JP2013229227A - Method for producing cathode material for secondary battery, cathode material for secondary battery, cathode for secondary battery using the same, and secondary battery - Google Patents

Method for producing cathode material for secondary battery, cathode material for secondary battery, cathode for secondary battery using the same, and secondary battery Download PDF

Info

Publication number
JP2013229227A
JP2013229227A JP2012101437A JP2012101437A JP2013229227A JP 2013229227 A JP2013229227 A JP 2013229227A JP 2012101437 A JP2012101437 A JP 2012101437A JP 2012101437 A JP2012101437 A JP 2012101437A JP 2013229227 A JP2013229227 A JP 2013229227A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
electrode material
fine particles
lithium sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012101437A
Other languages
Japanese (ja)
Other versions
JP6059449B2 (en
Inventor
Motoshi Tamura
素志 田村
Toshiya Matsuyama
敏也 松山
Kazuhisa Ideto
和久 出戸
Kazutomi Yamamoto
一富 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2012101437A priority Critical patent/JP6059449B2/en
Publication of JP2013229227A publication Critical patent/JP2013229227A/en
Application granted granted Critical
Publication of JP6059449B2 publication Critical patent/JP6059449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a cathode material for a secondary battery, capable of obtaining a cathode material for a secondary battery which is excellent in charge/discharge efficiency and contains lithium sulfide and carbon fine particles.SOLUTION: The method of the present invention for producing a cathode material for a secondary battery is a method for producing a cathode material for a secondary battery which contains lithium sulfide and carbon fine particles. The method of the present invention for producing a cathode material for a secondary battery includes a step of mixing and heating fine particles containing lithium sulfate and the carbon fine particles to reduce the lithium sulfate, thereby obtaining the lithium sulfide carrying the carbon fine particles.

Description

本発明は、二次電池用正極材料の製造方法および二次電池用正極材料、並びにそれを用いた二次電池用正極および二次電池に関する。   The present invention relates to a method for producing a positive electrode material for a secondary battery, a positive electrode material for a secondary battery, and a positive electrode for a secondary battery and a secondary battery using the same.

硫化リチウムは高容量の二次電池用正極材料として注目されている(例えば、特許文献1)。しかしながら、硫化リチウムは電子伝導性が低いという欠点が知られている。そのため、二次電池用正極材料として硫化リチウムの性能を向上させるためには、電子伝導性を向上させる必要がある。   Lithium sulfide is attracting attention as a positive electrode material for secondary batteries with a high capacity (for example, Patent Document 1). However, it is known that lithium sulfide has a low electronic conductivity. Therefore, in order to improve the performance of lithium sulfide as a positive electrode material for secondary batteries, it is necessary to improve electronic conductivity.

特許文献1(国際公開第2010/035602号パンフレット)には、非酸化性雰囲気下において硫化リチウムと比表面積60m/g以上の炭素材料の混合物を導電性を有する型に充填し、非酸化性雰囲気下において該混合物を加圧した状態で直流パルス電流を通電して、硫化リチウムと炭素材料を加熱反応させることを特徴とする硫化リチウム−炭素複合体の製造方法が記載されている。
この製造方法によれば、硫化リチウムの電子伝導性を改善してリチウムイオン二次電池用正極活物質としての性能が向上するとされている。
In Patent Document 1 (International Publication No. 2010/035602 pamphlet), a mixture of lithium sulfide and a carbon material having a specific surface area of 60 m 2 / g or more is filled in a non-oxidizing atmosphere in a non-oxidizing atmosphere. A method for producing a lithium sulfide-carbon composite is described in which a DC pulse current is applied in a state where the mixture is pressurized under an atmosphere to cause lithium sulfide and a carbon material to undergo a heat reaction.
According to this manufacturing method, it is said that the performance as a positive electrode active material for lithium ion secondary batteries is improved by improving the electronic conductivity of lithium sulfide.

国際公開第2010/035602号パンフレットInternational Publication No. 2010/035602 Pamphlet

しかしながら、上記特許文献1に記載の製造方法のように、硫化リチウムと炭素材料とを混合する方法で得られた硫化リチウムは充放電効率が悪く、二次電池用正極材料として満足するものではなかった。   However, lithium sulfide obtained by a method of mixing lithium sulfide and a carbon material as in the production method described in Patent Document 1 has poor charge / discharge efficiency and is not satisfactory as a positive electrode material for a secondary battery. It was.

そこで、本発明は、充放電効率に優れる、硫化リチウムおよび炭素微粒子を含む二次電池用正極材料を得ることができる、二次電池用正極材料の製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the manufacturing method of the positive electrode material for secondary batteries which can obtain the positive electrode material for secondary batteries containing the lithium sulfide and carbon fine particle which is excellent in charging / discharging efficiency.

本発明によれば、
硫化リチウムと、炭素微粒子とを含む二次電池用正極材料の製造方法であって、
硫酸リチウムを含む微粒子と、上記炭素微粒子とを混合して加熱することにより、上記硫酸リチウムを還元して、上記炭素微粒子が担持された上記硫化リチウムを得る工程を含む、二次電池用正極材料の製造方法が提供される。
According to the present invention,
A method for producing a positive electrode material for a secondary battery containing lithium sulfide and carbon fine particles,
A positive electrode material for a secondary battery comprising a step of reducing the lithium sulfate by mixing and heating the fine particles containing lithium sulfate and the carbon fine particles to obtain the lithium sulfide carrying the carbon fine particles. A manufacturing method is provided.

さらに、本発明によれば、上記本発明の二次電池用正極材料の製造方法により得られた、二次電池用正極材料が提供される。   Furthermore, according to this invention, the positive electrode material for secondary batteries obtained by the manufacturing method of the positive electrode material for secondary batteries of the said invention is provided.

さらに、本発明によれば、上記本発明の二次電池用正極材料を含む活物質層を集電体の表面に形成して得られた、二次電池用正極が提供される。     Furthermore, according to this invention, the positive electrode for secondary batteries obtained by forming the active material layer containing the positive electrode material for secondary batteries of the said invention on the surface of a collector is provided.

さらに、本発明によれば、上記本発明の二次電池用正極と負極とを備えた、二次電池が提供される。   Furthermore, according to this invention, the secondary battery provided with the positive electrode and secondary electrode for secondary batteries of the said invention is provided.

本発明によれば、充放電効率に優れる、硫化リチウムおよび炭素微粒子を含む二次電池用正極材料を得ることができる、二次電池用正極材料の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the positive electrode material for secondary batteries which can obtain the positive electrode material for secondary batteries which is excellent in charging / discharging efficiency and contains lithium sulfide and carbon microparticles can be provided.

実施例で得られた正極材料のSEM画像を示す図である。It is a figure which shows the SEM image of the positive electrode material obtained in the Example. 比較例で得られた正極材料のSEM画像を示す図である。It is a figure which shows the SEM image of the positive electrode material obtained by the comparative example.

以下に、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本実施形態の二次電池用正極材料の製造方法は、硫酸リチウムを含む微粒子と、炭素微粒子とを混合して加熱することにより、上記硫酸リチウムを還元して、上記炭素微粒子が担持された硫化リチウムを得る工程を含んでいる。   The method for producing a positive electrode material for a secondary battery according to the present embodiment includes a method in which lithium sulfate-containing fine particles and carbon fine particles are mixed and heated to reduce the lithium sulfate, and the sulfide in which the carbon fine particles are supported. A step of obtaining lithium.

