JP2000283184A - 流体継手 - Google Patents

流体継手

Info

Publication number
JP2000283184A
JP2000283184A JP11090811A JP9081199A JP2000283184A JP 2000283184 A JP2000283184 A JP 2000283184A JP 11090811 A JP11090811 A JP 11090811A JP 9081199 A JP9081199 A JP 9081199A JP 2000283184 A JP2000283184 A JP 2000283184A
Authority
JP
Japan
Prior art keywords
pump
torque
turbine
fluid coupling
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11090811A
Other languages
English (en)
Inventor
Yasushi Yamamoto
康 山本
Nobuyuki Iwao
信幸 岩男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP11090811A priority Critical patent/JP2000283184A/ja
Publication of JP2000283184A publication Critical patent/JP2000283184A/ja
Withdrawn legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】 伝達トルクを大幅に低下させることなく、ド
ラッグトルクを大幅に低減することができる流体継手を
提供する。 【解決手段】 入力軸に取り付けられたポンプ(41)
と、該ポンプ(41)と対向して配設されたタービン
(42)とを具備する流体継手であって、ポンプ(4
1)のインペラ(412)は径方向内端から径方向外端
に向け回転方向下流側に傾斜して形成されている。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、原動機の回転トル
クを伝達するための流体継手(フルードカップリング)
の改良に関する。
【0002】
【従来の技術】流体継手(フルードカップリング)は船
舶用、産業機械用、自動車用の動力伝達継手として従来
から用いられている。流体継手は、原動機である例えば
ディーゼルエンジンのクランクシャフト(流体継手とし
ての入力軸)に連結されたポンプと、該ポンプと対向し
て配設された入力軸と同一軸線上に配置された出力軸に
取り付けられたタービンとを具備し、上記ポンプおよび
タービン内に作動流体が充填されている。このような流
体継手において、ポンプは入力軸に連結された椀状のポ
ンプシェルと、該ポンプシェル内に放射状に配設された
複数個のインペラとからなり、タービンは出力軸に取り
付けられたタービンシェルと、該タービンシェル内に放
射状に配設された複数個のランナとからなっており、イ
ンペラおよびランナは直線放射状に形成されている。イ
ンペラおよびランナが直線状に形成されているのは、ト
ルク増幅作用が行われない流体継手においてはインペラ
およびランナが湾曲ないし屈曲していても直線状であっ
ても入力トルクと出力トルクは1対1であり、従って、
インペラおよびランナを湾曲ないし屈曲して形成するこ
とにより流路抵抗が増大することを避けるためである。
【0003】
【発明が解決しようとする課題】図5は、流体継手にお
ける入出力軸の回転数差と出力トルク(伝達トルク)と
の関係を示すものである。図5において1点鎖線はポン
プのインペラおよびタービンのランナを直線放射状に形
成した従来の流体継手のトルク伝達特性である。このよ
うな特性を有する流体継手を車両の駆動装置に装備した
した場合、車両停止状態でエンジンが駆動され変速機の
変速ギヤが投入されている状態、即ち入力軸が回転し出
力軸が停止している状態では、その特性上ドラッグトル
クを有する。ドラッグトルクは、一般的にエンジンがア
イドリング回転数(例えば、500rpm)で運転され
ている状態での伝達トルクをいう。このドラッグトルク
は、流体継手の設計点を最大効率となる回転速度比、即
ちポンプとタービンとの回転速度比を0.95〜0.9
8位にとると、かなり大きくなる。ドラッグトルクが大
きいと、エンジンのアイドリング運転が著しく不安定と
なるとともに、この不安定な回転が駆動系に異常振動を
発生させる原因となる。また、ドラッグトルクが大きい
ことにより、アイドリング運転時の燃費が悪化する原因
にもなっている。
【0004】上述したドラッグトルクを低減するために
は、基本的にはポンプおよびタービンの径即ち流体継手
のサイズを小さくしなければならない。ドラッグトルク
の発生を小さい値に抑えるために流体継手のサイズを小
さくすると、トルク伝達特性は図5において2点鎖線で
示すようになる。図5から明らかなように2点鎖線で示
すサイズを小さくした流体継手におては、入力軸と出力
軸の回転数差が大きくなっても十分な出力トルク(伝達
トルク)を得ることができない。即ち、従来の流体継手
は、ドラッグトルクを低減させるためにサイズを小さく
すると伝達トルクが大幅に低減し、必要な伝達トルクを
得るためにサイズを大きくするとドラッグトルクが増大
するという宿命がある。
【0005】本発明は上記事実に鑑みてなされたもの
で、その主たる技術的課題は、伝達トルクを大幅に低下
させることなく、ドラッグトルクを大幅に低減すること
ができる流体継手を提供することにある。
【0006】
【課題を解決するための手段】本発明によれば、上記主
たる技術的課題を解決するために、入力軸に取り付けら
れたポンプシェルと、該ポンプシェル内に配設された複
数個のインペラとを有するポンプと、該ポンプと対向し
て配設され該入力軸と同一軸線上に配置された出力軸に
取り付けられたタービンシェルと、該タービンシェル内
に配設された複数個のランナとを有するタービンと、を
具備する流体継手において、該ポンプの該インペラは、
径方向内端から径方向外端に向け回転方向下流側に傾斜
して形成されている、ことを特徴とする流体継手が提供
される。
【0007】
【発明の実施の形態】以下、本発明に従って構成された
流体継手の好適実施形態を図示している添付図面を参照
して、更に詳細に説明する。
【0008】図1には、本発明に従って構成された流体
継手を自動車用エンジンと摩擦クラッチとの間に配設し
た駆動装置の一実施形態が示されている。図示の実施形
態における駆動装置は、原動機としての内燃機関2と本
発明に従って構成された流体継手4および摩擦クラッチ
6とによって構成されている。内燃機関2は図示の実施
形態においてはディーゼルエンジンからなっており、ク
ランク軸21の端部には流体継手4の後述するポンプ側
が取り付けられる。
【0009】流体継手4は、ディーゼルエンジン2に装
着されたハウジング22にボルト23等の締結手段によ
って取り付けられた流体継手ハウジング40内に配設さ
れている。図示の実施形態における流体継手4は、ポン
プ41と該ポンプ41と対向して配設されたタービン4
2および上記ポンプ41と連結されたケーシング43を
具備している。
【0010】ポンプ41は椀状のポンプシェル411
と、該ポンプシェル411内に放射状に配設された複数
個のインペラ412とを備えており、ポンプシェル41
1が上記ケーシング43に溶接等の固着手段によって取
り付けられている。なお、ケーシング43は、上記クラ
ンク軸21にボルト24によって内周部が装着されたド
ライブプレート44の外周部にボルト441、ナット4
42等の締結手段によって装着されている。このように
して、ポンプ41のポンプシェル411は、ケーシング
43およびドライブプレート44を介してクランク軸2
1に連結される。従って、クランク軸21は流体継手4
の入力軸として機能する。図示の実施形態においては、
ポンプ41のインペラ412は、図2に示すように径方
向内端から径方向外端に向けて矢印で示すポンプ41の
回転方向下流側に傾斜して形成され、椀状のポンプシェ
ル411の内面に設けられている。なお、上記ドライブ
プレート44の外周には、図示しないスタータモータの
駆動歯車と噛合する始動用のリングギヤ45が装着され
ている。
【0011】上記タービン42は、上記ポンプ41のポ
ンプシェル411と対向して配設された椀状のタービン
シェル421と、該タービンシェル421内に放射状に
配設された複数個のランナ422とを備えている。ター
ビンシェル421は、上記入力軸としての上記クランク
軸21と同一軸線上に配設された出力軸46にスプライ
ン嵌合されたタービンハブ47に溶接等の固着手段によ
って取り付けられている。なお、図示の実施形態におい
ては、タービン42のランナ422は、図示の実施形態
においては直線放射状に形成されており、上記椀状のタ
ービンシェル421の内面に設けられている。
【0012】図示の実施形態における流体継手4は油圧
ポンプ50を具備している。この油圧ポンプ50は上記
流体継手ハウジング40に装着された摩擦クラッチ6の
後述するクラッチハウジング60にボルト51等の固着
手段によって取り付けられポンプハウジング52に配設
されている。この油圧ポンプ50は、上記ポンプ41の
ポンプシェル411に取り付けられたポンプハブ48に
よって回転駆動されるように構成されており、図示しな
い流体経路を介して作動流体を上記ポンプ41およびタ
ービン42内に供給する。なお、ポンプハブ48は上記
出力軸46の周囲に貫挿して配設された筒状軸49に軸
受490をによって回転可能に支持されている。
【0013】次に、上記摩擦クラッチ6について説明す
る。摩擦クラッチ6は、上記流体継手ハウジング40に
ボルト61によって装着されたクラッチハウジング60
内に配設されている。図示の実施形態における摩擦クラ
ッチ6は、上記流体継手4の出力軸46に装着されたク
ラッチドライブプレート62と、出力軸46と同一軸線
上に配設された伝動軸63(図示の実施形態において
は、図示しない変速機の入力軸)と、該伝動軸63にス
プライン嵌合されたクラッチハブ64に取り付けられ外
周部にクラッチフェーシング65が装着されているドリ
ブンプレート66と、該ドリブンプレート66をクラッ
チドライブプレート62に押圧するプレッシャープレー
ト67と、該プレッシャープレート67をクラッチドラ
イブプレート62に向けて付勢するダイアフラムスプリ
ング68と、該ダイアフラムスプリング68の内端部に
係合してダイアフラムスプリング68の中間部を支点6
81として作動するレリーズベアリング69と、該レリ
ーズベアリング69を軸方向に作動せしめるクラッチレ
リーズフォーク70とを具備している。このように構成
された摩擦クラッチ6は、図示の状態においてはダイア
フラムスプリング68のばね力によってプレッシャープ
レート67がクラッチドライブプレート62に向けて押
圧されており、従って、ドリブンプレート66に装着さ
れたクラッチフェーシング65がクラッチドライブプレ
ート62に押圧されて流体継手4の出力軸46に伝達さ
れた動力がクラッチドライブプレート62およびドリブ
ンプレート66を介して伝動軸63に伝達される。この
動力伝達を遮断する場合は、図示しないスレーブシリン
ダに油圧を供給してクラッチレリーズフォーク70を作
動し、レリーズベアリング69を図1において左方に移
動すると、ダイアフラムスプリング68が図において2
点鎖線で示すように作動せしめられ、プレッシャープレ
ート67への押圧力を解除することにより、クラッチド
ライブプレート62からドリブンプレート66への動力
伝達が遮断される。
【0014】本発明に従って構成された流体継手を装備
した駆動装置は以上のように構成されており、以下その
作動について説明する。ディーゼルエンジン2のクラン
ク軸21(入力軸)に発生した駆動力は、ドライブプレ
ート44を介して流体継手4のケーシング43に伝達さ
れる。ケーシング43とポンプ41のポンプシェル41
1は一体的に構成されているので、上記駆動力によって
ポンプ41が回転せしめられる。ポンプ41が回転する
とポンプ41内の作動流体は遠心力によりインペラ41
2に沿って外周に向かって流れ、矢印で示すようにター
ビン42側に流入する。タービン42側に流入した作動
流体は、中心側に向かって流れ矢印で示すようにポンプ
41に戻される。このように、ポンプ41およびタービ
ン42内の作動流体がポンプ41とタービン42内を循
環することにより、ポンプ41側の駆動トルクが作動流
体を介してタービン42側に伝達される。タービン42
側に伝達された駆動力は、タービンシェル421および
タービンハブ47を介して出力軸46に伝達され、更に
上記摩擦クラッチ6を介して図示しない変速機に伝達さ
れる。
【0015】ここで、流体継手内部の作動油の流れとポ
ンプおよびタービンの駆動トルクとの関係について図3
および図4を参照して説明する。先ず、ポンプ10のイ
ンペラ101とタービン11のランナ111とが共に直
線放射状に形成された従来の流体継手について、図4を
参照して説明する。図4はポンプ10とタービン11を
展開して示したもので、簡略化のためポンプ10のみが
角速度(ω)(ω=v2x´/r2 但し、v2x´は
ポンプ10出口部における作動流体の回転方向速度成
分、r2はポンプ10出口部の平均半径)で矢印で示す
方向に回転駆動され、タービン11を停止させている状
態で説明する。ポンプ10にT1のトルクを与えると、
ポンプ10に流入速度(v1´)で矢印方向から流入し
た作動流体は、角速度(ω)で矢印で示す方向に回転駆
動されているポンプ10によって周方向速度が上記回転
方向速度成分(v2x´)まで加速される。このように
して周方向速度が上記回転方向速度成分(v2x´)ま
で加速された作動流体は、ポンプ10の回転によって生
ずる遠心流体圧による径方向速度成分(v2y´)との
合成された流出速度(v2´)で矢印で示す方向にポン
プ10から流出する。ポンプ10から流出速度(v2
´)で矢印で示す方向に流出しタービン11に流入した
作動流体は、タービン11のランナ111に当たり、周
方向速度(回転方向速度成分)が零(0)になり、流出
速度(v1´)で矢印で示す方向にタービン11から流
出し、ポンプ10に再び流入する。このとき、タービン
11のランナ111は、作動流体からトルク(T1)を
受ける。このように、ポンプ10に(T1)のトルクが
与えられると、タービン11にはトルク(T1)が伝達
される。ポンプ10に戻った作動流体は、トルク(T
1)で周方向速度(v2´)まで加速され、上記作動を
繰り返す。このように作動される従来の流体継手は、図
5において1点鎖線で示すトルク伝達特性である。
【0016】次に、本発明に従って構成された流体継手
4について、図3を参照して説明する。図3はポンプ4
1とタービン42を展開して示したもので、簡略化のた
め上記従来のものと同様にポンプ41のみが角速度
(ω)で矢印で示す方向に回転駆動され、タービン42
を停止させている状態で説明する。ポンプ41に(T
1)のトルクを与えると、ポンプ41に流入した作動流
体は、角速度(ω)で矢印で示す方向に回転駆動されて
いるポンプ41によって周方向速度が(v2x)まで加
速される。このようにして周方向速度が(v2x)まで
加速された作動流体は、ポンプ41の回転による遠心流
体圧による作動流体の径方向速度成分(v2y)との合
成された流出速度(v2)で矢印で示す方向にポンプ4
1から流出する。ポンプ41から流出速度(v2)で矢
印で示す方向に流出しタービン42に流入した作動流体
は、ランナ422に当たり、タービン42にトルクを伝
達する。なお、図示の実施形態においては、ポンプ41
のインペラ412が径方向内端から径方向外端に向けて
ポンプ41の回転方向下流側に傾斜して形成されている
ので、ポンプ41に流入した作動流体は内周側方向への
力を受ける。このときの力は、以下のように見積もるこ
とができる。なお、以下の計算式において、(v1)は
ポンプへの作動流体の流入速度、(v2)はポンプから
の作動流体の流出速度、(v2x)はポンプ出口部にお
ける作動流体の回転方向速度成分、(v2y)はポンプ
出口部における作動流体の径方向速度成分、(t)は作
動流体がポンプを通過する時間、(ω)はポンプの角速
度、(r1)はポンプ入口部の平均半径、(r2)はポ
ンプ出口部の平均半径、(m)は作動流体の粒子の質
量、とする。
【0017】ポンプ41内を作動流体が通過するに要す
る時間(t)は、次の数式1によって求められる。
【0018】
【数1】t=(r2−r1)/v1
【0019】ポンプ41内を作動流体が通過する間
(t)の作動流体粒子の回転方向速度変化(dv)は、
次の数式2の通りである。
【0020】
【数2】dv=v2x
【0021】従って、ポンプ41内を作動流体が通過す
る間(t)に作動流体粒子に生じた平均加速度(α)
は、次の数式3によって求められる。
【0022】
【数3】α=dv/t =v2x/{(r2−r1)/v1}
【0023】作動流体の粒子の質量を(m)とすると、
作動流体粒子が受ける回転方向の平均力(F1)は、次
の数式4の通りである。
【0024】
【数4】F1=m・α =m・v2x/{(r2−r1)/v1}
【0025】ポンプ出口部における作動流体の回転方向
速度成分(v2x)はポンプ出口の周速度(ω・r2)
に略等しい(v2x≒ω・r2)から、上記数式4にお
いてポンプ出口部における作動流体の回転方向速度成分
(v2x)にポンプ出口の周速度(ω・r2)を代入す
ると、作動流体粒子が受ける回転方向の平均力(F1)
は次の数式5の通りである。
【0026】
【数5】 F1=m・(ω・r2)/{(r2−r1)/v1}
【0027】ここで、タービン42が停止し、ポンプ4
1のみが角速度(ω)で回転しているとすると、m、r
2、r1、v1は使用する作動流体およびポンプ41の
仕様が決まれば一定と考えられるので、上記数式5は、
次の数式6となる。
【0028】
【数6】F1=C1・ω (但し、C1は定数)
【0029】一方、作動流体粒子にかかる遠心力(F
2)は、次の数式7によって求められる。
【0030】
【数7】F2=m・r・ω2 (但し、rはポンプ41
のインペラ412が受ける力の重心位置までの半径)
【0031】上記数式7において、m、rは使用する作
動流体およびポンプ41の仕様が決まれば一定なので、
上記数式7は、次の数式8となる。
【0032】
【数8】F2=C2・ω2 (但し、C2は定数)
【0033】ポンプ41のインペラ412の傾き(θ)
により作動流体粒子が受ける回転方向の平均力(F1=
C1・ω)の内周側方向に向かう成分(F1´)は、次
の数式9によって求められる。
【0034】
【数9】F1´=cosθ・sinθ・C1・ω
【0035】上記数式9において、cosθ、sinθ
はポンプ41のインペラ412の傾き(θ)が決まれば
一定であるので、上記数式9は、次の数式10となる。
【0036】
【数10】 F1´=C1´・ω (但し、C1´は定数)
【0037】従って、ポンプ41が作動流体粒子に与え
る径方向の力の合力は、次の数式11となる。
【0038】
【数11】
【0039】上記数式11において、(F2−F1´)
が零(0)であれば作動流体がポンプ41側からタービ
ン42側へ流れないので、伝達トルクが発生しない。数
式11より(F2−F1´)を零(0)にするために
は、ポンプの角速度(ω)が零(0)(ω=0)か、ポ
ンプの角速度(ω)が(C1´/C2)と等しくなれば
よい(ω=C1´/C2)。従って、エンジンのアイド
リング回転付近でポンプの角速度(ω)が(C1´/C
2)と等しくなるようにポンプ41のインペラ412の
傾き(θ)を設定することにより、アイドリング運転時
のドラッグトルクを零(0)ないし大幅に低減すること
ができる。図5において1点鎖線で示す従来の流体継手
と同一サイズに構成した本発明の流体継手4におけるト
ルク伝達特性を実線で示す。即ち、本発明の流体継手4
は、入出力軸の回転数差(rpm)がエンジンのアイド
リング回転数(例えば500rpm)より低い300r
pm付近のエンジン回転数のときポンプの角速度(ω)
が(C1´/C2)と等しくなるようにポンプ41のイ
ンペラ412の傾き(θ)を設定したものである。従っ
て、図5から判るように実線で示す本発明の流体継手4
は、入出力軸の回転数差が300rpm付近で伝達トル
クが零(0)になり、エンジンのアイドリング回転数
(例えば500rpm)においてもドラッグトルクを大
幅に低減することができる。
【0040】次に、本発明に従って構成された流体継手
4について、入出力軸の回転数差がエンジンのアイドリ
ング回転数(例えば500rpm)以上の領域での伝達
トルクについて図3および図5を参照して説明する。図
示の実施形態における流体継手4は、ポンプ41のイン
ペラ412が径方向内端から径方向外端に向けてポンプ
41の回転方向下流側に傾斜して形成されているので、
ポンプ41からの作動流体の流出速度(v2)がインペ
ラを直線放射状に形成した図4に示す従来の流体継手に
おけるポンプからの流出速度(v2´)より僅かに減少
する。従って、タービン11のランナ111は、作動流
体からトルク(T1)より僅かに小さい(T1´)のト
ルクを受ける。このため、タービン42にトルク(T1
´)のトルクが伝達される。タービン42から速度(v
1)で矢印方向に流出した作動流体はポンプ41に流入
する。ポンプ41に流入した作動流体を再び始めと同様
に周方向速度を(v2x)まで加速するには、ポンプ4
1に(T1´)のトルクを与えればよい。そこでポンプ
41に(T1´)のトルクを与えると、作動流体はポン
プ41出口で周方向速度が(v2x)まで加速され、上
記作動を繰り返す。従って、図示の実施形態における流
体継手4は、1点鎖線で示す同一サイズの従来の流体継
手と比較して僅かに低下するするが、アイドリング回転
数(例えば500rpm)のドラッグトルクを本発明の
流体継手4と同等にするためにサイズを小さくした2点
差線で示す従来の流体継手と比較して高い伝達トルクを
確保することができる。このため、本発明によれば、1
点鎖線で示す従来の流体継手よりサイズを僅かに大きく
することにより、図5において破線で示すように伝達ト
ルクを確保してドラッグトルクを大幅に低減できる流体
継手を得ることができる。
【0041】以上、本発明を図示の実施形態に基づいて
説明したが、本発明は実施形態のみに限定されるもので
はない。例えば実施形態においては、タービン11のラ
ンナ111は直線放射状に形成したものを示したが、回
転方向に傾斜して形成しても、また屈曲して形成しても
よい。
【0042】
【発明の効果】本発明による流体継手は以上のように構
成されているので、以下に述べる作用効果を奏する。
【0043】即ち、流体継手を構成するポンプのインペ
ラは、径方向内端から径方向外端に向け回転方向下流側
に傾斜して形成されているので、インペラの傾き(θ)
をエンジンのアイドリング回転付近でポンプの回転によ
って作動される作動流体がタービン側に流れないように
設定することにより、アイドリング運転時のドラッグト
ルクを零(0)ないし大幅に低減することができる。
【図面の簡単な説明】
【図1】本発明に従って構成された流体継手を装備した
駆動装置の一実施形態を示す断面図。
【図2】図1に示す流体継手を構成するポンプの側面
図。
【図3】図1に示す流体継手における作動油の流れとポ
ンプおよびタービンの駆動トルクとの関係を示す説明
図。
【図4】従来の流体継手における作動油の流れとポンプ
およびタービンの駆動トルクとの関係を示す説明図。
【図5】流体継手における入出力軸の回転数差と伝達ト
ルクとの関係を示す図。
【符号の説明】
2:内燃機関 21:クランク軸 4:流体継手 40:流体継手ハウジング 41:ポンプ 411:ポンプシェル 412:インペラ 42:タービン 421:タービンシェル 422:ランナ 43:ケーシング 44:ドライブプレート 45:リングギヤ 46:出力軸 47:タービンハブ 48:ポンプハブ 50:油圧ポンプ 52:ポンプハウジング 6:摩擦クラッチ 60:クラッチハウジング 62:クラッチドライブプレート 63:伝動軸 64:クラッチハブ 65:クラッチフェーシング 66:ドリブンプレート 67:プレッシャープレート 68:ダイアフラムスプリング 69:レリーズベアリング 70:クラッチレリーズフォーク

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 入力軸に取り付けられたポンプシェル
    と、該ポンプシェル内に配設された複数個のインペラと
    を有するポンプと、 該ポンプと対向して配設され該入力軸と同一軸線上に配
    置された出力軸に取り付けられたタービンシェルと、該
    タービンシェル内に配設された複数個のランナとを有す
    るタービンと、を具備する流体継手において、 該ポンプの該インペラは、径方向内端から径方向外端に
    向け回転方向下流側に傾斜して形成されている、 ことを特徴とする流体継手。
JP11090811A 1999-03-31 1999-03-31 流体継手 Withdrawn JP2000283184A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11090811A JP2000283184A (ja) 1999-03-31 1999-03-31 流体継手

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11090811A JP2000283184A (ja) 1999-03-31 1999-03-31 流体継手

Publications (1)

Publication Number Publication Date
JP2000283184A true JP2000283184A (ja) 2000-10-13

Family

ID=14008992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11090811A Withdrawn JP2000283184A (ja) 1999-03-31 1999-03-31 流体継手

Country Status (1)

Country Link
JP (1) JP2000283184A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470899B1 (ko) * 2002-03-06 2005-03-08 삼성테크윈 주식회사 가변형 유체 커플링

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470899B1 (ko) * 2002-03-06 2005-03-08 삼성테크윈 주식회사 가변형 유체 커플링

Similar Documents

Publication Publication Date Title
JP4420362B2 (ja) 流体継手
US6931844B2 (en) Fluid coupling
US7350352B2 (en) Fluid coupling
US10792991B2 (en) Hybrid module including torque converter having a stator friction brake
JP2000283184A (ja) 流体継手
EP1693601B1 (en) Torque converter
JP4078944B2 (ja) 流体継手
JP4042582B2 (ja) 流体継手
JP2000283185A (ja) 流体継手
KR20040055634A (ko) 토크 컨버터
JP2000249168A (ja) 流体継手
JP2003156122A (ja) 流体継手
JPS6112144B2 (ja)
JP4282973B2 (ja) 小型車両用動力伝達装置
JP4314664B2 (ja) 流体継手装置
JP2003207019A (ja) 流体継手
JP2000266159A (ja) 流体継手装置
JP2000257695A (ja) 流体継手装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606