JP2000247609A - Production of anhydrous alkali metal sulfide - Google Patents
Production of anhydrous alkali metal sulfideInfo
- Publication number
- JP2000247609A JP2000247609A JP11047327A JP4732799A JP2000247609A JP 2000247609 A JP2000247609 A JP 2000247609A JP 11047327 A JP11047327 A JP 11047327A JP 4732799 A JP4732799 A JP 4732799A JP 2000247609 A JP2000247609 A JP 2000247609A
- Authority
- JP
- Japan
- Prior art keywords
- alkali metal
- hydrogen sulfide
- sulfide
- blowing
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、高純度の無水アル
カリ金属硫化物の製造方法に関する。詳しくは、アルカ
リ金属水酸化物と硫化水素を原料として用い、不純物含
有量の少ない無水アルカリ金属硫化物を製造する方法に
関する。The present invention relates to a method for producing high-purity anhydrous alkali metal sulfide. More specifically, the present invention relates to a method for producing anhydrous alkali metal sulfide having a low impurity content by using alkali metal hydroxide and hydrogen sulfide as raw materials.
【0002】[0002]
【従来技術】近年、エンジニアリングプラスチックや医
薬品の分野で、原料として高純度の無水アルカリ金属硫
化物が要求されている。中でも、代表的なスーパーエン
プラであるポリアリーレンスルフィドでは、その重合用
原料である硫黄キャリーとして、従来から無水硫化ナト
リウムが使用されてきたが、本出願人は、ポリアリーレ
ンスルフィド樹脂と塩化ナトリウムとの分離が容易にな
るなど優れた特性を有する無水硫化リチウムを使用する
方法を提案した(特開平7−207027号公報)。こ
の硫化リチウムは高価であり、未だ工業的生産が現実、
行われていない状況であり、早急に、安価で高品質なも
のが得られる製造法の開発が望まれる。硫化リチウムの
製造方法としては、(1)単体リチウムと硫黄を融点以
上に加熱する方法(Troost L.Ann.Chim.Phys.,1875,51
(3),p.103)、(2)硫酸リチウムを加熱しながら炭
素、水素、またはアンモニアで還元する方法(ケ・ヴェ
・サムソノフ、エス・ヴェ・ドロズドワ著 硫化物便覧
−物性と状態図−)及び(3)非極性プロトン溶媒中で
アルカリ金属水酸化物と硫化水素を反応させ、水硫化リ
チウムを合成した後、脱硫化水素する方法(本出願人に
よる特開平7−330312号公報)が提案されてい
る。2. Description of the Related Art In recent years, high purity anhydrous alkali metal sulfide has been required as a raw material in the fields of engineering plastics and pharmaceuticals. Above all, in polyarylene sulfide which is a typical super engineering plastic, anhydrous sodium sulfide has been conventionally used as a sulfur carry which is a raw material for the polymerization, but the present applicant has made a reaction between polyarylene sulfide resin and sodium chloride. A method using an anhydrous lithium sulfide having excellent characteristics such as easy separation has been proposed (Japanese Patent Application Laid-Open No. 7-207027). This lithium sulfide is expensive, and industrial production is still a reality,
The situation has not been carried out, and it is urgently required to develop a manufacturing method that can provide inexpensive and high-quality products. As a method for producing lithium sulfide, (1) a method in which elemental lithium and sulfur are heated to a melting point or higher (Troost L. Ann. Chim. Phys., 1875, 51)
(3), p.103), (2) Method of reducing lithium sulfate with carbon, hydrogen, or ammonia while heating (by Ke V Samsonov and Es V. Drosdova Sulfide Handbook-Physical Properties and Phase Diagram- ) And (3) a method of reacting an alkali metal hydroxide with hydrogen sulfide in a non-polar proton solvent to synthesize lithium hydrosulfide, and then removing hydrogen sulfide (JP-A-7-330312 by the present applicant). Proposed.
【0003】しかし、上記(1)、(2)の条件は非常
に過酷なものであり、その製造プロセスは複雑で過酷な
ものとならざるを得ない。また、(3)は、本技術の基
本となるものであるが、高純度の品質を安定して得る点
について課題が残されていた。すなわち、得られた硫化
リチウムのリチウム/硫黄モル比(L/Sという)が
2.10以上であった。However, the above conditions (1) and (2) are extremely severe, and the manufacturing process must be complicated and severe. In addition, although (3) is the basis of the present technology, there remains a problem in that high-purity quality can be stably obtained. That is, the obtained lithium sulfide had a lithium / sulfur molar ratio (L / S) of 2.10.
【0004】[0004]
【発明が解決しようとする課題】本発明は、非プロトン
性有機溶媒中でアルカリ金属水酸化物と硫化水素を反応
させ、アルカリ金属水硫化物を合成した後、脱硫化水素
する方法において、アルカリ金属水酸化物やアルカリ金
属水硫化物の含有率の小さい、より具体的には、アルカ
リ金属/硫黄のモル比が 1.90≦アルカリ金属/硫黄のモル比≦2.10 である高純度の無水アルカリ金属硫化物を得ることので
きる製造法を提供することを目的とする。An object of the present invention is to provide a method for reacting an alkali metal hydroxide with hydrogen sulfide in an aprotic organic solvent to synthesize an alkali metal hydrosulfide and then removing the hydrogen sulfide. High-purity metal oxides and alkali metal hydrosulfides having a low content, more specifically, an alkali metal / sulfur molar ratio of 1.90 ≦ alkali metal / sulfur molar ratio ≦ 2.10. An object of the present invention is to provide a production method capable of obtaining an anhydrous alkali metal sulfide.
【0005】[0005]
【課題を解決するための手段】本発明者は、先の基本出
願(特開平7−330312号公報)における硫化リチ
ウムに含まれる不純物の由来を究明し、(1)非プロト
ン性有機溶媒中でアルカリ金属水酸化物に硫化水素を反
応させて生成する水が、反応系内に存在している間に次
の式(I)、(II) に示す加水分解反応により、 LiSH + H2O → LiOH + H2S (I) Li2S + 2H2O →2LiOH + H2S (II) アルカリ金属水酸化物が生成し、これが最終生成物の硫
化リチウムに混在して不純物を形成し、Li/Sを2.
0より大きくする要因になること、(2)さらに、次の
式(III)に示す硫化リチウムを生成する反応で未反応の
水硫化リチウムが残留しやすく、 2LiSH → Li2S + H2S (III) これも最終生成物の硫化リチウムに混在して不純物を形
成し、Li/Sを2.0より小さくする要因になること
を見いだし、以下に示す本発明を完成させた。Means for Solving the Problems The present inventors have investigated the origin of impurities contained in lithium sulfide in the earlier basic application (Japanese Patent Application Laid-Open No. Hei 7-330312), and (1) in an aprotic organic solvent. While the water produced by reacting the alkali metal hydroxide with hydrogen sulfide is present in the reaction system, the hydrolysis reaction shown in the following formulas (I) and (II) gives LiSH + H 2 O → LiOH + H 2 S (I) Li 2 S + 2H 2 O → 2 LiOH + H 2 S (II) An alkali metal hydroxide is formed, which is mixed with the final product lithium sulfide to form impurities, and Li / S to 2.
(2) In addition, unreacted lithium hydrosulfide tends to remain in the reaction for producing lithium sulfide represented by the following formula (III), and 2LiSH → Li 2 S + H 2 S ( III) It was found that this also forms impurities by being mixed with lithium sulfide as a final product, which is a factor that makes Li / S smaller than 2.0, and completed the present invention described below.
【0006】すなわち、本発明は以下を要旨とするもの
である。 〔1〕アルカリ金属水酸化物、非プロトン性有機溶媒か
らなる溶液中に、硫化水素ガスを吹き込み、加熱しなが
ら脱水および脱硫化水素し、系内の残留水分が実質なく
なった後硫化水素の吹き込みを中止し、加熱しながら脱
硫化水素することを特徴とする無水アルカリ金属硫化物
を製造する方法。 〔2〕アルカリ金属水酸化物、非プロトン性有機溶媒か
らなる溶液中に、硫化水素ガスを吹き込み、加熱しなが
ら脱水および脱硫化水素し、系内の残留水分が実質なく
なった後さらに硫化水素ガスに代えて不活性ガスを吹き
込みながら脱硫化水素することを特徴とする無水アルカ
リ金属硫化物を製造する方法。 〔3〕アルカリ金属水酸化物および非プロトン性有機溶
媒からなる溶液が、水と共沸する化合物を含有する上記
〔1〕又は〔2〕に記載された無水アルカリ金属硫化物
を製造する方法。 〔4〕(1)蒸留塔もしくは蒸留カラム付き攪拌槽で構
成される反応槽にアルカリ金属水酸化物および非プロト
ン性有機溶媒からなる溶液を槽内の液レベルを一定に保
ちつつ、連続的に供給し、That is, the present invention provides the following. [1] Hydrogen sulfide gas is blown into a solution composed of an alkali metal hydroxide and an aprotic organic solvent, and dehydration and dehydrosulfide are performed while heating, and hydrogen sulfide is blown after the residual water in the system is substantially eliminated. And producing dehydrosulfide with heating. [2] Hydrogen sulfide gas is blown into a solution composed of an alkali metal hydroxide and an aprotic organic solvent, and dehydration and dehydrogen sulfide are performed while heating. A method for producing anhydrous alkali metal sulfide, characterized in that hydrogen sulfide is removed while blowing an inert gas in place of the above. [3] The method for producing an anhydrous alkali metal sulfide according to the above [1] or [2], wherein the solution comprising an alkali metal hydroxide and an aprotic organic solvent contains a compound azeotropic with water. [4] (1) A solution comprising an alkali metal hydroxide and an aprotic organic solvent is continuously introduced into a reaction vessel comprising a distillation tower or a stirring vessel equipped with a distillation column while keeping the liquid level in the vessel constant. Supply,
【0007】(2)槽内圧力2mmHgabs.〜2.
