JP2013222501A - Positive electrode for all-solid-state lithium secondary battery and manufacturing method therefor - Google Patents

Positive electrode for all-solid-state lithium secondary battery and manufacturing method therefor Download PDF

Info

Publication number
JP2013222501A
JP2013222501A JP2012091277A JP2012091277A JP2013222501A JP 2013222501 A JP2013222501 A JP 2013222501A JP 2012091277 A JP2012091277 A JP 2012091277A JP 2012091277 A JP2012091277 A JP 2012091277A JP 2013222501 A JP2013222501 A JP 2013222501A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium secondary
mechanical milling
solid
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012091277A
Other languages
Japanese (ja)
Inventor
Akitoshi Hayashi
晃敏 林
Masahiro Tatsumisago
昌弘 辰巳砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Prefecture University PUC
Original Assignee
Osaka University NUC
Osaka Prefecture University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Prefecture University PUC filed Critical Osaka University NUC
Priority to JP2012091277A priority Critical patent/JP2013222501A/en
Publication of JP2013222501A publication Critical patent/JP2013222501A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of the positive electrode for an all-solid-state lithium secondary battery in which the charge/discharge capacity has been enhanced.SOLUTION: In the manufacturing method of a positive electrode for an all-solid-state lithium secondary battery, a positive electrode is obtained by mixing and molding a material containing LiS as a positive electrode active material, a carbon material as a conductive material, and LiS-MS(M is selected from P, Si, Ge, B, Al, Ga, and x and y are integers giving a stoichiometric ratio according to the kind of M) as an electrolyte. The LiS is subjected to wet mechanical milling when the material is mixed, or subjected previously to wet mechanical milling before the material is mixed.

Description

本発明は、全固体リチウム二次電池用正極及びその製造方法に関する。更に詳しくは、本発明は、高い充放電容量を有する全固体リチウム二次電池用正極及びその製造方法に関する。   The present invention relates to a positive electrode for an all-solid lithium secondary battery and a method for producing the same. More specifically, the present invention relates to a positive electrode for an all-solid lithium secondary battery having a high charge / discharge capacity and a method for producing the same.

リチウム二次電池は、高電圧、高容量を有するため、携帯電話、デジタルカメラ、ビデオカメラ、ノートパソコン、電気自動車等の電源として多用されている。一般に流通しているリチウム二次電池は、電解質として、電解塩を非水系溶媒に溶解した液状電解質を使用している。非水系溶媒には、可燃性の溶媒が多く含まれているため、安全性の確保が望まれている。
安全性を確保するために、非水系溶媒を使用せずに、電解質を固体材料から形成する、いわゆる固体電解質を使用した全固体リチウム二次電池が提案されている。この電池の正極には、正極活物質、導電材、電解質等の様々な成分が含まれている。これら成分の内、正極活物質として硫黄が、その理論容量の高さから注目されている(特開2004−95243号公報:特許文献1)。
Lithium secondary batteries have high voltage and high capacity, and are therefore widely used as power sources for mobile phones, digital cameras, video cameras, notebook computers, electric vehicles and the like. Generally, lithium secondary batteries in circulation use a liquid electrolyte in which an electrolytic salt is dissolved in a non-aqueous solvent as an electrolyte. Since non-aqueous solvents contain a lot of flammable solvents, it is desired to ensure safety.
In order to ensure safety, an all-solid lithium secondary battery using a so-called solid electrolyte in which an electrolyte is formed from a solid material without using a non-aqueous solvent has been proposed. The positive electrode of this battery contains various components such as a positive electrode active material, a conductive material, and an electrolyte. Among these components, sulfur is attracting attention as a positive electrode active material because of its high theoretical capacity (Japanese Patent Laid-Open No. 2004-95243: Patent Document 1).

ところで、正極活物質として硫黄を使用した場合、負極活物質にはLiを含む物質を使用する必要があり、これら活物質を使用した電池では放電から充放電反応が始まることになる。そのため負極活物質に使用可能な物質の種類をより増やす観点から、充電から充放電反応を始めることが可能な正極活物質、即ち予めLiを含む正極活物質が望まれている。
上記観点から、本発明の発明者等は、放電後の硫黄が正極中でLiとの混合物として存在していることから、理論容量約1170mAhg-1のLi2Sを正極活物質として使用することを検討した結果、充放電可能であるとの知見を得た(電気化学会第77回大会講演要旨集p58(2010):非特許文献1)。
By the way, when sulfur is used as the positive electrode active material, it is necessary to use a material containing Li as the negative electrode active material. In a battery using these active materials, the charge / discharge reaction starts from discharge. Therefore, from the viewpoint of further increasing the types of materials that can be used for the negative electrode active material, a positive electrode active material capable of starting a charge / discharge reaction from charging, that is, a positive electrode active material containing Li in advance is desired.
From the above viewpoint, the inventors of the present invention use Li 2 S having a theoretical capacity of about 1170 mAhg −1 as the positive electrode active material because sulfur after discharge exists as a mixture with Li in the positive electrode. As a result, the knowledge that charging and discharging are possible was obtained (Abstracts of the 77th Annual Meeting of the Electrochemical Society of Japan p58 (2010): Non-Patent Document 1).

特開2004−95243号公報JP 2004-95243 A

電気化学会第77回大会講演要旨集p58(2010)Abstracts of the 77th Annual Meeting of the Electrochemical Society p58 (2010)

上記非特許文献の正極では、ある程度の充放電容量の電池を提供できるが、更なる充放電容量の向上が望まれていた。   Although the positive electrode of the non-patent document can provide a battery having a certain charge / discharge capacity, further improvement of the charge / discharge capacity has been desired.

上記非特許文献1では、Li2Sと導電材との混合物を乾式メカニカルミリング処理に付し、得られた処理物に電解質を加えて混合物を得、この混合物を更に乾式メカニカルミリング処理に付した後、成形することで正極を得ている。本発明の発明者等は、充放電容量を更に向上するために正極の製造方法について鋭意検討した結果、Li2Sを湿式メカニカルミリング処理に付すことで、充放電容量を向上できることを見出し本発明に至った。Li2Sは、湿式メカニカルミリング処理に付されることで粒子径が小さくなり、導電材や電解質との接触面積が増え、その結果充放電容量を向上可能な正極を提供できた、と発明者等は考えている。 In Non-Patent Document 1 are denoted by the mixture of Li 2 S and a conductive material in a dry mechanical milling, the electrolyte was added to the obtained treated product to obtain a mixture, it was subjected the mixture further dry mechanical milling Thereafter, the positive electrode is obtained by molding. The inventors of the present invention have intensively studied the positive electrode manufacturing method in order to further improve the charge / discharge capacity, and as a result, found that the charge / discharge capacity can be improved by subjecting Li 2 S to wet mechanical milling. It came to. The inventor said that Li 2 S was able to provide a positive electrode capable of improving the charge / discharge capacity as a result of being subjected to a wet mechanical milling process, thereby reducing the particle size, increasing the contact area with the conductive material and the electrolyte. Etc. are thinking.

かくして本発明によれば、正極活物質としてのLi2Sと、導電材としての炭素材料と、電解質としてのLi2S−Mxy(MはP、Si、Ge、B、Al、Gaから選択され、x及びyは、Mの種類に応じて、化学量論比を与える整数である)とを含む原料を混合及び成形することで正極を得ることからなり、
前記Li2Sが、前記原料の混合時に湿式メカニカルミリング処理に付されるか又は前記原料の混合前に予め湿式メカニカルミリング処理に付されることを特徴とする全固体リチウム二次電池用正極の製造方法が提供される。
更に、本発明によれば、上記方法により得られた全固体リチウム二次電池用正極が提供される。
Thus, according to the present invention, Li 2 S as a positive electrode active material, a carbon material as a conductive material, and Li 2 S—M x S y as an electrolyte (M is P, Si, Ge, B, Al, Ga). X and y are integers that give a stoichiometric ratio according to the type of M) and a positive electrode is obtained by mixing and forming a raw material.
The Li 2 S is subjected to a wet mechanical milling process when the raw materials are mixed, or is subjected to a wet mechanical milling process in advance before mixing the raw materials. A manufacturing method is provided.
Furthermore, according to this invention, the positive electrode for all-solid-state lithium secondary batteries obtained by the said method is provided.

本発明によれば、高い充放電容量を有する全固体リチウム二次電池用正極及びその製造方法を提供できる。
また、湿式メカニカルミリング処理が、この処理時の温度で液体であり、Li2Sに対して不活性な溶媒の存在下で行なわれる場合、より高い充放電容量を有する全固体リチウム二次電池用正極の製造方法を提供できる。
更に、湿式メカニカルミリング処理が、トルエンの存在下で行なわれる場合、より高い充放電容量を有する全固体リチウム二次電池用正極の製造方法を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the positive electrode for all-solid-state lithium secondary batteries which has high charge / discharge capacity, and its manufacturing method can be provided.
In addition, when the wet mechanical milling process is performed at a temperature at the time of the process and is performed in the presence of a solvent inert to Li 2 S, the all-solid lithium secondary battery having a higher charge / discharge capacity is used. A method for producing a positive electrode can be provided.
Furthermore, when a wet mechanical milling process is performed in presence of toluene, the manufacturing method of the positive electrode for all-solid-state lithium secondary batteries which has higher charge / discharge capacity can be provided.

また、湿式メカニカルミリング処理が、遊星型ボールミルを用いて、50〜300回転/分、0.1〜10時間、1〜100kWh/1kgのLi2Sの条件下で行われる場合、より高い充放電容量を有する全固体リチウム二次電池用正極の製造方法を提供できる。
Li2S、炭素材料及び電解質が、100:10〜200:10〜500(重量比)の割合で混合される場合、より高い充放電容量を有する全固体リチウム二次電池用正極の製造方法を提供できる。
Li2S−Mxyが、Li2SとMxyとを50:50〜90:10(モル比)の割合を備える場合、より高い充放電容量を有する全固体リチウム二次電池用正極の製造方法を提供できる。
Further, when the wet mechanical milling process is performed under the conditions of 50 to 300 revolutions / minute, 0.1 to 10 hours, and 1 to 100 kWh / 1 kg of Li 2 S using a planetary ball mill, higher charge / discharge A method for producing a positive electrode for an all-solid lithium secondary battery having a capacity can be provided.
Li 2 S, carbon materials and electrolytes, 100: 10-200: 10 to 500 when mixed in a ratio (weight ratio), a method for manufacturing a positive electrode for all-solid lithium secondary battery having a higher charge-discharge capacity Can be provided.
Li 2 S-M x S y is, Li 2 S and M x S y and 50: 50-90: 10 when having a ratio (molar ratio), all-solid lithium secondary battery having a higher charge-discharge capacity A method for producing a positive electrode for an automobile is provided.

実施例1、比較例1のLi2Sの走査型電子顕微鏡写真である。 2 is a scanning electron micrograph of Li 2 S of Example 1 and Comparative Example 1. FIG. 実施例1、比較例1及び2のセル電位と充放電容量との関係を示すグラフである。It is a graph which shows the relationship between the cell potential and charge / discharge capacity of Example 1 and Comparative Examples 1 and 2. 実施例2のセル電位と放電容量の関係を示すグラフである。It is a graph which shows the relationship between the cell potential of Example 2, and discharge capacity. 実施例2の電流密度と放電容量との関係を示すグラフである。It is a graph which shows the relationship between the current density of Example 2, and discharge capacity. 実施例5の正極活物質の利用率とセル電位との関係を示すグラフである。6 is a graph showing the relationship between the utilization rate of the positive electrode active material of Example 5 and the cell potential.

全固体リチウム二次電池用正極は、正極活物質としてのLi2Sと、導電材としての炭素材料と、電解質としてのLi2S−Mxyとを含む複合体の成形体である。
(Li2S)
本発明に使用しうるLi2Sは、特に限定されず、市販の物を使用できる。Li2Sは、純度ができるだけ高いものを使用することが好ましい。例えば、99%以上の純度のLi2Sを使用することが好ましい。更に、Li2Sの形状は、特に限定されず、粒状、塊状等の種々の形状が挙げられる。
Li2Sは、湿式メカニカルミリング処理に付される。この処理は、導電材及び電解質と混合前に予め行ってもよく、導電材及び電解質との混合時に行ってもよい。更に、Li2Sと導電材とを混合し、次いで電解質と混合する方法、Li2Sと電解質とを混合し、次いで導電材と混合する方法のいずれかにおいて、Li2Sと導電材又は電解質との混合を湿式メカニカルミリング処理で行うことで、Li2Sを湿式メカニカルミリング処理に付してもよい。
The positive electrode for an all-solid lithium secondary battery is a composite formed body including Li 2 S as a positive electrode active material, a carbon material as a conductive material, and Li 2 S-M x S y as an electrolyte.
(Li 2 S)
Li 2 S that can be used in the present invention is not particularly limited, and commercially available products can be used. Li 2 S is preferably used as high as possible. For example, it is preferable to use Li 2 S having a purity of 99% or more. Furthermore, the shape of the Li 2 S is not particularly limited, granular, include various shapes such as massive.
Li 2 S is subjected to a wet mechanical milling process. This treatment may be performed in advance before mixing with the conductive material and the electrolyte, or may be performed at the time of mixing with the conductive material and the electrolyte. Furthermore, in any one of the method of mixing Li 2 S and a conductive material and then mixing with the electrolyte, or mixing Li 2 S and the electrolyte, and then mixing with the conductive material, Li 2 S and the conductive material or electrolyte Li 2 S may be subjected to a wet mechanical milling process by performing a wet mechanical milling process.

湿式メカニカルミリング処理は、溶媒の存在下で行なわれる。溶媒は、この処理時の温度(例えば、10〜50℃)で液体であり、Li2Sに対して不活性であることが好ましい。溶媒としては、例えば、トルエン、キシレン、デカリン、テトラヒドロナフタレン等の芳香族炭化水素、ヘキサン、ペンタン、エチルへキサン、ヘプタン、デカン、シクロヘキサン等の飽和炭化水素、ヘキセン、ヘプテン、シクロヘキセン等の不飽和炭化水素等が挙げられる。この内、芳香族炭化水素がより好ましく、トルエンが更に好ましい。
溶媒の使用量は、例えば、Li2S100重量部に対して、10〜100重量部の範囲とすることができる。
The wet mechanical milling process is performed in the presence of a solvent. The solvent is preferably a liquid at the temperature during the treatment (for example, 10 to 50 ° C.) and inert to Li 2 S. Examples of the solvent include aromatic hydrocarbons such as toluene, xylene, decalin, and tetrahydronaphthalene, saturated hydrocarbons such as hexane, pentane, ethyl hexane, heptane, decane, and cyclohexane, and unsaturated carbons such as hexene, heptene, and cyclohexene. Hydrogen etc. are mentioned. Of these, aromatic hydrocarbons are more preferred, and toluene is even more preferred.
The amount of the solvent used, for example, with respect to Li 2 S100 parts, may be in the range of 10 to 100 parts by weight.

湿式メカニカルミリング処理後、溶媒は除去しておくことが好ましい。溶媒の除去は、最終的に正極中に溶媒が存在しなければどの段階で行ってもよい。例えば、湿式メカニカルミリング処理直後に行ってもよく、導電材及び/又は電解質との混合後に行ってもよく、正極に成形後に行ってもよい。
湿式メカニカルミリング処理は、所望の充放電特性が得られさえすれば、処理装置及び処理条件には特に限定されない。
It is preferable to remove the solvent after the wet mechanical milling treatment. The removal of the solvent may be performed at any stage as long as no solvent is finally present in the positive electrode. For example, it may be performed immediately after the wet mechanical milling treatment, may be performed after mixing with the conductive material and / or the electrolyte, or may be performed after forming the positive electrode.
The wet mechanical milling process is not particularly limited to a processing apparatus and processing conditions as long as desired charge / discharge characteristics can be obtained.

処理装置としては、通常ボールミルが使用できる。ボールミルは、大きな機械的エネルギーが得られるため好ましい。ボールミルの中でも、遊星型ボールミルは、ポットが自動回転すると共に、台盤が公転回転するため、高い衝撃エネルギーを効率よく発生させることができるので、好ましい。
処理条件は、使用する処理装置に応じて適宜設定できる。例えば、ボールミルを使用する場合、回転速度が速いほど及び/又は処理時間が長いほど、原料混合物が均一に混合できる。具体的には、遊星型ボールミルを使用する場合、50〜500回転/分、0.1〜10時間、1〜100kWh/1kgのLi2Sの条件が挙げられる。より好ましい処理条件としては、150〜300回転/分、0.5〜2時間、6〜50kWh/1kgのLi2Sが挙げられる。
As a processing apparatus, a ball mill can be used normally. A ball mill is preferable because large mechanical energy can be obtained. Among the ball mills, the planetary ball mill is preferable because the pot automatically rotates and the base plate revolves and high impact energy can be efficiently generated.
The processing conditions can be appropriately set according to the processing apparatus to be used. For example, when using a ball mill, the higher the rotational speed and / or the longer the processing time, the more uniformly the raw material mixture can be mixed. Specifically, when a planetary ball mill is used, conditions of 50 to 500 revolutions / minute, 0.1 to 10 hours, and 1 to 100 kWh / 1 kg of Li 2 S are exemplified. More preferable processing conditions include 150 to 300 revolutions / minute, 0.5 to 2 hours, and 6 to 50 kWh / 1 kg of Li 2 S.

(炭素材料)
炭素材料は、特に限定されず、アセチレンブラック、デンカブラック、ケッチェンブラック等のカーボンブラックやカーボンナノチューブ、天然黒鉛、人工黒鉛、気相成長カーボンファィバ(VGCF)等の二次電池の分野で導電材として使用されている材料が挙げられる。
炭素材料の量は、Li2S100重量部に対して、10〜200重量部であることが好ましい。10重量部未満である場合、正極へ移動可能な電子の量が減ることで、十分な充放電容量が得られないことがある。200重量部より多い場合、Li2S及びLi2S−Mxyの正極に占める量が相対的に少なくなり、充放電効率が低下することがある。より好ましい炭素材料の量は、50〜100重量部の範囲である。
(Carbon material)
The carbon material is not particularly limited, and is used as a conductive material in the field of secondary batteries such as carbon black such as acetylene black, Denka black, Ketjen black, carbon nanotube, natural graphite, artificial graphite, and vapor growth carbon fiber (VGCF). The material used is mentioned.
The amount of the carbon material is preferably 10 to 200 parts by weight with respect to 100 parts by weight of Li 2 S. When the amount is less than 10 parts by weight, a sufficient charge / discharge capacity may not be obtained due to a decrease in the amount of electrons that can move to the positive electrode. When the amount is more than 200 parts by weight, the amount of Li 2 S and Li 2 S-M x S y occupying the positive electrode is relatively small, and the charge / discharge efficiency may be lowered. A more preferable amount of the carbon material is in the range of 50 to 100 parts by weight.

(電解質)
正極は、電解質として、Li2S−Mxyを含む。
硫化物であるMxy中、MはP、Si、Ge、B、Al、Gaから選択され、x及びyは、Mの種類に応じて、化学量論比を与える整数である。Mとして使用可能な6種の元素は、種々の価数をとり得、その価数に応じてx及びyを設定できる。例えばPは3価及び5価、Siは4価、Geは2価及び4価、Bは3価、Alは3価、Gaは3価をとり得る。具体的なMxyとしては、P25、SiS2、GeS2、B23、Al23、Ga23等が挙げられる。これら具体的なMxyは、1種のみ使用してもよく、2種以上併用してもよい。この内、P25が特に好ましい。
更に、Li2SとMxyとのモル比は、50:50〜90:10であることが好ましく、67:33〜80:20であることがより好ましく、70:30〜80:20であることが更に好ましい。
(Electrolytes)
The positive electrode, the electrolyte comprises Li 2 S-M x S y .
In M x S y that is a sulfide, M is selected from P, Si, Ge, B, Al, and Ga, and x and y are integers that give a stoichiometric ratio depending on the type of M. The six elements that can be used as M can have various valences, and x and y can be set according to the valences. For example, P can be trivalent and pentavalent, Si can be tetravalent, Ge can be divalent and tetravalent, B can be trivalent, Al can be trivalent, and Ga can be trivalent. Specific examples of M x S y include P 2 S 5 , SiS 2 , GeS 2 , B 2 S 3 , Al 2 S 3 , Ga 2 S 3 and the like. These specific M x S y may be used alone or in combination of two or more. Of these, P 2 S 5 is particularly preferred.
Furthermore, the molar ratio of Li 2 S to M x S y is preferably 50:50 to 90:10, more preferably 67:33 to 80:20, and 70:30 to 80:20. More preferably.

電解質には、Li2S−Mxy以外に、LiI、Li3PO4等の他の電解質が含まれていてもよい。
Li2S−Mxyの量は、Li2S100重量部に対して、10〜500重量部であることが好ましい。10重量部未満である場合、正極へ移動可能なリチウムイオンの量が減ることで、十分な充放電容量が得られないことがある。500重量部より多い場合、Li2S及び炭素材料の正極に占める量が相対的に少なくなり、充放電効率が低下することがある。より好ましいLi2S−Mxyの量は、50〜200重量部の範囲である。
The electrolyte, in addition to Li 2 S-M x S y , LiI, may include other electrolytes such as Li 3 PO 4.
The amount of Li 2 S-M x S y, relative to Li 2 S100 parts by weight, preferably 10 to 500 parts by weight. When the amount is less than 10 parts by weight, a sufficient charge / discharge capacity may not be obtained due to a decrease in the amount of lithium ions that can move to the positive electrode. When the amount is more than 500 parts by weight, the amount of Li 2 S and the carbon material occupying the positive electrode is relatively reduced, and the charge / discharge efficiency may be lowered. More preferable amount of Li 2 S-M x S y is in the range of 50 to 200 parts by weight.

(その他の成分)
Li2S、炭素材料及びLi2S−Mxy以外に、全固体リチウム二次電池に通常使用されている成分を含んでいてもよい。例えば、LiCoO2、LiMn24等の活物質が挙げられる。これら活物質は、その表面に、Ni、Mn、Fe、Coから選択される金属の硫化物による被膜を備えていてもよい。被膜を形成する方法としては、例えば、被膜の前駆体溶液中に活物質を浸漬し、次いで熱処理する方法、被膜の前駆体溶液を活物質に噴霧し、次いで熱処理する方法等が挙げられる。
また、結着材が含まれていてもよい。結着材としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン等が挙げられる。
(Other ingredients)
In addition to Li 2 S, the carbon material, and Li 2 S-M x S y , components that are usually used in all-solid lithium secondary batteries may be included. Examples thereof include active materials such as LiCoO 2 and LiMn 2 O 4 . These active materials may be provided with a film of a metal sulfide selected from Ni, Mn, Fe, and Co on the surface. Examples of the method for forming a film include a method in which an active material is immersed in a film precursor solution and then heat-treated, and a method in which a film precursor solution is sprayed on the active material and then heat-treated.
Further, a binder may be included. Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethyl methacrylate, and polyethylene.

(原料の混合及び成形工程)
原料の混合は、所望の充放電容量が得られさえすれば、特に限定されない。例えば、乳鉢での混合、メカニカルミリング処理等が挙げられる。この内、より大きな充放電容量を得られるメカニカルミリング処理が好ましい。メカニカルミリング処理は、乾式でも湿式でもよい。具体的には、
(1)Li2S、導電材及び電解質の混合物を湿式メカニカルミリング処理に付す方法
(2)Li2Sを湿式メカニカルミリング処理に付した後、Li2S、導電材及び電解質の混合物を湿式又は乾式メカニカルミリング処理に付す方法
(3)Li2Sを湿式メカニカルミリング処理に付した後、Li2Sと導電材との混合物を湿式又は乾式メカニカルミリング処理に付し、Li2S、導電材及び電解質の混合物を湿式又は乾式メカニカルミリング処理に付す方法
(4)Li2Sを湿式メカニカルミリング処理に付した後、Li2Sと電解質との混合物を湿式又は乾式メカニカルミリング処理に付し、Li2S、導電材及び電解質の混合物を湿式又は乾式メカニカルミリング処理に付す方法
等が挙げられる。
(Raw material mixing and molding process)
The mixing of raw materials is not particularly limited as long as a desired charge / discharge capacity can be obtained. For example, mixing in a mortar, mechanical milling treatment and the like can be mentioned. Among these, the mechanical milling process which can obtain a larger charge / discharge capacity is preferable. The mechanical milling process may be dry or wet. In particular,
(1) Method of subjecting mixture of Li 2 S, conductive material and electrolyte to wet mechanical milling treatment (2) After subjecting Li 2 S to wet mechanical milling treatment, the mixture of Li 2 S, conductive material and electrolyte is wet or Method of subjecting to dry mechanical milling (3) After subjecting Li 2 S to wet mechanical milling, a mixture of Li 2 S and a conductive material is subjected to wet or dry mechanical milling, and Li 2 S, conductive material and Method of subjecting electrolyte mixture to wet or dry mechanical milling treatment (4) Li 2 S is subjected to wet mechanical milling treatment, and then the mixture of Li 2 S and electrolyte is subjected to wet or dry mechanical milling treatment to obtain Li 2 And a method of subjecting a mixture of S, a conductive material and an electrolyte to a wet or dry mechanical milling process.

メカニカルミリング処理は、所望の充放電特性が得られさえすれば、処理装置及び処理条件には特に限定されない。
処理装置としては、Li2Sの湿式メカニカルミリング処理に記載した装置を使用できる。
処理条件は、遊星型ボールミルを使用し、乾式の場合、50〜600回転/分の回転速度、0.1〜10時間の処理時間、1〜100kWh/処理対象1kgの条件が挙げられる。より好ましい処理条件としては、200〜500回転/分の回転速度、1〜5時間の処理時間、6〜50kWh/処理対象1kgが挙げられる。湿式の場合、50〜500回転/分の回転速度、0.1〜10時間の処理時間、1〜100kWh/原料混合物1kgの条件が挙げられる。より好ましい処理条件としては、150〜300回転/分の回転速度、0.5〜2時間の処理時間、6〜50kWh/処理対象1kgが挙げられる。
混合された原料は、例えばプレス成形することで、ペレット状の正極(成形体)とすることができる。ここで、正極は、アルミニウムや銅等の金属板からなる集電体上に形成されていてもよい。
The mechanical milling process is not particularly limited to a processing apparatus and processing conditions as long as desired charge / discharge characteristics can be obtained.
The processing apparatus can be used the apparatus described in wet mechanical milling of Li 2 S.
As for the processing conditions, a planetary ball mill is used, and in the case of a dry type, the rotational speed is 50 to 600 rotations / minute, the processing time is 0.1 to 10 hours, and the conditions are 1 to 100 kWh / processing target 1 kg. More preferable processing conditions include a rotation speed of 200 to 500 rotations / minute, a processing time of 1 to 5 hours, and 6 to 50 kWh / kg of a processing target. In the case of a wet type, conditions of a rotation speed of 50 to 500 rotations / minute, a processing time of 0.1 to 10 hours, and 1 kg of raw material mixture of 1 to 100 kWh can be mentioned. More preferable processing conditions include a rotational speed of 150 to 300 rotations / minute, a processing time of 0.5 to 2 hours, and 6 to 50 kWh / kg of processing target.
The mixed raw material can be made into a pellet-like positive electrode (molded body) by, for example, press molding. Here, the positive electrode may be formed on a current collector made of a metal plate such as aluminum or copper.

(全固体リチウム二次電池)
全固体リチウム二次電池は、正極、電解質層及び負極を備えている。全固体リチウム二次電池は、例えば、正極、電解質層及び負極とを積層し、プレスすることにより得ることができる。
(1)電解質層
電解質層を構成する電解質には、特に限定されず、全固体リチウム二次電池に通常使用される電解質をいずれも使用できる。例えば、上記正極の説明において例示した電解質が挙げられる。なお、電解質層中、Li2S−Mxyが占める割合は、90重量%以上であることが好ましく、全量であることがより好ましい。電解質層の厚さは、5〜500μmであることが好ましく、20〜100μmであることがより好ましい。電解質層は、例えば、電解質をプレスすることで、ペレット状として得ることができる。
(All-solid lithium secondary battery)
The all solid lithium secondary battery includes a positive electrode, an electrolyte layer, and a negative electrode. The all-solid lithium secondary battery can be obtained, for example, by laminating a positive electrode, an electrolyte layer, and a negative electrode and pressing them.
(1) Electrolyte layer It does not specifically limit to the electrolyte which comprises an electrolyte layer, All the electrolytes normally used for an all-solid-state lithium secondary battery can be used. For example, the electrolyte illustrated in description of the said positive electrode is mentioned. Incidentally, in the electrolyte layer, the proportion of the Li 2 S-M x S y is preferably 90 wt% or more, and more preferably the total amount. The thickness of the electrolyte layer is preferably 5 to 500 μm, and more preferably 20 to 100 μm. The electrolyte layer can be obtained as a pellet by, for example, pressing the electrolyte.

(2)負極
負極は、特に限定されず、全固体リチウム二次電池に通常使用される負極をいずれも使用できる。負極は、負極活物質のみからなっていてもよく、結着材、導電材、電解質等と混合されていてもよい。
本発明では正極活物質としてLi2Sを使用しているため、Liを含まない負極活物質を使用できる。そのような負極活物質としては、In、Sn等の金属、それらの合金、グラファイト、SnO等の種々の遷移金属酸化物等が挙げられる。また、Liや、Li4/3Ti5/34のようなLiを含む負極活物質を使用することも可能である。
(2) Negative electrode A negative electrode is not specifically limited, Any negative electrode normally used for an all-solid lithium secondary battery can be used. The negative electrode may be composed only of the negative electrode active material, and may be mixed with a binder, a conductive material, an electrolyte, and the like.
Since the present invention uses a Li 2 S as the positive electrode active material, usable negative electrode active material that does not contain Li. Examples of such a negative electrode active material include metals such as In and Sn, alloys thereof, various transition metal oxides such as graphite and SnO. It is also possible to use a negative electrode active material containing Li, such as Li or Li 4/3 Ti 5/3 O 4 .

結着材としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン等が挙げられる。
導電材としては、天然黒鉛、人工黒鉛、アセチレンブラック、気相成長カーボンファィバ(VGCF)等が挙げられる。
電解質としては、電解質層に使用される電解質が挙げられる。
負極は、例えば、負極活物質及び、任意に結着材、導電材、電解質等を混合し、得られた混合物をプレスすることで、ペレット状として得ることができる。また、負極活物質として金属又はその合金からなる金属シート(箔)を使用する場合、をそのまま使用可能である。
負極は、アルミニウム又は銅等の集電体の上に形成されていてもよい。
Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethyl methacrylate, and polyethylene.
Examples of the conductive material include natural graphite, artificial graphite, acetylene black, vapor grown carbon fiber (VGCF), and the like.
Examples of the electrolyte include an electrolyte used for an electrolyte layer.
The negative electrode can be obtained as a pellet by, for example, mixing a negative electrode active material and optionally a binder, a conductive material, an electrolyte, and the like, and pressing the obtained mixture. Moreover, when using the metal sheet (foil) which consists of a metal or its alloy as a negative electrode active material, can be used as it is.
The negative electrode may be formed on a current collector such as aluminum or copper.

以下、実施例によって本発明を更に具体的に説明するが、本発明はこれらによりなんら制限されるものではない。
実施例1
Li2S(出光興産社製:純度99.9%以上、平均粒子径100μm)1gを湿式メカニカルミリング処理に付した。処理装置には、ポット及びボールを備えた遊星型ボールミルであるFritsch社製Pulverisette P−7を使用した。ポット及びボールは酸化ジルコニウム製であり、45mlのポット内で直径5mmのボールを160個使用した。溶媒としてトルエンをLi2S100重量部に対して50重量部使用した。処理条件は、室温(約25℃)、230回転/分、10時間、約30kWh/1kgのLi2Sとした。
処理後、Li2Sを160℃で24時間真空乾燥処理に付すことで、トルエンを除去した。得られたLi2Sの走査型電子顕微鏡写真を図1(a)に示す。
次に、乾燥処理後のLi2Sを0.5gと、アセチレンブラック(電気化学工業社製デンカブラック:平均粒子径35nm:以下、ABともいう)を0.5gとを乾式メカニカルミリング処理に付した。処理装置は、上記装置を使用し、処理条件は、室温(約25℃)、510回転/分、5時間、約50kWh/1kgとした。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1
1 g of Li 2 S (manufactured by Idemitsu Kosan Co., Ltd .: purity 99.9% or more, average particle size 100 μm) was subjected to wet mechanical milling treatment. Pulverisete P-7 manufactured by Fritsch, which is a planetary ball mill equipped with a pot and a ball, was used as the processing apparatus. The pots and balls were made of zirconium oxide, and 160 balls with a diameter of 5 mm were used in a 45 ml pot. As a solvent, 50 parts by weight of toluene was used with respect to 100 parts by weight of Li 2 S. The treatment conditions were room temperature (about 25 ° C.), 230 rotations / minute, 10 hours, and about 30 kWh / 1 kg of Li 2 S.
After the treatment, toluene was removed by subjecting Li 2 S to a vacuum drying treatment at 160 ° C. for 24 hours. A scanning electron micrograph of the obtained Li 2 S is shown in FIG.
Next, 0.5 g of Li 2 S after the drying treatment and 0.5 g of acetylene black (Denka Black: average particle diameter 35 nm: hereinafter also referred to as AB) manufactured by Denki Kagaku Kogyo Co., Ltd. are subjected to dry mechanical milling treatment. did. The above-mentioned apparatus was used as the processing apparatus, and the processing conditions were room temperature (about 25 ° C.), 510 rotations / minute, 5 hours, and about 50 kWh / 1 kg.

更に、乾式メカニカルミリング処理後のLi2S及びアセチレンブラックと、80Li2S−20P25(以下、SEともいう。80及び20はモル比:平均粒子径5μm)とを乾式メカニカルミリング処理に付した(Li2S:AB:SE=25:25:50(重量比))。処理装置は、上記装置を使用し、処理条件は、室温(約25℃)、370回転/分、1時間、約40kWh/1kgとした。 Furthermore, Li 2 S and acetylene black after dry mechanical milling treatment and 80Li 2 S-20P 2 S 5 (hereinafter also referred to as SE. 80 and 20 are molar ratio: average particle diameter 5 μm) are subjected to dry mechanical milling treatment. (Li 2 S: AB: SE = 25: 25: 50 (weight ratio)). The above-mentioned apparatus was used as a processing apparatus, and the processing conditions were room temperature (about 25 ° C.), 370 revolutions / minute, 1 hour, and about 40 kWh / 1 kg.

使用したSEは、以下の方法で合成した。
Li2S(出光興産社製:純度99.9%以上)及びP25(アルドリッチ社製純度99%)を80:20のモル比で遊星型ボールミルに投入した。投入後、乾式メカニカルミリング処理することで、SEを得た。遊星型ボールミルは、Fritsch社製Pulverisette P−7を使用し、ポット及びボールは酸化ジルコニウム製であり、45mlのポット内に直径4mmのボールが500個入っているミルを使用した。乾式メカニカルミリング処理は、510rpmの回転速度、室温、乾燥窒素グローブボックス内で10時間行った。なお、この合成法は、Akitoshi Hayashi et al., Journal of Non−Crystalline Solids 356 (2010) 2670−2673のExperimentalの記載に準じている。
The SE used was synthesized by the following method.
Li 2 S (Idemitsu Kosan Co., Ltd .: purity 99.9% or higher) and P 2 S 5 (Aldrich purity 99%) were charged into a planetary ball mill at a molar ratio of 80:20. After the addition, SE was obtained by dry mechanical milling. As the planetary ball mill, Pulverisette P-7 manufactured by Fritsch was used, and the pot and balls were made of zirconium oxide, and a mill containing 500 balls having a diameter of 4 mm in a 45 ml pot was used. The dry mechanical milling process was performed for 10 hours in a dry nitrogen glove box at a rotation speed of 510 rpm, room temperature. This synthesis method is described in Akitoshi Hayashi et al. , Journal of Non-Crystalline Solids 356 (2010) 2670-2673.

処理後のLi2SとABとSEとの複合体10mgをプレス(圧力370MPa/cm2)することで直径10mm、厚さ約0.1mmのペレット(正極)を得た。
Li2S−P25からなる固体電解質(Li2SとP25とのモル比80:20)80mgをプレス(圧力370MPa/cm2)することで直径10mm、厚さ約0.1mmのペレット(電解質層)を得た。
負極には、厚さ0.1mmのインジウム箔を使用した。
上記正極、電解質層及び負極を積層し、ステンレススチール製集電体で挟み、プレス(圧力250MPa/cm2)することで全固体リチウム二次電池を得た。
10 mg of a composite of Li 2 S, AB and SE after treatment was pressed (pressure 370 MPa / cm 2 ) to obtain a pellet (positive electrode) having a diameter of 10 mm and a thickness of about 0.1 mm.
By pressing 80 mg of a solid electrolyte composed of Li 2 S—P 2 S 5 (a molar ratio of Li 2 S to P 2 S 5 of 80:20) (pressure 370 MPa / cm 2 ), the diameter is 10 mm and the thickness is about 0. A 1 mm pellet (electrolyte layer) was obtained.
For the negative electrode, an indium foil having a thickness of 0.1 mm was used.
The positive electrode, electrolyte layer, and negative electrode were laminated, sandwiched between stainless steel current collectors, and pressed (pressure 250 MPa / cm 2 ) to obtain an all-solid lithium secondary battery.

得られた二次電池(セル)を、25℃下、0.064mA/cm2の電流密度で充放電を繰り返した場合のセル電位と充放電容量との関係を図2に示す。図2において、左側の縦軸はLi−In対極に対する電位を、右側の縦軸はLi基準電極に対する電位を示す(LiとLi−Inの電位差、0.62Vを考慮してプロットした)。図2中、「wet−milled」で示される曲線が実施例1の関係図を示す。図2から約860mAhg-1の可逆容量が得られることが分かる。 FIG. 2 shows the relationship between the cell potential and the charge / discharge capacity when the obtained secondary battery (cell) is repeatedly charged and discharged at 25 ° C. and a current density of 0.064 mA / cm 2 . In FIG. 2, the left vertical axis indicates the potential with respect to the Li—In counter electrode, and the right vertical axis indicates the potential with respect to the Li reference electrode (potential difference between Li and Li—In, plotted considering 0.62 V). In FIG. 2, the curve indicated by “wet-milled” shows the relationship diagram of the first embodiment. It can be seen from FIG. 2 that a reversible capacity of about 860 mAhg −1 is obtained.

比較例1
Li2Sを乾式メカニカルミリング処理に付したこと以外は実施例1と同様にして全固体リチウム二次電池を得た。処理条件は、室温(約25℃)、510回転/分、20時間、約50kWh/1kgとした。
乾式メカニカルミリング処理2時間後、20時間後及び50時間後のLi2Sの走査型電子顕微鏡写真を図1(b)〜(d)に示す。
得られた二次電池を、25℃下、0.064mA/cm2の電流密度で充放電を繰り返した場合のセル電位と充放電容量との関係を図2に示す。図2中、「dry−milled」で示される曲線が比較例1の関係図を示す。図2から約800mAhg-1の可逆容量が得られることが分かる。
Comparative Example 1
An all solid lithium secondary battery was obtained in the same manner as in Example 1 except that Li 2 S was subjected to dry mechanical milling. The treatment conditions were room temperature (about 25 ° C.), 510 rotations / minute, 20 hours, and about 50 kWh / 1 kg.
Scanning electron micrographs of Li 2 S after 2 hours, 20 hours and 50 hours after the dry mechanical milling treatment are shown in FIGS.
FIG. 2 shows the relationship between the cell potential and the charge / discharge capacity when the obtained secondary battery is repeatedly charged and discharged at 25 ° C. and a current density of 0.064 mA / cm 2 . In FIG. 2, the curve indicated by “dry-milled” shows the relationship diagram of Comparative Example 1. It can be seen from FIG. 2 that a reversible capacity of about 800 mAhg −1 is obtained.

比較例2
Li2Sを湿式メカニカルミリング処理に付さないこと以外は実施例1と同様にして全固体リチウム二次電池を得た。
得られた二次電池を、25℃下、0.064mA/cm2の電流密度で充放電を繰り返した場合のサイクル数毎のセル電位と充放電容量との関係を図2に示す。図2中、「non−milled」で示される曲線が比較例2の関係図を示す。図2から約680mAhg-1の可逆容量が得られることが分かる。
Comparative Example 2
An all solid lithium secondary battery was obtained in the same manner as in Example 1 except that Li 2 S was not subjected to wet mechanical milling.
FIG. 2 shows the relationship between the cell potential and the charge / discharge capacity for each number of cycles when the obtained secondary battery is repeatedly charged and discharged at 25 ° C. and a current density of 0.064 mA / cm 2 . In FIG. 2, the curve indicated by “non-milled” shows the relationship diagram of Comparative Example 2. It can be seen from FIG. 2 that a reversible capacity of about 680 mAhg −1 is obtained.

(実施例1、比較例1及び2の結果の考察)
図2から、Li2Sを湿式メカニカルミリング処理に付すことで、充放電容量を大きくできることが分かる(対比較例1比約7%UP、対比較例2比約26%UP)。これは湿式メカニカルミリング処理によりLi2Sの粒径を小さくできること、及びLi2Sの凝集体を少なくできるためであると発明者等は考察している。具体的には、図1(b)において、乾式メカニカルミリング処理2時間後のLi2Sの粒径(約10μm)が極めて大きいことが示されている。図1(c)において、乾式メカニカルミリング処理20時間後では、Li2Sの粒径が小さくなっているが、凝集体が観察されている(図中、点線で囲まれた部分)。この凝集体は、図1(d)に示されているように、乾式メカニカルミリング処理50時間後でも観察されている。これに対して、図1(a)に示されているように、湿式メカニカルミリング処理10時間後において、Li2Sの粒径は約70%減の約3μmと小さくかつ凝集体は観察されていない。Li2Sの粒径を小さくすること及び凝集を防止することで、Liイオンや電子の伝導パスがより多く確保できたためであると考えられる。
(Consideration of results of Example 1 and Comparative Examples 1 and 2)
It can be seen from FIG. 2 that the charge / discharge capacity can be increased by subjecting Li 2 S to wet mechanical milling (about 7% UP compared to Comparative Example 1 and about 26% UP compared to Comparative Example 2). The inventors have considered that this is because the particle size of Li 2 S can be reduced by wet mechanical milling treatment and the aggregate of Li 2 S can be reduced. Specifically, FIG. 1B shows that the particle size (about 10 μm) of Li 2 S after 2 hours of dry mechanical milling is extremely large. In FIG. 1 (c), after 20 hours of dry mechanical milling treatment, the particle size of Li 2 S is reduced, but aggregates are observed (portion surrounded by a dotted line in the figure). This agglomerate is observed even after 50 hours of dry mechanical milling treatment, as shown in FIG. In contrast, as shown in FIG. 1 (a), after 10 hours of wet mechanical milling treatment, the particle size of Li 2 S is as small as about 3 μm, which is reduced by about 70%, and aggregates are observed. Absent. This is considered to be because a larger number of Li ion and electron conduction paths can be secured by reducing the particle size of Li 2 S and preventing aggregation.

実施例2
実施例1で得られた電池を、25℃下、0.064mA/cm2の電流密度で充電し、0.13mA/cm2、1.3mA/cm2及び6.4mA/cm2の電流密度で放電した場合のセル電位と放電容量との関係を図3に、電流密度と放電容量との関係を図4(図中、●のプロット)に示す。また、比較例2で得られた電池を上記電流密度で放電した場合の電流密度と放電容量との関係も図4(図中、▲のプロット)に示す。
図3及び4から、高レートでも可逆容量を向上できることが分かる。
Example 2
The battery obtained in Example 1 was charged at a current density of 0.064 mA / cm 2 at 25 ° C., and current densities of 0.13 mA / cm 2 , 1.3 mA / cm 2 and 6.4 mA / cm 2 were obtained. FIG. 3 shows the relationship between the cell potential and the discharge capacity when discharged in FIG. 4, and FIG. 4 shows the relationship between the current density and the discharge capacity. Further, the relationship between the current density and the discharge capacity when the battery obtained in Comparative Example 2 was discharged at the above current density is also shown in FIG.
3 and 4 that the reversible capacity can be improved even at a high rate.

実施例3
Li2SをS(アルドリッチ社製:純度99.998%)に換えて正極を、負極に厚さ0.1mmのLi−In合金箔(Li:In=50:50(モル比))を使用すること以外は実施例1と同様にして全固体リチウム二次電池を得た。
得られた電池における、S活物質の利用率とセル電位との関係を図5に示す(電流密度を0.064mA/cm2に設定)。併せて、実施例1の電池のLi2S活物質の利用率とセル電位との関係も図5に示す(電流密度を0.013mA/cm2に設定)。
図5から、Li2Sを正極活物質とする電池は、Sを正極活物質とする電池とほぼ同等の正極活物質の利用率が得られていることが分かる。
Example 3
Replacing Li 2 S with S (manufactured by Aldrich: purity 99.998%) and using a positive electrode for the negative electrode and a 0.1 mm thick Li-In alloy foil (Li: In = 50: 50 (molar ratio)) for the negative electrode Except that, an all solid lithium secondary battery was obtained in the same manner as in Example 1.
The relationship between the utilization rate of the S active material and the cell potential in the obtained battery is shown in FIG. 5 (current density is set to 0.064 mA / cm 2 ). In addition, the relationship between the utilization rate of the Li 2 S active material and the cell potential of the battery of Example 1 is also shown in FIG. 5 (current density is set to 0.013 mA / cm 2 ).
From FIG. 5, it can be seen that the battery using Li 2 S as the positive electrode active material has a utilization rate of the positive electrode active material substantially the same as the battery using S as the positive electrode active material.

Claims (7)

正極活物質としてのLi2Sと、導電材としての炭素材料と、電解質としてのLi2S−Mxy(MはP、Si、Ge、B、Al、Gaから選択され、x及びyは、Mの種類に応じて、化学量論比を与える整数である)とを含む原料を混合及び成形することで正極を得ることからなり、
前記Li2Sが、前記原料の混合時に湿式メカニカルミリング処理に付されるか又は前記原料の混合前に予め湿式メカニカルミリング処理に付されることを特徴とする全固体リチウム二次電池用正極の製造方法。
Li 2 S as the positive electrode active material, carbon material as the conductive material, and Li 2 S-M x S y as the electrolyte (M is selected from P, Si, Ge, B, Al, Ga, x and y Is an integer that gives a stoichiometric ratio depending on the type of M) and a positive electrode is obtained by mixing and forming
The Li 2 S is subjected to a wet mechanical milling process when the raw materials are mixed, or is subjected to a wet mechanical milling process in advance before mixing the raw materials. Production method.
前記湿式メカニカルミリング処理が、この処理時の温度で液体であり、前記Li2Sに対して不活性な溶媒の存在下で行なわれる請求項1に記載の全固体リチウム二次電池用正極の製造方法。 2. The production of a positive electrode for an all-solid-state lithium secondary battery according to claim 1, wherein the wet mechanical milling treatment is performed in the presence of a solvent that is liquid at the temperature at the time of the treatment and inert to the Li 2 S. Method. 前記湿式メカニカルミリング処理が、トルエンの存在下で行なわれる請求項1又は2に記載の全固体リチウム二次電池用正極の製造方法。 The manufacturing method of the positive electrode for all-solid-state lithium secondary batteries of Claim 1 or 2 with which the said wet mechanical milling process is performed in presence of toluene. 前記湿式メカニカルミリング処理が、遊星型ボールミルを用いて、50〜300回転/分、0.1〜10時間、1〜100kWh/1kgのLi2Sの条件下で行われる請求項1〜3のいずれか1つに記載の全固体リチウム二次電池用正極の製造方法。 The wet-type mechanical milling process is performed using a planetary ball mill under conditions of 50 to 300 revolutions / minute, 0.1 to 10 hours, and 1 to 100 kWh / 1 kg of Li 2 S. The manufacturing method of the positive electrode for all-solid-state lithium secondary batteries as described in any one. 前記Li2S、炭素材料及び電解質が、100:10〜200:10〜500(重量比)の割合で混合される請求項1〜4のいずれか1つに記載の全固体リチウム二次電池用正極の製造方法。 5. The all-solid-state lithium secondary battery according to claim 1, wherein the Li 2 S, the carbon material, and the electrolyte are mixed at a ratio of 100: 10 to 200: 10 to 500 (weight ratio). A method for producing a positive electrode. 前記Li2S−Mxyが、Li2SとMxyとを50:50〜90:10(モル比)の割合を備える請求項1〜5のいずれか1つに記載の全固体リチウム二次電池用正極の製造方法。 The Li 2 S-M x S y has a Li 2 S and M x S y 50: 50~90: 10 according to any one of claims 1 to 5 comprising a ratio (molar ratio) total A method for producing a positive electrode for a solid lithium secondary battery. 請求項1〜6のいずれか1つの方法により得られた全固体リチウム二次電池用正極。 The positive electrode for all-solid-state lithium secondary batteries obtained by the method of any one of Claims 1-6.
JP2012091277A 2012-04-12 2012-04-12 Positive electrode for all-solid-state lithium secondary battery and manufacturing method therefor Pending JP2013222501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012091277A JP2013222501A (en) 2012-04-12 2012-04-12 Positive electrode for all-solid-state lithium secondary battery and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012091277A JP2013222501A (en) 2012-04-12 2012-04-12 Positive electrode for all-solid-state lithium secondary battery and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2013222501A true JP2013222501A (en) 2013-10-28

Family

ID=49593359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012091277A Pending JP2013222501A (en) 2012-04-12 2012-04-12 Positive electrode for all-solid-state lithium secondary battery and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2013222501A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229227A (en) * 2012-04-26 2013-11-07 Furukawa Co Ltd Method for producing cathode material for secondary battery, cathode material for secondary battery, cathode for secondary battery using the same, and secondary battery
JPWO2016063877A1 (en) * 2014-10-22 2017-08-31 国立研究開発法人科学技術振興機構 Positive electrode for all-solid-state secondary battery, manufacturing method thereof, and all-solid-state secondary battery
CN110931783A (en) * 2019-12-06 2020-03-27 华南师范大学 Lithium sulfide/nano metal cathode composite material and preparation method and application thereof
WO2020226322A1 (en) 2019-05-08 2020-11-12 주식회사 엘지화학 Method of manufacturing positive electrode for all-solid-state battery, and positive electrode for all-solid-state battery manufactured by using same
KR20210030737A (en) 2019-09-10 2021-03-18 주식회사 엘지화학 Method for Preparing Cathode Mixture of Solid State Battery and Cathode Mixture of Solid State Battery Prepared Thereby
JP2021534554A (en) * 2018-08-17 2021-12-09 インスティテュート オブ フィジックス, チャイニーズ アカデミー オブ サイエンシーズ Sulfur-based positive electrode active material for solid-state batteries and its preparation method and application
CN115121353A (en) * 2022-07-01 2022-09-30 广州天极电子科技股份有限公司 Mixing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100623A (en) * 2009-11-06 2011-05-19 Toyota Motor Corp Laminated battery
JP2011233422A (en) * 2010-04-28 2011-11-17 Nippon Zeon Co Ltd Lithium ion conductive solid electrolyte composition and all-solid secondary battery
JP2012069305A (en) * 2010-09-22 2012-04-05 Hitachi Zosen Corp Manufacturing method of all-solid secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100623A (en) * 2009-11-06 2011-05-19 Toyota Motor Corp Laminated battery
JP2011233422A (en) * 2010-04-28 2011-11-17 Nippon Zeon Co Ltd Lithium ion conductive solid electrolyte composition and all-solid secondary battery
JP2012069305A (en) * 2010-09-22 2012-04-05 Hitachi Zosen Corp Manufacturing method of all-solid secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229227A (en) * 2012-04-26 2013-11-07 Furukawa Co Ltd Method for producing cathode material for secondary battery, cathode material for secondary battery, cathode for secondary battery using the same, and secondary battery
JPWO2016063877A1 (en) * 2014-10-22 2017-08-31 国立研究開発法人科学技術振興機構 Positive electrode for all-solid-state secondary battery, manufacturing method thereof, and all-solid-state secondary battery
JP2021534554A (en) * 2018-08-17 2021-12-09 インスティテュート オブ フィジックス, チャイニーズ アカデミー オブ サイエンシーズ Sulfur-based positive electrode active material for solid-state batteries and its preparation method and application
WO2020226322A1 (en) 2019-05-08 2020-11-12 주식회사 엘지화학 Method of manufacturing positive electrode for all-solid-state battery, and positive electrode for all-solid-state battery manufactured by using same
KR20200129381A (en) 2019-05-08 2020-11-18 주식회사 엘지화학 Method for Preparing Cathode of Solid State Battery and Cathode of Solid State Battery Prepared Thereby
KR20210030737A (en) 2019-09-10 2021-03-18 주식회사 엘지화학 Method for Preparing Cathode Mixture of Solid State Battery and Cathode Mixture of Solid State Battery Prepared Thereby
WO2021049832A1 (en) 2019-09-10 2021-03-18 주식회사 엘지화학 Method for preparing cathode mixture for all-solid-state battery, and cathode mixture for all-solid-state battery prepared by using same
CN110931783A (en) * 2019-12-06 2020-03-27 华南师范大学 Lithium sulfide/nano metal cathode composite material and preparation method and application thereof
CN115121353A (en) * 2022-07-01 2022-09-30 广州天极电子科技股份有限公司 Mixing method
CN115121353B (en) * 2022-07-01 2024-03-08 广州天极电子科技股份有限公司 Mixing method

Similar Documents

Publication Publication Date Title
JP5388069B2 (en) Positive electrode for all-solid lithium secondary battery and method for producing the same
JP6529508B2 (en) Positive electrode for all solid secondary battery, manufacturing method thereof and all solid secondary battery
Chen et al. In situ generation of few‐layer graphene coatings on SnO2‐SiC core‐shell nanoparticles for high‐performance lithium‐ion storage
Armstrong et al. TiO2 (B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0. 5Mn1. 5O4 cathodes and a polymer electrolyte
JP6172083B2 (en) Lithium solid state secondary battery and manufacturing method thereof
JP2013222501A (en) Positive electrode for all-solid-state lithium secondary battery and manufacturing method therefor
JP6337852B2 (en) Solid electrolyte material and all solid lithium battery
JP2019106286A (en) Positive electrode mixture, positive electrode active material layer, all-solid battery and method for manufacturing positive electrode active material layer
JP2013089321A (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
WO2013141241A1 (en) Solid-state electrolyte layer, and all-solid-state lithium secondary battery
JP4496366B2 (en) Negative electrode material for polymer solid electrolyte lithium secondary battery and method for producing the same
JP2013054958A (en) Negative electrode material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
JP5796798B2 (en) Positive electrode material, all solid state battery, and manufacturing method thereof
JP5796687B2 (en) Positive electrode material, secondary battery and manufacturing method thereof
JP2013506960A (en) Anode materials for high-power lithium-ion batteries
JP6295966B2 (en) All solid battery
JP2021534554A (en) Sulfur-based positive electrode active material for solid-state batteries and its preparation method and application
CN109273670B (en) Metal lithium cathode with high-specific-surface-area mesoporous protective film and preparation method thereof
CN113066988A (en) Negative pole piece and preparation method and application thereof
CN116706008A (en) Positive electrode composite material and preparation method thereof, positive electrode slurry and preparation method thereof, positive electrode plate, solid-state battery and power utilization device
JP2013069567A (en) Electrode active material and method for manufacturing the same, and lithium ion battery
JP2020115425A (en) Sulfide solid electrolyte particle and all-solid battery
JP2015072816A (en) Capacity improvement method of all-solid-state secondary battery and all-solid-state secondary battery having enhanced capacity
JP5969554B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP2015088245A (en) Method for manufacturing sulfide solid electrolytic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160628