(硫酸リチウムを含む微粒子)
はじめに、硫酸リチウムを含む微粒子について説明する。
本実施形態に係る硫酸リチウムを含む微粒子は、好ましくは平均粒子径d50が15.0μm以下であり、より好ましくは10.0μm以下であり、特に好ましくは7.0μm以下である。平均粒子径d50を上記上限値以下とすることにより、硫酸リチウムと、炭素微粒子との接触面積を大きくすることができるため、硫酸リチウムの還元反応を促進することができる。そうすると、得られる硫化リチウム中の未反応硫酸リチウム量を低減できるため、高純度の正極材料を得ることができる。
また、硫酸リチウムを含む微粒子の平均粒子径d50の下限値は特に限定されないが、取り扱い性の観点から、例えば3.0μm以上である。
(Fine particles containing lithium sulfate)
First, the fine particles containing lithium sulfate will be described.
Microparticles containing lithium sulfate according to the present embodiment is preferably not more than an average particle diameter d 50 15.0 .mu.m, more preferably not more than 10.0 [mu] m, particularly preferably not more than 7.0 .mu.m. By making the average particle diameter d 50 equal to or less than the above upper limit value, the contact area between the lithium sulfate and the carbon fine particles can be increased, so that the reduction reaction of lithium sulfate can be promoted. Then, since the amount of unreacted lithium sulfate in the obtained lithium sulfide can be reduced, a positive electrode material with high purity can be obtained.
Further, the lower limit value of the average particle diameter d 50 of the fine particles containing lithium sulfate is not particularly limited, but is, for example, 3.0 μm or more from the viewpoint of handleability.

また、本実施形態に係る硫酸リチウムを含む微粒子は特に限定されないが、レーザー回折散乱式粒度分布測定法による重量基準粒度分布における、粒子径d10が好ましくは0.1μm以上であり、より好ましくは1.0μm以上であり、特に好ましくは2.0μm以上である。
また、本実施形態に係る硫酸リチウムを含む微粒子は特に限定されないが、レーザー回折散乱式粒度分布測定法による重量基準粒度分布における、粒子径d90が好ましくは50.0μm以下であり、より好ましくは30.0μm以下であり、さらに好ましくは15.0μm以下であり、特に好ましくは13.0μm以下である。
硫酸リチウムを含む微粒子の粒子径分布を上記範囲内とすることにより、硫酸リチウムを含む微粒子と、炭素微粒子との還元反応をより均一におこなうことができる。そうすると、得られる硫化リチウム中の未反応硫酸リチウム量をより一層低減でき、その結果、より一層高純度の正極材料を得ることができる。
Although microparticles containing lithium sulfate according to the present embodiment is not particularly limited, the weight-based particle size distribution by a laser diffraction scattering particle size distribution measuring method, preferably a particle size d 10 is at 0.1μm or more, more preferably It is 1.0 μm or more, and particularly preferably 2.0 μm or more.
Further, the fine particles containing lithium sulfate according to the present embodiment are not particularly limited, but the particle size d 90 in the weight-based particle size distribution by the laser diffraction / scattering particle size distribution measurement method is preferably 50.0 μm or less, more preferably It is 30.0 μm or less, more preferably 15.0 μm or less, and particularly preferably 13.0 μm or less.
By setting the particle size distribution of the fine particles containing lithium sulfate within the above range, the reduction reaction between the fine particles containing lithium sulfate and the carbon fine particles can be performed more uniformly. As a result, the amount of unreacted lithium sulfate in the obtained lithium sulfide can be further reduced, and as a result, a cathode material with higher purity can be obtained.

また、本実施形態に係る硫酸リチウムを含む微粒子のBET法による比表面積は、0.3m/g以上30m/g以下であることが好ましい。
BET法による比表面積が上記範囲内であることにより、硫酸リチウムと、炭素微粒子との接触面積を大きくすることができるため、硫酸リチウムの還元反応を促進することができる。そうすると、得られる硫化リチウム中の未反応硫酸リチウム量をより一層低減でき、その結果、より一層高純度の正極材料を得ることができる。
The specific surface area by the BET method of microparticles containing lithium sulfate according to the present embodiment is preferably not more than 0.3 m 2 / g or more 30 m 2 / g.
When the specific surface area by the BET method is within the above range, the contact area between lithium sulfate and the carbon fine particles can be increased, so that the reduction reaction of lithium sulfate can be promoted. As a result, the amount of unreacted lithium sulfate in the obtained lithium sulfide can be further reduced, and as a result, a cathode material with higher purity can be obtained.

硫酸リチウムを含む微粒子を調整する方法は特に限定されないが、例えば、硫酸リチウムを含む粉末を第一溶媒に溶解させた後、第二溶媒に微粒子状に再沈殿させる再沈殿法や、硫酸リチウムを含む粉末を機械的粉砕法により微粒子化し、その後、分級操作や造粒操作によって粒子径を調整する方法などが挙げられる。   The method for preparing the fine particles containing lithium sulfate is not particularly limited. For example, a reprecipitation method in which a powder containing lithium sulfate is dissolved in a first solvent and then reprecipitated into fine particles in a second solvent, or lithium sulfate is used. Examples thereof include a method in which the contained powder is made into fine particles by a mechanical pulverization method, and then the particle diameter is adjusted by classification operation or granulation operation.

ここで、上記硫酸リチウムを含む粉末は特に限定されず、市販されている粉末を使用してもよいし、例えば炭酸リチウムと硫酸との反応により得られる粉末を使用してもよい。
高純度な正極材料を得る観点から、不純物の少ない硫酸リチウムを使用することが好ましい。
Here, the powder containing the lithium sulfate is not particularly limited, and a commercially available powder may be used. For example, a powder obtained by a reaction between lithium carbonate and sulfuric acid may be used.
From the viewpoint of obtaining a high purity positive electrode material, it is preferable to use lithium sulfate with few impurities.

以下、上記再沈殿法について説明する。
はじめに、硫酸リチウムを含む粉末を水などの第一溶媒に溶解して硫酸リチウム溶液を調製する。次いで、得られた硫酸リチウム溶液をアルコールなどの第二溶媒に添加して、硫酸リチウムを分散させながら微粒子状に再沈殿させることにより、硫酸リチウムを含む上記粉末を微粒子化する。
Hereinafter, the reprecipitation method will be described.
First, a powder containing lithium sulfate is dissolved in a first solvent such as water to prepare a lithium sulfate solution. Next, the obtained lithium sulfate solution is added to a second solvent such as alcohol, and reprecipitated into fine particles while dispersing the lithium sulfate, whereby the powder containing lithium sulfate is finely divided.

硫酸リチウムを含む粉末を溶解させる第一溶媒については特に限定されないが、蒸留水、イオン交換水、市水、工業用水などを用いることができる。高純度の硫化リチウムを得ることができる観点から、蒸留水やイオン交換水を用いるのが好ましい。   Although it does not specifically limit about the 1st solvent which dissolves the powder containing lithium sulfate, Distilled water, ion-exchange water, city water, industrial water, etc. can be used. From the viewpoint of obtaining high-purity lithium sulfide, it is preferable to use distilled water or ion-exchanged water.

硫酸リチウムを微粒子状に再沈殿させる第二溶媒としては硫酸リチウムを微粒子状に分散できるものであれば特に限定されない。例えば、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、アセトン、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルイミダゾリジノン、エチレングリコール、テトラエチレングリコール、ジメチルアセトアミド、N−メチル−2−ピロリドン、テトラヒドロフラン、ジオキサン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2−メトキシエタノール(メチルセルソルブ)、2−エトキシエタノール(エチルセルソルブ)、酢酸エチルなどが挙げられる。これらの第二溶媒は、1種で用いてもよいし、2種以上を混合して用いてもよい。
これらの中でも、メタノール、エタノール、プロピルアルコール、イソプロピルアルコールなどのアルコールが好ましい。安全性および価格の点から、エタノールが特に好ましい。
The second solvent for reprecipitation of lithium sulfate in fine particles is not particularly limited as long as lithium sulfate can be dispersed in fine particles. For example, methanol, ethanol, propyl alcohol, isopropyl alcohol, acetone, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylimidazolidinone, ethylene glycol, tetraethylene glycol, dimethylacetamide, N-methyl-2-pyrrolidone, tetrahydrofuran, dioxane, methyl ethyl ketone , Cyclohexanone, cyclopentanone, 2-methoxyethanol (methyl cellosolve), 2-ethoxyethanol (ethyl cellosolve), ethyl acetate and the like. These second solvents may be used alone or in combination of two or more.
Among these, alcohols such as methanol, ethanol, propyl alcohol, and isopropyl alcohol are preferable. Ethanol is particularly preferred from the viewpoint of safety and price.

硫酸リチウムを微粒子状に再沈殿させる操作においては、第二溶媒を攪拌させながら硫酸リチウム溶液を添加することが好ましい。この場合、攪拌速度や硫酸リチウム溶液の添加速度を調整することにより、得られる硫酸リチウムを含む微粒子の粒子径を所望の値に調整することができる。
攪拌速度や硫酸リチウム溶液の添加速度は、硫酸リチウム溶液の処理量や所望の粒子径によって適宜決定することができる。
In the operation of reprecipitation of lithium sulfate into fine particles, it is preferable to add the lithium sulfate solution while stirring the second solvent. In this case, the particle diameter of the resulting fine particles containing lithium sulfate can be adjusted to a desired value by adjusting the stirring speed and the addition speed of the lithium sulfate solution.
The stirring speed and the addition speed of the lithium sulfate solution can be appropriately determined depending on the processing amount of the lithium sulfate solution and the desired particle size.

再沈殿法に使用される反応装置としては、特に限定されないが、反応槽、撹拌翼を有し、硫酸リチウム溶液の供給手段、溶媒除去手段、加熱冷却手段などが装備されている装置が好ましい。   The reaction apparatus used in the reprecipitation method is not particularly limited, but an apparatus having a reaction vessel and a stirring blade and equipped with a lithium sulfate solution supply means, a solvent removal means, a heating and cooling means, and the like is preferable.

上記再沈殿操作により得られた硫酸リチウムを含む沈殿物と、溶媒とを分離する方法は特に限定されないが、例えば、濾紙を用いた吸引濾過法や、温度を上げて溶媒を蒸発させて除去する方法などが挙げられる。
得られた沈殿物は、上述した第二溶媒などで洗浄することが好ましい。こうすることにより、より一層高純度の硫酸リチウムを得ることができる。
The method for separating the precipitate containing lithium sulfate obtained by the reprecipitation operation from the solvent is not particularly limited. For example, the suction filtration method using filter paper or the solvent is evaporated by raising the temperature to remove the solvent. The method etc. are mentioned.
The obtained precipitate is preferably washed with the second solvent described above. By so doing, even more pure lithium sulfate can be obtained.

こうした操作によって得られた硫酸リチウムを含む微粒子は、加熱することにより脱水和させることが好ましい。脱水和することにより、得られた硫酸リチウムを含む微粒子をさらに微細化することができる。   The fine particles containing lithium sulfate obtained by such an operation are preferably dehydrated by heating. By dehydrating, the obtained fine particles containing lithium sulfate can be further refined.

脱水和させるときの加熱温度としては特に限定されないが、例えば、130℃以上250℃以下の範囲である。加熱時間は、硫酸リチウムを含む微粒子の処理量によって適宜決定される。   Although it does not specifically limit as heating temperature at the time of making it dehydrate, For example, it is the range of 130 to 250 degreeC. The heating time is appropriately determined depending on the amount of fine particles containing lithium sulfate.

次に、上記硫酸リチウムを含む粉末を機械的粉砕法により微粒子化し、その後、分級操作や造粒操作によって粒子径を調整する方法について説明する。   Next, a method for finely pulverizing the powder containing lithium sulfate by a mechanical pulverization method and then adjusting the particle diameter by classification operation or granulation operation will be described.

上記の機械的粉砕法としては特に限定されないが、例えば石臼、ボールミル、ジェットミル、気流式粉砕機などを用いた方法が挙げられる。
上記の分級操作は特に限定されないが、例えばふるい分け機などを用いて分級する方法、重力分級する方法、遠心分離機などを用いて分級する方法、慣性分級する方法などが挙げられる。
機械的粉砕法により微粒子化し、その後、分級操作や造粒操作によって粒子径を調整することにより、所望の粒子径を有する硫酸リチウムを含む微粒子を得ることができる。
The mechanical pulverization method is not particularly limited, and examples thereof include a method using a stone mortar, a ball mill, a jet mill, an airflow pulverizer, and the like.
The classification operation is not particularly limited, and examples thereof include a classification method using a sieving machine, a gravity classification method, a classification method using a centrifuge, an inertia classification method, and the like.
Fine particles containing lithium sulfate having a desired particle size can be obtained by making the particles fine by a mechanical pulverization method and then adjusting the particle size by classification operation or granulation operation.

(硫酸リチウムを還元して硫化リチウムを得る工程)
次に、硫酸リチウムを含む微粒子と、炭素微粒子とを混合して加熱することにより、硫酸リチウムを還元して、上記炭素微粒子が担持された硫化リチウムを得る工程について説明する。
(Step of reducing lithium sulfate to obtain lithium sulfide)
Next, a process of obtaining lithium sulfide carrying carbon fine particles by reducing lithium sulfate by mixing and heating fine particles containing lithium sulfate and carbon fine particles will be described.

本実施形態の二次電池用正極材料の製造方法では、硫酸リチウムを含む微粒子と、炭素微粒子とを攪拌混合して加熱することにより、硫酸リチウムを還元させて炭素微粒子が担持された硫化リチウムを生成させる。このとき、下記(1)式のような反応が起きていると考えられる。
LiSO + 2C → LiS +2CO (1)
還元反応が進行し、反応系から原料である硫酸リチウムが消失すると、反応による二酸化炭素の発生が止まるため、二酸化炭素の発生量をモニタリングすることにより、反応の進行度合を知ることができる。
また、本実施形態の炭素微粒子は、還元剤としての役割と、硫化リチウムに電子伝導性を付与する導電助剤としての役割がある。
本実施形態の二次電池用正極材料の製造方法では、硫酸リチウムに対して、炭素微粒子の混合割合を増やしている。こうすることにより、炭素微粒子が硫酸リチウムの上記還元反応に完全に消費されず、その一部が得られた硫化リチウム中に残留する。その結果、硫化リチウムと炭素微粒子とが均一に分散した正極材料を得ることができる。
In the method for producing a positive electrode material for a secondary battery according to this embodiment, fine particles containing lithium sulfate and carbon fine particles are stirred and mixed, and heated to reduce lithium sulfate to carry lithium sulfide carrying carbon fine particles. Generate. At this time, it is considered that the reaction represented by the following formula (1) occurs.
Li 2 SO 4 + 2C → Li 2 S + 2CO 2 (1)
When the reduction reaction progresses and the raw material lithium sulfate disappears from the reaction system, the generation of carbon dioxide due to the reaction stops, so the progress of the reaction can be known by monitoring the amount of carbon dioxide generated.
Moreover, the carbon fine particles of this embodiment have a role as a reducing agent and a role as a conductive auxiliary agent that imparts electronic conductivity to lithium sulfide.
In the method for producing a positive electrode material for a secondary battery according to the present embodiment, the mixing ratio of carbon fine particles is increased with respect to lithium sulfate. By doing so, the carbon fine particles are not completely consumed in the above-described reduction reaction of lithium sulfate, and a part thereof remains in the obtained lithium sulfide. As a result, a positive electrode material in which lithium sulfide and carbon fine particles are uniformly dispersed can be obtained.

炭素微粒子としては特に限定されないが、例えば、カーボンブラック、黒鉛粉末などが挙げられる。これらの中でも、粒子径が小さく、価格が安いカーボンブラックが好ましい。   The carbon fine particles are not particularly limited, and examples thereof include carbon black and graphite powder. Among these, carbon black having a small particle size and a low price is preferable.

炭素微粒子のレーザー回折散乱式粒度分布測定法による重量基準粒度分布における平均粒子径d50は、好ましくは0.1μm以下であり、より好ましくは0.05μm以下である。炭素微粒子の平均粒子径d50が上記上限値以下であると、硫酸リチウムと、炭素微粒子剤との接触面積が大きくなり還元反応が促進されるため、得られる硫化リチウム中の未反応原料をより一層低減させることができる。その結果、より一層高純度の正極材料を得ることができる。
炭素微粒子の平均粒子径d50の下限値は、例えば、0.02μm以上である。上記下限値以上であると、炭素微粒子の取り扱い性を向上させることができる。
The average particle diameter d 50 in the weight-based particle size distribution measured by the laser diffraction / scattering particle size distribution measurement method of the carbon fine particles is preferably 0.1 μm or less, more preferably 0.05 μm or less. When the average particle size d 50 carbon fine particles is more than the above upper limit, more and lithium sulfate, the contact area becomes larger reduction reaction is accelerated with the carbon particulates agent, the unreacted starting materials in lithium sulfide obtained It can be further reduced. As a result, an even higher purity positive electrode material can be obtained.
The lower limit of the average particle size d 50 of carbon fine particles, for example, not less than 0.02 [mu] m. When it is at least the lower limit, the handleability of the carbon fine particles can be improved.

硫酸リチウムと炭素微粒子とを混合して加熱する方法としては特に限定されないが、例えば、ビーズミル、ジェットミル、ボールミル、サンドミル、アトライター、ロールミル、アジテーターミル、ヘンシェルミキサー、コロイドミル、超音波ホモジナイザー、オングミルなどの粉砕・分散機を用いて攪拌混合しながら加熱する方法が挙げられる。
こうした粉砕・分散機を用いることにより、硫酸リチウムと炭素微粒子とを混合粉砕しながら、還元反応をおこなうことができる。そうすると、硫酸リチウムと、炭素微粒子との接触効率が向上して還元反応が促進されるため、得られる硫化リチウム中の未反応原料をより一層低減させることができる。その結果、より一層高純度の正極材料を得ることができる。
また、攪拌混合時に、エタノールなどの第二溶媒を添加して、溶媒に各原料を分散させた状態で攪拌混合をすることが好ましい。こうすることにより、より効率良く還元反応を進めることができる。
The method of mixing and heating lithium sulfate and carbon fine particles is not particularly limited. For example, bead mill, jet mill, ball mill, sand mill, attritor, roll mill, agitator mill, Henschel mixer, colloid mill, ultrasonic homogenizer, ang mill And a method of heating while stirring and mixing using a pulverizer / disperser.
By using such a pulverizer / disperser, the reduction reaction can be performed while mixing and pulverizing lithium sulfate and carbon fine particles. If it does so, since the contact efficiency of lithium sulfate and carbon microparticles improves and a reduction reaction is accelerated | stimulated, the unreacted raw material in the lithium sulfide obtained can be reduced further. As a result, an even higher purity positive electrode material can be obtained.
Moreover, it is preferable to stir and mix in the state which added 2nd solvents, such as ethanol, and each raw material was disperse | distributed to the solvent at the time of stirring and mixing. By carrying out like this, a reduction reaction can be advanced more efficiently.

硫酸リチウムと炭素微粒子とを混合して加熱するときの攪拌速度や処理時間、加熱温度、反応圧力などの反応条件は、硫酸リチウムを含む微粒子の処理量によって適宜決定することができる。   Reaction conditions such as stirring speed, treatment time, heating temperature, reaction pressure, and the like when mixing and heating lithium sulfate and carbon fine particles can be appropriately determined depending on the amount of fine particles containing lithium sulfate.

本実施形態に係る還元工程では、硫酸リチウムを含む微粒子に対する炭素微粒子の混合モル比は、好ましくは3.6以上6.4以下であり、より好ましくは3.0以上5.5以下である。
硫酸リチウムを含む微粒子に対する炭素微粒子の混合モル比を上記範囲内とすることにより、得られる硫化リチウム中の未反応硫酸リチウムをより一層低減させることができる。その結果、より一層高純度の正極材料を得ることができる。
また、硫酸リチウムを含む微粒子に対する炭素微粒子の混合モル比を上記範囲内とすることにより、導電性と容量とのバランスに優れた正極材料を得ることができる。
In the reduction step according to this embodiment, the mixing molar ratio of the carbon fine particles to the fine particles containing lithium sulfate is preferably 3.6 or more and 6.4 or less, and more preferably 3.0 or more and 5.5 or less.
By setting the mixing molar ratio of the carbon fine particles to the fine particles containing lithium sulfate within the above range, the unreacted lithium sulfate in the obtained lithium sulfide can be further reduced. As a result, an even higher purity positive electrode material can be obtained.
Moreover, the positive electrode material excellent in balance of electroconductivity and capacity | capacitance can be obtained by making the mixing molar ratio of the carbon microparticles with respect to the microparticles | fine-particles containing lithium sulfate into the said range.

また、本実施形態に係る還元工程では、硫酸リチウムを含む微粒子に対する炭素微粒子の混合重量比は、好ましくは0.4以上0.7以下である。
硫酸リチウムを含む微粒子に対する炭素微粒子の混合重量比を上記範囲内とすることにより、得られる硫化リチウム中の未反応硫酸リチウムをより一層低減させることができる。その結果、より一層高純度の正極材料を得ることができる。
また、硫酸リチウムを含む微粒子に対する炭素微粒子の混合重量比を上記範囲内とすることにより、導電性と容量とのバランスに優れた正極材料を得ることができる。
In the reduction process according to the present embodiment, the mixing weight ratio of the carbon fine particles to the fine particles containing lithium sulfate is preferably 0.4 or more and 0.7 or less.
By setting the mixing weight ratio of the carbon fine particles to the fine particles containing lithium sulfate within the above range, the unreacted lithium sulfate in the obtained lithium sulfide can be further reduced. As a result, an even higher purity positive electrode material can be obtained.
Moreover, the positive electrode material excellent in balance of electroconductivity and capacity | capacitance can be obtained by making the mixing weight ratio of the carbon microparticles with respect to the microparticles | fine-particles containing lithium sulfate into the said range.

最後に、得られた粉末を必要に応じて、真空加熱などにより乾燥させることで、硫化リチウムと、炭素微粒子とを含む正極材料を得ることができる。
このときの加熱温度、加熱時間、容器内の圧力、などの乾燥条件は、得られた正極材料の処理量によって適宜決定することができる。
Finally, the obtained powder is dried by vacuum heating or the like as necessary, whereby a positive electrode material containing lithium sulfide and carbon fine particles can be obtained.
Drying conditions such as the heating temperature, heating time, and pressure in the container at this time can be appropriately determined depending on the amount of the positive electrode material obtained.

(二次電池用正極材料)
本実施形態の製造方法により得られた炭素微粒子が担持された硫化リチウムは、例えば、リチウムイオン二次電池用正極材料として好適に用いることができる。
本実施形態の製造方法により得られた正極材料は、硫化リチウムと炭素材料とを混合する方法で得られた正極材料に比べて、充放電効率が優れている。この理由は必ずしも明らかではないが、以下のように考えられる。
まず、本実施形態の製造方法により得られた正極材料は高純度であるため、不純物による不可逆的な副反応が起きにくい。そのため、充放電効率が優れていると考えられる。
また、本実施形態の製造方法により得られた正極材料は、硫化リチウムと炭素微粒子とが均一に分散して良好なネットワークを形成している(図1)。そのため、本実施形態の正極材料は導電性が向上し、その結果、充放電効率に優れていると考えられる。
(Positive electrode material for secondary battery)
The lithium sulfide carrying the carbon fine particles obtained by the production method of the present embodiment can be suitably used as, for example, a positive electrode material for a lithium ion secondary battery.
The positive electrode material obtained by the production method of the present embodiment is superior in charge / discharge efficiency compared to the positive electrode material obtained by a method of mixing lithium sulfide and a carbon material. The reason for this is not necessarily clear, but is considered as follows.
First, since the positive electrode material obtained by the manufacturing method of the present embodiment has high purity, irreversible side reactions due to impurities hardly occur. Therefore, it is thought that charging / discharging efficiency is excellent.
Moreover, the positive electrode material obtained by the manufacturing method of this embodiment forms a good network by uniformly dispersing lithium sulfide and carbon fine particles (FIG. 1). Therefore, the positive electrode material of this embodiment has improved conductivity, and as a result, it is considered that the charge / discharge efficiency is excellent.

(リチウムイオン二次電池)
つぎに、本実施形態により得られた正極材料を用いたリチウムイオン二次電池について説明する。
本実施形態のリチウムイオン二次電池は、正極と負極とを備え、一般的に公知の方法で作製することができる。例えば、正極および負極をセパレーター中心に重ねたものを、円筒型、コイン型、角型、フィルム型その他任意の形状に形成し非水電解液を封入することにより作製される。
(Lithium ion secondary battery)
Next, a lithium ion secondary battery using the positive electrode material obtained according to the present embodiment will be described.
The lithium ion secondary battery of the present embodiment includes a positive electrode and a negative electrode, and can be manufactured by a generally known method. For example, it is manufactured by forming a positive electrode and a negative electrode overlaid on the center of the separator into a cylindrical shape, a coin shape, a square shape, a film shape, or any other shape and enclosing a non-aqueous electrolyte.

本実施形態の二次電池用正極は、本実施形態の正極材料を含む活物質層をアルミなどの集電体の表面に形成することにより得られる。正極活物質層は、例えば、バインダーと正極材料を含んでいる。
また、本実施形態の二次電池用負極は、例えば、負極材料を含む活物質層を銅などの集電体の表面に形成することにより得られる。負極活物質層はバインダーと負極材料からなる。
なお、カーボンブラック、黒鉛粉末、気相法炭素繊維(VGCF)などの炭素材料を導電助剤としてそれぞれの電極に添加してもよい。
The positive electrode for secondary battery of this embodiment is obtained by forming an active material layer containing the positive electrode material of this embodiment on the surface of a current collector such as aluminum. The positive electrode active material layer includes, for example, a binder and a positive electrode material.
Moreover, the negative electrode for secondary batteries of this embodiment is obtained by, for example, forming an active material layer containing a negative electrode material on the surface of a current collector such as copper. The negative electrode active material layer is composed of a binder and a negative electrode material.
Carbon materials such as carbon black, graphite powder, and vapor grown carbon fiber (VGCF) may be added to each electrode as a conductive additive.

負極材料としては、金属リチウム、リチウム合金、炭素材料、酸化スズ、酸化ニオブ、酸化バナジウム、酸化チタン、シリコン、遷移金属窒素化物のいずれをも用いることができる。これらの中でもリチウムイオンをドーブ・脱ドーブすることが可能な炭素材料が好ましい。このような炭素材料は、黒鉛であっても非晶質炭素であってもよく、人造黒鉛、天然黒鉛、ハードカーボンなどが用いられる。   As the negative electrode material, any of metallic lithium, lithium alloy, carbon material, tin oxide, niobium oxide, vanadium oxide, titanium oxide, silicon, and transition metal nitride can be used. Among these, a carbon material that can dope / dedope lithium ions is preferable. Such a carbon material may be graphite or amorphous carbon, and artificial graphite, natural graphite, hard carbon and the like are used.

正極と負極を電気的に絶縁するために用いられるセパレーターは、リチウムイオンを透過する膜であって、例えば多孔性膜や高分子電解質が用いられる。多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステルなどが挙げられる。特に、多孔性ポリオレフィンフィルムが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルムなどが挙げられる。   The separator used to electrically insulate the positive electrode from the negative electrode is a membrane that allows lithium ions to pass through. For example, a porous membrane or a polymer electrolyte is used. A microporous polymer film is preferably used as the porous film, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, and polyester. In particular, a porous polyolefin film is preferable, and specific examples include a porous polyethylene film and a porous polypropylene film.

また、本実施形態では、正極と負極を電気的に絶縁するために用いられるセパレーターの代わりに、固体電解質層やゲル電解質層を用いてもよい。   In this embodiment, a solid electrolyte layer or a gel electrolyte layer may be used instead of the separator used for electrically insulating the positive electrode and the negative electrode.

非水系電解液としては、例えばLiPF、LiBF、LiClO、LiAsF、CFSOLi、( CFSON/Liなどの電解質を、単独でまたは2種以上組み合わせて有機溶媒に溶解したものを使用することができる。非水系電解液における有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、ジメチルスルホキシド、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、1,2− ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフランなどが挙げられ、いずれかが単独でまたは2種以上を混合して使用される。 As the non-aqueous electrolyte, for example, an electrolyte such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , CF 3 SO 3 Li, (CF 3 SO 2 ) 2 N / Li is used alone or in combination of two or more. What was melt | dissolved in the solvent can be used. Examples of the organic solvent in the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, Tetrahydrofuran etc. are mentioned, and any one is used alone or in admixture of two or more.

また、本実施形態の二次電池用正極は、電解質層にとしてリチウムイオン伝導性固体電解質層を用いることによって全固体リチウムイオン二次電池とすることができる。
リチウムイオン伝導性固体電解質層としては特に限定されないが、一般的に公知のものを用いることができる。
全固体リチウムイオン二次電池の正極材料として、本実施形態の正極材料を用いると、充放電効率、サイクル特性などの電池特性が良好で、かつ、高い安全性を有するリチウムイオン二次電池とすることができる。
Moreover, the positive electrode for secondary batteries of this embodiment can be made into an all-solid-state lithium ion secondary battery by using a lithium ion conductive solid electrolyte layer as an electrolyte layer.
Although it does not specifically limit as a lithium ion conductive solid electrolyte layer, Generally a well-known thing can be used.
When the positive electrode material of this embodiment is used as a positive electrode material of an all-solid-state lithium ion secondary battery, a lithium ion secondary battery having good battery characteristics such as charge / discharge efficiency and cycle characteristics and high safety is obtained. be able to.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above are also employable.

以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to these.

(実施例)
(微粒子化工程)
蒸留水100mLに硫酸リチウムの一水和物(化学式LiSO・HO、フートミネラル社製)25.00gを溶解させ、硫酸リチウム水溶液を調製した。
次いで、調製した硫酸リチウム水溶液を500mLエタノール中に添加して、硫酸リチウムの一水和物の微粒子を沈殿させた。得られた沈殿物をエタノールで洗浄後、吸引濾過して硫酸リチウムの一水和物の沈殿物を得た。得られた沈殿物は24.83gであり、収率は99.3%であった。
最後に、得られた沈殿物を、大気圧下、200℃、2時間加熱して硫酸リチウムの一水和物を脱水和させた。
ここで、レーザー回折散乱式粒度分布測定装置(マルバーン社製、マスターサイザー3000)を用いて、硫酸リチウムの脱水和後の粒子径d10、d50、およびd90をそれぞれ測定した。粒子径d10: 2.9μm、d50: 6.2μm、およびd90: 12.8μmであった。
(Example)
(Micronization process)
2100 g of lithium sulfate monohydrate (chemical formula Li 2 SO 4 .H 2 O, manufactured by Foot Mineral Co., Ltd.) was dissolved in 100 mL of distilled water to prepare an aqueous lithium sulfate solution.
Next, the prepared lithium sulfate aqueous solution was added to 500 mL ethanol to precipitate lithium sulfate monohydrate fine particles. The resulting precipitate was washed with ethanol and then suction filtered to obtain a lithium sulfate monohydrate precipitate. The obtained precipitate was 24.83 g, and the yield was 99.3%.
Finally, the obtained precipitate was heated at 200 ° C. for 2 hours under atmospheric pressure to dehydrate lithium sulfate monohydrate.
Here, the particle diameters d 10 , d 50 , and d 90 after dehydration of lithium sulfate were measured using a laser diffraction / scattering particle size distribution analyzer (manufactured by Malvern, Mastersizer 3000). The particle diameters were d 10 : 2.9 μm, d 50 : 6.2 μm, and d 90 : 12.8 μm.

(還元工程)
つづいて、ZrOボールとともに、脱水和させた硫酸リチウム10gをAl製ポットに投入し、そこへ脱水エタノール20mL、カーボンブラック(平均粒子径d50:28nm、東海カーボン社製、シースト300)6.36gをそれぞれ添加した。
次いで、160rpmで約16時間、硫酸リチウムとカーボンブラックを混合粉砕した。
混合粉砕後、真空下(933Pa)、830℃、1.5hの条件で還元反応を行った。
(Reduction process)
Subsequently, 10 g of dehydrated lithium sulfate together with ZrO 2 balls was put into an Al 2 O 3 pot, and 20 mL of dehydrated ethanol and carbon black (average particle diameter d 50 : 28 nm, manufactured by Tokai Carbon Co., Ltd., Seast 300) ) 6.36 g was added respectively.
Next, lithium sulfate and carbon black were mixed and ground at 160 rpm for about 16 hours.
After the mixing and pulverization, the reduction reaction was performed under vacuum (933 Pa) under the conditions of 830 ° C. and 1.5 h.

X線回折装置(XRD)により、乾燥して得られた粉末のX線回折パターンを測定し、硫化リチウム(LiS)と硫酸リチウム(LiSO)との強度比から、硫酸リチウムの残存量を定量した。なお、試薬の硫化リチウムと硫酸リチウムを検量線に用いた。
また、蛍光X線分析(EDX)により、乾燥して得られた粉末中の炭素の残存量を定量した。なお、試薬の硫化リチウムとカーボンブラックを検量線に用いた。
硫酸リチウムの残留量は0.01重量%であり、炭素の残存量は4.18重量%であった。また、乾燥して得られた粉末のSEM画像を図1に示す。
The X-ray diffraction pattern of the powder obtained by drying was measured with an X-ray diffractometer (XRD). From the intensity ratio of lithium sulfide (Li 2 S) and lithium sulfate (Li 2 SO 4 ), The remaining amount was quantified. Reagents lithium sulfide and lithium sulfate were used for the calibration curve.
Moreover, the residual amount of carbon in the powder obtained by drying was quantified by fluorescent X-ray analysis (EDX). Reagents lithium sulfide and carbon black were used for the calibration curve.
The residual amount of lithium sulfate was 0.01% by weight, and the residual amount of carbon was 4.18% by weight. Moreover, the SEM image of the powder obtained by drying is shown in FIG.

また、得られた正極材料4.5gと、ポリテトラフルオロエチレン粉末0.5gを混合しシート化し、φ15に打ち抜いた。次いで、その打ち抜きシートを集電体であるSUS板に圧着させ、正極を作製した。
また、リチウムイオン二次電池の正極として上記方法で得られた正極、負極としてリチウム金属、電解液としてLiPFをエチレンカルボネート/ジエチルカーボネート混合液に溶解させたもの、セパレーターとしてセルガード♯2500をそれぞれ用いてリチウムイオン二次電池を作製した。次いで、充放電範囲3.6〜1.0V、充放電電流0.22mAの条件で充放電試験を3回行った。得られた結果を表1に示す。
Further, 4.5 g of the obtained positive electrode material and 0.5 g of polytetrafluoroethylene powder were mixed to form a sheet and punched out to φ15. Next, the punched sheet was pressure-bonded to a SUS plate that is a current collector to produce a positive electrode.
Further, the positive electrode obtained by the above method as a positive electrode of a lithium ion secondary battery, lithium metal as a negative electrode, LiPF 6 dissolved in an ethylene carbonate / diethyl carbonate mixed solution as an electrolyte, and Celgard # 2500 as a separator, respectively. The lithium ion secondary battery was produced using it. Next, the charge / discharge test was performed three times under the conditions of a charge / discharge range of 3.6 to 1.0 V and a charge / discharge current of 0.22 mA. The obtained results are shown in Table 1.

(比較例)
硫化リチウム(化学式LiS、alfaChem社製)7.0gと、カーボンブラック(平均粒子径d50:28nm、東海カーボン社製、シースト300)7.0gをアルゴンガス雰囲気のグローブボックス内で秤量し、ZrOボールとともにAl製ポットに投入し、160rpmで約16時間攪拌混合した。得られた粉末のSEM画像を図2に示す。
(Comparative example)
7.0 g of lithium sulfide (chemical formula Li 2 S, manufactured by afaChem) and 7.0 g of carbon black (average particle diameter d 50 : 28 nm, manufactured by Tokai Carbon Co., Ltd., Seast 300) were weighed in a glove box in an argon gas atmosphere. And ZrO 2 balls were put into an Al 2 O 3 pot and stirred and mixed at 160 rpm for about 16 hours. An SEM image of the obtained powder is shown in FIG.

また、この粉末を正極材料として使用する以外は、実施例と同様にして、充放電試験を3回行った。得られた結果を表1に示す。   Moreover, the charge / discharge test was performed 3 times like the Example except using this powder as a positive electrode material. The obtained results are shown in Table 1.

(評価結果)
実施例で得られた正極材料には、硫化リチウムや炭素微粒子の凝集物が観察されなかった(図1)。一方、比較例で得られた正極材料には、硫化リチウムや炭素微粒子の凝集物が観察された(図2)。
また、実施例で得られた正極材料は、比較例で得られた正極材料に比べて、充放電効率に優れていた。
(Evaluation results)
Aggregates of lithium sulfide and carbon fine particles were not observed in the positive electrode material obtained in the example (FIG. 1). On the other hand, aggregates of lithium sulfide and carbon fine particles were observed in the positive electrode material obtained in the comparative example (FIG. 2).
Moreover, the positive electrode material obtained by the Example was excellent in charging / discharging efficiency compared with the positive electrode material obtained by the comparative example.

Claims (8)

硫化リチウムと、炭素微粒子とを含む二次電池用正極材料の製造方法であって、
硫酸リチウムを含む微粒子と、前記炭素微粒子とを混合して加熱することにより、前記硫酸リチウムを還元して、前記炭素微粒子が担持された前記硫化リチウムを得る工程を含む、二次電池用正極材料の製造方法。
A method for producing a positive electrode material for a secondary battery containing lithium sulfide and carbon fine particles,
A positive electrode material for a secondary battery comprising a step of reducing the lithium sulfate by mixing and heating the fine particles containing lithium sulfate and the carbon fine particles to obtain the lithium sulfide carrying the carbon fine particles. Manufacturing method.
請求項1に記載の二次電池用正極材料の製造方法において、
前記硫酸リチウムを含む前記微粒子のレーザー回折散乱式粒度分布測定法による重量基準粒度分布における平均粒子径d50が15.0μm以下である、二次電池用正極材料の製造方法。
In the manufacturing method of the positive electrode material for secondary batteries of Claim 1,
The average particle size d 50 is below 15.0 .mu.m, method for producing a cathode material for a secondary battery in weight particle size distribution by a laser diffraction scattering particle size distribution measuring method of the microparticles containing the lithium sulfate.
請求項1または2に記載の二次電池用正極材料の製造方法において、
前記炭素微粒子のレーザー回折散乱式粒度分布測定法による重量基準粒度分布における平均粒子径d50が0.1μm以下である、二次電池用正極材料の製造方法。
In the manufacturing method of the positive electrode material for secondary batteries of Claim 1 or 2,
The average particle size d 50 is 0.1μm or less, method for producing a cathode material for a secondary battery in weight particle size distribution by a laser diffraction scattering particle size distribution measurement method of the carbon fine particle.
請求項1乃至3いずれか一項に記載の二次電池用正極材料の製造方法において、
前記硫酸リチウムを含む前記微粒子に対する前記炭素微粒子の混合重量比が0.4以上0.7以下である、二次電池用正極材料の製造方法。
In the manufacturing method of the positive electrode material for secondary batteries as described in any one of Claims 1 thru | or 3,
The manufacturing method of the positive electrode material for secondary batteries whose mixing weight ratio of the said carbon microparticles with respect to the said microparticles | fine-particles containing the said lithium sulfate is 0.4-0.7.
請求項1乃至4いずれか一項に記載の二次電池用正極材料の製造方法において、
前記炭素微粒子は、カーボンブラックを含む、二次電池用正極材料の製造方法。
In the manufacturing method of the positive electrode material for secondary batteries as described in any one of Claims 1 thru | or 4,
The method for producing a positive electrode material for a secondary battery, wherein the carbon fine particles include carbon black.
請求項1乃至5いずれか一項に記載の二次電池用正極材料の製造方法により得られた、二次電池用正極材料。   The positive electrode material for secondary batteries obtained by the manufacturing method of the positive electrode material for secondary batteries as described in any one of Claims 1 thru | or 5. 請求項6に記載の二次電池用正極材料を含む活物質層を集電体の表面に形成して得られた、二次電池用正極。   The positive electrode for secondary batteries obtained by forming the active material layer containing the positive electrode material for secondary batteries of Claim 6 on the surface of an electrical power collector. 請求項7に記載の二次電池用正極と負極とを備えた、二次電池。   A secondary battery comprising the secondary battery positive electrode and negative electrode according to claim 7.
JP2012101437A 2012-04-26 2012-04-26 Method for producing positive electrode material for secondary battery, method for producing positive electrode for secondary battery, and method for producing secondary battery Active JP6059449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012101437A JP6059449B2 (en) 2012-04-26 2012-04-26 Method for producing positive electrode material for secondary battery, method for producing positive electrode for secondary battery, and method for producing secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012101437A JP6059449B2 (en) 2012-04-26 2012-04-26 Method for producing positive electrode material for secondary battery, method for producing positive electrode for secondary battery, and method for producing secondary battery

Publications (2)

Publication Number Publication Date
JP2013229227A true JP2013229227A (en) 2013-11-07
JP6059449B2 JP6059449B2 (en) 2017-01-11

Family

ID=49676662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012101437A Active JP6059449B2 (en) 2012-04-26 2012-04-26 Method for producing positive electrode material for secondary battery, method for producing positive electrode for secondary battery, and method for producing secondary battery

Country Status (1)

Country Link
JP (1) JP6059449B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014211421A1 (en) * 2014-06-13 2015-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the preparation of alkali metal sulfide nanoparticles, alkali metal sulfide nanoparticles, use of the alkali metal sulfide nanoparticles and alkali metal sulfur battery
WO2016063877A1 (en) * 2014-10-22 2016-04-28 公立大学法人大阪府立大学 Positive electrode for all-solid secondary battery, method for manufacturing same, and all-solid secondary battery
CN106229491A (en) * 2016-09-10 2016-12-14 华南理工大学 Lithium-sulphur cell positive electrode Li prepared by a kind of biomass castoff thermal reduction activation lithium sulfate2the method of S/NCs composite
WO2017052246A1 (en) * 2015-09-23 2017-03-30 주식회사 엘지화학 Cathode active material and cathode comprising metal nano particles, and lithium-sulfur battery comprising same
WO2018030686A1 (en) * 2016-08-10 2018-02-15 주식회사 엘지화학 Cathode active material comprising polyimide, manufacturing method thereof, and lithium-sulfur battery comprising same
JP2018523280A (en) * 2015-08-13 2018-08-16 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Lithium sulfide electrode and method
US10270090B2 (en) 2014-10-27 2019-04-23 National University Corporation Yokohama National University Production method for cathode material of lithium sulfur battery, cathode material of lithium sulfur battery, and lithium sulfur battery
US10522825B2 (en) 2015-09-23 2019-12-31 Lg Chem, Ltd. Cathode active material and cathode comprising metal nano particles, and lithium-sulfur battery comprising same
JP2020004633A (en) * 2018-06-29 2020-01-09 学校法人早稲田大学 Manufacturing method of lithium sulfur battery and lithium sulfur battery
WO2021186919A1 (en) * 2020-03-17 2021-09-23 三菱マテリアル株式会社 Method for producing lithium sulfide
KR20220087916A (en) * 2020-12-18 2022-06-27 주식회사 포스코 Lithium sulfide and its manufacturing method
JP7112073B2 (en) 2018-06-29 2022-08-03 学校法人早稲田大学 Method for producing active material for lithium-sulfur battery, electrode for lithium-sulfur battery, and lithium-sulfur battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110404A (en) * 1995-10-13 1997-04-28 Furukawa Co Ltd Production of lithium sulfide
JPH09278423A (en) * 1996-04-16 1997-10-28 Furukawa Co Ltd Production of lithium sulfide
JPH09283156A (en) * 1996-04-16 1997-10-31 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte and its manufacture
JP2000247609A (en) * 1999-02-25 2000-09-12 Idemitsu Petrochem Co Ltd Production of anhydrous alkali metal sulfide
JP2004522674A (en) * 2000-12-08 2004-07-29 キネテイツク・リミテツド Synthesis of transition metal lithium sulfide
JP2006032143A (en) * 2004-07-16 2006-02-02 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
WO2010035602A1 (en) * 2008-09-24 2010-04-01 独立行政法人産業技術総合研究所 Lithium sulfide-carbon complex, process for producing the complex, and lithium ion secondary battery utilizing the complex
JP2012505141A (en) * 2008-10-14 2012-03-01 アイティーアイ・スコットランド・リミテッド Lithium-containing transition metal sulfide compounds
JP2013222501A (en) * 2012-04-12 2013-10-28 Osaka Prefecture Univ Positive electrode for all-solid-state lithium secondary battery and manufacturing method therefor
JP2013227180A (en) * 2012-04-26 2013-11-07 Furukawa Co Ltd Method for producing lithium sulfide

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110404A (en) * 1995-10-13 1997-04-28 Furukawa Co Ltd Production of lithium sulfide
JPH09278423A (en) * 1996-04-16 1997-10-28 Furukawa Co Ltd Production of lithium sulfide
JPH09283156A (en) * 1996-04-16 1997-10-31 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte and its manufacture
JP2000247609A (en) * 1999-02-25 2000-09-12 Idemitsu Petrochem Co Ltd Production of anhydrous alkali metal sulfide
JP2004522674A (en) * 2000-12-08 2004-07-29 キネテイツク・リミテツド Synthesis of transition metal lithium sulfide
JP2006032143A (en) * 2004-07-16 2006-02-02 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
WO2010035602A1 (en) * 2008-09-24 2010-04-01 独立行政法人産業技術総合研究所 Lithium sulfide-carbon complex, process for producing the complex, and lithium ion secondary battery utilizing the complex
JP2012505141A (en) * 2008-10-14 2012-03-01 アイティーアイ・スコットランド・リミテッド Lithium-containing transition metal sulfide compounds
JP2012505143A (en) * 2008-10-14 2012-03-01 アイティーアイ・スコットランド・リミテッド Transition metal sulfide compounds containing lithium
JP2013222501A (en) * 2012-04-12 2013-10-28 Osaka Prefecture Univ Positive electrode for all-solid-state lithium secondary battery and manufacturing method therefor
JP2013227180A (en) * 2012-04-26 2013-11-07 Furukawa Co Ltd Method for producing lithium sulfide

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014211421A1 (en) * 2014-06-13 2015-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the preparation of alkali metal sulfide nanoparticles, alkali metal sulfide nanoparticles, use of the alkali metal sulfide nanoparticles and alkali metal sulfur battery
WO2016063877A1 (en) * 2014-10-22 2016-04-28 公立大学法人大阪府立大学 Positive electrode for all-solid secondary battery, method for manufacturing same, and all-solid secondary battery
KR102467171B1 (en) * 2014-10-22 2022-11-14 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 Positive electrode for all-solid secondary battery, method for manufacturing same, and all-solid secondary battery
US10734634B2 (en) 2014-10-22 2020-08-04 Japan Science And Technology Agency Positive electrode for all-solid secondary battery, method for manufacturing same, and all-solid secondary battery
KR20170068448A (en) * 2014-10-22 2017-06-19 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 Positive electrode for all-solid secondary battery, method for manufacturing same, and all-solid secondary battery
JPWO2016063877A1 (en) * 2014-10-22 2017-08-31 国立研究開発法人科学技術振興機構 Positive electrode for all-solid-state secondary battery, manufacturing method thereof, and all-solid-state secondary battery
US10270090B2 (en) 2014-10-27 2019-04-23 National University Corporation Yokohama National University Production method for cathode material of lithium sulfur battery, cathode material of lithium sulfur battery, and lithium sulfur battery
JP2018523280A (en) * 2015-08-13 2018-08-16 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Lithium sulfide electrode and method
US10522825B2 (en) 2015-09-23 2019-12-31 Lg Chem, Ltd. Cathode active material and cathode comprising metal nano particles, and lithium-sulfur battery comprising same
WO2017052246A1 (en) * 2015-09-23 2017-03-30 주식회사 엘지화학 Cathode active material and cathode comprising metal nano particles, and lithium-sulfur battery comprising same
WO2018030686A1 (en) * 2016-08-10 2018-02-15 주식회사 엘지화학 Cathode active material comprising polyimide, manufacturing method thereof, and lithium-sulfur battery comprising same
US10756333B2 (en) 2016-08-10 2020-08-25 Lg Chem, Ltd. Cathode active material comprising polyimide, manufacturing method thereof, and lithium-sulfur battery comprising same
CN106229491B (en) * 2016-09-10 2019-01-15 华南理工大学 A kind of biomass castoff thermal reduction activation lithium sulfate prepares lithium-sulphur cell positive electrode Li2The method of S/NCs composite material
CN106229491A (en) * 2016-09-10 2016-12-14 华南理工大学 Lithium-sulphur cell positive electrode Li prepared by a kind of biomass castoff thermal reduction activation lithium sulfate2the method of S/NCs composite
JP2020004633A (en) * 2018-06-29 2020-01-09 学校法人早稲田大学 Manufacturing method of lithium sulfur battery and lithium sulfur battery
JP7082405B2 (en) 2018-06-29 2022-06-08 学校法人早稲田大学 How to manufacture lithium-sulfur batteries
JP7112073B2 (en) 2018-06-29 2022-08-03 学校法人早稲田大学 Method for producing active material for lithium-sulfur battery, electrode for lithium-sulfur battery, and lithium-sulfur battery
WO2021186919A1 (en) * 2020-03-17 2021-09-23 三菱マテリアル株式会社 Method for producing lithium sulfide
CN115279688A (en) * 2020-03-17 2022-11-01 三菱综合材料株式会社 Method for producing lithium sulfide
KR20220087916A (en) * 2020-12-18 2022-06-27 주식회사 포스코 Lithium sulfide and its manufacturing method
KR102603627B1 (en) 2020-12-18 2023-11-16 주식회사 포스코 Lithium sulfide and its manufacturing method

Also Published As

Publication number Publication date
JP6059449B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6059449B2 (en) Method for producing positive electrode material for secondary battery, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP6445585B2 (en) Porous carbon nanotube microspheres and production method and use thereof, metallic lithium-skeleton carbon composite material and production method thereof, negative electrode, and battery
Haridas et al. Donut‐shaped Li4Ti5O12 structures as a high performance anode material for lithium ion batteries
KR101300304B1 (en) Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
JP6260535B2 (en) Method for producing carbon composite lithium manganese iron phosphate particle powder, and method for producing a non-aqueous electrolyte secondary battery using the particle powder
CN107148692B (en) Conductive composition for electrode, electrode using same, and lithium ion secondary battery
JP2007022894A (en) Method for producing lithium-iron multiple oxide
TW201422526A (en) Highly dispersible graphene composition, the preparation method thereof, and electrode for lithium ion secondary battery containing the highly dispersible graphene composition
WO2014129096A1 (en) Lithium-ion secondary battery and manufacturing method therefor
CN106252613A (en) Lithium-contained composite oxide, positive active material, lithium ion secondary battery anode and lithium rechargeable battery
Wang et al. Enhancement of electrochemical performance of Al-doped LiVPO4F using AlF3 as aluminum source
TWI485919B (en) Process for producing cathode active material for use in lithium secondary battery
JP5842596B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing positive electrode slurry for non-aqueous electrolyte secondary battery
US20220285728A1 (en) Sulfide solid electrolyte, method for producing sulfide solid electrolyte, electrode, and all solid state battery
JP2011132095A (en) Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery
Hwang et al. Mesoporous spinel LiMn2O4 nanomaterial as a cathode for high-performance lithium ion batteries
TWI681925B (en) Lithium manganese phosphate nanoparticles and manufacturing method thereof, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticle granules and lithium ion batteries
JPWO2015012086A1 (en) COMPOSITE PARTICLE, METHOD FOR PRODUCING SAME, ELECTRODE AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2012036049A (en) Process of producing vanadium lithium phosphate carbon composite
JP6650871B2 (en) Positive electrode material, secondary battery, method of manufacturing positive electrode material, and method of manufacturing secondary battery
JP5881468B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
Lv et al. Effect of milling time on the performance of bowl-like LiFePO 4/C prepared by wet milling-assisted spray drying
JP2012036050A (en) Process of producing vanadium lithium phosphate carbon composite
TW201803803A (en) Method for manufacturing vanadium lithium phosphate
Geng et al. Few-layers of graphene modified TiO 2/graphene composites with excellent electrochemical properties for lithium-ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161209

R150 Certificate of patent or registration of utility model

Ref document number: 6059449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250