0kg/cm2G、温度50〜250℃の反応条件下にお
いて、溶液中に硫化水素ガスを吹き込みながら加熱し、
(3)副生する水および硫化水素を蒸留により系外に
排出し、 必要に応じ、その排出された硫化水素の少なくとも一
部を吹き込み用にリサイクルし、(4)槽内の残留水分
が実質なくなった後、生成されたアルカリ金属水硫化物
を含む非プロトン性有機溶媒からなる溶液を脱気槽に移
送して加熱してまたは不活性ガスを吹き込んで脱硫化水
素をする無水アルカリ金属硫化物の連続製造方法。(2) In-chamber pressure 2 mmHgabs. ~ 2.
Under a reaction condition of 0 kg / cm 2 G and a temperature of 50 to 250 ° C., the solution was heated while blowing hydrogen sulfide gas into the solution,
(3) By-product water and hydrogen sulfide are discharged out of the system by distillation, and if necessary, at least a part of the discharged hydrogen sulfide is recycled for blowing. (4) The residual moisture in the tank is substantially reduced. After disappearing, the anhydrous alkali metal sulfide that transfers the solution consisting of the generated aprotic organic solvent containing the alkali metal hydrosulfide to the degassing tank and heats or blows the inert gas to remove hydrogen sulfide Continuous production method.
【0008】〔5〕(1)蒸留塔もしくは蒸留カラム付
き攪拌槽で構成される反応槽にアルカリ金属水酸化物、
非プロトン性有機溶媒、および水と共沸する化合物から
なる溶液を槽内の液レベルを一定に保ちつつ、連続的に
供給し、(2)槽内圧力2mmHgabs.〜2.0k
g/cm2G、温度50〜250℃の反応条件下におい
て、溶液中に硫化水素ガスを吹き込みながら加熱し、
(3)副生する水と共沸化合物および硫化水素を蒸留
により分離し、水および硫化水素を系外に排出し、 必要に応じ、その排出された硫化水素の少なくとも一
部を吹き込み用にリサイクルし、 塔頂レシーバーで凝縮されて水と分離した共沸化合物
を、必要に応じ、一部フレッシュな共沸化合物と共に、
反応槽に還流させ、(4)槽内の残留水分が実質なくな
った後、生成されたアルカリ金属水硫化物を含む非プロ
トン性有機溶媒からなる溶液を脱気槽に移送して加熱ま
たは不活性ガスを吹き込んで脱硫化水素をする無水アル
カリ金属硫化物の連続製造方法。[5] (1) An alkali metal hydroxide is added to a reaction vessel comprising a distillation tower or a stirring vessel with a distillation column.
A solution composed of an aprotic organic solvent and a compound azeotropic with water was continuously supplied while keeping the liquid level in the tank constant. (2) The tank pressure was 2 mmHgabs. ~ 2.0k
g / cm < 2 > G under a reaction condition of a temperature of 50 to 250 [deg.] C. while heating while blowing hydrogen sulfide gas into the solution;
(3) By-product water, azeotropic compounds and hydrogen sulfide are separated by distillation, water and hydrogen sulfide are discharged out of the system, and if necessary, at least a part of the discharged hydrogen sulfide is recycled for blowing. Then, the azeotropic compound condensed in the overhead receiver and separated from water, if necessary, together with a partially fresh azeotropic compound,
(4) After the residual water in the tank is substantially eliminated, the solution composed of the generated aprotic organic solvent containing the alkali metal hydrosulfide is transferred to the degassing tank and heated or inertized. A method for continuously producing anhydrous alkali metal sulfide in which gas is blown to remove hydrogen sulfide.
【0009】[0009]
【発明の実施の形態】〔高純度の無水アルカリ金属硫化
物の製造方法〕 〔第一の発明〕本発明の第一の発明は、圧力2mmHg
abs.〜2.0kg/cm2G、温度50〜250℃の
反応条件下において、アルカリ金属水酸化物、非プロト
ン性有機溶媒からなる溶液中に、硫化水素ガスを吹き込
み、加熱しながら脱水および脱硫化水素し、系内の残留
水分が実質なくなった後硫化水素の吹き込みを中止し、
加熱しながら脱硫化水素することを特徴とする無水アル
カリ金属硫化物を製造する方法である。 (1)反応条件 本発明は、圧力2mmHgabs.〜2.0kg/cm
2G、温度50〜250℃、好ましくは圧力400mmH
gabs.〜1.5kg/cm2G、温度100〜200
℃の反応条件下において、行われる。すなわち、反応圧
力が2kg/cm2Gを超えると圧力容器の仕様が一段と
厳しくなるので経済的に不利となり、反応温度が50℃
より低ければアルカリ金属水酸化物の溶解度が低く、ま
た共沸剤を使用すれば液相中の共沸剤の濃度が高くな
り、アルカリ金属水酸化物の溶解度がさらに低くなるな
どにより、水硫化反応が進みにくくなる。反応温度が2
50℃より高くなると圧力も高まり好ましくないのみな
らず、非プロトン性有機溶媒の分解による悪影響が生ず
る恐れがある。そして、この反応条件の好ましい態様と
して、ガスの吸収反応は低温の方が好ましいし、ガスの
脱離反応は高温の方が好ましいが熱に不安定な非プロト
ン性有機溶媒の特性に配慮して、上記の低温・低圧の条
件がよい。BEST MODE FOR CARRYING OUT THE INVENTION [Production Method of High-Purity Anhydrous Alkali Metal Sulfide] [First Invention] The first invention of the present invention employs a pressure of 2 mmHg.
abs. Hydrogen sulfide gas is blown into a solution comprising an alkali metal hydroxide and an aprotic organic solvent under a reaction condition of ~ 2.0 kg / cm 2 G and a temperature of 50 ~ 250 ° C, and dehydration and desulfurization are performed while heating. Hydrogen and after the residual moisture in the system has been substantially eliminated, stop blowing hydrogen sulfide,
This is a method for producing anhydrous alkali metal sulfide, which comprises removing hydrogen sulfide while heating. (1) Reaction conditions The present invention employs a pressure of 2 mmHgabs. ~ 2.0kg / cm
2 G, temperature 50-250 ° C, preferably pressure 400 mmH
gabs. ~ 1.5kg / cm 2 G, temperature 100 ~ 200
The reaction is carried out under a reaction condition of ° C. That is, if the reaction pressure exceeds 2 kg / cm 2 G, the specifications of the pressure vessel become more severe, which is economically disadvantageous, and the reaction temperature becomes 50 ° C.
If it is lower, the solubility of the alkali metal hydroxide is low, and if an azeotropic agent is used, the concentration of the azeotropic agent in the liquid phase increases, and the solubility of the alkali metal hydroxide further decreases. The reaction becomes difficult to proceed. Reaction temperature 2
When the temperature is higher than 50 ° C., the pressure is increased, which is not preferable. In addition, the decomposition of the aprotic organic solvent may have an adverse effect. In a preferred embodiment of the reaction conditions, the gas absorption reaction is preferably performed at a low temperature, and the gas desorption reaction is preferably performed at a high temperature, but taking into consideration the characteristics of a heat-labile aprotic organic solvent. The conditions of low temperature and low pressure described above are good.
【0010】(2)アルカリ金属水酸化物 本発明に用いられるアルカリ金属水酸化物としては、例
えば水酸化リチウム、水酸化ナトリウム、水酸化カリウ
ム等であり、特に制限はないが高純度であればよく、ま
た、無水物の方が好ましいが水を含んでいてもよい。中
でも、特に高価な水酸化リチウムが好適である。(2) Alkali metal hydroxide The alkali metal hydroxide used in the present invention is, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide and the like. Good and anhydrous is preferred, but may contain water. Among them, particularly expensive lithium hydroxide is preferred.
【0011】(3)非プロトン性有機溶媒 本発明に用いられる非プロトン性有機溶媒としては、一
般的に、非プロトン性の極性有機化合物(例えば、アミ
ド化合物、ラクタム化合物、尿素化合物、有機イオウ化
合物、環式有機リン化合物等)を単独溶媒、または、混
合溶媒として好適に使用することができる。これらの非
プロトン性の極性有機化合物のうち、前記アミド化合物
としては、例えば、N,N−ジメチルホルムアミド、
N,N−ジエチルホルムアミド、N,N−ジメチルアセ
トアミド、N,N−ジエチルアセトアミド、N,N−ジ
プロピルアセトアミド、N,N−ジメチル安息香酸アミ
ドなどを挙げることができる。(3) Aprotic Organic Solvents The aprotic organic solvents used in the present invention generally include aprotic polar organic compounds (for example, amide compounds, lactam compounds, urea compounds, organic sulfur compounds) , A cyclic organic phosphorus compound, etc.) can be suitably used as a single solvent or a mixed solvent. Among these aprotic polar organic compounds, examples of the amide compound include N, N-dimethylformamide,
N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dipropylacetamide, N, N-dimethylbenzoic acid amide and the like can be mentioned.
【0012】また、前記ラクタム化合物としては、例え
ば、カプロラクタム、N−メチルカプロラクタム、N−
エチルカプロラクタム、N−イソプロピルカプロラクタ
ム、N−イソブチルカプロラクタム、N−ノルマルプロ
ピルカプロラクタム、N−ノルマルブチルカプロラクタ
ム、N−シクロヘキシルカプロラクタム等のN−アルキ
ルカプロラクタム類、N−メチル−2−ピロリドン(N
MP)、N−エチル−2−ピロリドン、N−イソプロピ
ル−2−ピロリドン、N−イソブチル−2−ピロリド
ン、N−ノルマルプロピル−2−ピロリドン、N−ノル
マルブチル−2−ピロリドン、N−シクロヘキシル−2
−ピロリドン、N−メチル−3−メチル−2−ピロリド
ン、N−エチル−3−メチル−2−ピロリドン、N−メ
チル−3,4,5−トリメチル−2−ピロリドン、N−
メチル−2−ピペリドン、N−エチル−2−ピペリド
ン、N−イソプロピル−2−ピペリドン、N−メチル−
6−メチル−2−ピペリドン、N−メチル−3−エチル
−2−ピペリドンなどを挙げることができる。Examples of the lactam compound include caprolactam, N-methylcaprolactam, N-
N-alkylcaprolactams such as ethylcaprolactam, N-isopropylcaprolactam, N-isobutylcaprolactam, N-normalpropylcaprolactam, N-normalbutylcaprolactam, N-cyclohexylcaprolactam, N-methyl-2-pyrrolidone (N
MP), N-ethyl-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-isobutyl-2-pyrrolidone, N-n-propyl-2-pyrrolidone, N-n-butyl-2-pyrrolidone, N-cyclohexyl-2
-Pyrrolidone, N-methyl-3-methyl-2-pyrrolidone, N-ethyl-3-methyl-2-pyrrolidone, N-methyl-3,4,5-trimethyl-2-pyrrolidone, N-
Methyl-2-piperidone, N-ethyl-2-piperidone, N-isopropyl-2-piperidone, N-methyl-
6-methyl-2-piperidone, N-methyl-3-ethyl-2-piperidone and the like can be mentioned.
【0013】さらに、前記有機イオウ化合物としては、
例えば、ジメチルスルホキシド、ジエチルスルホキシ
ド、ジフェニレンスルホン、1−メチル−1−オキソス
ルホラン、1−エチル−1−オキソスルホラン、1−フ
ェニル−1−オキソスルホランなどを挙げることができ
る。これら各種の非プロトン性極性有機化合物は、それ
ぞれ一種単独で、または二種以上を混合して、さらには
本発明の目的に支障のない他の溶媒成分と混合して、前
記非プロトン性有機溶媒として使用することができる。
前記各種の非プロトン性有機溶媒の中でも、好ましいの
はN−アルキルカプロラクタムおよびN−アルキルピロ
リドンであり、特に好ましいのはN−メチル−2−ピロ
リドンである。Further, the organic sulfur compound includes:
For example, dimethyl sulfoxide, diethyl sulfoxide, diphenylene sulfone, 1-methyl-1-oxosulfolane, 1-ethyl-1-oxosulfolane, 1-phenyl-1-oxosulfolane and the like can be mentioned. These various aprotic polar organic compounds are each used alone or in combination of two or more, and further mixed with other solvent components not hindering the object of the present invention, the aprotic organic solvent Can be used as
Among the above various aprotic organic solvents, preferred are N-alkylcaprolactam and N-alkylpyrrolidone, and particularly preferred is N-methyl-2-pyrrolidone.
【0014】(4)硫化水素 本発明に用いられる硫化水素としては特に制限はない。 (5)使用割合 硫化水素に対するアルカリ金属水酸化物の使用割合とし
ては、アルカリ金属水酸化物/硫化水素のモル比が、通
常1.80〜6.00、特に1.95〜3.00であ
る。当範囲内にあれば、反応が一層円滑に進むからであ
る。(4) Hydrogen sulfide The hydrogen sulfide used in the present invention is not particularly limited. (5) Usage Ratio The usage ratio of the alkali metal hydroxide to hydrogen sulfide is such that the alkali metal hydroxide / hydrogen sulfide molar ratio is usually 1.80 to 6.00, particularly 1.95 to 3.00. is there. This is because the reaction proceeds more smoothly within the above range.
【0015】(6)製造 前記の反応条件下、非プロトン性有機溶媒中でアルカリ
金属水酸化物に硫化水素を反応させ、アルカリ金属水硫
化物が生成するが、同時に副生する水によりアルカリ金
属水硫化物やアルカリ金属硫化物が加水分解するため、
この加水分解反応を抑制すべく脱水を行う。すなわち、
本発明は、液中に、硫化水素ガスを吹き込み、加熱しな
がら脱水および脱硫化水素する。硫化水素ガスの吹き込
みは、アルカリ金属水酸化物からアルカリ金属水硫化物
を生成するのに作用するのみならず、生成したアルカリ
金属水硫化物やアルカリ金属硫化物が加水分解するのを
抑制する作用をする。従って、系内の残留水分が実質な
くなるまで続けられる。「系内の残留水分が実質なくな
る」とは、より具体的には反応液中における水分濃度が
5重量%以下、より好ましくは0.5重量%以下である
ことを意味する。こうすることにより、加水分解で生成
するアルカリ金属水酸化物が最終生成物であるアルカリ
金属硫化物に混入することを防止し、アルカリ金属/硫
黄のモル比を2.10以下にすることができる。なお、
吹き込む硫化水素の圧力は、常圧でも加圧してもよく、
吹き込みガスの流量速度は、特に制限はなく、吹き込み
時間は、前記硫化水素の使用割合から算出される必要硫
化水素量を吹き込みガスの流量速度で割って得られる時
間以上、すなわち、アルカリ金属化水酸化物に対して、
過剰の量を吹き込むことが必要であるがここでは更に、
系内の残留水分が実質なくなるまでである。なお、ガス
吹き込む方法は特に制限はなく、その吹き込む反応装置
は、アルカリ金属水酸化物を攪拌する攪拌翼のついた装
置で、上部にコンデンサーがあるものが好適である。(6) Production Under the above reaction conditions, an alkali metal hydroxide is reacted with hydrogen sulfide in an aprotic organic solvent to produce an alkali metal hydrosulfide. Since hydrosulfide and alkali metal sulfide are hydrolyzed,
Dehydration is performed to suppress the hydrolysis reaction. That is,
In the present invention, a hydrogen sulfide gas is blown into a liquid, and dehydration and dehydrosulfide are performed while heating. The injection of hydrogen sulfide gas not only acts to generate alkali metal hydrosulfide from alkali metal hydroxide, but also suppresses the hydrolysis of the generated alkali metal hydrosulfide and alkali metal sulfide. do. Therefore, the process is continued until the residual moisture in the system is substantially eliminated. The phrase “substantially no residual moisture in the system” means that the water concentration in the reaction solution is 5% by weight or less, more preferably 0.5% by weight or less. By doing so, it is possible to prevent the alkali metal hydroxide generated by the hydrolysis from being mixed into the alkali metal sulfide as the final product, and it is possible to reduce the alkali metal / sulfur molar ratio to 2.10 or less. . In addition,
The pressure of hydrogen sulfide to be blown may be normal pressure or pressurized,
The flow rate of the blowing gas is not particularly limited, and the blowing time is equal to or longer than the time obtained by dividing the required amount of hydrogen sulfide calculated from the usage rate of the hydrogen sulfide by the flow rate of the blowing gas, that is, alkali metalized water. For oxides,
It is necessary to inject an excessive amount, but here,
Until the residual water in the system is substantially eliminated. The method for blowing gas is not particularly limited, and the reactor for blowing gas is preferably a device equipped with a stirring blade for stirring alkali metal hydroxide, and a device having a condenser at the top is suitable.
【0016】そして、系内の残留水分が実質なくなった
後、硫化水素の吹き込みを中止し、加熱しながら脱硫化
水素する。生成したアルカリ金属水硫化物は、加熱され
ることによりアルカリ金属硫化物が生成し、前記の脱水
中も硫化水素が副生するので、脱水中に併せて脱硫化水
素するが、脱水が完了した後、専ら、脱硫化水素してア
ルカリ金属硫化物を生成する。この最後の脱硫化水素が
不十分であると、未反応のアルカリ金属水硫化物が最終
生成物であるアルカリ金属硫化物に混入する。Then, after the residual water in the system is substantially eliminated, the blowing of hydrogen sulfide is stopped, and the hydrogen sulfide is removed while heating. The generated alkali metal hydrosulfide generates an alkali metal sulfide by heating, and hydrogen sulfide is also by-produced during the dehydration, so that the dehydration is performed during the dehydration, but the dehydration is completed. Thereafter, it is exclusively dehydrogenated to produce alkali metal sulfide. If the final hydrogen sulfide is insufficient, unreacted alkali metal hydrosulfide is mixed into the final product, alkali metal sulfide.
【0017】この未反応のアルカリ金属水硫化物は液中
の濃度を測定することにより、確認することができる
が、通常、反応時間との関係で把握される。そして、こ
の反応時間は最終製品のアルカリ金属硫化物中のアルカ
リ金属/硫黄のモル比が1.90以上であることが望ま
れるが経済性を考慮し、6時間以内であることが好まし
い。反応終了後、反応槽に沈殿したアルカリ金属硫化物
を遠心分離機等にかけて、分離し、乾燥して最終製品で
ある無水アルカリ金属硫化物が回収される。The unreacted alkali metal hydrosulfide can be confirmed by measuring the concentration in the liquid, but is usually grasped in relation to the reaction time. The reaction time is desired to have a molar ratio of alkali metal / sulfur in the alkali metal sulfide of the final product of 1.90 or more, but is preferably within 6 hours in consideration of economy. After completion of the reaction, the alkali metal sulfide precipitated in the reaction tank is separated by a centrifugal separator or the like, separated and dried to recover the anhydrous alkali metal sulfide as a final product.
【0018】〔第二の発明〕本発明の第二の発明は、第
一の発明が「系内の残留水分が実質なくなった後硫化水
素の吹き込みを中止し、加熱しながら脱硫化水素する」
に対して、「系内の残留水分が実質なくなった後さらに
硫化水素ガスに代えて不活性ガスを吹き込みながら脱硫
化水素する」ものである。[Second invention] The second invention of the present invention is directed to the first invention, in which "the hydrogen sulfide blowing is stopped after the residual moisture in the system is substantially eliminated, and the hydrogen sulfide is removed while heating".
In contrast, "after the residual moisture in the system is substantially eliminated, hydrogen sulfide is further removed and inert gas is blown in while replacing with hydrogen sulfide gas".
【0019】すなわち、脱水が完了した後、専ら、脱硫
化水素してアルカリ金属硫化物を生成する工程で、加熱
しながら更に不活性ガスの吹き込むことにより脱硫化水
素の促進をはかるのである。こうすることにより、最終
仕上げとしてより有効に機能し、高い純度の無水アルカ
リ金属硫化物を得ることができる。なお、本発明に吹き
込みガスとして用いる不活性ガスとしては、特に制限は
なく、通常、窒素ガスを好適に用いることができる。ま
た、この不活性ガスの吹き込み圧については、特に制限
がなく、常圧でも加圧してもよい。吹き込み流量速度は
特に制限がなく、更に、吹き込み時間は、未反応のアル
カリ金属水硫化物の液中濃度を測定することにより、確
認することができるが通常、吹き込み時間との関係で把
握される。そして、この反応時間は、最終製品のアルカ
リ金属硫化物中のアルカリ金属/硫黄のモル比が1.9
0以上であることが望まれるが経済性を考慮し、6時間
以内であることが好ましい。That is, after the completion of the dehydration, in the step of producing the alkali metal sulfide exclusively by dehydrogen sulfide, the inert gas is further blown while heating to promote the dehydrogen sulfide. By doing so, it functions more effectively as a final finish, and it is possible to obtain a high-purity anhydrous alkali metal sulfide. The inert gas used as the blowing gas in the present invention is not particularly limited, and usually, nitrogen gas can be suitably used. The blowing pressure of the inert gas is not particularly limited, and may be normal pressure or pressurized pressure. The blowing flow rate is not particularly limited, and the blowing time can be confirmed by measuring the concentration of unreacted alkali metal hydrosulfide in the liquid, but is usually grasped in relation to the blowing time. . The reaction time is such that the molar ratio of alkali metal / sulfur in the alkali metal sulfide of the final product is 1.9.
Although it is desirable that it is 0 or more, it is preferably within 6 hours in consideration of economy.
【0020】〔第三の発明〕本発明の第三の発明は、第
一の発明又は第二の発明において、水と共沸する化合物
を更に加えた原料を用いる無水アルカリ金属硫化物の製
造方法である。本発明に用いる水と共沸する化合物とし
ては、沸点が200℃以下である水と共沸する化合物が
好ましく、ベンゼン、トルエン、エチルベンゼンなどの
芳香族炭化水素、ペンタン、ヘキサン、シクロヘキサン
などの脂肪族炭化水素、クロロベンゼン、p−ジクロロ
ベンゼンなどハロゲン化炭化水素などが挙げられる。こ
れらの中でも特にトルエン、p−ジクロロベンゼンが好
ましい。[Third invention] The third invention of the present invention is a method for producing an anhydrous alkali metal sulfide using a raw material to which a compound azeotropic with water is further added in the first invention or the second invention. It is. The compound azeotropic with water used in the present invention is preferably a compound azeotropic with water having a boiling point of 200 ° C. or lower, and aromatic hydrocarbons such as benzene, toluene, and ethylbenzene, and aliphatic compounds such as pentane, hexane, and cyclohexane. Examples thereof include halogenated hydrocarbons such as hydrocarbons, chlorobenzene, and p-dichlorobenzene. Among these, toluene and p-dichlorobenzene are particularly preferred.
【0021】本発明は、このような水に共沸する化合物
を添加して、より低温での反応条件下で反応を進めるこ
とができるため、熱に不安定な非プロトン性有機溶媒に
よる悪影響を回避できる。そして、共沸化合物は、水と
共に除去されるので、第一、第二の発明をそのまま使用
することができる。すなわち、溶液を加熱しながら硫化
水素を吹き込み、脱水、脱硫化水素し、系内の水分が実
質なくなった後に、硫化水素の吹き込みを中止し、加熱
または加熱しながら不活性ガスを吹き込むことにより無
水アルカリ金属硫化物を製造することができる。According to the present invention, since the reaction can proceed under the reaction conditions at a lower temperature by adding such an azeotropic compound to water, the adverse effect of a heat-labile aprotic organic solvent can be prevented. Can be avoided. Since the azeotropic compound is removed together with the water, the first and second inventions can be used as they are. That is, hydrogen sulfide is blown while heating the solution, dehydration and dehydrosulfide are performed, and after the water in the system is substantially depleted, the blowing of hydrogen sulfide is stopped, and the inert gas is blown while heating or heating to obtain anhydrous water. An alkali metal sulfide can be produced.
【0022】なお、共沸化合物の使用量は、通常、原料
中に含まれる水および副生する水に対して共沸物を形成
するに必要な量であり、共沸化合物の種類により異な
り、例えばトルエンの場合は水1モルに対して1モル以
上の割合で用いることができる。The amount of the azeotropic compound used is usually an amount necessary for forming an azeotropic substance with respect to water contained in the raw material and water produced as a by-product, and varies depending on the type of the azeotropic compound. For example, in the case of toluene, it can be used in a proportion of 1 mol or more per 1 mol of water.
【0023】〔第四の発明〕本発明の第四の発明は、第
一、第二の発明を連続法で行う製造法であり、また更に
水に共沸する化合物を原料に加えた第三の発明を連続法
で行う製造法である。本発明の連続方法は、バッチ式と
比べると、吹き込み用硫化水素や共沸化合物をリサイク
ルすることができるメリットがあるのみならず、原料の
液をあらかじめ加熱された液に連続的に投入することか
ら、加熱して脱水するに要する時間を短くすることがで
きるので、加水分解を起こす水との接触時間を短くでき
るメリットがある。[Fourth Invention] A fourth invention of the present invention is a production method in which the first and second inventions are carried out by a continuous method, and further comprises a third method in which a compound azeotropic with water is added to the raw material. Is a production method in which the invention of (1) is performed by a continuous method. The continuous method of the present invention not only has the merit of being able to recycle hydrogen sulfide and an azeotropic compound for blowing than the batch method, and also continuously feeds a raw material liquid to a pre-heated liquid. Therefore, the time required for dehydration by heating can be shortened, so that there is an advantage that the contact time with water that causes hydrolysis can be shortened.
【0024】(1)本発明の連続製造法 本発明の連続製造法を示すプロセス・フローチャートを
図1に示す。この図1を参照しながら説明する。 1)蒸留塔もしくは蒸留カラム付き攪拌槽で構成される
反応槽にアルカリ金属水酸化物および非プロトン性有機
溶媒、必要に応じて水と共沸する化合物からなる溶液を
槽内の液レベルを一定に保ちつつ、連続的に供給する。
これは、先ず、原料の反応槽ヘの供給が連続で行われる
ことを示す。そして、攪拌機により、液中のアルカリ金
属水酸化物が沈殿しない程度に攪拌される。(1) Continuous Production Method of the Present Invention FIG. 1 is a process flowchart showing a continuous production method of the present invention. This will be described with reference to FIG. 1) A solution comprising an alkali metal hydroxide, an aprotic organic solvent and, if necessary, a compound azeotroping with water is placed in a reaction vessel comprising a distillation tower or a stirring vessel with a distillation column, and the liquid level in the vessel is kept constant. Supply continuously while maintaining
This indicates that the supply of the raw materials to the reaction tank is performed continuously. Then, the mixture is stirred by the stirrer to such an extent that the alkali metal hydroxide in the liquid does not precipitate.
【0025】2)槽内圧力2mmHgabs.〜2.0
kg/cm2G、温度50〜250℃の反応条件下におい
て、溶液中に硫化水素ガスを吹き込みながら加熱し、反
応槽の下部から硫化水素ガスを吹き込み、液全体が加熱
される。 3)副生する水および硫化水素を蒸留により系外に排
出し、 必要に応じ、その排出された硫化水素の少なくとも一
部を吹き込み用にリサイクルし、蒸留カラムの塔頂から
水と共沸化合物および硫化水素が留出され、コンデンサ
ーを介して、硫化水素ガスは回収されて吹き込み用にリ
サイクルし、凝縮した水と共沸化合物は、セパレターで
分離され、共沸化合物のみ還流され、水は系外に排出さ
れる。2) The pressure in the tank is 2 mmHgabs. ~ 2.0
Under the reaction conditions of kg / cm 2 G and a temperature of 50 to 250 ° C., the solution is heated while blowing hydrogen sulfide gas into the solution, and hydrogen sulfide gas is blown from the lower part of the reaction tank to heat the whole liquid. 3) By-product water and hydrogen sulfide are discharged out of the system by distillation, and if necessary, at least a part of the discharged hydrogen sulfide is recycled for blowing, and water and an azeotropic compound are collected from the top of the distillation column. And hydrogen sulfide are distilled off, and the hydrogen sulfide gas is recovered and recycled for blowing through a condenser.The condensed water and the azeotropic compound are separated by a separator, only the azeotropic compound is refluxed, and the water is returned to the system. It is discharged outside.
【0026】4)槽内の残留水分が実質なくなった後、
生成されたアルカリ金属水硫化物を含む非プロトン性有
機溶媒からなる溶液を脱気槽に移送して加熱または不活
性ガスを吹き込んで脱硫化水素をする 槽内の残留水分が実質なくなったか否かは、槽内の液に
含まれる水分を測定することにより確認されるが、加熱
および吹き込む硫化水素ガスにより液体中の水分が、共
沸化合物と共に蒸発する量が槽内に投入される原料中に
含まれる水の供給量とバランスするまで調整される。そ
して、溶液は脱気槽に移送され、加熱または不活性ガス
を吹き込んで脱硫化水素される。脱気槽の上部に設けら
れた蒸留カラムにより、その塔頂から硫化水素と共沸化
合物が留出され、コンデンサーを介して、硫化水素ガス
は回収されて吹き込み用にリサイクルし、凝縮した共沸
化合物も回収される。一定時間経過後、アルカリ金属硫
化物を含む溶液が脱気槽から回収され、更に、遠心分離
機等で分離され、乾燥して無水アルカリ金属硫化物が回
収される。4) After the residual moisture in the tank is substantially eliminated,
Transfer the solution consisting of the generated aprotic organic solvent containing the alkali metal hydrosulfide to the degassing tank, and heat or blow in the inert gas to remove the hydrogen sulfide. Is confirmed by measuring the moisture contained in the liquid in the tank.However, the amount of water in the liquid that evaporates together with the azeotropic compound due to heating and blowing of hydrogen sulfide gas is contained in the raw material charged into the tank. It is adjusted until it balances the supply of contained water. Then, the solution is transferred to a degassing tank, and heated or blown with an inert gas to be dehydrogenated. A distillation column provided at the top of the degassing tank distills off hydrogen sulfide and an azeotropic compound from the top of the column.Hydrogen sulfide gas is recovered via a condenser, recycled for blowing, and condensed azeotropic The compound is also recovered. After a certain period of time, the solution containing the alkali metal sulfide is recovered from the degassing tank, further separated by a centrifuge or the like, and dried to recover the anhydrous alkali metal sulfide.
【0027】[0027]
【実施例】本発明について、更に、実施例を用いて詳細
に説明する。 〔実施例1〕攪拌機およびコンデンサーを備えたフラス
コに水酸化リチウム無水塩28.8g(1.2モル)及
びN−メチル−2−ピロリドン(NMP)337.5g
(3.4モル)を仕込み、350rpmで攪拌しながら
室温下で硫化水素ガスを液相に吹き込んだ。反応熱で約
90℃まで液温が上昇した後、100℃まで温度を上
げ、硫化水素ガスを約1時間吹き込んだ。硫化水素ガス
の吹き込み流量速度は100cc/分であった。反応液
中に固形物の存在は認められなかった。この反応液の一
部を採取して、電位差滴定法により、水酸化リチウム、
水硫化リチウム及び硫化リチウムの分別定量を実施し
た。この結果、水酸化リチウムおよび硫化リチウムの生
成は見られず、水硫化リチウムが高濃度で生成している
ことを確認した。また、この時の水の濃度は5.3重量
%であった。引き続いて、この反応液を、硫化水素ガス
の吹き込み気流下(100cc/分)で昇温を開始し
た。水の還流が始まった時点(170℃)で、共沸剤と
してトルエン100ccを滴下ロートを用いてゆっくり
添加し、留出液を系外に抜き出しながら脱水をおこなっ
た。内温が180℃になった時点で液中の残留水分の濃
度を測定し、その濃度は0.5重量%であったので、硫
化水素ガスに代えて窒素ガスを吹き込んで、脱硫化水素
を行った。窒素ガスに切り換えてから2時間後の粉状サ
ンプル(195℃)は、Li/S比が1.95であっ
た。また、この生成物には硫化リチウムと未反応の水硫
化リチウムが僅かに残っていたものの、水酸化リチウム
は生成していなっかった。EXAMPLES The present invention will be described in further detail with reference to Examples. Example 1 In a flask equipped with a stirrer and a condenser, 28.8 g (1.2 mol) of anhydrous lithium hydroxide and 337.5 g of N-methyl-2-pyrrolidone (NMP) were placed.
(3.4 mol), and hydrogen sulfide gas was blown into the liquid phase at room temperature while stirring at 350 rpm. After the temperature of the solution was raised to about 90 ° C. by the heat of reaction, the temperature was raised to 100 ° C., and hydrogen sulfide gas was blown in for about 1 hour. The blowing flow rate of the hydrogen sulfide gas was 100 cc / min. No solid was found in the reaction mixture. A part of the reaction solution was collected, and lithium hydroxide,
Separate determination of lithium hydrosulfide and lithium sulfide was performed. As a result, generation of lithium hydroxide and lithium sulfide was not observed, and it was confirmed that lithium hydrosulfide was generated at a high concentration. At this time, the concentration of water was 5.3% by weight. Subsequently, the temperature of the reaction solution was started to rise under a flow of hydrogen sulfide gas (100 cc / min). At the time when the reflux of water started (170 ° C.), 100 cc of toluene was slowly added as an azeotropic agent using a dropping funnel, and dehydration was performed while extracting a distillate from the system. When the internal temperature reached 180 ° C., the concentration of the residual moisture in the liquid was measured. Since the concentration was 0.5% by weight, nitrogen gas was blown in instead of hydrogen sulfide gas to remove hydrogen sulfide. went. The Li / S ratio of the powdery sample (195 ° C.) two hours after switching to nitrogen gas was 1.95. In addition, although lithium sulfide and unreacted lithium hydrosulfide slightly remained in this product, lithium hydroxide was not generated.
【0028】〔比較例1〕実施例1において、硫化水素
ガスを1時間吹き込んだ後、反応液を分析し、その後、
硫化水素ガスから窒素ガスに切り換えて100cc/分
の流速で、その液に吹き込みながら昇温した。内温が1
70℃に達し、蒸留カラムの塔頂からコンデンサーを介
して水とNMPの留出が始まった。留出開始からしばら
くすると反応液内に白色粒子が分散しはじめた。留出液
は、系外に抜き出され、1.5時間反応をおこなった。
反応終了時の内温は200℃であった。生成物は硫化リ
チウムと僅かに水酸化リチウムを含むスラリー溶液で、
粉状生成物のLi/S比は2.54であり、水の濃度は
0.1重量%であった。 〔比較例2〕実施例1と同じ方法で水硫化リチウムを合
成した後、硫化水素の吹き込みを中止し、水の抜き出し
を行わず、留出する液を全量還流し、硫化水素ガスを系
外へ排出した。窒素ガスの吹き込みを行うことなく、加
熱して内温が170℃に達した時からさらに1.5時間
保持した。さらに、反応の進行に伴い、内温が200℃
まで上昇した。得られた生成物は、ほとんどが水酸化リ
チウムであり、その粉状生成物のLi/S比は7.16
であった。水の濃度は1.0重量%であった。[Comparative Example 1] In Example 1, after blowing hydrogen sulfide gas for 1 hour, the reaction solution was analyzed.
The temperature was raised while blowing into the liquid at a flow rate of 100 cc / min after switching from hydrogen sulfide gas to nitrogen gas. Internal temperature is 1
When the temperature reached 70 ° C., distillation of water and NMP started from the top of the distillation column via a condenser. Some time after the start of distillation, white particles began to be dispersed in the reaction solution. The distillate was drawn out of the system and reacted for 1.5 hours.
The internal temperature at the end of the reaction was 200 ° C. The product is a slurry solution containing lithium sulfide and slightly lithium hydroxide,
The Li / S ratio of the powdery product was 2.54 and the concentration of water was 0.1% by weight. [Comparative Example 2] After synthesizing lithium hydrosulfide in the same manner as in Example 1, blowing of hydrogen sulfide was stopped, water was not extracted, the entire distillate was refluxed, and hydrogen sulfide gas was removed from the system. Was discharged to Without blowing nitrogen gas, the mixture was heated and maintained for another 1.5 hours from when the internal temperature reached 170 ° C. Further, as the reaction progresses, the internal temperature becomes 200 ° C.
Up. Most of the obtained product is lithium hydroxide, and the Li / S ratio of the powdery product is 7.16.
Met. The water concentration was 1.0% by weight.
【0029】〔参考例1〕試薬の無水硫化リチウム1
1.6g(0.25モル)とNMP350.0g(3.
5モル)を攪拌機及びコンデンサーを備えたフラスコに
仕込み、室温下、350rpmで硫化水素ガスを気相に
吹き込み、無水の水硫化リチウムを合成した。反応熱で
65℃まで昇温したのち、100℃まで加熱した。反応
液中に固形物は残っておらず、生成物は水硫化リチウム
100%であった。この液をNMPの沸点(204℃)
で、留出する液を全量還流し、硫化水素ガスを系外へ排
出する状態で2時間保持した。この間に固形物が生成
し、その粉状生成物のLi/S比は1.92で、未反応
の水硫化リチウムが僅かに残っているものの生成物は硫
化リチウムであった。[Reference Example 1] Anhydrous lithium sulfide 1 as a reagent
1.6 g (0.25 mol) and 350.0 g of NMP (3.
(5 mol) was charged into a flask equipped with a stirrer and a condenser, and hydrogen sulfide gas was blown into the gas phase at 350 rpm at room temperature to synthesize anhydrous lithium hydrosulfide. After the temperature was raised to 65 ° C. by the heat of reaction, the mixture was heated to 100 ° C. No solid remained in the reaction solution, and the product was lithium hydrosulfide 100%. The boiling point of NMP (204 ° C)
Then, the entire amount of the distilling liquid was refluxed, and the hydrogen sulfide gas was kept discharged for 2 hours. During this time, a solid was formed, and the powdery product had a Li / S ratio of 1.92, and although a small amount of unreacted lithium hydrosulfide remained, the product was lithium sulfide.
【0030】〔実施例2〕水酸化リチウム無水塩28.
8g(1.2モル)、NMP337.5g(3.4モ
ル)および共沸剤としてトルエン100ccを攪拌機及
びデカンターを備えたフラスコに仕込み、硫化水素ガス
を液相に200cc/分で吹き込みながら昇温を開始し
た。攪拌速度は350rpmであり、内温が120℃に
達すると水とトルエンの留出が始まった。トルエンはデ
カンターで分離して連続的に系内に戻し、水は系外に排
出した。留出開始後、しばらくすると系内に粒子が分散
しはじめた。液相のトルエンの濃度を一定(10重量
%)にすることにより、内温を130℃にコントロール
した。デカンター内が二相に分離しなくなった時点で、
系内の水の濃度を測定し、0.5重量%であったので、
吹き込み硫化水素ガスから窒素ガスに切り替え、トルエ
ンを留出させた。内温がNMPの沸点である204℃に
達した時点で反応を終了した。反応終了時に系内は、無
水硫化リチウムの微粒子がNMPに分散している状態で
あった。生成物のLi/S比は、2.01であった。 〔比較例3〕実施例2において、内温120℃に達し、
水とトルエンの留出が始まる時点で、硫化水素ガスから
窒素ガスに代えて吹き込み(200cc/分)、脱水を
行った以外は同様におこなった。得られた生成物は、多
量の水酸化リチウムを含み、Li/S比は、3.79で
あった。Example 2 Lithium hydroxide anhydrous salt
8 g (1.2 mol), 337.5 g (3.4 mol) of NMP and 100 cc of toluene as an azeotropic agent were charged into a flask equipped with a stirrer and a decanter, and heated while blowing hydrogen sulfide gas into the liquid phase at 200 cc / min. Started. The stirring speed was 350 rpm, and when the internal temperature reached 120 ° C., distillation of water and toluene started. Toluene was separated by a decanter and continuously returned to the system, and water was discharged out of the system. Some time after the start of distillation, particles began to be dispersed in the system. The internal temperature was controlled at 130 ° C. by keeping the concentration of toluene in the liquid phase constant (10% by weight). When the interior of the decanter no longer separates into two phases,
The concentration of water in the system was measured and found to be 0.5% by weight.
The blown hydrogen sulfide gas was switched to nitrogen gas, and toluene was distilled off. The reaction was terminated when the internal temperature reached 204 ° C., which is the boiling point of NMP. At the end of the reaction, the inside of the system was in a state where fine particles of anhydrous lithium sulfide were dispersed in NMP. The Li / S ratio of the product was 2.01. [Comparative Example 3] In Example 2, the internal temperature reached 120 ° C,
At the time when the distillation of water and toluene was started, the same operation was performed except that hydrogen sulfide gas was blown in instead of nitrogen gas (200 cc / min) to perform dehydration. The resulting product contained a large amount of lithium hydroxide and the Li / S ratio was 3.79.
【0031】[0031]
【発明の効果】本発明の製造方法によれば、高純度の無
水アルカリ金属硫化物が得られる。比較例1や2が示す
ように、硫化水素の吹き込み中に充分に脱水をしない
と、最終生成物中への水酸化リチウムの混在が避けられ
ない。さらに、最後の仕上げとしての窒素ガスの吹き込
みによる脱硫化水素も吹き込み時間が2時間程度であっ
ても、未反応水硫化リチウムの残存量を小さく抑えるこ
とができた。また、本発明の連続製造法においても実施
例2が示すように、効率よく、高純度の無水アルカリ金
属硫化物が得られる。According to the production method of the present invention, high-purity anhydrous alkali metal sulfide can be obtained. As shown in Comparative Examples 1 and 2, if the dehydration is not sufficiently performed during the blowing of hydrogen sulfide, lithium hydroxide cannot be mixed in the final product. Furthermore, the remaining amount of unreacted lithium hydrosulfide was able to be suppressed even if the blowing time was about 2 hours for the dehydrogen sulfide by blowing nitrogen gas as the final finishing. In addition, in the continuous production method of the present invention, as shown in Example 2, high-purity anhydrous alkali metal sulfide can be obtained efficiently.
【0032】[0032]
【図1】本発明の実施例に用いた無水アルカリ金属硫化
物の連続製造プロセスフローチャートFIG. 1 is a flowchart of a continuous production process of anhydrous alkali metal sulfide used in an embodiment of the present invention.
1:水酸化リチウム 2:硫化水素ガス 3:硫化水素、水および共沸剤 4:水 5:硫化水素ガス 6:共沸剤 7:硫化水素および共沸剤 8:無水硫化リチウム 9:水硫化・脱水工程 10:脱硫化水素・共沸剤回収工程 1: Lithium hydroxide 2: Hydrogen sulfide gas 3: Hydrogen sulfide, water and an azeotropic agent 4: Water 5: Hydrogen sulfide gas 6: An azeotropic agent 7: Hydrogen sulfide and an azeotropic agent 8: Anhydrous lithium sulfide 9: Hydrosulfide -Dehydration process 10: Dehydrogen sulfide / azeotropic agent recovery process
Claims (5)
溶媒からなる溶液中に、硫化水素ガスを吹き込み、加熱
しながら脱水および脱硫化水素し、系内の残留水分が実
質なくなった後硫化水素の吹き込みを中止し、加熱しな
がら脱硫化水素することを特徴とする無水アルカリ金属
硫化物を製造する方法。1. A hydrogen sulfide gas is blown into a solution composed of an alkali metal hydroxide and an aprotic organic solvent, and dehydration and dehydrogen sulfide are performed while heating. A method for producing anhydrous alkali metal sulfide, wherein the blowing of hydrogen is stopped, and hydrogen sulfide is removed while heating.
溶媒からなる溶液中に、硫化水素ガスを吹き込み、加熱
しながら脱水および脱硫化水素し、系内の残留水分が実
質なくなった後さらに硫化水素ガスに代えて不活性ガス
を吹き込みながら脱硫化水素することを特徴とする無水
アルカリ金属硫化物を製造する方法。2. A hydrogen sulfide gas is blown into a solution composed of an alkali metal hydroxide and an aprotic organic solvent, and dehydration and dehydrogen sulfide are performed while heating. A method for producing anhydrous alkali metal sulfide, characterized in that hydrogen sulfide is removed while blowing an inert gas instead of hydrogen gas.
有機溶媒からなる溶液が、水と共沸する化合物を含有す
る請求項1又は2に記載された無水アルカリ金属硫化物
を製造する方法。3. The method for producing an anhydrous alkali metal sulfide according to claim 1, wherein the solution comprising the alkali metal hydroxide and the aprotic organic solvent contains a compound azeotropic with water.
槽で構成される反応槽にアルカリ金属水酸化物および非
プロトン性有機溶媒からなる溶液を槽内の液レベルを一
定に保ちつつ、連続的に供給し、(2)槽内圧力2mm
Hgabs.〜2.0kg/cm2G、温度50〜250
℃の反応条件下において、溶液中に硫化水素ガスを吹き
込みながら加熱し、(3)副生する水および硫化水素
を蒸留により系外に排出し、 必要に応じ、その排出された硫化水素の少なくとも一
部を吹き込み用にリサイクルし、(4)槽内の残留水分
が実質なくなった後、生成されたアルカリ金属水硫化物
を含む非プロトン性有機溶媒からなる溶液を脱気槽に移
送して加熱してまたは不活性ガスを吹き込んで脱硫化水
素をする無水アルカリ金属硫化物の連続製造方法。(1) A solution comprising an alkali metal hydroxide and an aprotic organic solvent is continuously introduced into a reaction vessel comprising a distillation column or a stirring vessel equipped with a distillation column while keeping the liquid level in the vessel constant. (2) Pressure in the tank 2mm
Hgabs. ~ 2.0kg / cm 2 G, temperature 50 ~ 250
Under the reaction conditions of ° C., the solution is heated while blowing hydrogen sulfide gas into the solution. (3) By-product water and hydrogen sulfide are discharged out of the system by distillation, and if necessary, at least the discharged hydrogen sulfide is removed. Part of the solution was recycled for blowing, and (4) after the residual water in the tank was substantially eliminated, the resulting solution composed of the aprotic organic solvent containing the alkali metal hydrosulfide was transferred to the degassing tank and heated. Continuous production method of anhydrous alkali metal sulfide for dehydrogen sulfide by blowing or blowing an inert gas.
槽で構成される反応槽にアルカリ金属水酸化物、非プロ
トン性有機溶媒、および水と共沸する化合物からなる溶
液を槽内の液レベルを一定に保ちつつ、連続的に供給
し、(2)槽内圧力2mmHgabs.〜2.0kg/
cm2G、温度50〜250℃の反応条件下において、溶
液中に硫化水素ガスを吹き込みながら加熱し、(3)
副生する水と共沸化合物および硫化水素を蒸留により分
離し、水および硫化水素を系外に排出し、 必要に応じ、その排出された硫化水素の少なくとも一
部を吹き込み用にリサイクルし、 塔頂レシーバーで凝縮されて水と分離した共沸化合物
を、必要に応じ、一部フレッシュな共沸化合物と共に、
反応槽に還流させ、(4)槽内の残留水分が実質なくな
った後、生成されたアルカリ金属水硫化物を含む非プロ
トン性有機溶媒からなる溶液を脱気槽に移送して加熱ま
たは不活性ガスを吹き込んで脱硫化水素をする無水アル
カリ金属硫化物の連続製造方法。(1) A solution comprising an alkali metal hydroxide, an aprotic organic solvent, and a compound azeotropic with water is charged into a reaction vessel comprising a distillation tower or a stirring vessel equipped with a distillation column. While the level was kept constant, it was continuously supplied, and (2) the internal pressure of the tank was 2 mmHgabs. ~ 2.0kg /
Under a reaction condition of 50 cm 2 G and a temperature of 50 to 250 ° C., the solution was heated while blowing hydrogen sulfide gas into the solution, (3)
The by-product water, azeotropic compound, and hydrogen sulfide are separated by distillation, water and hydrogen sulfide are discharged out of the system, and if necessary, at least a part of the discharged hydrogen sulfide is recycled for blowing. The azeotropic compound condensed in the top receiver and separated from water, if necessary, together with a partially fresh azeotropic compound,
(4) After the residual water in the tank is substantially eliminated, the solution composed of the generated aprotic organic solvent containing the alkali metal hydrosulfide is transferred to the degassing tank and heated or inertized. A method for continuously producing anhydrous alkali metal sulfide in which gas is blown to remove hydrogen sulfide.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04732799A JP4252657B2 (en) | 1999-02-25 | 1999-02-25 | Method for producing anhydrous alkali metal sulfide |
DE10008161A DE10008161A1 (en) | 1999-02-25 | 2000-02-23 | Anhydrous alkali metal sulfide production, useful e.g. in synthesis of poly(arylene sulfide) or pharmaceuticals, by reacting hydroxide with hydrogen sulfide in aprotic solvent |
US09/512,456 US6337062B1 (en) | 1999-02-25 | 2000-02-24 | Method for the production of anhydrous alkali metal sulfide and alkali metal sulfide solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04732799A JP4252657B2 (en) | 1999-02-25 | 1999-02-25 | Method for producing anhydrous alkali metal sulfide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000247609A true JP2000247609A (en) | 2000-09-12 |
JP4252657B2 JP4252657B2 (en) | 2009-04-08 |
Family
ID=12772156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04732799A Expired - Fee Related JP4252657B2 (en) | 1999-02-25 | 1999-02-25 | Method for producing anhydrous alkali metal sulfide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4252657B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002265602A (en) * | 2001-03-12 | 2002-09-18 | Idemitsu Petrochem Co Ltd | Method for producing polyaryrene sulfide having stable quality |
JP2002293515A (en) * | 2001-03-30 | 2002-10-09 | Idemitsu Petrochem Co Ltd | Production method of lithium hydrosulfide |
JP2006151725A (en) * | 2004-11-26 | 2006-06-15 | Nippon Chem Ind Co Ltd | Lithium sulfide particle powder, production method therefor and inorganic solid electrolyte |
JP2010163356A (en) * | 2008-12-15 | 2010-07-29 | Idemitsu Kosan Co Ltd | Method for producing lithium sulfide |
JP2012140261A (en) * | 2010-12-28 | 2012-07-26 | Idemitsu Kosan Co Ltd | Method and device for producing lithium sulfide |
JP2013229227A (en) * | 2012-04-26 | 2013-11-07 | Furukawa Co Ltd | Method for producing cathode material for secondary battery, cathode material for secondary battery, cathode for secondary battery using the same, and secondary battery |
JP2014001091A (en) * | 2012-06-15 | 2014-01-09 | Idemitsu Kosan Co Ltd | Process of producing alkali metal sulfide |
JP2015107886A (en) * | 2013-12-03 | 2015-06-11 | 出光興産株式会社 | Method for producing alkali metal sulfide |
JP2016503381A (en) * | 2012-11-15 | 2016-02-04 | アルケマ フランス | Process for preparing alkali metal sulfides |
JP2017141129A (en) * | 2016-02-09 | 2017-08-17 | 古河機械金属株式会社 | Manufacturing method of lithium sulfide |
JP2019094255A (en) * | 2017-11-17 | 2019-06-20 | 出光興産株式会社 | Lithium sulfide powder and manufacturing method therefor |
JP2020033259A (en) * | 2019-10-30 | 2020-03-05 | 古河機械金属株式会社 | Lithium sulfide production apparatus |
JP2021084952A (en) * | 2019-11-27 | 2021-06-03 | Dic株式会社 | Method for producing sulfidizing agent and polyarylene sulfide resin |
US20210221954A1 (en) * | 2018-10-26 | 2021-07-22 | Lg Chem, Ltd. | Preparation method of polyarylene sulfide |
JP7120424B1 (en) | 2021-09-30 | 2022-08-17 | Agc株式会社 | Hydrogen sulfide purification method, lithium sulfide production method, hydrogen sulfide purification device, and lithium sulfide production device |
WO2024034533A1 (en) * | 2022-08-10 | 2024-02-15 | Agc株式会社 | Hydrogen sulfide purification method and lithium sulfide production method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5926902A (en) * | 1982-08-06 | 1984-02-13 | Denki Kagaku Kogyo Kk | Continuous preparation of aqueous solution of sodium hydrosulfide |
JPS60210509A (en) * | 1984-03-31 | 1985-10-23 | Dainippon Ink & Chem Inc | Preparation of sodium sulfide composition for polymer and preparation of polymer |
JPH02140232A (en) * | 1988-11-21 | 1990-05-29 | Chisso Corp | Low elasticity polyimide and its production |
JPH03159905A (en) * | 1989-11-17 | 1991-07-09 | Jgc Corp | Production of sodium hydrosulfide and production equipment |
JPH03285807A (en) * | 1990-03-30 | 1991-12-17 | Kureha Chem Ind Co Ltd | Production of aqueous sodium sulfide solution |
JPH04209704A (en) * | 1990-11-30 | 1992-07-31 | Sankyo Kasei Kk | Production of sodium sulfide solution |
JPH06305717A (en) * | 1993-04-22 | 1994-11-01 | Nagao Kk | Method for dehydrating concrete body of sodium sulfide with inert gas |
JPH07330312A (en) * | 1994-06-03 | 1995-12-19 | Idemitsu Petrochem Co Ltd | Production of lithium sulfide |
JPH0967108A (en) * | 1995-08-29 | 1997-03-11 | Dainippon Ink & Chem Inc | Production of anhydrous alkali metal sulfide |
JPH09278423A (en) * | 1996-04-16 | 1997-10-28 | Furukawa Co Ltd | Production of lithium sulfide |
-
1999
- 1999-02-25 JP JP04732799A patent/JP4252657B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5926902A (en) * | 1982-08-06 | 1984-02-13 | Denki Kagaku Kogyo Kk | Continuous preparation of aqueous solution of sodium hydrosulfide |
JPS60210509A (en) * | 1984-03-31 | 1985-10-23 | Dainippon Ink & Chem Inc | Preparation of sodium sulfide composition for polymer and preparation of polymer |
JPH02140232A (en) * | 1988-11-21 | 1990-05-29 | Chisso Corp | Low elasticity polyimide and its production |
JPH03159905A (en) * | 1989-11-17 | 1991-07-09 | Jgc Corp | Production of sodium hydrosulfide and production equipment |
JPH03285807A (en) * | 1990-03-30 | 1991-12-17 | Kureha Chem Ind Co Ltd | Production of aqueous sodium sulfide solution |
JPH04209704A (en) * | 1990-11-30 | 1992-07-31 | Sankyo Kasei Kk | Production of sodium sulfide solution |
JPH06305717A (en) * | 1993-04-22 | 1994-11-01 | Nagao Kk | Method for dehydrating concrete body of sodium sulfide with inert gas |
JPH07330312A (en) * | 1994-06-03 | 1995-12-19 | Idemitsu Petrochem Co Ltd | Production of lithium sulfide |
JPH0967108A (en) * | 1995-08-29 | 1997-03-11 | Dainippon Ink & Chem Inc | Production of anhydrous alkali metal sulfide |
JPH09278423A (en) * | 1996-04-16 | 1997-10-28 | Furukawa Co Ltd | Production of lithium sulfide |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002265602A (en) * | 2001-03-12 | 2002-09-18 | Idemitsu Petrochem Co Ltd | Method for producing polyaryrene sulfide having stable quality |
JP2002293515A (en) * | 2001-03-30 | 2002-10-09 | Idemitsu Petrochem Co Ltd | Production method of lithium hydrosulfide |
JP2006151725A (en) * | 2004-11-26 | 2006-06-15 | Nippon Chem Ind Co Ltd | Lithium sulfide particle powder, production method therefor and inorganic solid electrolyte |
JP2010163356A (en) * | 2008-12-15 | 2010-07-29 | Idemitsu Kosan Co Ltd | Method for producing lithium sulfide |
JP2012140261A (en) * | 2010-12-28 | 2012-07-26 | Idemitsu Kosan Co Ltd | Method and device for producing lithium sulfide |
JP2013229227A (en) * | 2012-04-26 | 2013-11-07 | Furukawa Co Ltd | Method for producing cathode material for secondary battery, cathode material for secondary battery, cathode for secondary battery using the same, and secondary battery |
JP2014001091A (en) * | 2012-06-15 | 2014-01-09 | Idemitsu Kosan Co Ltd | Process of producing alkali metal sulfide |
JP2017178779A (en) * | 2012-11-15 | 2017-10-05 | アルケマ フランス | Method for preparing alkali metal sulphide |
JP2016503381A (en) * | 2012-11-15 | 2016-02-04 | アルケマ フランス | Process for preparing alkali metal sulfides |
JP2015107886A (en) * | 2013-12-03 | 2015-06-11 | 出光興産株式会社 | Method for producing alkali metal sulfide |
JP2017141129A (en) * | 2016-02-09 | 2017-08-17 | 古河機械金属株式会社 | Manufacturing method of lithium sulfide |
JP2019094255A (en) * | 2017-11-17 | 2019-06-20 | 出光興産株式会社 | Lithium sulfide powder and manufacturing method therefor |
JP7294795B2 (en) | 2017-11-17 | 2023-06-20 | 出光興産株式会社 | Lithium sulfide powder and method for producing the same |
US20210221954A1 (en) * | 2018-10-26 | 2021-07-22 | Lg Chem, Ltd. | Preparation method of polyarylene sulfide |
JP2020033259A (en) * | 2019-10-30 | 2020-03-05 | 古河機械金属株式会社 | Lithium sulfide production apparatus |
JP2021084952A (en) * | 2019-11-27 | 2021-06-03 | Dic株式会社 | Method for producing sulfidizing agent and polyarylene sulfide resin |
JP7331661B2 (en) | 2019-11-27 | 2023-08-23 | Dic株式会社 | Method for producing sulfidating agent and polyarylene sulfide resin |
JP7120424B1 (en) | 2021-09-30 | 2022-08-17 | Agc株式会社 | Hydrogen sulfide purification method, lithium sulfide production method, hydrogen sulfide purification device, and lithium sulfide production device |
WO2023053468A1 (en) * | 2021-09-30 | 2023-04-06 | Agc株式会社 | Hydrogen sulfide purification method, lithium sulfide production method, hydrogen sulfide purification device, and lithium sulfide production device |
JP2023051750A (en) * | 2021-09-30 | 2023-04-11 | Agc株式会社 | Purification method of hydrogen sulfide, manufacturing method of lithium sulfide, hydrogen sulfide purification apparatus, and lithium sulfide manufacturing apparatus |
JP2023051067A (en) * | 2021-09-30 | 2023-04-11 | Agc株式会社 | Purification method of hydrogen sulfide, manufacturing method of lithium sulfide, hydrogen sulfide purification apparatus, and lithium sulfide manufacturing apparatus |
JP7363991B2 (en) | 2021-09-30 | 2023-10-18 | Agc株式会社 | Hydrogen sulfide purification method, lithium sulfide production method, hydrogen sulfide purification equipment, and lithium sulfide production equipment |
WO2024034533A1 (en) * | 2022-08-10 | 2024-02-15 | Agc株式会社 | Hydrogen sulfide purification method and lithium sulfide production method |
Also Published As
Publication number | Publication date |
---|---|
JP4252657B2 (en) | 2009-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4252657B2 (en) | Method for producing anhydrous alkali metal sulfide | |
JP3528866B2 (en) | Method for producing lithium sulfide | |
JP4342102B2 (en) | Method for producing sulfur-containing polymer | |
US5635587A (en) | Process for manufacturing polyarylene sulfide | |
US6337062B1 (en) | Method for the production of anhydrous alkali metal sulfide and alkali metal sulfide solution | |
US20070196739A1 (en) | Method for purifying lithium sulfide | |
WO2004065457A1 (en) | Polyarylene sulfide and process for producing the same | |
JP3490195B2 (en) | Method for producing polyarylene sulfide | |
JPH04139018A (en) | Method for recovering lithium chloride | |
JP5847024B2 (en) | Method for producing alkali metal sulfide | |
EP0363995B1 (en) | Method for recovery of solvent used in production of polyarylene sulfide | |
JP3872846B2 (en) | Method for producing lithium sulfide and method for producing polyarylene sulfide | |
CN113454061A (en) | Method for obtaining 4,4' -dichlorodiphenyl sulfoxide | |
JP2000256010A (en) | Recovering method of lithium | |
JP2000247610A (en) | Method for controlling molar ratio of alkali metal to sulfur in solution containing alkali metal sulfide | |
TWI805852B (en) | Method and apparatus for recovering amide-based compound and method of preparing polyarylene sulfide | |
JP3177755B2 (en) | Method for producing lithium N-methylaminobutyrate | |
JP3528865B2 (en) | Method for producing polyarylene sulfide | |
US20050118093A1 (en) | Method for reproducing lithium sulfide and method for producing polyarylene sulfide | |
JP2002293515A (en) | Production method of lithium hydrosulfide | |
JP2000319009A (en) | Separation of non-lithium hydroxide solid material | |
JP3490137B2 (en) | Method for producing polyarylene sulfide | |
CN114901590B (en) | Integrated process for the production of bis (fluorosulfonyl) imide | |
JP2024506512A (en) | Sulfamyl fluoride compositions and processes for making sulfamyl fluoride compositions | |
JP3299378B2 (en) | Method for producing polyarylene sulfide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 19990319 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20041213 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051110 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20061115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20061115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080527 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090113 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090122 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130130 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140130 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |