method. For example, a method in which a resin film is formed on a substrate and a water-repellent resin layer is formed on the resin film by a physical vapor deposition method is used. No.
  • the microchip of the present invention treated in this way can precisely arrange particularly a very small amount of sample.
  • the microchip for electrophoresis of the present invention includes a microphone such as that found in conventional products. There is no microchannel for sample loading using the intersection of the low channels. Therefore, the microchip of the present invention can be provided as a microarray in which a large number of microchannels are formed on a microchip having a fixed area. Further, microchannels for other uses may be provided according to the purpose. Further, the microchannel may be branched in the middle as necessary.
  • An electrophoresis medium is provided inside the electrophoresis microchannel.
  • the medium include gels, porous polymers, aqueous solutions, and microstructures.
  • Microstructure refers to a three-dimensional structure (Baba et al., Supra) processed by ultra-fine processing technology, which may be engraved in the microchannel in advance. The medium can be appropriately selected depending on the sample to be separated and analyzed.
  • Samples that can be separated and analyzed include, but are not limited to, chemical substances and biological components, and specifically include amino acids, peptides, proteins, nucleic acids (DNA, RNA), polysaccharides, and Alkyroy. And charged substances such as dyes and dyes. Even a neutral substance can be used as a sample by selecting a medium that can be converted to an ionic state.
  • a medium that can be converted to an ionic state.
  • DNA and protein can be suitably analyzed.
  • the medium is preferably a polyacrylamide gel, agarose gel, or the like.
  • the microchip substrate for electrophoresis of the present invention may be provided with a sample loading hole for placing a sample.
  • Sample loading holes are provided on the microchannel to facilitate sample placement in the microchannel.
  • the shape, size and depth of the sample loading hole to be provided is not particularly limited, and may be determined according to the sample amount.
  • the sample loading hole can easily dispense 10 pL into the hole, and is shaped and sized so that the discharged sample reaches the flow path of the microchannel electrophoresis. It is.
  • the cross section BB passing through the sample loading hole is as shown in Fig. 2 (b). In other words, it has a slightly larger opening than the microchannel shown in Fig. 2 (a), and has a shape that allows easy placement of the sample.
  • the sample loading hole is preferably subjected to a water-repellent treatment in the same manner as the above-described microchannel, in that the sample can surely reach the flow channel of the microchannel.
  • the shape of the opening may be, for example, a circle, a square, a diamond, or an ellipse.
  • a through hole having the same shape and size as the opening of the sample loading hole is formed in the cover plate.
  • the microchannel is typically provided at both ends with electrodes connectable to a power supply.
  • the sample By using the side on which the sample is loaded as the cathode and the other end as the anode, the sample can be moved as in the usual electrophoresis.
  • the material of the electrode is not particularly limited as long as it is usually used as an electrode.
  • the electrodes may be individually connected to the power supply, but the wires on the cathode side and the anode side may be combined into one, and each microchannel may be connected in parallel to the power supply. In this way, the connection to the power supply is easy, and the wiring of the microchip itself can be simplified and the microchip can be made compact. (Droplet ejection device with fine structure)
  • the droplet discharge device having a fine structure may be any device that can discharge a sample of 10 pL or less, preferably 4 pL or less with high accuracy.
  • the droplet discharge device having an ink jet head as described in Semiconductor FPD World 2001. 6, 154-156.
  • it may be a bubble jet (registered trademark) device, a micropump, a micropitter, or the like.
  • the sample separated by electrophoresis can be detected by a commonly used detection method. Typically, UV absorption, fluorescence, chemiluminescence, change in refractive index, etc. are measured. In the present invention, fluorescence detection is preferred because a small amount of sample is measured. In addition, since the sample can be arranged in an accurate amount, quantification by measuring the intensity of the detected signal is possible. Industrial availability '14
  • the microchip for electrophoresis of this invention can arrange
  • there is no structure for adjusting the sample amount there is no wasteful sample placement on the chip compared to the conventional one, and measurement can be performed with a small sample amount, and cost performance is good.
  • the simple structure of the microchip allows many microchannels to be placed on the microchip. Thus, a compact and highly accurate microchip for electrophoresis can be easily provided.

Abstract

An electrophoresis-use microchip, which analyzes or determines chemical substances or biological components, is provided with micro-channels each up to 200 μm wide and 100 μm deep, has no sample load-use micro-channel that makes use of the intersection of micro-channels, and is provided at the opposite ends of the micro-channel with electrodes respectively connectable with a power supply. Accordingly, the electrophoresis-use microchip is comparatively compact, has a quantitative feature, and can be analyzed using a small amount of a sample.

