JP2000281454A - Ceramic with low thermal expansion and high rigidity - Google Patents

Ceramic with low thermal expansion and high rigidity

Info

Publication number
JP2000281454A
JP2000281454A JP11090758A JP9075899A JP2000281454A JP 2000281454 A JP2000281454 A JP 2000281454A JP 11090758 A JP11090758 A JP 11090758A JP 9075899 A JP9075899 A JP 9075899A JP 2000281454 A JP2000281454 A JP 2000281454A
Authority
JP
Japan
Prior art keywords
thermal expansion
ceramic
mgo
vol
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11090758A
Other languages
Japanese (ja)
Other versions
JP4025455B2 (en
Inventor
Toshiyuki Ihara
俊之 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP09075899A priority Critical patent/JP4025455B2/en
Publication of JP2000281454A publication Critical patent/JP2000281454A/en
Application granted granted Critical
Publication of JP4025455B2 publication Critical patent/JP4025455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a ceramic having low thermal expansion and high rigidity by constituting the ceramic of three components of LiAlSiO4, Si3N4 or SiC, and MgO. SOLUTION: This ceramic consists of three components of LiAlSiO4 having a negative thermal expansion characteristic, Si3N4 or SiC having positive thermal expansion characteristics and high rigid characteristics, and MgO. Preferably, the ceramic has the composition of 60-90 vol.% LiAlSiO4, 10-40 vol.% Si3N4 and 1-3 vol.% MgO, 2.4-2.7 specific gravity, (-0.1)-0.9×10-6/ deg.C thermal expansion and 130-175 GPa Young's modulus, or has a composition of 70-90 vol.% LiAlSiO4, 10-30 vol.% SiC and 1-3 vol.% MgO, 2.4-2.5 specific gravity, (-0.1)-1.3×10-6/ deg.C thermal expansion and 130-145 GPa Young's modulus. The ceramic is obtained by formulating each component, mixing and pulverizing the formulated components so as to have <2 μm average particle diameter, compacting the pulverized product and heat-treating the obtained compact in nitrogen atmosphere at 1,100-1,200 deg.C. The ceramic is excellent as a component for an exposure device, constituting a support or a supporting stand of a wafer in which highly minute circuit is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造プロセ
スにおける露光装置のステージ部品、チャック、構造部
品、ミラー等の部材や天体望遠鏡等の光学部品や精密測
定機用治工具等に適した低熱膨張高剛性セラミックスに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low thermal expansion suitable for a stage component, a chuck, a structural component, a member such as a mirror, an optical component such as an astronomical telescope, a jig tool for a precision measuring machine, etc. Related to high rigidity ceramics.

【0002】[0002]

【従来の技術】LSIなどの製造工程において、シリコ
ンウェハに配線を形成する工程において、ウェハを支持
または保持するためのサセプタ、真空チャックや絶縁リ
ングとしてあるいはその他の治具等として、これまでア
ルミナや窒化珪素や炭化珪素が比較的安価で、化学的に
も安定であるため広く用いられている。また、露光装置
のX−Yテーブル等としても従来よりアルミナや窒化珪
素などのセラミックスが同様に用いられている。
2. Description of the Related Art In the process of forming wiring on a silicon wafer in the manufacturing process of LSIs and the like, a susceptor for supporting or holding the wafer, a vacuum chuck, an insulating ring, or other jigs, etc. Silicon nitride and silicon carbide are widely used because they are relatively inexpensive and chemically stable. Further, ceramics such as alumina and silicon nitride have conventionally been used similarly as an XY table of an exposure apparatus.

【0003】また、最近では、コージェライトの低熱膨
張性を利用し、半導体製造用部品として応用すること
が、特開平1−191422号や特公平6−97675
号で提案されている。特開平1−191422号によれ
ば、X線マスクにおけるマスク基板に接着する補強リン
グとして、SiO2 、インバーなどに加え、コージェラ
イトによって形成しメンブレンの応力を制御することが
提案されている。また、特公平6−97675号では、
ウェハを載置する静電チャック用基板としてアルミナや
コージェライト系焼結体を使用することが提案されてい
る。
Recently, it has been proposed to use cordierite as a semiconductor manufacturing component by utilizing its low thermal expansion property, as disclosed in JP-A-1-191422 and JP-B-6-97675.
No. has been proposed. According to Japanese Patent Application Laid-Open No. 1-1191422, it is proposed that a reinforcing ring to be bonded to a mask substrate in an X-ray mask is formed of cordierite in addition to SiO 2 , invar and the like to control the stress of the membrane. In Japanese Patent Publication No. 6-97675,
It has been proposed to use an alumina or cordierite-based sintered body as a substrate for an electrostatic chuck on which a wafer is mounted.

【0004】従来、低熱膨張材料として、コージェライ
トやリチウムアルミノシリケート(以降、LASと表
記)、リン酸ジルコニウム系材料のリン酸ジルコニルや
リン酸ジルコニウムカリウム(以降、KZPと表記)が
よく知られている。
Conventionally, cordierite and lithium aluminosilicate (hereinafter referred to as LAS), zirconyl phosphate-based materials zirconyl phosphate and potassium zirconium phosphate (hereinafter referred to as KZP) are well known as low thermal expansion materials. I have.

【0005】コージェライト系焼結体は特公昭57−3
629号、特開平2−229760号等で報告されてお
り、コージェライト粉末あるいはコージェライトを形成
するMgO、Al2 3 、SiO2 粉末を配合・合成し
て、これに焼結助剤として希土類酸化物やSiO2 、M
gOなどを添加し、所定形状に成形後、1000〜14
00℃の温度で焼成することによって得られることが知
られている。LAS系焼結体で特にβ−スポジュメンに
ついては、特公昭53−9605、特公昭56−164
070等で報告されており、天然原料を使用して、所定
形状に成形後、1100〜1400℃で焼成することに
よって得られることが知られている。
A cordierite-based sintered body is disclosed in Japanese Patent Publication No. Sho 57-3
No. 629, JP-A-2-229760, etc., in which cordierite powder or MgO, Al 2 O 3 , SiO 2 powder which forms cordierite is blended and synthesized, and rare earth is used as a sintering aid. Oxide, SiO 2 , M
After adding gO or the like and molding into a predetermined shape, 1000 to 14
It is known that it can be obtained by firing at a temperature of 00 ° C. In particular, β-spodumene in a LAS-based sintered body is disclosed in JP-B-53-9605 and JP-B-56-164.
070 and the like, and it is known that it can be obtained by forming a predetermined shape using a natural raw material and then firing at 1100 to 1400 ° C.

【0006】リン酸ジルコニル及び、リン酸ジルコニル
−ジルコン化合物については、特公平4−11502、
特公平4−943、特公平6−4511等で報告されて
おり、リン酸ジルコニルには焼結助剤としてZnO、M
gO、Bi2 3 等を添加し、また、リン酸ジルコニル
−ジルコン化合物にも焼結助剤としてZnO、MgO、
Bi2 3 等を添加、所定形状に成形後、1200〜1
700℃で焼成することによって得られることが知られ
ている。KZPは、特公平4−69102で報告されて
おり、負の熱膨張特性を有する材料である。リン酸ジル
コニルと炭酸カリウムの合成によって得られるKZP原
料は、焼結助剤にMgO等を使用して、1100〜13
00℃での焼成によって得られることが知られている。
As for zirconyl phosphate and zirconyl phosphate-zircon compound, Japanese Patent Publication No. 4-1502,
JP-B 4-943, JP-B 6-4511, and the like. Zirconyl phosphate has ZnO, M as a sintering aid.
gO, Bi 2 O 3, etc. are added, and ZnO, MgO,
After adding Bi 2 O 3 etc. and molding into a predetermined shape,
It is known that it can be obtained by firing at 700 ° C. KZP is reported in Japanese Patent Publication No. 4-69102 and is a material having negative thermal expansion characteristics. The KZP raw material obtained by synthesizing zirconyl phosphate and potassium carbonate is made from 1100 to 13 using MgO or the like as a sintering aid.
It is known that it can be obtained by firing at 00 ° C.

【0007】[0007]

【発明が解決しようとする課題】近年、LSIにおける
高集積化に伴い、線幅・デザインルールの微細化が急速
に進められ、その線幅は0.35μmから0.10μm
まで微細化しつつある。そして、Siウェハに微細な線
幅を形成するための露光装置に対して、高い精度が要求
されるようになり、たとえば露光装置のステージ用部材
においては10nm未満の位置決め精度が要求され、露
光の位置合わせ誤差の低減が製品の品質向上や歩留まり
向上、高スループットの実現の大きな要素技術として捉
えられている。
In recent years, along with the high integration of LSIs, the line width and the design rule have been rapidly miniaturized, and the line width has been reduced from 0.35 μm to 0.10 μm.
It is getting finer. High precision is required for an exposure apparatus for forming a fine line width on a Si wafer. For example, positioning accuracy of less than 10 nm is required for a stage member of the exposure apparatus, Reduction of alignment errors is regarded as a major elemental technology for improving product quality, improving yield, and achieving high throughput.

【0008】半導体製造装置用部材として、一般に用い
られてきたアルミナ、窒化珪素などのセラミックスは、
金属に較べて軽量で熱膨張が小さく、剛性も大きい。そ
れぞれの比重はアルミナが3.8、窒化珪素が3.2と
軽量である。しかしながら、露光装置の軽量化、また、
ステージ等の駆動系部材の軽量化によるモーター負荷低
減、振動抑制のためにより軽量材が必要とされてきてい
る。
Ceramics such as alumina and silicon nitride which have been generally used as members for semiconductor manufacturing equipment are:
Lighter weight, lower thermal expansion and higher rigidity than metal. The specific gravities are 3.8 for alumina and 3.2 for silicon nitride, which are lightweight. However, the lightening of the exposure apparatus,
Lighter materials are required to reduce motor load by reducing the weight of drive system members such as stages and to suppress vibration.

【0009】一方、露光装置の使用温度近傍の10〜4
0℃の熱膨張率はアルミナが約5.0×10-6/℃、窒
化珪素が約1.5×10-6/℃であり、デザインルール
の微細化とともに露光時の熱変形を軽減するために、よ
り低熱膨張材が必要とされてきている。
[0009] On the other hand, 10 to 4 near the operating temperature of the exposure apparatus.
The coefficient of thermal expansion at 0 ° C. is about 5.0 × 10 −6 / ° C. for alumina and about 1.5 × 10 −6 / ° C. for silicon nitride. Therefore, a lower thermal expansion material has been required.

【0010】これに対して、コージェライト系焼結体は
熱膨張率が0〜0.2×10-6/℃であり、また、結晶
化ガラスは熱膨張率が0.0×10-6/℃であり、アル
ミナや窒化珪素に比較して熱膨張率が低い。しかしなが
ら、剛性の点では、アルミナが約350GPa、窒化珪
素が約300GPaであるのに対し、多孔質コージェラ
イトが70〜90GPa、また、結晶化ガラスは90〜
95GPaと低いため、製造装置として用いる場合、変
形や固有振動数低下に伴う共振発生による位置決め時間
増加が懸念される。
On the other hand, the cordierite-based sintered body has a coefficient of thermal expansion of 0 to 0.2 × 10 −6 / ° C., and the crystallized glass has a coefficient of thermal expansion of 0.0 × 10 −6. / ° C, and has a lower coefficient of thermal expansion than alumina or silicon nitride. However, in terms of rigidity, alumina is about 350 GPa and silicon nitride is about 300 GPa, whereas porous cordierite is 70 to 90 GPa, and crystallized glass is 90 to 90 GPa.
Since it is as low as 95 GPa, when it is used as a manufacturing apparatus, there is a concern that the positioning time will increase due to the occurrence of resonance due to deformation and a decrease in natural frequency.

【0011】また、LAS系焼結体のβ−スポジュメン
は、比重2.0〜2.4、熱膨張率は0.3〜2.7×
10-6/℃、磁器が気孔を有するもので−0.3〜−
1.0×10-6/℃と低い値を示すが、ヤング率は60
〜80GPaと低いものである。リン酸ジルコニルやリ
ン酸ジルコニル−ジルコン化合物は、比重3.5〜3.
6、熱膨張率0.0〜2.0×10-6/℃、ヤング率1
50〜180GPaを示す。比重が大きい割にヤング率
はアルミナの半分程度であり、固有振動数の低下が懸念
される。
The β-spodumene of the LAS sintered body has a specific gravity of 2.0 to 2.4 and a coefficient of thermal expansion of 0.3 to 2.7 ×
10 -6 / ° C, porcelain with pores -0.3 to-
It shows a low value of 1.0 × 10 −6 / ° C., but has a Young's modulus of 60
It is as low as ~ 80 GPa. Zirconyl phosphate or zirconyl phosphate-zircon compound has a specific gravity of 3.5 to 3.0.
6. Thermal expansion coefficient 0.0 to 2.0 × 10 -6 / ° C, Young's modulus 1
Indicates 50 to 180 GPa. Although the specific gravity is large, the Young's modulus is about half that of alumina, and there is a concern that the natural frequency may decrease.

【0012】KZPもまた、結晶軸方向の熱膨張の異方
性による低熱膨張特性を顕す材料である。KZPは比重
3.1〜3.2、熱膨張率−2.5〜−2.8×10-6
/℃、ヤング率110〜130GPaを示す。KZPの
熱膨張特性は、負の熱膨張特性を示しているが、その絶
対値は窒化珪素の熱膨張率1.5×10-6/℃と比較し
て大きく、温度変化に対する寸法変化は大きい材料と言
える。
KZP is also a material exhibiting low thermal expansion characteristics due to anisotropy of thermal expansion in the crystal axis direction. KZP has a specific gravity of 3.1 to 3.2 and a coefficient of thermal expansion of −2.5 to −2.8 × 10 −6.
/ ° C and a Young's modulus of 110 to 130 GPa. Although the thermal expansion characteristic of KZP shows a negative thermal expansion characteristic, its absolute value is larger than the thermal expansion coefficient of silicon nitride of 1.5 × 10 −6 / ° C., and the dimensional change with temperature change is large. It is a material.

【0013】以上のように、露光装置用部材として軽量
・低熱膨張・高剛性特性が要求されてきており、部材特
性は比重3.2以下、熱膨張係数が0ppmに限りなく
近く、剛性は鋳物の130GPa以上が求められている
が、これらを満足する材料は見当たらなかった。
As described above, light-weight, low thermal expansion, and high rigidity characteristics have been demanded as members for an exposure apparatus. The member characteristics have a specific gravity of 3.2 or less, a coefficient of thermal expansion of almost 0 ppm, and a rigidity of a cast material. Of 130 GPa or more was found, but no material satisfying these was found.

【0014】従って、本発明は低熱膨張を有するととも
に剛性の高いセラミックスとその製造方法を提供するこ
とを目的とするものである。
Accordingly, an object of the present invention is to provide a ceramic having low thermal expansion and high rigidity, and a method for producing the same.

【0015】[0015]

【課題を解決するための手段】本発明は、正の熱膨張特
性を有しかつ高剛性特性を有する材料と負の熱膨張特性
を有する材料とを複合化することにより、低熱膨張特性
と高剛性特性を有する材料を得るようにした。
SUMMARY OF THE INVENTION The present invention combines a material having a positive thermal expansion characteristic and a material having a high stiffness characteristic with a material having a negative thermal expansion characteristic to thereby obtain a low thermal expansion characteristic and a high thermal expansion characteristic. A material having rigid properties was obtained.

【0016】即ち、本発明の低熱膨張高剛性セラミック
スは、負の熱膨張特性を有するLiAlSiO4 と、正
の熱膨張特性を有しかつ高剛性特性を有するSi3 4
又はSiCと、MgOの3成分から成ることを特徴とす
る。
That is, the low thermal expansion and high rigidity ceramics of the present invention are composed of LiAlSiO 4 having negative thermal expansion characteristics and Si 3 N 4 having positive thermal expansion characteristics and high rigidity characteristics.
Alternatively, it is characterized by comprising three components of SiC and MgO.

【0017】また、本発明の低熱膨張高剛性セラミック
スは、LiAlSiO4 60〜90体積%、窒化珪素1
0〜40体積%、MgO1〜3体積%の組成からなり、
比重2.4〜2.7、熱膨張係数が−0.1〜0.9×
10-6/℃、ヤング率130〜175GPaとなること
を特徴とする。
The low-thermal-expansion high-rigidity ceramic according to the present invention comprises 60 to 90% by volume of LiAlSiO 4 ,
0-40% by volume, composed of MgO1-3% by volume,
Specific gravity 2.4-2.7, coefficient of thermal expansion -0.1-0.9x
10 -6 / ° C and a Young's modulus of 130 to 175 GPa.

【0018】また本発明の低熱膨張高剛性セラミックス
は、LiAlSiO4 70〜90体積%、炭化珪素10
〜30体積%、MgO1〜3体積%の組成からなり、比
重2.4〜2.5、熱膨張係数が−0.1〜1.3×1
-6/℃、ヤング率130〜145GPaとなることを
特徴とする。
The low-thermal-expansion high-rigidity ceramic according to the present invention comprises 70 to 90% by volume of LiAlSiO 4 ,
-30% by volume, MgO1-3% by volume, specific gravity 2.4-2.5, coefficient of thermal expansion -0.1-1.3 × 1
0 -6 / ° C and a Young's modulus of 130 to 145 GPa.

【0019】[0019]

【発明の実施の形態】本発明の低熱膨張高剛性セラミッ
クスは、軽量高剛性特性を有する窒化珪素もしくは炭化
珪素と、LASとして知られる一般式LiAlSiO4
で表される複合酸化物とを主成分とし、焼結助剤成分と
してMgOを1〜3体積%含むものである。
BEST MODE FOR CARRYING OUT THE INVENTION The low thermal expansion and high rigidity ceramics of the present invention are composed of silicon nitride or silicon carbide having light weight and high rigidity characteristics and a general formula LiAlSiO 4 known as LAS.
And MgO as a sintering aid component in an amount of 1 to 3% by volume.

【0020】焼結助剤をMgOとするLiAlSiO4
は、0〜20℃で熱膨張率−0.8〜−0.2×10-6
/℃、ヤング率100〜120GPaという特性を有す
る。これを熱膨張率1.5×10-6/℃、ヤング率30
0GPaの窒化珪素と配合することにより、または熱膨
張率2.5×10-6/℃、ヤング率400GPaの炭化
珪素と配合することにより、全体特性は、体積比率から
の積算値となる。
LiAlSiO 4 using MgO as a sintering aid
Has a coefficient of thermal expansion of -0.8 to -0.2 × 10 -6 at 0 to 20 ° C.
/ ° C and a Young's modulus of 100 to 120 GPa. The thermal expansion coefficient is 1.5 × 10 −6 / ° C., Young's modulus is 30.
By compounding with 0 GPa of silicon nitride or with silicon carbide having a coefficient of thermal expansion of 2.5 × 10 −6 / ° C. and a Young's modulus of 400 GPa, the overall characteristics are integrated values from the volume ratio.

【0021】従って、例えば熱膨張率0.0×10-6
℃とするためには、LiAlSiO 4 44体積%と窒化
珪素56体積%となる組成で得られ、この組成でのヤン
グ率216GPaとなる。また、同様にLiAlSiO
4 86体積%と炭化珪素14体積%で熱膨張率0.0×
10-6/℃、ヤング率150GPaとなる。
Therefore, for example, a coefficient of thermal expansion of 0.0 × 10-6/
° C, LiAlSiO Four44% by volume and nitriding
It is obtained with a composition of 56% by volume of silicon.
216 GPa. Similarly, LiAlSiO
Four86 × by volume and 14% by volume of silicon carbide have a coefficient of thermal expansion of 0.0 ×
10-6/ ° C and a Young's modulus of 150 GPa.

【0022】実際には、焼結助剤のMgOが添加される
ため、全体特性は3成分での積算値となる。MgO磁器
特性は、比重3.4〜3.5、熱膨張率は20〜100
0℃の測定範囲で13〜14×10-6/℃、ヤング率2
70〜280GPaであり、熱膨張率の測定温度領域の
差はあるものの窒化珪素、炭化珪素、LASと比較する
と熱膨張率ははるかに大きいといえる。従って、磁器特
性の熱膨張率0.0×10-6/℃を満たすためにMgO
添加量は限定される。
Actually, since the sintering aid MgO is added, the overall characteristics are integrated values of three components. MgO porcelain has a specific gravity of 3.4 to 3.5 and a coefficient of thermal expansion of 20 to 100.
13-14 × 10 -6 / ° C in the measurement range of 0 ° C, Young's modulus 2
70 to 280 GPa, and it can be said that the coefficient of thermal expansion is much larger than that of silicon nitride, silicon carbide, and LAS, although there is a difference in the measurement temperature range of the coefficient of thermal expansion. Therefore, in order to satisfy the thermal expansion coefficient of 0.0 × 10 −6 / ° C. of the porcelain characteristics, MgO
The amount added is limited.

【0023】なお、上記のように最終焼結体の特性は各
成分の体積比率で決まることから、本発明では各成分の
好ましい組成比を体積%で限定してある。これに対し、
製造時の調合比率や、最終焼結体を分析した時の組成比
は重量%で示されるため、各成分の比重を用いて体積%
に換算すれば良い。
Since the characteristics of the final sintered body are determined by the volume ratio of each component as described above, the preferred composition ratio of each component is limited to volume% in the present invention. In contrast,
Since the mixing ratio at the time of manufacture and the composition ratio when the final sintered body is analyzed are indicated by weight%, the volume% is calculated using the specific gravity of each component.
What should be converted to

【0024】また、本発明の低熱膨張高剛性セラミック
スは、上記各成分以外に、原料中や製造工程で混入する
不可避不純物を含んでいても良い。
Further, the low thermal expansion and high rigidity ceramics of the present invention may contain unavoidable impurities which are mixed in the raw material or in the production process, in addition to the above components.

【0025】本発明の低熱膨張高剛性セラミックスの製
造方法は、平均粒径が1μm未満の窒化珪素粉末と平均
粒径5〜7μmのLiAlSiO4 と平均粒径1μm未
満のMgOを所定の比率で添加調合する。各成分を配合
した後、ボールミルなどにより平均粒径2μm未満とな
るように混合・粉砕し、所定形状に成形後、窒素雰囲気
下で1100〜1200℃で熱処理行うことによって、
比重2.4〜2.7、熱膨張率−0.1〜0.9×10
-6/℃、ヤング率130〜175GPaのセラミックス
が得られる。
The method for producing a low-thermal-expansion high-rigidity ceramic according to the present invention is characterized in that a silicon nitride powder having an average particle size of less than 1 μm, LiAlSiO 4 having an average particle size of 5 to 7 μm, and MgO having an average particle size of less than 1 μm are added at a predetermined ratio. Mix. After blending each component, it is mixed and pulverized by a ball mill or the like so as to have an average particle size of less than 2 μm, formed into a predetermined shape, and then heat-treated at 1100 to 1200 ° C. under a nitrogen atmosphere.
Specific gravity 2.4 to 2.7, coefficient of thermal expansion -0.1 to 0.9 × 10
-6 / ° C., ceramics Young's modulus 130~175GPa is obtained.

【0026】もしくは、平均粒径が1μm未満の炭化珪
素と平均粒径5〜7μmのLiAlSiO4 と平均粒径
1μm未満のMgOを所定の比率で添加調合する。各成
分を配合した後、ボールミルなどにより平均粒径2μm
未満となるように混合・粉砕し、所定形状に成形後、窒
素雰囲気下で1100〜1200℃で熱処理行うことに
よって、比重2.4〜2.5、熱膨張率−0.1〜1.
0×10-6/℃、ヤング率130〜145GPaのセラ
ミックスが得られる。
Alternatively, silicon carbide having an average particle size of less than 1 μm, LiAlSiO 4 having an average particle size of 5 to 7 μm, and MgO having an average particle size of less than 1 μm are added and mixed at a predetermined ratio. After blending each component, average particle size 2μm by ball mill
And then heat-treated in a nitrogen atmosphere at 1100 to 1200 ° C. to obtain a specific gravity of 2.4 to 2.5 and a coefficient of thermal expansion of −0.1 to 1.
Ceramics having 0 × 10 −6 / ° C. and a Young's modulus of 130 to 145 GPa are obtained.

【0027】[0027]

【実施例】実施例1 窒化珪素とLiAlSiO4 の複合化に先立ち、MgO
からなる焼結助剤の最適化について確認を行った。
EXAMPLE 1 Prior to the compounding of silicon nitride and LiAlSiO 4 , MgO
The optimization of the sintering aid consisting of was confirmed.

【0028】平均粒径0.9μmで純度99.9%以上
の窒化珪素粉末と平均粒径6.4μmのLiAlSiO
4 粉末を体積比率で75:25に処方し、MgOを表1
の仕様にて配合し、ボールミルにより24時間混合・粉
砕した後、造粒・乾燥行った。その原料粉末を所定の形
状に成形した後、窒素雰囲気下で焼成し、複合磁器の外
観及び比重、熱膨張率、ヤング率の磁器特性について評
価を行った。
Silicon nitride powder having an average particle size of 0.9 μm and a purity of 99.9% or more, and LiAlSiO having an average particle size of 6.4 μm
4 Powder was formulated in a volume ratio of 75:25, and MgO was added in Table 1.
After being mixed and pulverized by a ball mill for 24 hours, granulation and drying were performed. After the raw material powder was formed into a predetermined shape, it was fired in a nitrogen atmosphere, and the appearance, specific gravity, coefficient of thermal expansion, and Young's modulus of the composite porcelain were evaluated.

【0029】評価の結果、MgO添加量0体積%または
5体積%では、無欠陥または緻密な磁器を得ることはで
きず、1〜3体積%で緻密な磁器を得ることが出来た。
また、磁器特性における比重が高く、熱膨張率が0に近
く、ヤング率が高いという理由によりMgOの添加量は
2体積%が最適値に近いと判断した。
As a result of the evaluation, no defect-free or dense porcelain could be obtained when the amount of MgO added was 0% by volume or 5% by volume, but a dense porcelain could be obtained at 1-3% by volume.
Further, it was determined that the addition amount of MgO was close to the optimum value of 2% by volume because the specific gravity in the porcelain characteristics was high, the coefficient of thermal expansion was close to 0, and the Young's modulus was high.

【0030】以上のMgO添加量のテストに基づき、以
後の複合化テストのMgO添加量は2体積%とした。
Based on the above MgO addition amount test, the MgO addition amount in the subsequent composite test was set to 2% by volume.

【0031】[0031]

【表1】 [Table 1]

【0032】次に複合化仕様評価を行った。平均粒径
0.9μmで純度99.9%以上の窒化珪素粉末、6.
4μmのLiAlSiO4 粉末、平均粒径0.7μmの
MgOを窒化珪素粉末とLiAlSiO4 粉末の総量に
対し2体積%とし、表2の仕様で配合し、ボールミルに
より24時間混合・粉砕した後、造粒・乾燥行った。そ
の原料粉末を所定の形状に成形した後、窒素雰囲気下に
て焼成し、複合磁器の外観及び比重・熱膨張率・ヤング
率の磁器特性について評価を行った。
Next, the composite specification was evaluated. 5. silicon nitride powder having an average particle size of 0.9 μm and a purity of 99.9% or more;
After mixing 4 μm of LiAlSiO 4 powder and MgO having an average particle diameter of 0.7 μm with respect to the total amount of the silicon nitride powder and the LiAlSiO 4 powder, 2 vol% was blended according to the specifications in Table 2, and mixed and pulverized for 24 hours by a ball mill. Granulated and dried. After the raw material powder was formed into a predetermined shape, it was fired in a nitrogen atmosphere, and the appearance of the composite porcelain and the porcelain characteristics such as specific gravity, thermal expansion coefficient and Young's modulus were evaluated.

【0033】評価の結果を表2に示す。LiAlSiO
4 :窒化珪素=60:40〜90:10で熱膨張率−
0.1〜0.9×10-6/℃、ヤング率130〜175
GPaとなる欠陥のない磁器が得られた。
Table 2 shows the results of the evaluation. LiAlSiO
4 : Coefficient of thermal expansion when silicon nitride = 60:40 to 90:10
0.1-0.9 × 10 -6 / ° C, Young's modulus 130-175
A porcelain free of GPa was obtained.

【0034】[0034]

【表2】 [Table 2]

【0035】実施例2 次に炭化珪素とLiAlSiO4 の複合化における焼結
助剤の最適化を行った。
Example 2 Next, the sintering aid in the compounding of silicon carbide and LiAlSiO 4 was optimized.

【0036】平均粒径0.7μmで純度99.9%以上
の炭化珪素粉末と平均粒径6.4μmのLiAlSiO
4 粉末を体積比率で80:20に処方し、MgOを表3
の仕様にて配合し、ボールミルにより24時間混合・粉
砕した後、造粒・乾燥行った。その原料粉末を所定の形
状に成形した後、窒素雰囲気下で焼成し、複合磁器の外
観及び比重・熱膨張率・ヤング率の磁器特性について評
価行った。
Silicon carbide powder having an average particle size of 0.7 μm and a purity of 99.9% or more, and LiAlSiO having an average particle size of 6.4 μm
4 Powder was formulated in a volume ratio of 80:20, and MgO
After being mixed and pulverized by a ball mill for 24 hours, granulation and drying were performed. After the raw material powder was formed into a predetermined shape, it was fired in a nitrogen atmosphere, and the appearance of the composite porcelain and the porcelain characteristics such as specific gravity, coefficient of thermal expansion and Young's modulus were evaluated.

【0037】評価の結果、0体積%または5体積%で
は、無欠陥または緻密な磁器を得ることはできず、Mg
O添加量1〜3体積%で緻密な磁器を得ることが出来
た。また、磁器特性における比重が高く、熱膨張率が0
に近く、ヤング率が高いという理由によりMgOの添加
量は2体積%が最適値に近いと判断した。以上のMgO
添加量のテストに基づき、以後の複合化テストのMgO
添加量は2体積%とした。
As a result of the evaluation, if it is 0% by volume or 5% by volume, no defect-free or dense porcelain cannot be obtained.
A dense porcelain could be obtained with an O content of 1 to 3% by volume. Further, the specific gravity in the porcelain characteristics is high and the coefficient of thermal expansion is 0
It was determined that the addition amount of MgO was close to the optimum value of 2% by volume because of the high Young's modulus. The above MgO
Based on the test of the amount of addition,
The addition amount was 2% by volume.

【0038】[0038]

【表3】 [Table 3]

【0039】平均粒径0.7μmで純度99.9%以上
の炭化珪素粉末、6.4μmのLiAlSiO4 粉末、
平均粒径0.7μmのMgOを窒化珪素粉末とLiAl
SiO4 粉末の総量に対し2体積%とし、表4の仕様で
配合し、ボールミルにより24時間混合・粉砕した後、
造粒・乾燥を行った。その原料粉末を所定の形状に成形
した後、窒素雰囲気下にて焼成し、複合磁器の外観及び
比重・熱膨張率・ヤング率の磁器特性について評価行っ
た。
Silicon carbide powder having an average particle diameter of 0.7 μm and a purity of 99.9% or more, LiAlSiO 4 powder of 6.4 μm,
MgO having an average particle size of 0.7 μm is mixed with silicon nitride powder and LiAl
2 vol% with respect to the total amount of the SiO 4 powder, blended according to the specifications in Table 4, mixed and pulverized by a ball mill for 24 hours,
Granulation and drying were performed. After the raw material powder was formed into a predetermined shape, it was fired in a nitrogen atmosphere, and the appearance of the composite porcelain and the porcelain characteristics such as specific gravity, coefficient of thermal expansion and Young's modulus were evaluated.

【0040】評価の結果を表4に示す。LiAlSiO
4 :炭化珪素=70:30〜90:10で熱膨張率−
0.1〜0.9×10-6/℃、ヤング率130〜145
GPaとなる欠陥のない磁器が得られた。
Table 4 shows the results of the evaluation. LiAlSiO
4 : Thermal expansion coefficient at silicon carbide = 70:30 to 90:10-
0.1-0.9 × 10 -6 / ° C, Young's modulus 130-145
A porcelain free of GPa was obtained.

【0041】[0041]

【表4】 [Table 4]

【0042】[0042]

【発明の効果】以上、詳述したとおり、本発明によれ
ば、窒化珪素とLiAlSiO4 の複合化により、熱膨
張率−0.1〜0.9×10-6/℃、ヤング率130〜
175GPa、比重2.4〜2.7となる低熱膨張高剛
性セラミックスを得ることができる。また、炭化珪素と
LiAlSiO4 の複合化により、熱膨張率−0.1〜
0.9×10-6/℃、ヤング率130〜145GPa、
比重2.4〜2.5となる低熱膨張高剛性セラミックス
を得ることができる。
Effect of the Invention] above, as detailed, according to the present invention, the composite of silicon nitride and LiAlSiO 4, the coefficient of thermal expansion -0.1~0.9 × 10 -6 / ℃, Young's modulus 130 to
A low-thermal-expansion high-rigidity ceramic having 175 GPa and a specific gravity of 2.4 to 2.7 can be obtained. In addition, the composite of silicon carbide and LiAlSiO 4 provides a thermal expansion coefficient of −0.1 to
0.9 × 10 −6 / ° C., Young's modulus 130 to 145 GPa,
A low thermal expansion and high rigidity ceramic having a specific gravity of 2.4 to 2.5 can be obtained.

【0043】この低熱膨張高剛性セラミックスを高微細
な回路を形成するためのウェハの支持または支持台を構
成する露光装置用部品、例えば、ステージ部品、真空チ
ャック、ミラーとして用いることにより温度変化に対し
て寸法安定性に優れ、変形・振動の影響が極めて少な
く、半導体素子製造の品質と量産性を高めることができ
る。
The low thermal expansion and high rigidity ceramic is used as a part for an exposure apparatus, for example, a stage part, a vacuum chuck, and a mirror, which constitutes a support or a support for a wafer for forming a fine circuit, so that it can withstand temperature changes. As a result, the dimensional stability is excellent, the influence of deformation and vibration is extremely small, and the quality and mass productivity of semiconductor device manufacturing can be improved.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】LiAlSiO4 と、Si3 4 又はSi
Cと、MgOの3成分から成ることを特徴とする低熱膨
張高剛性セラミックス。
1. A method according to claim 1, wherein the first and second layers are LiAlSiO 4 and Si 3 N 4 or Si 3
A low-thermal-expansion high-rigidity ceramic comprising C and three components of MgO.
【請求項2】LiAlSiO4 60〜90体積%、Si
3 4 10〜40体積%を主成分とし、これらに対しM
gO1〜3体積%を含むことを特徴とする請求項1記載
の低熱膨張高剛性セラミックス。
2. 60% to 90% by volume of LiAlSiO 4 , Si
3 N 4 10 to 40 vol% of the main component, M for these
The low-thermal-expansion high-rigidity ceramic according to claim 1, comprising 1 to 3% by volume of gO1.
【請求項3】熱膨張率−0.1〜0.9×10-6/℃、
ヤング率130〜175GPa、比重2.4〜2.7で
あることを特徴とする請求項2記載の低熱膨張高剛性セ
ラミックス
3. coefficient of thermal expansion-0.1 to 0.9 × 10 −6 / ° C.
The low thermal expansion and high rigidity ceramic according to claim 2, wherein the ceramic has a Young's modulus of 130 to 175 GPa and a specific gravity of 2.4 to 2.7.
【請求項4】LiAlSiO4 70〜90体積%、Si
C10〜30体積%を主成分とし、これらに対しMgO
1〜3体積%を含むことを特徴とする請求項1記載の低
熱膨張高剛性セラミックス。
4. 70% to 90% by volume of LiAlSiO 4 , Si
C10 to 30% by volume as a main component, and MgO
The low-thermal-expansion high-rigidity ceramic according to claim 1, comprising 1 to 3% by volume.
【請求項5】熱膨張率−0.1〜1.0×10-6/℃、
ヤング率130〜145GPa、比重2.4〜2.5で
あることを特徴とする請求項4記載の低熱膨張高剛性セ
ラミックス。
5. Coefficient of thermal expansion-0.1 to 1.0 × 10 −6 / ° C.
The low thermal expansion and high rigidity ceramic according to claim 4, wherein the ceramic has a Young's modulus of 130 to 145 GPa and a specific gravity of 2.4 to 2.5.
JP09075899A 1999-03-31 1999-03-31 Composite oxide ceramics Expired - Fee Related JP4025455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09075899A JP4025455B2 (en) 1999-03-31 1999-03-31 Composite oxide ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09075899A JP4025455B2 (en) 1999-03-31 1999-03-31 Composite oxide ceramics

Publications (2)

Publication Number Publication Date
JP2000281454A true JP2000281454A (en) 2000-10-10
JP4025455B2 JP4025455B2 (en) 2007-12-19

Family

ID=14007517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09075899A Expired - Fee Related JP4025455B2 (en) 1999-03-31 1999-03-31 Composite oxide ceramics

Country Status (1)

Country Link
JP (1) JP4025455B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172090A (en) * 1999-10-08 2001-06-26 Toray Ind Inc Ceramics
JP2002160972A (en) * 2000-11-21 2002-06-04 Hitachi Chem Co Ltd High rigidity and low thermal expansion ceramic and its manufacturing method
JP2002173365A (en) * 2000-12-06 2002-06-21 Kyocera Corp Lithium alumino-silicate-base ceramic
JP2002226260A (en) * 2001-01-31 2002-08-14 Kyocera Corp Aluminosilicate sintered compact and stress relaxation member using the same
WO2004074939A1 (en) * 2003-02-21 2004-09-02 Nihon Ceratec Co., Ltd. Exposure apparatus for liquid crystal panel and exposure apparatus
WO2020013266A1 (en) * 2018-07-12 2020-01-16 京セラ株式会社 Complex

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209525507U (en) 2018-12-26 2019-10-22 瑞声科技(新加坡)有限公司 A kind of camera lens

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940123B1 (en) * 1969-10-31 1974-10-31
JPS55109279A (en) * 1979-02-13 1980-08-22 Asahi Glass Co Ltd Manufacture of double density ceramic sintered body
JPS5692168A (en) * 1979-12-26 1981-07-25 Hitachi Ltd Manufacture of high density silicon carbide sintered body
JPS62202813A (en) * 1986-02-27 1987-09-07 Chichibu Cement Co Ltd Production of mullite fine powder containing uniformly dispersed zirconia
JPS6442366A (en) * 1987-08-07 1989-02-14 Toyota Motor Corp Silicon nitride sintered body resistant to thermal shock
JPH03290352A (en) * 1990-04-05 1991-12-20 Gifu Pref Gov High-strength ceramics having low thermal expansion and production thereof
JPH09267236A (en) * 1996-03-29 1997-10-14 Kyocera Corp Positioning device
JPH1179830A (en) * 1997-08-29 1999-03-23 Kyocera Corp Low-thermal expansion ceramics, their production and part for producing semiconductor
JP2000272984A (en) * 1999-03-26 2000-10-03 Nichias Corp Large flat ceramic plate impregnated with low thermally expandable silica and its production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940123B1 (en) * 1969-10-31 1974-10-31
JPS55109279A (en) * 1979-02-13 1980-08-22 Asahi Glass Co Ltd Manufacture of double density ceramic sintered body
JPS5692168A (en) * 1979-12-26 1981-07-25 Hitachi Ltd Manufacture of high density silicon carbide sintered body
JPS62202813A (en) * 1986-02-27 1987-09-07 Chichibu Cement Co Ltd Production of mullite fine powder containing uniformly dispersed zirconia
JPS6442366A (en) * 1987-08-07 1989-02-14 Toyota Motor Corp Silicon nitride sintered body resistant to thermal shock
JPH03290352A (en) * 1990-04-05 1991-12-20 Gifu Pref Gov High-strength ceramics having low thermal expansion and production thereof
JPH09267236A (en) * 1996-03-29 1997-10-14 Kyocera Corp Positioning device
JPH1179830A (en) * 1997-08-29 1999-03-23 Kyocera Corp Low-thermal expansion ceramics, their production and part for producing semiconductor
JP2000272984A (en) * 1999-03-26 2000-10-03 Nichias Corp Large flat ceramic plate impregnated with low thermally expandable silica and its production

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172090A (en) * 1999-10-08 2001-06-26 Toray Ind Inc Ceramics
JP2002160972A (en) * 2000-11-21 2002-06-04 Hitachi Chem Co Ltd High rigidity and low thermal expansion ceramic and its manufacturing method
JP4610076B2 (en) * 2000-12-06 2011-01-12 京セラ株式会社 Lithium aluminosilicate ceramics
JP2002173365A (en) * 2000-12-06 2002-06-21 Kyocera Corp Lithium alumino-silicate-base ceramic
JP2002226260A (en) * 2001-01-31 2002-08-14 Kyocera Corp Aluminosilicate sintered compact and stress relaxation member using the same
JP4540239B2 (en) * 2001-01-31 2010-09-08 京セラ株式会社 Aluminosilicate sintered body and stress relieving member using the same
WO2004074939A1 (en) * 2003-02-21 2004-09-02 Nihon Ceratec Co., Ltd. Exposure apparatus for liquid crystal panel and exposure apparatus
WO2020013266A1 (en) * 2018-07-12 2020-01-16 京セラ株式会社 Complex
KR20210016040A (en) * 2018-07-12 2021-02-10 교세라 가부시키가이샤 Complex
CN112368431A (en) * 2018-07-12 2021-02-12 京瓷株式会社 Composite body
JP6999813B2 (en) 2018-07-12 2022-01-19 京セラ株式会社 Complex
CN112368431B (en) * 2018-07-12 2022-09-16 京瓷株式会社 Composite body
KR102545364B1 (en) 2018-07-12 2023-06-20 교세라 가부시키가이샤 complex

Also Published As

Publication number Publication date
JP4025455B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JP3133302B2 (en) Black low thermal expansion ceramics sintered body and method for producing the same
JP4416191B2 (en) Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component
WO2010087099A1 (en) Cordierite-based sintered body
US20120309609A1 (en) Composite material with controlled coefficient of thermal expansion with oxidic ceramics and process for obtaining same
EP2679562B1 (en) Cordierite sintered body and member for semiconductor device composed of cordierite sintered body
JP4025455B2 (en) Composite oxide ceramics
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JP5744045B2 (en) Cordierite ceramics and members for semiconductor manufacturing equipment using the same
JP4429288B2 (en) Low thermal expansion ceramics and members for semiconductor manufacturing equipment using the same
JP4261631B2 (en) Manufacturing method of ceramic sintered body
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JPH11130520A (en) Low thermally expandable ceramic and its production
JP3805119B2 (en) Method for producing low thermal expansion ceramics
WO2001094272A1 (en) Electrically conductive ceramic sintered compact exhibiting low thermal expansion
JPH11236262A (en) Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same
JP2006347802A (en) Low-thermal expansion/high-specific rigidity ceramic, its production method, and electrostatic chuck
JPH11100275A (en) Low thermal expansion ceramic and its preparation
JP2002160972A (en) High rigidity and low thermal expansion ceramic and its manufacturing method
JP5011609B2 (en) Dense cordierite ceramics and method for producing the same
JP2001302338A (en) Composite ceramic and manufacturing method thereof
JP4568979B2 (en) Cordierite dense sintered body and manufacturing method thereof
JP3260340B2 (en) Composite ceramic and method for producing the same
JP2001039764A (en) Cordierite ceramics and its production
JP2001058867A (en) Structure part
JP2003292371A (en) Ceramic sintered compact with high rigidity and low thermal expansion

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees