JP2000297326A - 磁気特性の均一な無方向性電磁鋼板の製造方法 - Google Patents

磁気特性の均一な無方向性電磁鋼板の製造方法

Info

Publication number
JP2000297326A
JP2000297326A JP10582599A JP10582599A JP2000297326A JP 2000297326 A JP2000297326 A JP 2000297326A JP 10582599 A JP10582599 A JP 10582599A JP 10582599 A JP10582599 A JP 10582599A JP 2000297326 A JP2000297326 A JP 2000297326A
Authority
JP
Japan
Prior art keywords
rolling
less
sheet
steel sheet
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10582599A
Other languages
English (en)
Inventor
Ryutaro Kawamata
竜太郎 川又
Takehide Senuma
武秀 瀬沼
Takeshi Kubota
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10582599A priority Critical patent/JP2000297326A/ja
Publication of JP2000297326A publication Critical patent/JP2000297326A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

(57)【要約】 【課題】 【解決手段】 重量%で、0.1%≦Si≦4.0%と、0.1%≦Mn
≦2.0%との一方若しくは双方を含有し、残部がFeおよ
び不可避不純物からなるスラブに粗圧延を施してシート
バーとし、次いで仕上温度が 750℃以上1150℃以下であ
って、最終パスにおける下記式1で定義されるパラメー
タの最大値を16.0未満かつその変動範囲を2.0以下とし
た仕上熱間圧延を施して熱延板とした後、熱延板を1050
℃以下 750℃以上の温度で巻取り、30秒以上60分以下の
時間保持した後に巻き戻し、冷却を施して再び 550℃以
下の温度で巻取った後に、1回の冷間圧延工程を施し次
いで仕上焼鈍を施して最終製品とするか、中間焼鈍をは
さむ2回以上の冷間圧延を施して最終製品とするか、或
いはさらに2%以上 20%未満のスキンパス圧延を施して最
終製品とする磁気特性の均一な無方向性電磁鋼板の製造
方法。 【数1】

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、電気機器の鉄心材
料として用いられる無方向性電磁鋼板の磁気特性の均一
な製造方法に関するものである。
【0002】
【従来の技術】近年、電気機器、特に無方向性電磁鋼板
がその鉄心材料として使用される回転機および中、小型
変圧器等の分野においては、世界的な電力、エネルギー
節減、さらにはフロンガス規制等の地球環境保全の動き
の中で、高効率化の動きが急速に広まりつつある。この
ため、無方向性電磁鋼板に対しても、その特性向上、す
なわち、高磁束密度かつ低鉄損化への要請がますます強
まってきている。
【0003】このため無方向性電磁鋼板を製造する側と
しては、この様な優れた特性を持つ無方向性電磁鋼板を
安定して製造する使命が課せられているが、以下に述べ
るように現状の技術では十分に対処しているとは言えな
い。
【0004】無方向性電磁鋼板の熱間圧延においては製
品の磁束密度向上の観点から、熱延板結晶粒径の制御が
行われてきている。これらは、熱延板すなわち冷延前の
結晶粒径を極力粗大化することに主眼がおかれている。
例えば特公昭57−52410号公報では、仕上熱延終
了温度を750℃以上からα相とγ相の2相域の中間温
度以下として、巻取温度を680℃以上とすることで、
熱延時のコイル巻取温度を高温化し熱延板の結晶粒を粗
大化させる方法が開示されている。また、特公昭58−
55210号公報では、仕上熱延終了温度を750℃以
上からα相とγ相の2相域の中間温度以下として、C含
有量、Al含有量の規制を組み合わせることを主眼とす
る技術が開示されている。また特開昭54−76422
号公報、特開昭58−136718号公報に記述されて
いる様に高温巻取を行ったコイルの保有熱により自己焼
鈍を行い熱延板の結晶粒の粗大化をはかり仕上焼鈍後の
磁束密度を向上させる技術等も開示されている。
【0005】しかし、高温のコイルは、均一に冷却する
ことが難しく、冷却時にコイル内の温度分布に不均一が
生じる結果、結晶粒が混粒になりやすく、コイル長手方
向の磁気特性に変動が生じやすくなるとともに、冷延時
に通板性が問題視されたり、成品板の形状が悪くなる欠
点がある。
【0006】また、無方向性電磁鋼板の長手方向の磁気
特性の変動の一例であるスキッドマークを改善する手段
として、特開平8−92643号公報には、シートバー
を巻取り、一定時間保持した後に巻きほどいて圧延する
技術が公開されている。この技術は確かにスキッドマー
クの改善に一定の効果をもたらすが、その効果は十分で
あるとは言えない。
【0007】また、連続するシートバー毎に圧延を行っ
ていくと、1本のシートバーの中で圧延温度、圧延速度
が変動するため、コイル長手方向の磁気変動は避けがた
く、成品歩留まりの低下を招く難点があったが、制御熱
延条件をどのように設定することが有効であるかが未知
の課題であった。
【0008】この問題を解決するために特開平8−17
6664号公報では仕上圧延時の最終スタンドのロール
周速が磁気特性に影響を及ぼすことを開示し、その周速
の変動を一定以内に制限する技術を提案している。
【0009】しかしながら、発明者等がコイル長手方向
の磁気特性の変動について詳細に調査を行った結果、仕
上熱延の最終スタンドの周速は冶金学的に見てもそれそ
のものが金属組織、析出物に影響を与えるものでなく、
公開された図中の周速に対する磁束密度依存性は、ロー
カルな条件でしかないことがわかった。すなわち、異な
る熱延機や異なる仕上げ圧延温度での無方向性電磁鋼板
の磁気特性を最終スタンドの周速のみで制御することは
不可能であることが分かった。
【0010】この点に鑑みて発明者等は鋭意検討を行っ
た結果、近接コイラ等の設備により一旦高温でコイルを
巻き取った後、これを巻きほどいて冷却を施し、2回目
の巻取を行うとともに、仕上圧延時の最終スタンドの圧
延条件を、特定の式で定められる条件に制御することに
より、コイル長手方向の磁気特性が著しく安定すること
を見出し、先述の問題の解決に至った。
【0011】さらに、この技術を容易にする方策とし
て、圧延後のシートバーを巻きとって保持し、これを巻
きほどいて圧延することでシートバーの先頭と最後尾を
反転させ、圧延温度を均一ならしめると共に、さらにそ
のシートバーを先行するシートバーに接合して複数のシ
ートバーを連続して圧延に供することにより、式1で定
義されるZパラメーターをさらに安定して制御し、コイ
ル長手方向の磁気特性がより均一な無方向性電磁鋼板を
製造することが可能であることを見出し、発明の完成に
至った。
【0012】
【発明が解決しようとする課題】本発明は、無方向性電
磁鋼板製造法において、従来技術での限界を打破して、
コイル長手方向の磁気特性の優れた無方向性電磁鋼板を
安定して製造する技術を提供せんとするものである。
【0013】
【課題を解決するための手段】本発明の要旨とするとこ
ろは、以下の通りである。 (1) 重量%で、0.1%≦Si≦4.0%と、0.
1%≦Mn≦2.0%との一方若しくは双方を含有し、
残部がFeおよび不可避不純物からなるスラブに粗圧延
を施してシートバーとし、次いで仕上温度が750℃以
上1150℃以下であって、最終パスにおける下記式1
で定義されるパラメータの最大値を16.0未満かつそ
の変動範囲を2.0以下とした仕上熱間圧延を施して熱
延板とした後、熱延板を1050℃以下750℃以上の
温度で巻取り、30秒以上60分以下の時間保持した後
に巻き戻し、冷却を施して再び550℃以下の温度で巻
取った後に、1回の冷間圧延工程を施し次いで仕上焼鈍
を施して最終製品とするか、中間焼鈍をはさむ2回以上
の冷間圧延を施して最終製品とするか、或いはさらに2
%以上20%未満のスキンパス圧延を施して最終製品と
する磁気特性の均一な無方向性電磁鋼板の製造方法。
【数2】 (2) 鋼成分として、さらに重量%で、 0.1%≦sol-Al≦1.5% を含有するスラブを用いることを特徴とする前記(1)
記載の磁気特性の均一な無方向性電磁鋼板の製造方法。 (3) 仕上熱間圧延中における式1で定義されるパラ
メータの変動を1.5以下とすることを特徴とする前記
(1)又は(2)記載の磁気特性の均一な無方向性電磁
鋼板の製造方法。 (4) スラブを粗圧延して得られたシートバーを一度
巻き取り、一定時間保持した後にシートバーを巻きもど
した後、先行するシートバーと後行するシートバーとを
接合し、複数のシートバーを一体として連続的に仕上熱
間圧延に供することを特徴とする前記(1)、(2)又
は(3)記載の磁気特性の均一な無方向性電磁鋼板の製
造方法。
【0014】
【発明の実施の形態】以下に、本発明を詳細に説明す
る。まず、成分について説明すると、Siは鋼板の固有
抵抗を増大させ渦流損を低減させ、鉄損値を改善するた
めに添加される。Si含有量が0.1%未満であると固
有抵抗が十分に得られないので0.1%以上添加する必
要がある。一方、Si含有量が4.0%を越えると熱間
圧延が困難となるので4.0%以下とする必要がある。
Mnは、Al、Siと同様に鋼板の固有抵抗を増大させ
渦電流損を低減させる効果を有する。このため、Mn含
有量は0.1%以上とする必要がある。一方、Mn含有
量が2.0%を越えると熱延時の変形抵抗が増加し熱延
が困難となるとともに、熱延後の結晶組織が微細化しや
すくなり、製品の磁気特性が悪化するので、Mn含有量
は2.0%以下とする必要がある。本発明では上記のS
i、Mnのうち少なくとも1種を含有することを必須と
する。
【0015】鋼中のAlは不純物レベルであってもなん
ら問題はないが、AlはSiと同様に鋼板の固有抵抗を
増大させ渦電流損を低減させる効果を有するので、特に
低鉄損を得たい場合には0.1%以上添加することが好
ましい。一方、多量にAl添加した場合には磁束密度が
低下し、コスト高ともなるので1.5%以下とする。
【0016】また、製品の機械的特性の向上、磁気的特
性、耐錆性の向上あるいはその他の目的のために、P、
B、Ni、Cr、Sb、Sn、Cuの1種または2種以
上を鋼中に含有させても本発明の効果は損なわれない。
【0017】C、N、S、B、Pは本発明の請求項では
規定していないが、良好な磁気特性あるいは加工性を有
する無方向性電磁鋼板の製造にあたってはその含有量を
注意深く制御する必要があるので、以下に言及する。
【0018】Cは磁気時効を回避し鉄損の圧下を防止す
るため0.0050%以下であることが好ましい。
【0019】S、Nは熱間圧延工程におけるスラブ加熱
中に一部再固溶し、熱間圧延中にMnS、AlN等の析
出物を形成し、仕上げ焼鈍時に再結晶粒の成長を妨げた
り製品が磁化されるときに磁壁の移動を妨げるいわゆる
ピニング効果を発揮し製品の低鉄損化を妨げる原因とな
る。従って、S≦0.0050%、N≦0.0050%
とすることが好ましい
【0020】Bは熱間圧延時にBNを形成させてAlN
の微細析出を妨げ、Nを無害化させるために添加しても
よい。B含有量はNとの量のバランスが必要であり、そ
の含有量は両者の比B%/N%が0.5から1.5の範
囲を満たすことが好ましい。
【0021】Pは、製品の打ち抜き性を良好ならしめる
ために0.1%までの範囲内において添加してもよい。
P≦0.2%であれば、製品の磁気特性の観点から問題
がない。
【0022】次に本発明のプロセス条件について説明す
る。前記成分からなる鋼スラブは、転炉で溶製され連続
鋳造により製造される。鋼スラブは公知の方法にて加熱
される。
【0023】このスラブに粗圧延と仕上熱間圧延からな
る熱間圧延を施し、所定の厚みとする。以下に本発明の
仕上熱間圧延条件を規定する理由について述べる。
【0024】本発明の特徴は熱延、巻取のプロセス条件
にある。基本思想は第1回目の巻取時に適正な大きさの
熱延板結晶粒径にし、冷延、焼鈍後に磁性に好ましい集
合組織を形成することであり、第2回目の巻取を低温に
することにより、鋼板表層のスケール層や内部酸化層の
形成を抑制し、鉄損の改善を図るとともに、コイルを巻
きほどいて冷却することにより、コイル長手方向の磁気
特性を均一化することにある。
【0025】1回目の巻取温度は1050℃以下、75
0℃以上の温度とし、30秒以上、60分以下の時間保
持するという条件は上記の適正な熱延板粒径を得るのに
必要な限定条件である。1回目の巻取温度ならびに保持
時間の上限を限定したのは、熱延板結晶粒が大きくなり
過ぎて成品板の形状を悪化させないためである。また、
1回目の巻取温度ならびに保持時間の下限を定めたの
は、これ以下では熱延板の粒径が小さく、成品板の磁性
が十分改善されないためである。
【0026】第2回目の巻取温度を550℃以下の温度
と限定したのは、これ以下の温度で鋼板の酸化が抑制さ
れるためである。
【0027】このような熱延、巻取プロセスは仕上圧延
機に比較的近接したコイラーで巻き取り、それからRO
T(Run−out−Table)へ巻戻し、再び従来
のコイラーで巻き取ることで実現する。本プロセスは、
本発明鋼の電磁特性を改善するだけでなく、従来の高温
巻取時の問題点であったスケールが厚くなるという欠点
も回避することができる。
【0028】本発明における熱延条件と磁気特性との関
係を調査するため、以下の2種類の実験を行った。連続
鋳造により220mm厚みに鋳造したスラブを、粗圧延に
より板厚50mmのシートバーとした。これらのシートバ
ーを様々な条件で圧延し、2.8mmの熱延板とした。こ
れを酸洗し冷間圧延により0.5mm厚みに仕上げ、連続
焼鈍により焼鈍し、エプスタイン試料を切り出した。こ
れらの試料の圧延条件の記録から仕上熱延最終パスのZ
パラメーター(前述式1で定義される)と磁気特性との
関係を調べた。なお、本発明では最終パスの圧下温度と
して、仕上温度を計算に用いることにする。図1、図2
に磁束密度、鉄損とZパラメーターとの関係を示す。図
1、図2に示した結果より、Zの値に依存して磁束密
度、鉄損が変動することが分かる。このように本発明の
熱延条件を満たす様に仕上げ熱延を実施することによ
り、磁気特性の均一な無方向性電磁鋼板を製造すること
が可能である。
【0029】
【表1】
【0030】ここで、仕上熱間圧延の仕上温度は、75
0℃未満であると熱間変形抵抗が急激に増大し圧延が困
難となるので750℃以上とする。また、1150℃超
であると、熱延板の剛性が不足し、一回目のコイルの巻
取りが著しく不安定となるので1150℃以下とする。
【0031】また、Zの値には下限を特に設けない。Z
の値は圧延温度が高くなるか、歪み速度が小さくなると
減少するが、圧延温度が高すぎると巻取時の形状が悪く
なるのでその下限値は熱延機の性能により自ずから決ま
り、歪速度の下限も圧延速度の限界から熱延機の能力に
より自ずから決まるからである。
【0032】ここで、Zパラメーターの値を求めるには
歪み速度を求める必要がある。その方法としては諸方法
があるが、本発明では下記の式2に従って歪み速度を求
めるものとする。
【0033】
【数3】
【0034】本発明では圧延中のZパラメータの値をよ
り均一にするため、粗圧延後のシートバーをいったん巻
き取って一定時間保定し、均熱化処理を施した後、これ
を巻きほどいて先行するシートバーに接合し、複数のシ
ートバーを連続して圧延することが極めて有効である。
シートバーの巻取り保定時間は30秒以上30分以下が
好ましい。30秒以下では均熱化処理の効果が得られ
ず、30分以上ではその効果が飽和し、生産性の低下を
招くからである。これにより、圧延の噛み込み、および
最終部の尻抜けの部分をのぞく中間のシートバーを本発
明の構成要件を満たして圧延することが可能となる。
【0035】このようにして得られた熱延板はその後、
一回の冷間圧延と連続焼鈍により製品とするか、中間焼
鈍をはさむ2回以上の冷間圧延で最終板厚とするか、あ
るいはさらにスキンパス圧延工程を付加して製品として
もよい。スキンパス圧延率は2%未満ではその鉄損改善
効果が得られず、20%超ではかえって鉄損が悪化する
ため2%以上20%以下とする。
【0036】
【実施例】次に、本発明の実施例について述べる。 [実施例1]表2に示す成分を含み、残部Fe及び不可
避不純物からなる鋼を転炉により溶製し連続鋳造設備に
より厚さ220mmのスラブとした。このスラブを通常の
方法にて1250℃に加熱し、粗圧延により55mmのシ
ートバーとした。さらに6スタンドのタンデム仕上熱延
機により成分1の鋼は2.7mm、成分2の鋼は3.0mm
厚みに仕上げた。熱延仕上げ温度は880℃とし、一回
目の巻取を800℃で行い、保熱カバーをかぶせて30
分の保持を行った。その後このコイルを巻きほどいて5
00℃で巻き取った。
【0037】仕上圧延の際、熱延条件の指標であるZパ
ラメーターの値を、最終パスにおいて種々の値を取るよ
うに圧延速度、圧延温度、パススケジュールを調整し
た。得られた熱延板を酸洗後、冷間圧延により0.50
mmに仕上げ、連続焼鈍炉で成分1は800℃、30秒、
成分2は950℃、30秒の焼鈍を施し磁気特性を測定
した。
【0038】この時の熱延条件の指標である最終パスに
おけるZパラメータの値と、磁気測定結果の関係を表
3、表4に示す。表3、表4に示した結果より、Zパラ
メータの変動範囲が2.0以下であると、磁束密度、鉄
損とも変動を小さくすることが可能である。さらに、Z
パラメータの変動範囲が1.5以下であると、磁束密
度、鉄損とも変動をより小さくすることが可能となるこ
とが分かる。この結果は、さらに、Zパラメータの値が
16.0を超えると、磁気特性の低下が顕著である事も
分かる。このように本発明で定めた熱延条件を満たす様
に仕上げ熱延を実施することにより、長手方向の磁気特
性の安定した無方向性電磁鋼板を得ることが可能であ
る。
【0039】
【表2】
【0040】
【表3】
【0041】
【表4】
【0042】[実施例2]実施例1で得られた成分1の
熱延鋼板を酸洗後、冷間圧延により0.55mmに仕上
げ、連続焼鈍炉で780℃、20秒の焼鈍を施した。さ
らにこれをスキンパス圧延により0.50mmに圧下し、
750℃2時間の磁性焼鈍を施した後、磁気特性を測定
した。この時の熱延条件の指標である最終パスにおける
Zパラメータの値と、磁気測定結果の関係を表5に示
す。表5に示した結果より、Zパラメータの変動範囲が
2.0以下であると、磁束密度、鉄損とも変動を小さく
することが可能である。さらに、Zパラメータの変動範
囲が1.5以下であると、磁束密度、鉄損とも変動をよ
り小さくすることが可能となることが分かる。この結果
は、さらに、Zパラメータの値が16.0を超えると、
磁気特性の低下が顕著である事も分かる。
【0043】このように本発明で定めた熱延条件を満た
す様に仕上げ熱延を実施することにより、セミプロセス
無方向性電磁鋼板においても長手方向の磁気特性の安定
した無方向性電磁鋼板を得ることが可能である。
【0044】
【表5】
【0045】
【発明の効果】このように本発明によれば、磁気特性の
均一な無方向性電磁鋼板を製造することが可能である。
【図面の簡単な説明】
【図1】磁束密度とZパラメータとの関係を示す図であ
る。
【図2】鉄損とZパラメータとの関係を示す図である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 猛 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K033 AA01 FA03 FA04 FA05 FA10 FA11 FA14 HA01 HA03 5E041 AA02 CA02 CA04 HB15 NN01 NN18

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 重量%で、 0.1%≦Si≦4.0%と、 0.1%≦Mn≦2.0% との一方若しくは双方を含有し、残部がFeおよび不可
    避不純物からなるスラブに粗圧延を施してシートバーと
    し、次いで仕上温度が750℃以上1150℃以下であ
    って、最終パスにおける下記式1で定義されるパラメー
    タの最大値を16.0未満かつその変動範囲を2.0以
    下とした仕上熱間圧延を施して熱延板とした後、熱延板
    を1050℃以下750℃以上の温度で巻取り、30秒
    以上60分以下の時間保持した後に巻き戻し、冷却を施
    して再び550℃以下の温度で巻取った後に、1回の冷
    間圧延工程を施し次いで仕上焼鈍を施して最終製品とす
    るか、中間焼鈍をはさむ2回以上の冷間圧延を施して最
    終製品とするか、或いはさらに2%以上20%未満のス
    キンパス圧延を施して最終製品とする磁気特性の均一な
    無方向性電磁鋼板の製造方法。 【数1】
  2. 【請求項2】 鋼成分として、さらに重量%で、 0.1%≦sol-Al≦1.5% を含有するスラブを用いることを特徴とする請求項1記
    載の磁気特性の均一な無方向性電磁鋼板の製造方法。
  3. 【請求項3】 仕上熱間圧延中における式1で定義され
    るパラメータの変動を1.5以下とすることを特徴とす
    る請求項1又は2記載の磁気特性の均一な無方向性電磁
    鋼板の製造方法。
  4. 【請求項4】 スラブを粗圧延して得られたシートバー
    を一度巻き取り、一定時間保持した後にシートバーを巻
    きもどした後、先行するシートバーと後行するシートバ
    ーとを接合し、複数のシートバーを一体として連続的に
    仕上熱間圧延に供することを特徴とする請求項1、2又
    は3記載の磁気特性の均一な無方向性電磁鋼板の製造方
    法。
JP10582599A 1999-04-13 1999-04-13 磁気特性の均一な無方向性電磁鋼板の製造方法 Withdrawn JP2000297326A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10582599A JP2000297326A (ja) 1999-04-13 1999-04-13 磁気特性の均一な無方向性電磁鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10582599A JP2000297326A (ja) 1999-04-13 1999-04-13 磁気特性の均一な無方向性電磁鋼板の製造方法

Publications (1)

Publication Number Publication Date
JP2000297326A true JP2000297326A (ja) 2000-10-24

Family

ID=14417847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10582599A Withdrawn JP2000297326A (ja) 1999-04-13 1999-04-13 磁気特性の均一な無方向性電磁鋼板の製造方法

Country Status (1)

Country Link
JP (1) JP2000297326A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018043247A (ja) * 2016-09-12 2018-03-22 Jfeスチール株式会社 熱間圧延コイルおよび無方向性電磁鋼板の製造方法
KR20210125073A (ko) * 2019-03-20 2021-10-15 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018043247A (ja) * 2016-09-12 2018-03-22 Jfeスチール株式会社 熱間圧延コイルおよび無方向性電磁鋼板の製造方法
KR20210125073A (ko) * 2019-03-20 2021-10-15 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판
US11952641B2 (en) 2019-03-20 2024-04-09 Nippon Steel Corporation Non oriented electrical steel sheet
KR102683224B1 (ko) * 2019-03-20 2024-07-10 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판

Similar Documents

Publication Publication Date Title
JP5646643B2 (ja) 方向性電磁鋼帯を製造する方法およびそれにより製造された方向性電磁鋼
WO2006068399A1 (en) Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
JP2000219917A (ja) 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法
JP2000219916A (ja) 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法
JP2006241554A (ja) 磁束密度が高い無方向性電磁鋼板の製造方法
JP2000297326A (ja) 磁気特性の均一な無方向性電磁鋼板の製造方法
JP3483265B2 (ja) 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板の製造方法
JP2001181743A (ja) 磁性に優れた熱延珪素鋼板の製造方法
JP3319898B2 (ja) コイル内で磁気特性の均一な無方向性電磁鋼帯の製造方法
JP2000309823A (ja) 磁気特性の均一な熱延珪素鋼板の製造方法
JP2001131636A (ja) 磁性の均一な無方向性電磁鋼板の製造方法
JP2001172718A (ja) 磁気特性の均一な無方向性電磁鋼板の製造方法
JP3348811B2 (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
JP7284367B2 (ja) 無方向性電磁鋼板コイル及びその製造方法
JP4317305B2 (ja) 冷延方向の磁気特性変動が小さい一方向性電磁鋼板を得る冷間圧延方法
JPH11286725A (ja) 磁性に優れた無方向性電磁鋼板の製造方法
JP2000096145A (ja) 磁気特性の均一な無方向性電磁鋼板の製造方法
JP2000297325A (ja) 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造方法
JP4191806B2 (ja) 無方向性電磁鋼板の製造方法
JP3348827B2 (ja) 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造方法
JP2000297324A (ja) 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造方法
JPH1046248A (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
JP2001123225A (ja) 磁束密度が高く、鉄損の低い熱延珪素鋼板の製造方法
JP2000104118A (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
JP3379058B2 (ja) 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704