Description

電気泳動用マイクロチップ  Microchip for electrophoresis
技術分野 Technical field
本発明は、 電気泳動用マイクロチップに関する。 さらに詳しくは、 微量の 化学物質または生体成分を測定または定量するための電気泳動用マイクロチ 明  The present invention relates to a microchip for electrophoresis. For more information, see Microelectrophoresis for electrophoresis for measuring or quantifying trace chemicals or biological components.
ップ、 該マイクロチップを含む電気泳動装置、 および該電気泳動装置を用い て微量の化学物質または生体成分を検出または定量する方法に関する。 The present invention relates to a tip, an electrophoresis apparatus including the microchip, and a method for detecting or quantifying a trace amount of a chemical substance or a biological component using the electrophoresis apparatus.
書 背景技術  Background art
近年、 バイオテクノロジー技術の目覚しい進展に伴い、 微量サンプル中の 目的物質を分析,測定する手法が開発されている。 特に、 遺伝子分野では、 ヒ トゲノムの解析がほぼ完了し、 病気、 特に遺伝的疾患の診断が、 D N Aの 検出により行われるようになり、 D NAチップの利用が増大している。  In recent years, with the remarkable progress of biotechnology, methods for analyzing and measuring target substances in minute samples have been developed. In particular, in the genetic field, human genome analysis has been almost completed, and diseases, particularly genetic diseases, have been diagnosed by detecting DNA, and the use of DNA chips has been increasing.
現在、 D N Aチップ、 マイクロアレイ、 マイクロキヤピラリー電気泳動チ ップなどのマイクロチップ型ゲノム解析技術が急速に進歩しており、 既に装 置が販売されるようになってきた。 電気泳動用の 1本のみのチャネルを有す るチップだけでなく、 9 6本のチャネルをァレイ化したマイクロチップ型キ ャピラリーアレイ電気泳動も開発されている (Shi, Y.ら、 Anal. Chera. , 7 1: 5354-5361, 1999;馬場ら、 実験医学, 18 : 12 (増刊) 1595-1601, 2000) 。 これは、 マイクロチャネルアレイ部分を放射状に配置されており、 中央部分 をレーザーで回転しながらスキャンできる。  At present, microchip-based genomic analysis technologies such as DNA chips, microarrays, and microcapillary electrophoresis chips are rapidly advancing, and devices have already been sold. In addition to chips with only one channel for electrophoresis, microchip-type capillary array electrophoresis in which 96 channels are arrayed has been developed (Shi, Y. et al., Anal. Chera. , 7 1: 5354-5361, 1999; Baba et al., Experimental Medicine, 18: 12 (extra number) 1595-1601, 2000). In this method, the microchannel array is arranged radially, and the center can be scanned while rotating with a laser.
これらの従来のマイクロキヤピラリー電気泳動において、 より正確にマイ クロキヤビラリ一にサンプルをローデイングする方法が開発された (特表平 1 0— 5 0 7 5 1 6号公報) 。 この方法においては、 複数のチャネルによる 交点を作り、 交点から延びる各チャネルの電位を制御することによって、 チ ャネルの交点内に存在するサンプルのみがマイクロチャネルに送り込まれる ように設計された、 サンプル量調節用構造を有するチップを用いる。 現在市 販されているあるいは開発中のほとんどのマイクロキヤビラリ一電気泳動用 チップは、 上記サンプル量調節構造を備えている。 例えば、 上記の 9 6本の チャネルをァレイ化したマイクロチップ型キヤビラリーアレイ電気泳動にお いても、 このサンプル量調節用構造が採用されている。 し力、し、 この構造は、 サンプル毎に電位を制御するための配線および電圧制御器を必要とし、 小さ いサイズであるマイクロチップも、 結局は大掛かりな装置となってしまう。 また、 サンプル量調節用構造に供給すべき多量のサンプルが必要である。 そこで、 比較的コンパクトでかつ定量性があり、 少量のサンプルで分析可 能な電気泳動用マイクロチップが求められている。 発明の開示 In these conventional microcapillary electrophoresis methods, a method for more accurately loading a sample into a microcapillary has been developed (Japanese Patent Application Laid-Open No. 10-507506). In this method, multiple channels A chip having a structure for adjusting the sample amount is used, which is designed so that only the sample present in the intersection of the channels is fed into the microchannel by forming the intersection and controlling the potential of each channel extending from the intersection. Most microcapillary electrophoresis chips currently on the market or under development have the sample volume control structure described above. For example, this structure for adjusting the sample amount is also employed in microchip-type capillary array electrophoresis in which 96 channels are arrayed. This structure requires wiring and a voltage controller to control the potential for each sample, and a small-sized microchip eventually becomes a large-scale device. Also, a large amount of sample to be supplied to the sample amount adjusting structure is required. Therefore, there is a need for a microchip for electrophoresis that is relatively compact and quantitative, and can be analyzed with a small amount of sample. Disclosure of the invention
本発明は、 上記課題を解決するためになされたものであり、 発明者らは、 微細構造を有する液滴吐出装置を用いることによって、 サンプル量調節用構 造を有さない電気泳動用マイクロチップが利用可能となることを見出し、 本 発明を完成した。  SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the present inventors have developed a microchip for electrophoresis having no structure for adjusting a sample amount by using a droplet discharge device having a fine structure. Have been found to be available, and have completed the present invention.
本発明は、 化学物質または生体成分を分析または定量するための電気泳動 用マイクロチップを提供し、 このマイクロチップは、 幅 2 0 0 μ πι以下およ び深さ 1 0 0 /z m以下のマイクロチャネルを備え、 マイクロチャネルの交点 を利用するサンプルロード用マイクロチャネルを有さず、 そして該マイク口 チャネルの両端にそれぞれ電源に接続可能な電極を備える。  The present invention provides a microchip for electrophoresis for analyzing or quantifying a chemical substance or a biological component. The microchip has a width of 200 μππ or less and a depth of 100 μm / zm or less. It has a channel, does not have a microchannel for sample loading using an intersection of microchannels, and has electrodes connectable to a power source at both ends of the microphone opening channel.
好ましい実施態様では、 上記マイクロチップは、 さらに、 2 0 0 111以下 の大きさの開口部を有するサンプルローディングホールを備える。  In a preferred embodiment, the microchip further includes a sample loading hole having an opening having a size of 200 111 or less.
好ましい実施態様では、 上記マイクロチャネル内に、 電気泳動においてサ ンプルを分離し得るゲルを備える。 In a preferred embodiment, the microchannel contains a support for electrophoresis. A gel capable of separating the sample.
好ましい実施態様では、 上記マイクロチャネル内に、 電気泳動においてサ ンプルを分離し得る微細構造物を備える。  In a preferred embodiment, a microstructure capable of separating samples in electrophoresis is provided in the microchannel.
好ましい実施態様では、 上記マイクロチャネルおよび上記サンプルローデ イングホールの表面は、 撥水処理されている。  In a preferred embodiment, the surfaces of the microchannel and the sample loading hole are water-repellent.
本発明はまた、 上記のいずれかのマイクロチップ、 電気泳動用電圧制御器、 および微細構造を有する液滴吐出装置を備えた、 化学物質または生体成分を 分析または定量するための電気泳動装置を提供する。  The present invention also provides an electrophoresis apparatus for analyzing or quantifying a chemical substance or a biological component, comprising any one of the microchips described above, a voltage controller for electrophoresis, and a droplet discharge device having a fine structure. I do.
好ましい実施態様では、 上記液滴吐出装置は、 1 0ピコリ ッ トル (p L ) 以下のサンプルを吐出し得るインクジエツトへッドを有する装置である。 本発明はさらに、 化学物質または生体成分を電気泳動により分析または定 量する方法を提供し、 この方法は、 上記のいずれかのマイクロチップのマイ クロチャネルまたはサンプルローディングホールに、 微細構造を有する液滴 吐出装置を用いてサンプルを吐出する工程;該吐出されたサンプルを前記マ ィクロチャネル中で電気泳動する工程;およぴ該電気泳動により分離された サンプルを検出または定量する工程、 を含む。 図面の簡単な説明  In a preferred embodiment, the droplet discharging device is a device having an ink jet head capable of discharging a sample of 10 picoliters (pL) or less. The present invention further provides a method for analyzing or quantifying a chemical substance or a biological component by electrophoresis, the method comprising the steps of: providing a microchannel or a sample loading hole in a microchip of any of the above microchips; Discharging a sample using a droplet discharging device; electrophoresis of the discharged sample in the microchannel; and detecting or quantifying a sample separated by the electrophoresis. . BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明のサンプルローディングホールを有するマイクロチップの 上面概念図であり、 (a ) はマイクロチャネルを並列に、 (b ) は縦列に、 そして (c ) は放射状に配置した場合の例を示す。  FIG. 1 is a conceptual diagram of a top view of a microchip having a sample loading hole according to the present invention, in which (a) is an example in which microchannels are arranged in parallel, (b) is arranged in columns, and (c) is arranged radially. Is shown.
図 2は、 図 1 ( a ) に示す本発明のサンプルローデイングホールを有する マイクロチップの、 A— A線での断面図 (a ) および B— B線での断面図 ( b ) である。 発明を実施するための最良の形態 本発明の電気泳動用マイクロチップは、 化学物質または生体成分を分析ま たは定量するための電気泳動用マイクロチップであり、 従来の電気泳動用マ イク口チップが有していたマイクロチャネルの交点を利用するサンプル量調 節用構造がなくても、 少量のサンプルを正確な量で電気泳動することができ る。 以下、 本発明の電気泳動用マイクロチップについて説明する。 FIG. 2 is a cross-sectional view (a) along the line AA and a cross-sectional view (b) along the line BB of the microchip having the sample loading hole of the present invention shown in FIG. 1 (a). BEST MODE FOR CARRYING OUT THE INVENTION The microchip for electrophoresis of the present invention is a microchip for electrophoresis for analyzing or quantifying a chemical substance or a biological component, and the intersection of the microchannels that a conventional microchip for electrophoresis has. A small amount of sample can be electrophoresed in an accurate amount without the use of a sample volume adjustment structure that utilizes the method. Hereinafter, the electrophoresis microchip of the present invention will be described.
(本発明の電気泳動用マイクロチップの基材) (Substrate of the microchip for electrophoresis of the present invention)
本発明の電気泳動用マイクロチップの基材は、 通常電気泳動に使用される 材料であれば、 特に限定されず、 例えば、 ガラス、 融解石英、 結晶石英、 シ リカ、 プラスチックなどが挙げられる。 比較的高い電圧を加えることができ る点で、 ガラスおよび融解石英のような非伝導材料を用いることが好ましい。 上記マイクロチップ基材には、 以下に詳細に説明するマイクロチャネルが、 微細加工技術によって形成される。 例えば、 シンクロ トロン放射光、 イオン ビーム、 マイクロ波レーザー、 フェムト秒レーザーなどを照射することによ つて形成され得る。 あるいは、 光リソグラフィ一と化学的エッチングにより 形成することもできる。  The substrate of the microchip for electrophoresis of the present invention is not particularly limited as long as it is a material usually used for electrophoresis, and examples thereof include glass, fused quartz, crystal quartz, silica, and plastic. It is preferable to use a non-conductive material such as glass and fused silica because a relatively high voltage can be applied. On the microchip substrate, microchannels described in detail below are formed by a fine processing technique. For example, it can be formed by irradiating synchrotron radiation, ion beam, microwave laser, femtosecond laser, and the like. Alternatively, it can be formed by optical lithography and chemical etching.
また、 基材は、 そのまま用いてもよいし、 あるいは目的に応じて表面に 種々の処理を施した後に使用してもよい。 表面処理方法に特に制限はないが、 例えば、 スパッタリング、 C V D (マイクロ波プラズマ気相合成) 、 イオン プレーティング、 無電解メツキ法などが挙げられる。 また、 微細構造を有す る液滴吐出装置でサンプルを吐出する際に、 静電気の影響のため、 微細な液 滴が目的の位置に正確に配置できない場合がある。 そのため、 マイクロチッ プ基材の表面が帯電防止処理されていることが好ましい。 あるいは、 基材と して、 予め帯電防止剤が練り込まれたプラスチックなどを用いてもよい。 さらに、 基材は、 カバープレートで覆って使用してもよい。 カバープレー トの材料も、 基材と同様に選択され得る。 (マイクロチャネル) The substrate may be used as it is, or may be used after subjecting the surface to various treatments according to the purpose. Although there is no particular limitation on the surface treatment method, for example, sputtering, CVD (microwave plasma vapor phase synthesis), ion plating, electroless plating, and the like can be mentioned. In addition, when a sample is ejected by a droplet ejection device having a fine structure, a minute droplet may not be accurately placed at a target position due to an influence of static electricity. Therefore, it is preferable that the surface of the microchip base material has been subjected to an antistatic treatment. Alternatively, a plastic or the like into which an antistatic agent is previously kneaded may be used as the base material. Further, the substrate may be used by being covered with a cover plate. The material of the cover plate can be selected as well as the substrate. (Micro channel)
本発明の電気泳動用マイクロチップには、 電気泳動によるサンプルの分 離 ·検出のためのマイクロチャネルが設けられている。 マイクロチャネルは、 溝状、 スリット状またはトンネル状であってもよい。 マイクロチャネルの切 断面の形状は、 特に限定されず、 目的に応じて適宜決定され、 凹型、 U字型、 V字型などであってもよい。 例えば、 図 1 (a) に示すマイクロチップにお ける A— A線での断面では、 マイクロチャネルは、 図 2 (a) に示すような 形状であり得る。 マイクロチャネルの幅は、 200 /xm以下であり、 最大幅 は、 0. 3 μπ!〜 200 //mであることが好ましく、 1 2 μ m〜 1 50 μ m であることがより好ましい。 深さは、 Ι Ο Ο μπι以下であり、 好ましくは 5 0 πι以下であり、 0. 3 /zm〜50 μπιであることがより好ましく、 1 2 μπ!〜 50 であることがさらに好ましい。 長さは、 分析すべきサンプル、 使用する媒体などに応じて、 適宜決定され得る。 マイクロチャネルの数およ び配置は、 特に制限はないが、 複数個が設けられることが好ましい。 例えば、 図 1の (a) 〜 (c) に示すような並列、 縦列、 放射状など、 任意に配置さ れ得る。  The microchip for electrophoresis of the present invention is provided with a microchannel for separating and detecting a sample by electrophoresis. The microchannel may be groove-shaped, slit-shaped or tunnel-shaped. The shape of the cross section of the microchannel is not particularly limited, and is appropriately determined depending on the purpose, and may be a concave shape, a U shape, a V shape, or the like. For example, in the cross section taken along the line AA of the microchip shown in FIG. 1 (a), the microchannel can be shaped as shown in FIG. 2 (a). The width of the microchannel is less than 200 / xm and the maximum width is 0.3 μπ! 200200 // m, more preferably 12 μm to 150 μm. The depth is 以下 Ι Ιμπι or less, preferably 50 ππ or less, more preferably 0.3 / zm to 50 μπι, and 12 μπ! More preferably, it is 50. The length can be determined as appropriate depending on the sample to be analyzed, the medium used, and the like. The number and arrangement of the microchannels are not particularly limited, but a plurality of microchannels are preferably provided. For example, they can be arranged arbitrarily, such as parallel, tandem, radial, etc. as shown in (a) to (c) of FIG.
微細構造を有する液滴吐出装置からマイクロチャネルに吐出された液滴力 マイクロチャネルの内壁に表面張力によって付着し、 マイクロチャネル内の 電気泳動流路に到達しない場合がある。 これを防止するために、 マイクロチ ャネルの表面あるいはマイクロチップ表面は、 必要に応じて撥水処理されて いてもよい。 撥水処理は、 どのような方法で行われてもよいが、 例えば、 基 材上に樹脂膜を形成し、 その樹脂膜上に撥水性樹脂層を物理的蒸発成膜法で 形成する方法が挙げれられる。 このように処理された本発明のマイクロチッ プは、 特に超微量のサンプルを、 正確に配置することができる。  Droplet force discharged from a droplet discharge device having a fine structure into a microchannel The droplet force adheres to the inner wall of the microchannel due to surface tension, and may not reach the electrophoresis channel in the microchannel. In order to prevent this, the surface of the microchannel or the surface of the microchip may be subjected to a water-repellent treatment as necessary. The water-repellent treatment may be performed by any method. For example, a method in which a resin film is formed on a substrate and a water-repellent resin layer is formed on the resin film by a physical vapor deposition method is used. No. The microchip of the present invention treated in this way can precisely arrange particularly a very small amount of sample.
本発明の電気泳動用マイクロチップには、 従来品に見られるようなマイク ロチャネルの交点を利用するサンプルロード用のマイクロチャネルは設けら れていない。 そのため、 本発明のマイクロチップは、 一定面積のマイクロチ ップ上に多数のマイクロチャネルを形成したマイクロアレイとして提供され 得る。 さらに、 目的に応じて、 その他の用途のマイクロチャネルが設けられ ていてもよい。 また、 マイクロチャネルは、 必要に応じて途中で分岐してい てもよい。 The microchip for electrophoresis of the present invention includes a microphone such as that found in conventional products. There is no microchannel for sample loading using the intersection of the low channels. Therefore, the microchip of the present invention can be provided as a microarray in which a large number of microchannels are formed on a microchip having a fixed area. Further, microchannels for other uses may be provided according to the purpose. Further, the microchannel may be branched in the middle as necessary.
上記電気泳動用のマイクロチャネルの内部には、 電気泳動の媒体が備えら れる。 媒体としては、 ゲル、 多孔質ポリマー、 水溶液、 微細構造物などが挙 げられる。 微細構造物とは、 超微細加工技術により加工された三次元構造体 (馬場ら、 前出) をいい、 予めマイクロチャネル内に刻み込まれていてもよ レ、。 媒体は、 分離 '分析されるサンプルに応じて、 適宜選択され得る。  An electrophoresis medium is provided inside the electrophoresis microchannel. Examples of the medium include gels, porous polymers, aqueous solutions, and microstructures. Microstructure refers to a three-dimensional structure (Baba et al., Supra) processed by ultra-fine processing technology, which may be engraved in the microchannel in advance. The medium can be appropriately selected depending on the sample to be separated and analyzed.
分離 ·分析され得るサンプルとしては、 特に限定されないが、 化学物質お ょぴ生体成分が挙げられ、 具体的には、 アミノ酸、 ペプチド、 タンパク質、 核酸 (D NA、 R NA) 、 多糖、 アル力ロイ ド、 色素類など、 電荷を有する ものが挙げられる。 中性の物質であっても、 イオン状態にできる媒体を選択 することにより、 サンプルとなり得る。 本発明のマイクロチップでは、 特に、 D N Aおよぴタンパク質が好適に分析され得る。 D N Aおよびタンパク質分 析の場合、 媒体としては、 好適には、 ポリアクリルアミ ドゲル、 ァガロース ゲルなどが用いられる。  Samples that can be separated and analyzed include, but are not limited to, chemical substances and biological components, and specifically include amino acids, peptides, proteins, nucleic acids (DNA, RNA), polysaccharides, and Alkyroy. And charged substances such as dyes and dyes. Even a neutral substance can be used as a sample by selecting a medium that can be converted to an ionic state. In the microchip of the present invention, in particular, DNA and protein can be suitably analyzed. In the case of DNA and protein analysis, the medium is preferably a polyacrylamide gel, agarose gel, or the like.
(サンプルローディングホール) (Sample loading hole)
本発明の電気泳動用マイクロチップ基材には、 サンプルを配置するための サンプルローディングホールが設けられていてもよい。 サンプルローディン グホールは、 マイクロチャネルにサンプルを配置しやすくする目的で、 マイ クロチャネル上に設けられる。  The microchip substrate for electrophoresis of the present invention may be provided with a sample loading hole for placing a sample. Sample loading holes are provided on the microchannel to facilitate sample placement in the microchannel.
設けられるサンプルローディングホールの形状、 ならびに大きさおよび深 さ (すなわち、 凹部の体積) は特に制限はなく、 サンプル量により決定すれ ばよレ、。 一般的には、 サンプルローデイングホールは、 1 0 p Lを容易にホ ール中に吐出し得、 そして吐出されたサンプルがマイクロチャネルの電気泳 動の流路に達するような形状および大きさである。 例えば、 図 1に示すマイ クロチップにおいて、 サンプルローデイングホールを通る B— B断面は、 図 2 ( b ) に示すとおりである。 すなわち、 図 2 ( a ) に示すマイクロチヤネ ルよりもやや大きな開口部を備え、 サンプルを配置しやすい形状である。 ま た、 サンプルが、 確実にマイクロチャネルの流路に到達され得る点で、 サン プルローディングホールは、 前述のマイクロチャネルと同様に撥水処理され ていることが好ましい。 開口部の形状は、 例えば、 円形、 方形、 菱型であつ てもよく、 楕円形などであってもよレ、。 また、 カバープレートを用いる場合 は、 カバープレートにサンプルローディングホールの開口部と同じ形状およ びサイズの貫通孔が形成されていることが好ましい。 (電源に接続可能な電極) The shape, size and depth of the sample loading hole to be provided The size (ie, the volume of the concave portion) is not particularly limited, and may be determined according to the sample amount. In general, the sample loading hole can easily dispense 10 pL into the hole, and is shaped and sized so that the discharged sample reaches the flow path of the microchannel electrophoresis. It is. For example, in the microchip shown in Fig. 1, the cross section BB passing through the sample loading hole is as shown in Fig. 2 (b). In other words, it has a slightly larger opening than the microchannel shown in Fig. 2 (a), and has a shape that allows easy placement of the sample. In addition, the sample loading hole is preferably subjected to a water-repellent treatment in the same manner as the above-described microchannel, in that the sample can surely reach the flow channel of the microchannel. The shape of the opening may be, for example, a circle, a square, a diamond, or an ellipse. When a cover plate is used, it is preferable that a through hole having the same shape and size as the opening of the sample loading hole is formed in the cover plate. (Electrode connectable to power supply)
上記マイクロチャネルは、 代表的にはその両端に、 電源に接続可能な電極 が設けられている。 サンプルロードした側を陰極および他端を陽極とするこ とによって、 通常行われる電気泳動と同様にサンプノレを移動させることがで きる。 電極の材質は、 通常電極として用いられるものであれば特に限定され なレ、。 電極は、 個々に電源に接続してもよいが、 陰極側と陽極側との配線を それぞれ 1つにまとめて各マイクロチャネルを並列つなぎとして電源に接続 してもよレ、。 このようにすると、 電源への接続も簡単であり、 マイクロチッ プ自体も配線が単純化され、 コンパクトになり得る。 (微細構造を有する液滴吐出装置)  The microchannel is typically provided at both ends with electrodes connectable to a power supply. By using the side on which the sample is loaded as the cathode and the other end as the anode, the sample can be moved as in the usual electrophoresis. The material of the electrode is not particularly limited as long as it is usually used as an electrode. The electrodes may be individually connected to the power supply, but the wires on the cathode side and the anode side may be combined into one, and each microchannel may be connected in parallel to the power supply. In this way, the connection to the power supply is easy, and the wiring of the microchip itself can be simplified and the microchip can be made compact. (Droplet ejection device with fine structure)
本発明の電気泳動用マイクロチップに、 少量のサンプルを正確な量で配置 するために、 微細構造を有する液滴吐出装置が用いられる。 本発明において、 微細構造を有する液滴吐出装置とは、 1 0 p L以下、 好ましくは 4 p L以下 のサンプルを精度よく吐出し得る装置であればどのようなものであってもよ レヽ。 例えば、 Semiconductor FPD World 2001. 6, 154 - 156に記載のようなィ ンクジェットヘッドを有する装置が挙げられる。 また、 バブルジェット (登 録商標) 装置、 マイクロポンプ、 マイクロピぺッターなどであってもよい。 これらの装置からマイクロチャネルに吐出する液滴数を変えることによって、 サンプルの量を調整することができる。 (サンプルの検出または定量) Placing a small amount of sample in an accurate amount on the microchip for electrophoresis of the present invention For this purpose, a droplet discharge device having a fine structure is used. In the present invention, the droplet discharge device having a fine structure may be any device that can discharge a sample of 10 pL or less, preferably 4 pL or less with high accuracy. For example, there is a device having an ink jet head as described in Semiconductor FPD World 2001. 6, 154-156. Further, it may be a bubble jet (registered trademark) device, a micropump, a micropitter, or the like. By changing the number of droplets ejected from these devices into the microchannel, the amount of sample can be adjusted. (Sample detection or quantification)
電気泳動によって分離されたサンプルは、 通常用いられる検出方法によつ て検出され得る。 代表的には、 U V吸収、 蛍光、 化学発光、 屈折率変化など が測定される。 本発明においては、 微量のサンプルを測定するため、 蛍光検 出が好ましい。 また、 サンプルを正確な量で配置できるため、 検出されたシ グナルの強度を測定することによる定量も可能である。 産業上の利用可能' 14  The sample separated by electrophoresis can be detected by a commonly used detection method. Typically, UV absorption, fluorescence, chemiluminescence, change in refractive index, etc. are measured. In the present invention, fluorescence detection is preferred because a small amount of sample is measured. In addition, since the sample can be arranged in an accurate amount, quantification by measuring the intensity of the detected signal is possible. Industrial availability '14
本発明の電気泳動用マイクロチップは、 微細構造を有する液滴吐出装置を 用いて微量の目的のサンプルを基材上に正確に配置でき、 目的物質の正確な 測定を可能にする。 例えば、 1分子タンパク質の分析も可能である。 特に、 サンプル量調整用構造を有さないため、 従来と比べてチップ上に無駄に配置 されるサンプルがなく、 少量のサンプル量で測定でき、 コストパフオーマン スがよい。 また、 サンプル量調整用の電極の必要がなく、 簡単な装置で測定 できる。 さらに、 マイクロチップの構造が単純であるため、 マイクロチップ 上に多数のマイクロチャネルを配置できる。 このように、 コンパク トかつ精 度の高い電気泳動用マイクロチップを容易に提供することができる。  ADVANTAGE OF THE INVENTION The microchip for electrophoresis of this invention can arrange | position a small amount of target sample accurately on a base material using the droplet discharge apparatus which has a microstructure, and enables accurate measurement of a target substance. For example, analysis of a single molecule protein is also possible. In particular, because there is no structure for adjusting the sample amount, there is no wasteful sample placement on the chip compared to the conventional one, and measurement can be performed with a small sample amount, and cost performance is good. Also, there is no need for an electrode for adjusting the sample amount, and measurement can be performed with a simple device. In addition, the simple structure of the microchip allows many microchannels to be placed on the microchip. Thus, a compact and highly accurate microchip for electrophoresis can be easily provided.

Claims

請求の範囲 The scope of the claims
1 . 化学物質または生体成分を分析または定量するための電気泳動用マイク 口チップであって、 幅 2 0 0 m以下おょぴ深さ 1 0 0 μ m以下のマイクロ チャネルを備え、 マイクロチャネルの交点を利用するサンプルロード用マイ クロチャネルを有さず、 そして該マイクロチャネルの両端にそれぞれ電源に 接続可能な電極を備える、 マイクロチップ。 1. An electrophoresis microphone orifice chip for analyzing or quantifying chemical substances or biological components, which has a microchannel with a width of 200 m or less and a depth of 100 μm or less. A microchip which does not have a microchannel for sample loading using an intersection and has electrodes connectable to a power source at both ends of the microchannel.
2 . さらに、 2 0 0 /i m以下の大きさの開口部を有するサンプルローデイン グホールを備える、 請求項 1に記載のマイクロチップ。 2. The microchip according to claim 1, further comprising a sample loading hole having an opening having a size of 200 / im or less.
3 . 前記マイクロチャネル内に、 電気泳動においてサンプルを分離し得るゲ ルを備える、 請求項 1または 2に記載のマイクロチップ。 3. The microchip according to claim 1, wherein a gel capable of separating a sample in electrophoresis is provided in the microchannel.
4 . 前記マイクロチャネル内に、 電気泳動においてサンプルを分離し得る微 細構造物を備える、 請求項 1または 2に記載のマイクロチップ。 4. The microchip according to claim 1, further comprising a microstructure capable of separating a sample in electrophoresis in the microchannel.
5 . 前記マイクロチャネルおよび前記サンプルローディングホールの表面が、 撥水処理されている、 請求項 1から 4のいずれかの項に記載のマイクロチッ プ。 5. The microchip according to claim 1, wherein the surfaces of the microchannel and the sample loading hole are subjected to a water-repellent treatment.
6 . 請求項 1から 5のいずれかの項に記載のマイクロチップ、 電気泳動用電 圧制御器、 および微細構造を有する液滴吐出装置を備えた、 化学物質または 生体成分を分析または定量するための電気泳動装置。 6. For analyzing or quantifying a chemical substance or a biological component, comprising the microchip according to any one of claims 1 to 5, a voltage controller for electrophoresis, and a droplet discharge device having a fine structure. Electrophoresis device.
7 . 前記液滴吐出装置が、 1 0 p L以下のサンプルを吐出し得るインクジェ ットへッドを有する装置である、 請求項 6に記載の電気泳動装置。 7. The droplet ejection apparatus is capable of ejecting a sample of 10 pL or less. The electrophoresis device according to claim 6, wherein the electrophoresis device has a head.
8 . 化学物質または生体成分を電気泳動により分析または定量する方法であ つて、 8. A method for analyzing or quantifying chemical substances or biological components by electrophoresis,
請求項 1から 5のいずれかの項に記載のマイクロチップのマイクロチヤネ ルまたはサンプルローディングホールに、 微細構造を有する液滴吐出装置を 用いてサンプルを吐出する工程;  A step of discharging a sample into a microchannel or a sample loading hole of a microchip according to any one of claims 1 to 5, using a droplet discharge device having a fine structure;
該吐出されたサンプルを前記マイクロチャネル中で電気泳動する工程;お ょぴ  Electrophoresing the discharged sample in the microchannel;
該電気泳動により分離されたサンプルを検出または定量する工程、 を含む、 方法。  Detecting or quantifying the sample separated by the electrophoresis.
PCT/JP2002/013410 2001-12-28 2002-12-20 Electrophoresis-use microchip WO2003058228A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002367338A AU2002367338A1 (en) 2001-12-28 2002-12-20 Electrophoresis-use microchip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001401033A JP2005164242A (en) 2001-12-28 2001-12-28 Microchip for electrophoresis
JP2001-401033 2001-12-28

Publications (1)

Publication Number Publication Date
WO2003058228A1 true WO2003058228A1 (en) 2003-07-17

Family

ID=19189712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013410 WO2003058228A1 (en) 2001-12-28 2002-12-20 Electrophoresis-use microchip

Country Status (3)

Country Link
JP (1) JP2005164242A (en)
AU (1) AU2002367338A1 (en)
WO (1) WO2003058228A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017515A1 (en) * 2010-08-03 2012-02-09 ミライアル株式会社 Microchannel device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6017793B2 (en) 2012-02-09 2016-11-02 ローム株式会社 Microchip

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327593A (en) * 1995-05-29 1996-12-13 Shimadzu Corp Capillary electrophoretic device
JPH11508360A (en) * 1995-06-21 1999-07-21 フアーマシア・バイオテツク・アー・ベー Flow-through sampling cell and how to use it
JP2000246805A (en) * 1999-03-04 2000-09-12 Kawamura Inst Of Chem Res Production of microchemical device
JP2000310614A (en) * 1999-02-26 2000-11-07 Hitachi Chem Co Ltd Chip for electrophoresis, its manufacture, and electrophoresis device and chargeable material separating method using the same
JP2001056286A (en) * 1999-08-18 2001-02-27 Shimadzu Corp Measuring cell
JP2001507441A (en) * 1995-06-08 2001-06-05 ビジブル ジェネティクス インコーポレイテッド Microelectrophoresis chip for moving and separating nucleic acids and other charged molecules
JP2001228159A (en) * 2000-02-14 2001-08-24 Seiko Epson Corp Microreactor
JP2001515216A (en) * 1997-08-13 2001-09-18 シーフィード Microstructure for manipulating fluid samples
JP2002207031A (en) * 2001-01-11 2002-07-26 Shimadzu Corp Microchannel-type chip

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327593A (en) * 1995-05-29 1996-12-13 Shimadzu Corp Capillary electrophoretic device
JP2001507441A (en) * 1995-06-08 2001-06-05 ビジブル ジェネティクス インコーポレイテッド Microelectrophoresis chip for moving and separating nucleic acids and other charged molecules
JPH11508360A (en) * 1995-06-21 1999-07-21 フアーマシア・バイオテツク・アー・ベー Flow-through sampling cell and how to use it
JP2001515216A (en) * 1997-08-13 2001-09-18 シーフィード Microstructure for manipulating fluid samples
JP2000310614A (en) * 1999-02-26 2000-11-07 Hitachi Chem Co Ltd Chip for electrophoresis, its manufacture, and electrophoresis device and chargeable material separating method using the same
JP2000246805A (en) * 1999-03-04 2000-09-12 Kawamura Inst Of Chem Res Production of microchemical device
JP2001056286A (en) * 1999-08-18 2001-02-27 Shimadzu Corp Measuring cell
JP2001228159A (en) * 2000-02-14 2001-08-24 Seiko Epson Corp Microreactor
JP2002207031A (en) * 2001-01-11 2002-07-26 Shimadzu Corp Microchannel-type chip

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHINOBU BABA: "Micro chip nano chip technology ni yoru jisedai DNA kaiseki gijutsu no kaihatsu", EXPERIMENTAL MEDICINE, vol. 18, no. 12, 2000, pages 41 - 47, XP002975361 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017515A1 (en) * 2010-08-03 2012-02-09 ミライアル株式会社 Microchannel device

Also Published As

Publication number Publication date
JP2005164242A (en) 2005-06-23
AU2002367338A1 (en) 2003-07-24

Similar Documents

Publication Publication Date Title
JP4538148B2 (en) Microfabricated capillary array electrophoresis apparatus and method
JP4489187B2 (en) Microfluidic processing system
US6803019B1 (en) Laminate microstructure device and method for making same
US20090058428A1 (en) Method and device for monitoring and controlling fluid locomotion
US20040110277A1 (en) Sensor cell, bio-sensor, capacitance element manufacturing method, biological reaction detection method and genetic analytical method
WO1997004297A9 (en) Microscale fluid handling system
JP2001517789A (en) Liquid transfer device and liquid transfer method
JPH08327597A (en) Method and equipment for moving molecule by application of electric field
KR100552705B1 (en) Device for printing biomolecule using electrohydrodynamic effect on substrate and printing method thereof
JPH11502618A (en) Capillary electrophoresis apparatus and method
JP2005501231A (en) Microfluidic chemical assay apparatus and method
JP2003527601A (en) Method and apparatus for locating and concentrating polar analytes using an alternating electric field
US20050037507A1 (en) Titration method
WO2011158520A1 (en) Method for producing reaction instrument for electrophoresis, apparatus for producing reaction instrument for electrophoresis, base for gel immobilization, reaction instrument for electrophoresis and kit for electrophoresis
JP2004526138A (en) Methods and systems for performing biological, chemical or biochemical protocols in a continuous flow
JP2008256376A (en) Specimen detection method and biochip
US11618025B2 (en) Apparatus and method for on-chip microfluids dispensing
Tu et al. Miniaturizing sample spots for matrix-assisted laser desorption/ionization mass spectrometry
WO2003058228A1 (en) Electrophoresis-use microchip
WO2013118775A1 (en) Two-dimensional electrophoresis kit, two-dimensional electrophoresis kit fabrication method, fabrication method, and two-dimensional electrophoresis chip
JP2012002801A (en) Substrate for fixing gel, reaction instrument for electrophoresis, method for manufacturing reaction instrument for electrophoresis, and kit for electrophoresis
JP2002310990A (en) Electrophoretic equipment
JP4851612B2 (en) Electrophoretic reaction instrument manufacturing method and electrophoresis reaction instrument manufacturing apparatus
EP2240600A1 (en) Microfluidic apparatus for wide area microarrays
JP4851611B2 (en) Gel fixing substrate, electrophoresis reaction instrument, method for producing electrophoresis reaction instrument, and electrophoresis kit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP