JP5388069B2 - Positive electrode for all-solid lithium secondary battery and method for producing the same - Google Patents

Positive electrode for all-solid lithium secondary battery and method for producing the same Download PDF

Info

Publication number
JP5388069B2
JP5388069B2 JP2010042782A JP2010042782A JP5388069B2 JP 5388069 B2 JP5388069 B2 JP 5388069B2 JP 2010042782 A JP2010042782 A JP 2010042782A JP 2010042782 A JP2010042782 A JP 2010042782A JP 5388069 B2 JP5388069 B2 JP 5388069B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
charge
lithium secondary
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010042782A
Other languages
Japanese (ja)
Other versions
JP2011181260A (en
Inventor
昌弘 辰巳砂
晃敏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture University
Original Assignee
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture University filed Critical Osaka Prefecture University
Priority to JP2010042782A priority Critical patent/JP5388069B2/en
Publication of JP2011181260A publication Critical patent/JP2011181260A/en
Application granted granted Critical
Publication of JP5388069B2 publication Critical patent/JP5388069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、全固体リチウム二次電池用正極及びその製造方法に関する。更に詳しくは、本発明は、高い充放電容量を有し、かつ高電流密度でも充放電可能な全固体リチウム二次電池用正極及びその製造方法に関する。   The present invention relates to a positive electrode for an all-solid lithium secondary battery and a method for producing the same. More specifically, the present invention relates to a positive electrode for an all-solid lithium secondary battery that has a high charge / discharge capacity and can be charged / discharged even at a high current density, and a method for producing the same.

リチウム二次電池は、高電圧、高容量を有するため、携帯電話、デジタルカメラ、ビデオカメラ、ノートパソコン、電気自動車等の電源として多用されている。一般に流通しているリチウム二次電池は、電解質として、電解塩を非水系溶媒に溶解した液状電解質を使用している。非水系溶媒には、可燃性の溶媒が多く含まれているため、安全性の確保が望まれている。   Lithium secondary batteries have high voltage and high capacity, and are therefore widely used as power sources for mobile phones, digital cameras, video cameras, notebook computers, electric vehicles and the like. Generally, lithium secondary batteries in circulation use a liquid electrolyte in which an electrolytic salt is dissolved in a non-aqueous solvent as an electrolyte. Since non-aqueous solvents contain a lot of flammable solvents, it is desired to ensure safety.

安全性を確保するために、非水系溶媒を使用せずに、電解質を固体材料から形成する、いわゆる固体電解質を使用した全固体リチウム二次電池が提案されている。この電池の正極には、正極活物質、導電材、電解質等の様々な成分が含まれている。これら成分の内、正極活物質として硫黄が、その理論容量の高さから注目されている(特開2004−95243号公報:特許文献1)。
上記公報では、正極活物質として硫黄と、導電材として銅、鉄、硫化銅、硫化鉄及び硫化セリウムから選択される第1導電材と、アセチレンブラックである第2導電材とを含む正極が提案されている。また、正極活物質と導電材とをボールミルで混合することが提案されている。
In order to ensure safety, an all-solid lithium secondary battery using a so-called solid electrolyte in which an electrolyte is formed from a solid material without using a non-aqueous solvent has been proposed. The positive electrode of this battery contains various components such as a positive electrode active material, a conductive material, and an electrolyte. Among these components, sulfur is attracting attention as a positive electrode active material because of its high theoretical capacity (Japanese Patent Laid-Open No. 2004-95243: Patent Document 1).
The above publication proposes a positive electrode including sulfur as a positive electrode active material, a first conductive material selected from copper, iron, copper sulfide, iron sulfide, and cerium sulfide as a conductive material, and a second conductive material that is acetylene black. Has been. It has also been proposed to mix the positive electrode active material and the conductive material with a ball mill.

特開2004−95243号公報JP 2004-95243 A

上記公報の正極では、ある程度充放電容量は向上するが、未だ十分ではなく、また、高電流密度下での充放電性に課題があった。そのため更なる充放電容量及び充放電性の向上が望まれていた。   In the positive electrode of the above publication, the charge / discharge capacity is improved to some extent, but it is still not sufficient, and there is a problem in charge / discharge performance under a high current density. Therefore, further improvement of charge / discharge capacity and charge / discharge performance has been desired.

かくして本発明によれば、硫黄と、100nm以下の平均粒子径の炭素材料と、Li2S−Mxy(MはP、Si、Ge、B、Alから選択され、x及びyは、Mの種類に応じて、化学量論比を与える整数である)で表される電解質とを含む原料混合物をメカニカルミリング処理に付すことで複合体を得た後、前記複合体を成形することで正極を得ることを特徴とする全固体リチウム二次電池用正極の製造方法が提供される。 Thus, according to the present invention, sulfur, a carbon material having an average particle diameter of 100 nm or less, and Li 2 S-M x S y (M is selected from P, Si, Ge, B, Al, and x and y are By obtaining a composite by subjecting a raw material mixture containing an electrolyte represented by (a stoichiometric ratio depending on the type of M) to mechanical milling, and then molding the composite Provided is a method for producing a positive electrode for an all-solid lithium secondary battery, which is characterized by obtaining a positive electrode.

更に、本発明によれば、硫黄と、100nm以下の平均粒子径の炭素材料と、Li2S−Mxy(MはP、Si、Ge、B、Alから選択され、x及びyは、Mの種類に応じて、化学量論比を与える整数である)で表される電解質とを含む原料混合物をメカニカルミリング処理に付することで得られた複合体の成形体からなることを特徴とする全固体リチウム二次電池用正極が提供される。 Further, according to the present invention, sulfur, a carbon material having an average particle diameter of 100 nm or less, and Li 2 S-M x S y (M is selected from P, Si, Ge, B, Al, and x and y are , An integer that gives a stoichiometric ratio according to the type of M). A positive electrode for an all solid lithium secondary battery is provided.

本発明によれば、高い充放電容量を有し、かつ高電流密度でも充放電可能な全固体リチウム二次電池用正極及びその製造方法を提供できる。
また、メカニカルミリング処理が、遊星型ボールミルを用いて、50〜600回転/分、0.1〜15時間、1〜100kWh/原料混合物1kgの条件下で行われることで、正極を構成する成分の混合性をより向上できるので、より高い充放電容量を有し、かつより高電流密度でも充放電可能な全固体リチウム二次電池用正極の製造方法を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the positive electrode for all-solid-state lithium secondary batteries which has a high charging / discharging capacity | capacitance and can be charged / discharged also with a high current density, and its manufacturing method can be provided.
In addition, the mechanical milling process is performed using a planetary ball mill under conditions of 50 to 600 rotations / minute, 0.1 to 15 hours, and 1 to 100 kWh / 1 kg of the raw material mixture. Since the mixability can be further improved, it is possible to provide a method for producing a positive electrode for an all-solid lithium secondary battery that has a higher charge / discharge capacity and can be charged / discharged even at a higher current density.

更に、硫黄、炭素材料及び電解質が、100:10〜200:10〜500(重量比)の割合で前記原料混合物中に含まれることで、より高い充放電容量を有し、かつより高電流密度でも充放電可能な全固体リチウム二次電池用正極の製造方法を提供できる。
また、Li2S−Mxyが、Li2SとMxyとを50:50〜90:10(モル比)の割合を備えることで、より高い充放電容量を有し、かつより高電流密度でも充放電可能な全固体リチウム二次電池用正極の製造方法を提供できる。
Furthermore, sulfur, a carbon material, and an electrolyte are included in the raw material mixture at a ratio of 100: 10 to 200: 10 to 500 (weight ratio), so that the charge / discharge capacity is higher and the current density is higher. However, the manufacturing method of the positive electrode for all the solid lithium secondary batteries which can be charged / discharged can be provided.
Further, Li 2 S-M x S y has a Li 2 S and M x S y 50: 50~90: By comprise a proportion of 10 (molar ratio), have a higher charge-discharge capacity, and The manufacturing method of the positive electrode for all-solid-state lithium secondary batteries which can be charged / discharged even with a higher current density can be provided.

実施例1及び2、比較例1及び2のサイクル数毎の充放電電位と充放電容量との関係を示すグラフである。It is a graph which shows the relationship between the charging / discharging electric potential and charging / discharging capacity | capacitance for every cycle number of Example 1 and 2, and Comparative Example 1 and 2. 実施例2のサイクル数毎の充放電電位と充放電効率との関係を示すグラフである。It is a graph which shows the relationship between the charging / discharging electric potential for every cycle number of Example 2, and charging / discharging efficiency. 実施例2、比較例1及び3の充放電曲線を示すグラフである。It is a graph which shows the charging / discharging curve of Example 2 and Comparative Examples 1 and 3. 実施例3〜6のサイクル数毎の充放電電位と充放電容量との関係を示すグラフである。It is a graph which shows the relationship between the charging / discharging electric potential for every cycle number of Examples 3-6, and charging / discharging capacity | capacitance. 実施例5及び7のサイクル数毎の充放電電位と充放電容量との関係を示すグラフである。It is a graph which shows the relationship between the charging / discharging electric potential for every cycle number of Example 5 and 7, and charging / discharging capacity | capacitance. 実施例8の充放電曲線を示すグラフである。10 is a graph showing a charge / discharge curve of Example 8. 実施例8の充放電曲線を示すグラフである。10 is a graph showing a charge / discharge curve of Example 8. 実施例8のサイクル数毎の充放電電位と充放電効率との関係を示すグラフである。It is a graph which shows the relationship between the charging / discharging electric potential for every cycle number of Example 8, and charging / discharging efficiency.

全固体リチウム二次電池用正極は、正極活物質としての硫黄と、導電材としての炭素材料と、電解質とを含む複合体の成形体である。
(硫黄)
本発明に使用しうる硫黄は、特に限定されず、市販の物を使用できる。硫黄は、純度ができるだけ高いものを使用することが好ましい。例えば、99.9%以上の純度の硫黄を使用することが好ましい。更に、硫黄の形状は、特に限定されず、粒状、塊状等の種々の形状が挙げられるが、メカニカルミリング処理により、より均一に分散するために、100nm以下の平均粒子径の粒状であることが好ましい。平均粒子径は、均一に分散させるという観点から、下限は特にない。
The positive electrode for an all-solid-state lithium secondary battery is a composite compact including sulfur as a positive electrode active material, a carbon material as a conductive material, and an electrolyte.
(sulfur)
The sulfur that can be used in the present invention is not particularly limited, and commercially available products can be used. It is preferable to use sulfur having as high a purity as possible. For example, it is preferable to use sulfur having a purity of 99.9% or more. Furthermore, the shape of sulfur is not particularly limited, and various shapes such as a granular shape and a lump shape may be mentioned, but in order to disperse more uniformly by mechanical milling treatment, it may be a granular shape having an average particle diameter of 100 nm or less. preferable. The average particle diameter is not particularly limited from the viewpoint of uniformly dispersing.

正極中に占める硫黄の量は、10〜90重量%の範囲であることが好ましい。10重量%より少ない場合、十分な充放電容量が得られないことがある。90重量%より多い場合、炭素材料及びLi2S−Mxyの正極に占める量が相対的に少なくなり、充放電効率が低下することがある。より好ましい硫黄の量は、20〜50重量%の範囲である。 The amount of sulfur in the positive electrode is preferably in the range of 10 to 90% by weight. When the amount is less than 10% by weight, a sufficient charge / discharge capacity may not be obtained. When it is more than 90% by weight, the amount of the carbon material and Li 2 S—M x S y in the positive electrode is relatively small, and the charge / discharge efficiency may be lowered. A more preferred amount of sulfur is in the range of 20-50% by weight.

(炭素材料)
炭素材料としては、100nm以下の平均粒子径を有していれば特に限定されない。この平均粒子径を有する炭素材料を使用することで、硫黄及びLi2S−Mxyとより均一に混合でき、その結果、高い充放電容量を有し、かつ高電流密度でも充放電可能な全固体リチウム二次電池用正極を提供できる。平均粒子径は、均一に分散させるという観点から、下限は特にない。炭素材料の入手容易性の観点から、好ましい平均粒子径は、30〜50nmである。ここで、平均粒子径とは、最大粒子径の平均値を意味し、電子顕微鏡を用いて測定した値である。
(Carbon material)
The carbon material is not particularly limited as long as it has an average particle diameter of 100 nm or less. By using a carbon material having this average particle size, it can be more uniformly mixed with sulfur and Li 2 S-M x S y , resulting in high charge / discharge capacity and charge / discharge even at high current densities. A positive electrode for an all solid lithium secondary battery can be provided. The average particle diameter is not particularly limited from the viewpoint of uniformly dispersing. From the viewpoint of easy availability of the carbon material, a preferable average particle size is 30 to 50 nm. Here, the average particle diameter means an average value of the maximum particle diameter, and is a value measured using an electron microscope.

100nm以下の平均粒子径を有する炭素材料は、特に限定されず、アセチレンブラック、デンカブラック、ケッチェンブラック等のカーボンブラックやカーボンナノチューブ等が挙げられる。また、100nmより大きい平均粒子径を有する炭素材料であっても、粉砕することで本発明に使用できる。平均粒子径の大きい炭素材料としては、天然黒鉛、人工黒鉛、気相成長カーボンファィバ(VGCF)等の二次電池の分野で導電材として使用されている炭素材料が挙げられる。粉砕の方法としては、例えば、遊星型ミルやミキサーミル、カッターミル等のミリング処理が挙げられる。   The carbon material having an average particle diameter of 100 nm or less is not particularly limited, and examples thereof include carbon black such as acetylene black, Denka black, and Ketjen black, carbon nanotubes, and the like. Further, even a carbon material having an average particle diameter of greater than 100 nm can be used in the present invention by pulverization. Examples of the carbon material having a large average particle diameter include carbon materials used as a conductive material in the field of secondary batteries such as natural graphite, artificial graphite, and vapor growth carbon fiber (VGCF). Examples of the pulverization method include milling treatment such as a planetary mill, a mixer mill, and a cutter mill.

炭素材料の量は、硫黄100重量部に対して、10〜200重量部であることが好ましい。10重量部未満である場合、正極へ移動可能な電子の量が減ることで、十分な充放電容量が得られないことがある。200重量部より多い場合、硫黄及びLi2S−Mxyの正極に占める量が相対的に少なくなり、充放電効率が低下することがある。より好ましい炭素材料の量は、50〜100重量部の範囲である。 The amount of the carbon material is preferably 10 to 200 parts by weight with respect to 100 parts by weight of sulfur. When the amount is less than 10 parts by weight, a sufficient charge / discharge capacity may not be obtained due to a decrease in the amount of electrons that can move to the positive electrode. When the amount is more than 200 parts by weight, the amount of sulfur and Li 2 S—M x S y in the positive electrode is relatively small, and the charge / discharge efficiency may be lowered. A more preferable amount of the carbon material is in the range of 50 to 100 parts by weight.

(電解質)
正極は、電解質として、Li2S−Mxyを含む。ここで、MはP、Si、Ge、B、Alから選択され、x及びyは、Mの種類に応じて、化学量論比を与える整数である。具体的には、Li2S−P25、Li2S−SiS2、Li2S−GeS2、Li2S−B23、Li2S−Al23が挙げられる。更に、LiI、Li3PO4等の他の電解質を加えてもよい。
更に、Li2SとMxyとモル比は、50:50〜90:10であることが好ましく、60:40〜80:20であることがより好ましく、70:30〜80:20であることが更に好ましい。
(Electrolytes)
The positive electrode, the electrolyte comprises Li 2 S-M x S y . Here, M is selected from P, Si, Ge, B, and Al, and x and y are integers that give a stoichiometric ratio depending on the type of M. Specific examples include Li 2 S-P 2 S 5 , Li 2 S-SiS 2, Li 2 S-GeS 2, Li 2 S-B 2 S 3, Li 2 S-Al 2 S 3. Furthermore, other electrolytes such as LiI and Li 3 PO 4 may be added.
Furthermore, the molar ratio between Li 2 S and M x S y is preferably 50:50 to 90:10, more preferably 60:40 to 80:20, and 70:30 to 80:20. More preferably it is.

Li2S−Mxyの量は、硫黄100重量部に対して、10〜500重量部であることが好ましい。10重量部未満である場合、正極へ移動可能なリチウムイオンの量が減ることで、十分な充放電容量が得られないことがある。500重量部より多い場合、硫黄及び炭素材料の正極に占める量が相対的に少なくなり、充放電効率が低下することがある。より好ましいLi2S−Mxyの量は、50〜200重量部の範囲である。 The amount of Li 2 S-M x S y, relative to the sulfur 100 parts by weight, preferably 10 to 500 parts by weight. When the amount is less than 10 parts by weight, a sufficient charge / discharge capacity may not be obtained due to a decrease in the amount of lithium ions that can move to the positive electrode. When the amount is more than 500 parts by weight, the amount of sulfur and carbon material in the positive electrode is relatively small, and the charge / discharge efficiency may be lowered. More preferable amount of Li 2 S-M x S y is in the range of 50 to 200 parts by weight.

(その他の成分)
原料混合物は、硫黄と、炭素材料と、Li2S−Mxyとを含むが、これら成分以外に、全固体リチウム二次電池に使用されている成分を含んでいてもよい。例えば、LiCoO2、LiMn24等の活物質が挙げられる。これら活物質は、その表面に、Ni、Mn、Fe、Coから選択される金属の硫化物による被膜を備えていてもよい。原料粒子に被膜を形成する方法としては、例えば、被膜の前駆体溶液中に原料粒子を浸漬し、次いで熱処理する方法、被膜の前駆体溶液を原料粒子に噴霧し、次いで熱処理する方法等が挙げられる。
また、結着剤が含まれていてもよい。結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン等が挙げられる。
(Other ingredients)
The raw material mixture contains sulfur, a carbon material, and Li 2 S—M x S y , but may contain components used in an all-solid lithium secondary battery in addition to these components. Examples thereof include active materials such as LiCoO 2 and LiMn 2 O 4 . These active materials may be provided with a film of a metal sulfide selected from Ni, Mn, Fe, and Co on the surface. Examples of the method of forming a film on the raw material particles include a method of immersing the raw material particles in a precursor solution of the film and then heat-treating, a method of spraying the precursor solution of the film onto the raw material particles, and then a heat-treatment. It is done.
Further, a binder may be included. Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethyl methacrylate, and polyethylene.

(メカニカルミリング処理)
メカニカルミリング処理は、所望の充放電特性が得られさえすれば、処理装置及び処理条件には特に限定されない。
処理装置としては、通常ボールミルが使用できる。ボールミルは、大きな機械的エネルギーが得られるため好ましい。ボールミルの中でも、遊星型ボールミルは、ポットが自転回転すると共に、台盤が公転回転するため、高い衝撃エネルギーを効率よく発生させることができるので、好ましい。
(Mechanical milling)
The mechanical milling process is not particularly limited to a processing apparatus and processing conditions as long as desired charge / discharge characteristics can be obtained.
As a processing apparatus, a ball mill can be used normally. A ball mill is preferable because large mechanical energy can be obtained. Among the ball mills, the planetary ball mill is preferable because the pot rotates and the base plate revolves and high impact energy can be generated efficiently.

処理条件は、使用する処理装置に応じて適宜設定できる。例えば、ボールミルを使用する場合、回転速度が大きいほど及び/又は処理時間が長いほど、原料混合物が均一に混合できる。なお、「及び/又は」は、A及び/又はBで表現すると、A、B又は、A及びBを意味する。具体的には、遊星型ボールミルを使用する場合、50〜600回転/分の回転速度、0.1〜10時間の処理時間、1〜100kWh/原料混合物1kgの条件が挙げられる。より好ましい処理条件としては、200〜500回転/分の回転速度、1〜5時間の処理時間、6〜50kWh/原料混合物1kgが挙げられる。   The processing conditions can be appropriately set according to the processing apparatus to be used. For example, when using a ball mill, the higher the rotational speed and / or the longer the processing time, the more uniformly the raw material mixture can be mixed. Note that “and / or” means A, B, or A and B when expressed as A and / or B. Specifically, when a planetary ball mill is used, conditions of a rotation speed of 50 to 600 revolutions / minute, a treatment time of 0.1 to 10 hours, and 1 to 100 kWh / kg of a raw material mixture are exemplified. More preferable processing conditions include a rotation speed of 200 to 500 rotations / minute, a processing time of 1 to 5 hours, and 6 to 50 kWh / kg of a raw material mixture.

メカニカルミリング処理は、3成分を同時に処理装置に入れた後、行なってもよく、2成分に対して行った後、処理物に残りの1成分を加え、更に行ってもよい。3成分同時に処理することが、より高い充放電容量を得られるため好ましい。
メカニカルミリング処理により得られた複合体は、例えばプレス成形することで、ペレット状の正極(成形体)とすることができる。ここで、正極は、アルミニウムや銅等の金属板からなる集電体上に形成されていてもよい。
The mechanical milling treatment may be performed after the three components are simultaneously added to the processing apparatus, or may be performed after the two components are added, and the remaining one component is added to the processed product. It is preferable to process the three components simultaneously because a higher charge / discharge capacity can be obtained.
The composite obtained by the mechanical milling process can be formed into a pellet-shaped positive electrode (molded body) by, for example, press molding. Here, the positive electrode may be formed on a current collector made of a metal plate such as aluminum or copper.

(全固体リチウム二次電池)
全固体リチウム二次電池は、正極、電解質層及び負極を備えている。
(1)電解質層
電解質層を構成する電解質には、特に限定されず、全固体リチウム二次電池に通常使用される電解質をいずれも使用できる。例えば、上記正極の説明において例示した電解質が挙げられる。なお、電解質層中、Li2S−Mxyが占める割合は、90重量%以上であることが好ましく、全量であることがより好ましい。電解質層の厚さは、5〜500μmであることが好ましく、20〜100μmであることがより好ましい。電解質層は、例えば、電解質をプレスすることで、ペレット状として得ることができる。
(All-solid lithium secondary battery)
The all solid lithium secondary battery includes a positive electrode, an electrolyte layer, and a negative electrode.
(1) Electrolyte layer It does not specifically limit to the electrolyte which comprises an electrolyte layer, All the electrolytes normally used for an all-solid-state lithium secondary battery can be used. For example, the electrolyte illustrated in description of the said positive electrode is mentioned. Incidentally, in the electrolyte layer, the proportion of the Li 2 S-M x S y is preferably 90 wt% or more, and more preferably the total amount. The thickness of the electrolyte layer is preferably 5 to 500 μm, and more preferably 20 to 100 μm. The electrolyte layer can be obtained as a pellet by, for example, pressing the electrolyte.

(2)負極
負極は、特に限定されず、全固体リチウム二次電池に通常使用される負極をいずれも使用できる。負極は、負極活物質のみからなっていてもよく、結着剤、導電剤、電解質等と混合されていてもよい。
負極活物質としては、Li、In、Sn等の金属、それらの合金、グラファイト、Li4/3Ti5/34、SnO等の種々の遷移金属酸化物等が挙げられる。
結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン等が挙げられる。
導電剤としては、天然黒鉛、人工黒鉛、アセチレンブラック、気相成長カーボンファィバ(VGCF)等が挙げられる。
電解質としては、電解質層に使用される電解質が挙げられる。
(2) Negative electrode A negative electrode is not specifically limited, Any negative electrode normally used for an all-solid lithium secondary battery can be used. The negative electrode may be composed of only the negative electrode active material, and may be mixed with a binder, a conductive agent, an electrolyte, and the like.
Examples of the negative electrode active material include metals such as Li, In, and Sn, alloys thereof, graphite, various transition metal oxides such as Li 4/3 Ti 5/3 O 4 , and SnO.
Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethyl methacrylate, and polyethylene.
Examples of the conductive agent include natural graphite, artificial graphite, acetylene black, and vapor grown carbon fiber (VGCF).
Examples of the electrolyte include an electrolyte used for an electrolyte layer.

負極は、例えば、負極活物質及び、任意に結着剤、導電剤、電解質等を混合し、得られた混合物をプレスすることで、ペレット状として得ることができる。また、負極活物質として金属又はその合金からなる金属シート(箔)を使用する場合、をそのまま使用可能である。
負極は、アルミニウム又は銅等の集電体の上に形成されていてもよい。
本発明の全固体リチウム二次電池は、例えば、正極、電解質層及び負極とを積層し、プレスすることにより得ることができる。
The negative electrode can be obtained in the form of pellets by, for example, mixing a negative electrode active material and optionally a binder, a conductive agent, an electrolyte, and the like, and pressing the obtained mixture. Moreover, when using the metal sheet (foil) which consists of a metal or its alloy as a negative electrode active material, can be used as it is.
The negative electrode may be formed on a current collector such as aluminum or copper.
The all solid lithium secondary battery of the present invention can be obtained, for example, by laminating and pressing a positive electrode, an electrolyte layer, and a negative electrode.

以下、実施例によって本発明を更に具体的に説明するが、本発明はこれらによりなんら制限されるものではない。
実施例1
硫黄、アセチレンブラック及び80Li2S−20P25(以下、SEという。80及び20はモル比)からなる原料を、それぞれ0.25g、0.25g及び0.5g(重量比25:25:50)秤量し、遊星型ボールミルに投入した。遊星型ボールミルとしては、Fritsch社製Pulverisette P−7を使用し、ポット及びボールは酸化ジルコニウム製であり、45mlのポット内に直径5mmのボールが160個入っているミルを使用した。使用した硫黄は、Aldrich社製硫黄(99.998%)であり、50μmの平均粒子径を有し、使用したアセチレンブラックは、電気化学工業社製デンカブラックであり、35nmの平均粒子径を有し、使用したSEは、以下の方法で合成され、5μmの平均粒子径を有していた。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1
Raw materials consisting of sulfur, acetylene black and 80Li 2 S-20P 2 S 5 (hereinafter referred to as SE; 80 and 20 are molar ratios) were respectively 0.25 g, 0.25 g and 0.5 g (weight ratio 25:25: 50) Weighed and put into a planetary ball mill. As the planetary ball mill, Pulverisete P-7 manufactured by Fritsch was used, and the pot and balls were made of zirconium oxide, and a mill containing 160 balls having a diameter of 5 mm in a 45 ml pot was used. The sulfur used was Aldrich's sulfur (99.998%), having an average particle size of 50 μm, and the acetylene black used was Denka Black, manufactured by Denki Kagaku Kogyo, having an average particle size of 35 nm. The SE used was synthesized by the following method and had an average particle size of 5 μm.

Li2S(フルウチ化学社製純度99.9%)及びP25(アルドリッチ社製純度99%)を80:20のモル比で遊星型ボールミルに投入した。投入後、メカニカルミリング処理することで、SEを得た。遊星型ボールミルは、Fritsch社製Pulverisette P−7を使用し、ポット及びボールは酸化アルミニウム製であり、45mlのポット内に直径10mmのボールが10個入っているミルを使用した。メカニカルミリング処理は、370rpmの回転速度、室温、乾燥窒素グローブボックス内で20時間行った。なお、この合成法は、Akitoshi Hayashi et al., Electrochemistry Communications 5 (2003) 111−114のExperimentalの記載に準じている。 Li 2 S (purity 99.9%, manufactured by Furuuchi Chemical Co., Ltd.) and P 2 S 5 (purity 99%, manufactured by Aldrich) were charged into a planetary ball mill at a molar ratio of 80:20. After the addition, SE was obtained by mechanical milling. As the planetary ball mill, Pulverisette P-7 manufactured by Fritsch was used. The pot and balls were made of aluminum oxide, and a mill containing 10 balls having a diameter of 10 mm in a 45 ml pot was used. The mechanical milling process was performed for 20 hours in a dry nitrogen glove box at a rotational speed of 370 rpm, room temperature. This synthesis method is described in Akitoshi Hayashi et al. , Electrochemistry Communications 5 (2003) 111-114.

遊星型ボールミルにより原料混合物をメカニカルミリグ処理することで複合体を得た。処理条件は、370回転/分、1時間、約50kWh/原料混合物1kgとした。
処理後の複合体10mgをプレス(圧力370MPa/cm2)することで直径10mm、厚さ約0.1mmのペレット(正極:成形体)を得た。
Li2S−P25からなる固体電解質(Li2SとP25との重量比1:4)80mgをプレス(圧力370MPa/cm2)することで直径10mm、厚さ約0.1mmのペレット(電解質層)を得た。
A composite was obtained by mechanically milling the raw material mixture with a planetary ball mill. The processing conditions were 370 rpm, 1 hour, and about 50 kWh / kg of raw material mixture.
10 mg of the composite after the treatment was pressed (pressure 370 MPa / cm 2 ) to obtain pellets (positive electrode: molded body) having a diameter of 10 mm and a thickness of about 0.1 mm.
By pressing 80 mg of a solid electrolyte composed of Li 2 S—P 2 S 5 (weight ratio of Li 2 S and P 2 S 5 of 1: 4) (pressure 370 MPa / cm 2 ), the diameter is 10 mm, and the thickness is about 0.1 mm. A 1 mm pellet (electrolyte layer) was obtained.

負極には、厚さ0.1mmのインジウムシートを使用した。
上記正極、電解質層及び負極を積層し、プレス(圧力250MPa/cm2)することで全固体リチウム二次電池を得た。
得られた二次電池を、25℃下、0.064mA/cm2の電流密度で充放電を繰り返した場合のサイクル数毎の充放電電位と充放電容量との関係を図1に示す。図1において、左側の縦軸はLi−In極に対する電位を、右側の縦軸はLi極に対する電位を示す。
An indium sheet having a thickness of 0.1 mm was used for the negative electrode.
The positive electrode, the electrolyte layer, and the negative electrode were laminated and pressed (pressure 250 MPa / cm 2 ) to obtain an all-solid lithium secondary battery.
FIG. 1 shows the relationship between the charge / discharge potential and the charge / discharge capacity for each number of cycles when the obtained secondary battery is repeatedly charged / discharged at 25 ° C. and a current density of 0.064 mA / cm 2 . In FIG. 1, the left vertical axis indicates the potential with respect to the Li-In electrode, and the right vertical axis indicates the potential with respect to the Li electrode.

実施例2
硫黄とアセチレンブラックとをメカニカルミリング処理し、この系にSEを投入し、更にメカニカルミリング処理したこと以外は実施例1と同様にして全固体リチウム二次電池を得た。
得られた二次電池を、25℃下、0.064mA/cm2の電流密度で充放電を繰り返した場合のサイクル数毎の充放電電位と充放電容量との関係を図1に示す。
Example 2
An all solid lithium secondary battery was obtained in the same manner as in Example 1 except that sulfur and acetylene black were mechanically milled, SE was added to this system, and mechanical milling was further performed.
FIG. 1 shows the relationship between the charge / discharge potential and the charge / discharge capacity for each number of cycles when the obtained secondary battery is repeatedly charged / discharged at 25 ° C. and a current density of 0.064 mA / cm 2 .

実施例2の電池を、25℃、電流密度1.28mA/cm2で400サイクル充放電後、25℃、電流密度0.64mA/cm2で充放電した。図2に、この充放電におけるサイクル数毎の放電容量及び充放電効率の関係を示す。1.28mA/cm2の高い電流密度で充放電を繰り返した後、0.64mA/cm2で充放電を100サイクル以上繰り返しても、放電容量を約1100mAh/gに維持可能であることが分かる。 A battery of Example 2, 25 ° C., after a current density 1.28mA / cm 2 400 cycles of charge and discharge, 25 ° C., was charged and discharged at a current density of 0.64mA / cm 2. FIG. 2 shows the relationship between the discharge capacity and the charge / discharge efficiency for each number of cycles in this charge / discharge. After repeated charge and discharge at high current density 1.28mA / cm 2, be repeated at 0.64mA / cm 2 charging and discharging 100 cycles or more, it can be seen it is possible maintain the discharge capacity of about 1100mAh / g .

比較例1
硫黄とアセチレンブラックとをメカニカルミリング処理し、処理後の混合物とSEとを乳鉢にて混合したこと以外は実施例1と同様にして全固体リチウム二次電池を得た。
得られた二次電池を、25℃下、0.064mA/cm2の電流密度で充放電を繰り返した場合のサイクル数毎の充放電電位と充放電容量との関係を図1に示す。
Comparative Example 1
An all-solid lithium secondary battery was obtained in the same manner as in Example 1 except that sulfur and acetylene black were subjected to mechanical milling treatment, and the treated mixture and SE were mixed in a mortar.
FIG. 1 shows the relationship between the charge / discharge potential and the charge / discharge capacity for each number of cycles when the obtained secondary battery is repeatedly charged / discharged at 25 ° C. and a current density of 0.064 mA / cm 2 .

比較例2
硫黄とSEとをメカニカルミリング処理し、処理後の混合物とアセチレンブラックとを乳鉢にて混合したこと以外は実施例1と同様にして全固体リチウム二次電池を得た。
得られた二次電池を、25℃下、0.064mA/cm2の電流密度で充放電を繰り返した場合のサイクル数毎の充放電電位と充放電容量との関係を図1に示す。
Comparative Example 2
An all-solid lithium secondary battery was obtained in the same manner as in Example 1 except that sulfur and SE were mechanically milled and the mixture after treatment and acetylene black were mixed in a mortar.
FIG. 1 shows the relationship between the charge / discharge potential and the charge / discharge capacity for each number of cycles when the obtained secondary battery is repeatedly charged / discharged at 25 ° C. and a current density of 0.064 mA / cm 2 .

図1から、硫黄、アセチレンブラック及びSEの3成分をメカニカルミリング処理することで、充放電容量が飛躍的に増加していることがわかる。また、実施例1と2とから、放電容量の方が、高いことがわかる。更に、実施例1と2とから、3成分を同時にメカニカルミリング処理する方が、高い充放電容量が得られることがわかる。   From FIG. 1, it can be seen that the charge / discharge capacity is dramatically increased by mechanically milling the three components of sulfur, acetylene black and SE. Further, it can be seen from Examples 1 and 2 that the discharge capacity is higher. Furthermore, it can be seen from Examples 1 and 2 that a higher charge / discharge capacity can be obtained by mechanically milling the three components simultaneously.

比較例3
3成分を乳鉢にて混合したこと以外は実施例1と同様にして全固体リチウム二次電池を得た。
実施例2、比較例1及び3の電池の充放電曲線を図3に示す。図3中、比較例1及び3の電池は、1回目の充放電曲線であり、実施例2の電池は、10回目の充放電曲線である。
図3から、硫黄、アセチレンブラック及びSEの3成分をメカニカルミリング処理することで、充放電の10回繰り返し後も充放電容量が飛躍的に増加していることがわかる。
Comparative Example 3
An all-solid lithium secondary battery was obtained in the same manner as in Example 1 except that the three components were mixed in a mortar.
The charge / discharge curves of the batteries of Example 2 and Comparative Examples 1 and 3 are shown in FIG. In FIG. 3, the batteries of Comparative Examples 1 and 3 are the first charge / discharge curve, and the battery of Example 2 is the tenth charge / discharge curve.
From FIG. 3, it can be seen that the charge / discharge capacity is dramatically increased even after 10 cycles of charge / discharge by mechanically milling the three components of sulfur, acetylene black and SE.

実施例3
硫黄、アセチレンブラック及びSEの重量比を15:15:70とし、メカニカルミリング処理時間を5時間としたこと以外は実施例1と同様にして全固体リチウム二次電池を得た。
得られた二次電池を、25℃下、0.064mA/cm2の電流密度で充放電を繰り返した場合のサイクル数毎の充放電電位と充放電容量との関係を図4に示す。図4には、実施例1の電池を同条件にて充放電を繰り返した場合のサイクル数毎の充放電電位と充放電容量との関係も合わせて示す。
Example 3
An all solid lithium secondary battery was obtained in the same manner as in Example 1 except that the weight ratio of sulfur, acetylene black and SE was 15:15:70 and the mechanical milling time was 5 hours.
FIG. 4 shows the relationship between the charge / discharge potential and the charge / discharge capacity for each number of cycles when the obtained secondary battery is repeatedly charged and discharged at 25 ° C. and a current density of 0.064 mA / cm 2 . FIG. 4 also shows the relationship between the charge / discharge potential and the charge / discharge capacity for each number of cycles when the battery of Example 1 is repeatedly charged and discharged under the same conditions.

実施例4
硫黄、アセチレンブラック及びSEの重量比を35:35:30とし、メカニカルミリング処理時間を5時間としたこと以外は実施例1と同様にして全固体リチウム二次電池を得た。
得られた二次電池を、25℃下、0.064mA/cm2の電流密度で充放電を繰り返した場合のサイクル数毎の充放電電位と充放電容量との関係を図4に示す。
Example 4
An all-solid lithium secondary battery was obtained in the same manner as in Example 1 except that the weight ratio of sulfur, acetylene black and SE was 35:35:30 and the mechanical milling time was 5 hours.
FIG. 4 shows the relationship between the charge / discharge potential and the charge / discharge capacity for each number of cycles when the obtained secondary battery is repeatedly charged and discharged at 25 ° C. and a current density of 0.064 mA / cm 2 .

実施例5
硫黄、アセチレンブラック及びSEの重量比を45:25:30とし、メカニカルミリング処理時間を5時間としたこと以外は実施例1と同様にして全固体リチウム二次電池を得た。
得られた二次電池を、25℃下、0.064mA/cm2の電流密度で充放電を繰り返した場合のサイクル数毎の充放電電位と充放電容量との関係を図4に示す。
Example 5
An all-solid lithium secondary battery was obtained in the same manner as in Example 1 except that the weight ratio of sulfur, acetylene black and SE was 45:25:30 and the mechanical milling time was 5 hours.
FIG. 4 shows the relationship between the charge / discharge potential and the charge / discharge capacity for each number of cycles when the obtained secondary battery is repeatedly charged and discharged at 25 ° C. and a current density of 0.064 mA / cm 2 .

実施例6
硫黄、アセチレンブラック及びSEの重量比を55:15:30とし、メカニカルミリング処理時間を5時間としたこと以外は実施例1と同様にして全固体リチウム二次電池を得た。
得られた二次電池を、25℃下、0.064mA/cm2の電流密度で充放電を繰り返した場合のサイクル数毎の充放電電位と充放電容量との関係を図4に示す。
図4から、実施例1及び3〜6の電池のいずれも十分な充放電容量を有していることが分かる。また、SE量が多い場合、充電容量の方が放電容量より多い傾向があり、硫黄量が多い場合、充放電容量が小さくなる傾向があることが分かる。
Example 6
An all-solid lithium secondary battery was obtained in the same manner as in Example 1 except that the weight ratio of sulfur, acetylene black and SE was 55:15:30, and the mechanical milling time was 5 hours.
FIG. 4 shows the relationship between the charge / discharge potential and the charge / discharge capacity for each number of cycles when the obtained secondary battery is repeatedly charged and discharged at 25 ° C. and a current density of 0.064 mA / cm 2 .
It can be seen from FIG. 4 that the batteries of Examples 1 and 3 to 6 have sufficient charge / discharge capacity. It can also be seen that when the SE amount is large, the charge capacity tends to be larger than the discharge capacity, and when the sulfur amount is large, the charge / discharge capacity tends to be small.

実施例7
メカニカルミリング処理時間を1時間又は10時間とすること以外は実施例5と同様にして全固体リチウム二次電池を得た。
得られた二次電池を、25℃下、0.064mA/cm2の電流密度で充放電を繰り返した場合のサイクル数毎の充放電電位と充放電容量との関係を図5に示す。図5には、実施例5のサイクル数毎の充放電電位と充放電容量との関係も合わせて示す。
図5から、どの処理時間でも高い充放電容量が得られている。中でも5時間前後が最も高い充放電容量が得られる処理時間であることが分かる。
Example 7
An all-solid lithium secondary battery was obtained in the same manner as in Example 5 except that the mechanical milling time was 1 hour or 10 hours.
FIG. 5 shows the relationship between the charge / discharge potential and the charge / discharge capacity for each number of cycles when the obtained secondary battery is repeatedly charged and discharged at 25 ° C. and a current density of 0.064 mA / cm 2 . FIG. 5 also shows the relationship between the charge / discharge potential and the charge / discharge capacity for each number of cycles in Example 5.
From FIG. 5, a high charge / discharge capacity is obtained at any processing time. In particular, it can be seen that around 5 hours is the processing time for obtaining the highest charge / discharge capacity.

実施例8
実施例7で高い容量が得られた電池を種々の条件で充放電に付した。結果を図6に示す。充放電条件は、80℃で12.8mA/cm2の電流密度、25℃で0.064mA/cm2の電流密度、0℃で0.064mA/cm2の電流密度、及び−20℃で0.064mA/cm2の電流密度とした。図6から、−20℃及び80℃の間の幅広い温度域で1000mAh/g以上の高い充放電容量が得られることが分かる。
同様の電池を、25℃で、3.8mA/cm2及び6.4mA/cm2の電流密度の充放電に付した。結果を図7に示す。図7から、1mA/cm2の高電流密度であっても400mAh/g以上の高い充放電容量が得られることが分かる。
Example 8
The battery having a high capacity in Example 7 was subjected to charge / discharge under various conditions. The results are shown in FIG. Charge and discharge conditions, the current density of 12.8 mA / cm 2 at 80 ° C., a current density of 0.064mA / cm 2 at 25 ° C., 0 at 0 ℃ current density of 0.064mA / cm 2, and at -20 ° C. The current density was 0.064 mA / cm 2 . FIG. 6 shows that a high charge / discharge capacity of 1000 mAh / g or more can be obtained in a wide temperature range between −20 ° C. and 80 ° C.
Similar cell, at 25 ° C., was subjected to charge and discharge current density of 3.8 mA / cm 2 and 6.4 mA / cm 2. The results are shown in FIG. From FIG. 7, it can be seen that a high charge / discharge capacity of 400 mAh / g or more can be obtained even at a high current density of 1 mA / cm 2 .

同様の電池を、25℃で、0.064mA/cm2、0.38mA/cm2及び0.64mA/cm2の電流密度の充放電サイクルに付した。結果を図8に示す。図8から、0.64mA/cm2の電流密度の充放電では、200サイクルの間、1000mAh/g以上の高い充放電容量が得られることが分かる。また、0.064mA/cm2及び0.38mA/cm2の電流密度の充放電では、より高い充放電容量が得られ、0.064mA/cm2の電流密度の充放電では、硫黄の理論容量に近い充放電容量が得られることが分かる。 Similar cell, at 25 ℃, 0.064mA / cm 2, was subjected to a charge-discharge cycle of the current density of 0.38mA / cm 2 and 0.64mA / cm 2. The results are shown in FIG. From FIG. 8, it can be seen that charge / discharge at a current density of 0.64 mA / cm 2 can provide a high charge / discharge capacity of 1000 mAh / g or more for 200 cycles. Further, the charge and discharge current density of 0.064mA / cm 2 and 0.38mA / cm 2, a higher charge-discharge capacity is obtained, the charge and discharge current density of 0.064mA / cm 2, the theoretical capacity of sulfur It can be seen that a charge / discharge capacity close to is obtained.

Claims (5)

硫黄と、100nm以下の平均粒子径の炭素材料と、Li2S−Mxy(MはP、Si、Ge、B、Alから選択され、x及びyは、Mの種類に応じて、化学量論比を与える整数である)で表される電解質とを含む原料混合物をメカニカルミリング処理に付すことで複合体を得た後、前記複合体を成形することで正極を得ることを特徴とする全固体リチウム二次電池用正極の製造方法。 Sulfur, a carbon material having an average particle diameter of 100 nm or less, and Li 2 S-M x S y (M is selected from P, Si, Ge, B, and Al, and x and y depend on the type of M, A composite obtained by subjecting a raw material mixture containing an electrolyte represented by (a stoichiometric ratio) to a mechanical milling process, and then obtaining the positive electrode by molding the composite. A method for producing a positive electrode for an all solid lithium secondary battery. 前記メカニカルミリング処理が、遊星型ボールミルを用いて、50〜600回転/分、0.1〜15時間、1〜100kWh/原料混合物1kgの条件下で行われる請求項1に記載の全固体リチウム二次電池用正極の製造方法。 2. The all-solid lithium secondary battery according to claim 1, wherein the mechanical milling process is performed using a planetary ball mill under conditions of 50 to 600 revolutions / minute, 0.1 to 15 hours, and 1 to 100 kWh / kg of a raw material mixture. A method for producing a positive electrode for a secondary battery. 前記硫黄、炭素材料及び電解質が、100:10〜200:10〜500(重量比)の割合で前記原料混合物中に含まれる請求項1又は2に記載の全固体リチウム二次電池用正極の製造方法。 The manufacturing of the positive electrode for an all solid lithium secondary battery according to claim 1 or 2, wherein the sulfur, the carbon material, and the electrolyte are contained in the raw material mixture in a ratio of 100: 10 to 200: 10 to 500 (weight ratio). Method. 前記Li2S−Mxyが、Li2SとMxyとを50:50〜90:10(モル比)の割合で備える請求項1〜3のいずれか1つに記載の全固体リチウム二次電池用正極の製造方法。 The Li 2 S-M x S y comprises Li 2 S and M x S y in a ratio of 50:50 to 90:10 (molar ratio). A method for producing a positive electrode for a solid lithium secondary battery. 硫黄と、100nm以下の平均粒子径の炭素材料と、Li2S−Mxy(MはP、Si、Ge、B、Alから選択され、x及びyは、Mの種類に応じて、化学量論比を与える整数である)で表される電解質とを含む原料混合物をメカニカルミリング処理に付することで得られた複合体の成形体からなることを特徴とする全固体リチウム二次電池用正極。 Sulfur, a carbon material having an average particle diameter of 100 nm or less, and Li 2 S-M x S y (M is selected from P, Si, Ge, B, and Al, and x and y depend on the type of M, An all-solid-state lithium secondary battery comprising a composite molded body obtained by subjecting a raw material mixture containing an electrolyte represented by (a stoichiometric ratio) to a mechanical milling process Positive electrode.
JP2010042782A 2010-02-26 2010-02-26 Positive electrode for all-solid lithium secondary battery and method for producing the same Active JP5388069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010042782A JP5388069B2 (en) 2010-02-26 2010-02-26 Positive electrode for all-solid lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010042782A JP5388069B2 (en) 2010-02-26 2010-02-26 Positive electrode for all-solid lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011181260A JP2011181260A (en) 2011-09-15
JP5388069B2 true JP5388069B2 (en) 2014-01-15

Family

ID=44692585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010042782A Active JP5388069B2 (en) 2010-02-26 2010-02-26 Positive electrode for all-solid lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5388069B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190051890A1 (en) * 2017-08-09 2019-02-14 Toyota Jidosha Kabushiki Kaisha Cathode mixture and method for producing the same
US20190372107A1 (en) * 2018-06-01 2019-12-05 Toyota Jidosha Kabushiki Kaisha Cathode mixture, all solid state battery, method for producing cathode mixture, and method for producing all solid state battery
US11329276B2 (en) 2018-11-27 2022-05-10 Toyota Jidosha Kabushiki Kaisha Cathode mixture, all solid state battery, and method for producing cathode mixture
US11495790B2 (en) 2018-06-01 2022-11-08 Toyota Jidosha Kabushiki Kaisha Cathode mixture and method for producing the same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620772B2 (en) 2010-12-24 2017-04-11 Idemitsu Kosan Co., Ltd. Positive electrode material containing a composite of sulfur and a porous conductive substance, and glass or glass ceramic particles for lithium ion batteries, and lithium ion battery
JP5864993B2 (en) * 2011-10-04 2016-02-17 出光興産株式会社 COMPOSITE ELECTRODE MATERIAL, MANUFACTURING METHOD THEREOF, AND LITHIUM BATTERY USING THE COMPOSITE ELECTRODE MATERIAL
JP6203474B2 (en) * 2011-11-24 2017-09-27 出光興産株式会社 Electrode material, electrode and lithium ion battery using the same
JP2013114966A (en) * 2011-11-30 2013-06-10 Idemitsu Kosan Co Ltd Electrolyte sheet
JP6123323B2 (en) * 2012-02-14 2017-05-10 トヨタ自動車株式会社 Positive electrode composition
JP5953966B2 (en) * 2012-06-13 2016-07-20 ナガセケムテックス株式会社 Positive electrode composite
JP6108267B2 (en) * 2012-12-19 2017-04-05 ナガセケムテックス株式会社 Positive electrode mixture and all-solid-state lithium-sulfur battery
JP6061139B2 (en) * 2013-02-20 2017-01-18 ナガセケムテックス株式会社 Method for producing positive electrode mixture for all-solid-state lithium-sulfur battery
EP3012887B1 (en) * 2013-06-21 2017-10-18 Nagase ChemteX Corporation Positive electrode mixture and all-solid-state lithium sulfur cell
JP6292436B2 (en) * 2013-10-02 2018-03-14 ナガセケムテックス株式会社 Positive electrode mixture and all-solid-state lithium-sulfur battery
JP6380884B2 (en) * 2013-10-16 2018-08-29 ナガセケムテックス株式会社 Positive electrode mixture and all-solid-state sodium-sulfur battery
JP6380883B2 (en) 2013-10-16 2018-08-29 ナガセケムテックス株式会社 Positive electrode mixture, method for producing the same, and all solid-state lithium-sulfur battery
JP6392576B2 (en) * 2014-08-06 2018-09-19 日本特殊陶業株式会社 Lithium battery
JP6444673B2 (en) * 2014-09-17 2018-12-26 古河機械金属株式会社 Positive electrode material, positive electrode, lithium ion battery, and method for manufacturing positive electrode material
JP6349211B2 (en) * 2014-09-17 2018-06-27 古河機械金属株式会社 Positive electrode material, positive electrode, and lithium ion battery
JP2016146365A (en) * 2016-05-18 2016-08-12 出光興産株式会社 Electrode material and lithium ion battery using the same
JP6257698B2 (en) * 2016-05-23 2018-01-10 出光興産株式会社 Method for producing laminate having electrode material layer and electrolyte layer
JP6589802B2 (en) * 2016-10-05 2019-10-16 トヨタ自動車株式会社 Positive electrode for all-solid-state lithium-sulfur batteries
JP6404530B1 (en) 2016-12-26 2018-10-10 昭和電工株式会社 All-solid-state lithium ion battery
JP7077793B2 (en) * 2017-08-09 2022-05-31 トヨタ自動車株式会社 Positive electrode mixture and its manufacturing method
JP6715913B2 (en) * 2018-11-28 2020-07-01 古河機械金属株式会社 Positive electrode material, positive electrode, lithium ion battery, and method for manufacturing positive electrode material
JP7255276B2 (en) * 2019-03-25 2023-04-11 トヨタ自動車株式会社 Positive electrode mixture, all-solid battery, and method for producing positive electrode mixture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095243A (en) * 2002-08-30 2004-03-25 Shinya Machida Lithium secondary battery using sulfur as positive electrode active material
JP2010095390A (en) * 2008-09-16 2010-04-30 Tokyo Institute Of Technology Mesoporous carbon composite material and secondary battery using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190051890A1 (en) * 2017-08-09 2019-02-14 Toyota Jidosha Kabushiki Kaisha Cathode mixture and method for producing the same
US11437612B2 (en) * 2017-08-09 2022-09-06 Toyota Jidosha Kabushiki Kaisha Cathode mixture and method for producing the same
US20190372107A1 (en) * 2018-06-01 2019-12-05 Toyota Jidosha Kabushiki Kaisha Cathode mixture, all solid state battery, method for producing cathode mixture, and method for producing all solid state battery
US11075375B2 (en) * 2018-06-01 2021-07-27 Toyota Jidosha Kabushiki Kaisha Cathode mixture, all solid state battery, method for producing cathode mixture, and method for producing all solid state battery
US11495790B2 (en) 2018-06-01 2022-11-08 Toyota Jidosha Kabushiki Kaisha Cathode mixture and method for producing the same
US11329276B2 (en) 2018-11-27 2022-05-10 Toyota Jidosha Kabushiki Kaisha Cathode mixture, all solid state battery, and method for producing cathode mixture

Also Published As

Publication number Publication date
JP2011181260A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5388069B2 (en) Positive electrode for all-solid lithium secondary battery and method for producing the same
Yi et al. Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries
JP6529508B2 (en) Positive electrode for all solid secondary battery, manufacturing method thereof and all solid secondary battery
JP5273931B2 (en) Negative electrode active material and method for producing the same
Manthiram Materials challenges and opportunities of lithium ion batteries
CN107017388A (en) A kind of preparation method of composite positive pole for solid lithium ion battery
JP5682318B2 (en) All solid battery
JP5686300B2 (en) Solid electrolyte material and all solid lithium secondary battery
JP6337852B2 (en) Solid electrolyte material and all solid lithium battery
JPWO2018193994A1 (en) All-solid-state lithium-ion secondary battery
JP4496366B2 (en) Negative electrode material for polymer solid electrolyte lithium secondary battery and method for producing the same
WO2013141241A1 (en) Solid-state electrolyte layer, and all-solid-state lithium secondary battery
JP2013222501A (en) Positive electrode for all-solid-state lithium secondary battery and manufacturing method therefor
JP6648649B2 (en) Manufacturing method of all solid lithium sulfur battery
JP7006510B2 (en) Positive electrode mixture and its manufacturing method
JPWO2014073469A1 (en) Positive electrode material, all solid state battery, and manufacturing method thereof
KR20180032988A (en) cathode active material, method of preparing the cathode active material, and all solid state battery comprising the same
WO2020034875A1 (en) Sulfur-based positive electrode active material for use in solid-state battery, preparation for material, and applications thereof
JP2017157473A (en) Lithium ion secondary battery
JP6273868B2 (en) Negative electrode active material for power storage device and method for producing the same
JP2021026836A (en) Positive electrode mixture material
KR101497824B1 (en) Electrode for a lithium secondary battery, method of forming the same and lithium secondary battery
JP2020115425A (en) Sulfide solid electrolyte particle and all-solid battery
CN108666548A (en) A kind of preparation method of conductive polymer polymer poly 1,3- diacetylene-benzene coated LiFePO 4 for lithium ion batteries
JP2015072816A (en) Capacity improvement method of all-solid-state secondary battery and all-solid-state secondary battery having enhanced capacity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R150 Certificate of patent or registration of utility model

Ref document number: 5388069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250