JPH03159905A - Production of sodium hydrosulfide and production equipment - Google Patents

Production of sodium hydrosulfide and production equipment

Info

Publication number
JPH03159905A
JPH03159905A JP29937489A JP29937489A JPH03159905A JP H03159905 A JPH03159905 A JP H03159905A JP 29937489 A JP29937489 A JP 29937489A JP 29937489 A JP29937489 A JP 29937489A JP H03159905 A JPH03159905 A JP H03159905A
Authority
JP
Japan
Prior art keywords
absorption tower
hydrogen sulfide
absorption
amount
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29937489A
Other languages
Japanese (ja)
Other versions
JP2796746B2 (en
Inventor
Takashi Sasaki
孝 佐々木
Takehiko Takeda
武田 威彦
Takayoshi Fujii
藤井 孝義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP29937489A priority Critical patent/JP2796746B2/en
Publication of JPH03159905A publication Critical patent/JPH03159905A/en
Application granted granted Critical
Publication of JP2796746B2 publication Critical patent/JP2796746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To continuously obtain highly purified sodium hydrosulfide from raw material gas containing hydrogen sulfide without generation of environmental pollution by combining a first absorbing tower having a bubble tower structure and a second absorbing tower having a storage tank storing a large amount of an absorbing solution. CONSTITUTION:Raw material gas 11 containing hydrogen sulfide is continuously introduced into a first absorbing tower 1 having a bubble tower structure from a lower part of said tower and brought into contact with an absorbing solution 18 continuously introduced from an upper part of the first absorbing tower 1 and containing caustic soda, etc., in an amount lesser than a stoichiometric amount required for reacting whole hydrogen sulfide contained in the raw material gas 11, then sodium hydrosulfide is generated and recovered. On the other hand, gas 12 containing residual hydrogen sulfide is taken out from the upper part of the first absorbing tower 1 and introduced into the second absorbing tower 2 having a storage tank 3 storing a large amount of the absorbing solution, then brought into contact with excess amount of the absorbing solution. Thus, a part of the absorbing solution 18 used in the second absorbing tower 2 is fed to the first absorbing tower 1 and simultaneously a fresh absorbing solution 14 is supplied to the second absorbing tower 2 from outside of said system.

Description

【発明の詳細な説明】 イ.発明の目的 [産業上の利用分野] 本発明は、硫化ソーダを実質的に含まない高純度の水硫
化ソーダを製造すると同時に排出ガス中に含まれて放出
される硫化水素を低減する方法を提供するものである。
[Detailed description of the invention] a. Purpose of the invention [Field of industrial application] The present invention provides a method for producing high-purity sodium hydrogen sulfide that is substantially free of sodium sulfide and at the same time reducing hydrogen sulfide contained in exhaust gas and released. It is something to do.

[従来の技術] 苛性ソーダ又は硫化ソーダの水溶液に硫化水素を吸収さ
せて水硫化ソーダを製造する方法は以前から知られてい
る。
[Prior Art] A method for producing sodium bisulfide by absorbing hydrogen sulfide into an aqueous solution of caustic soda or sodium sulfide has been known for some time.

一例をあげると、特公昭37− 6501号では石油分
解ガス中に含まれる硫化水素を石油精製工程中において
生ずる苛性ソーダ廃液に吸収させて水硫化ソーダを製造
している。
For example, in Japanese Patent Publication No. 37-6501, hydrogen sulfide contained in petroleum cracked gas is absorbed into caustic soda waste liquid produced during the petroleum refining process to produce sodium hydrogen sulfide.

このような製造方法においては、環境を保護する観点か
ら排出ガスに同伴する硫化水素の放出を抑える必要があ
る。
In such a manufacturing method, from the viewpoint of protecting the environment, it is necessary to suppress the release of hydrogen sulfide accompanying the exhaust gas.

このため特公昭38−11951号にみられるように、
廃苛性ソーダ液を適宜の位置まで仕込んだ吸収塔を数基
設置して、最前段の吸収塔の液中に硫化水素を含むガス
を送入し、未吸収ガス分を次段の吸収塔に順に送り、最
前段吸収塔より硫化水素の飽和した液を抜き出して新液
と更新し、この吸収塔を最後段にして第2段目の吸収塔
を最前段に充てて同様に運転をする回分式処理装置、或
はラッシヒリングを充填した吸収塔を数基設置して最前
段の吸収塔下部より硫化水素を含むガスを連続的に送入
し塔頂の排出口を経て次段に順に送り、一方廃苛性ソー
ダ液を最後段の吸収塔上部より連続的に滴下し、ボンブ
循環しながら一部を前段の吸収塔に順に送り最前段吸収
塔より水硫化ソーダを溶液として取り出す連続式処理装
置が提案されている。特開昭59−26902号には、
硫化水素中に含まれる炭酸ガスを分離除去しながら硫化
水素と苛性ソーダ水溶液を反応させて水硫化ソーダ水溶
液を製造するに際して、第1気泡槽、第2気泡槽及びラ
ッシヒリングを充填した吸収塔を直列に設けて第1気泡
槽の底部より生成液を抜き出す方法が示されている。
For this reason, as seen in Special Publication No. 38-11951,
Several absorption towers filled with waste caustic soda liquid are installed at appropriate positions, and gas containing hydrogen sulfide is fed into the liquid in the first absorption tower, and the unabsorbed gas is transferred to the next absorption tower in order. A batch type system in which the liquid saturated with hydrogen sulfide is extracted from the first-stage absorption tower and replaced with new liquid, and this absorption tower is used as the last stage, and the second-stage absorption tower is used as the first stage and operated in the same manner. Several absorption towers filled with treatment equipment or Raschig rings are installed, and gas containing hydrogen sulfide is continuously fed from the lower part of the first absorption tower and sequentially sent to the next stage through the exhaust port at the top of the tower. A continuous treatment device has been proposed in which waste caustic soda liquid is continuously dripped from the top of the last stage absorption tower, and a portion is sequentially sent to the previous stage absorption tower while circulating in a bomb, and sodium hydrosulfide is taken out as a solution from the first stage absorption tower. ing. In Japanese Patent Publication No. 59-26902,
When producing a sodium hydrogen sulfide aqueous solution by reacting hydrogen sulfide with a caustic soda aqueous solution while separating and removing carbon dioxide contained in the hydrogen sulfide, an absorption tower filled with a first bubble tank, a second bubble tank, and a Raschig ring are connected in series. A method is shown in which the produced liquid is extracted from the bottom of the first bubble tank.

しかしこれらの方法においては、製品水硫化ソーダ中に
苛性ソーダ又は硫化ソーダが混入するのを避けることが
できなかった。
However, in these methods, it was not possible to avoid the contamination of caustic soda or sodium sulfide into the product sodium hydrogen sulfide.

水硫化ソーダは染料及び中間体の還元、加硫、皮革の脱
毛、ビスコースレーヨンの脱硫、硫化染色、パルブ蒸解
剤、浮遊選鉱助剤など広い分野で使用されている。市販
の水硫化ソーダは不純物として硫化ソーダをかなり含ん
でいるが、上記のような用途に対しては特段の問題を生
じていない。
Sodium hydrosulfide is used in a wide range of fields, including reduction of dyes and intermediates, vulcanization, hair removal of leather, desulfurization of viscose rayon, sulfur dyeing, pulp digester, and flotation aid. Although commercially available sodium hydrogen sulfide contains a considerable amount of sodium sulfide as an impurity, it does not pose any particular problem for the above-mentioned uses.

しかしながら、有機硫黄化合物の合成などの原料として
使用しようとすると副生成物などの生成により製品の品
質上の問題が生じるために硫化ソーダを実質的に含まな
い高純度の水硫化ソーダが求められるようになってきた
However, when trying to use it as a raw material for the synthesis of organic sulfur compounds, product quality problems arise due to the formation of by-products, so there is a need for high-purity sodium hydrogen sulfide that does not substantially contain sodium sulfide. It has become.

苛性ソーダ( NaO■)または硫化ソーダ( Nat
S)と硫化水素( H.S)を反応させて水硫化ソーダ
(NaSH)を製造する反応は 2NaOH + Has−+NaJ + 2HiO  
(11Mass + His  ”  2NaSH  
   (21で表わされる。即ち苛性ソーダとの反応で
は、まず (1)式が進行して硫化ソーダが生成した後
 (2)式により硫化ソーダが水硫化ソーダに変換され
ると言われている。
Caustic soda (NaO■) or soda sulfide (Nat
The reaction to produce sodium hydrogen sulfide (NaSH) by reacting S) with hydrogen sulfide (H.S) is 2NaOH + Has- + NaJ + 2HiO
(11Mass + His” 2NaSH
(21) That is, in the reaction with caustic soda, it is said that equation (1) first proceeds to produce sodium sulfide, and then soda sulfide is converted to sodium hydrogen sulfide by equation (2).

(11式と(2)式をまとめると(3)式となる。(When formula 11 and formula (2) are combined, formula (3) is obtained.

NaOH  +  Has   −I    NaSH
  +  HtO     (31出発原料が硫化ソー
ダの場合には(2)式に従って水硫化ソーダが生成する
NaOH + Has-I NaSH
+ HtO (31 When the starting material is soda sulfide, sodium hydrogen sulfide is produced according to equation (2).

苛性ソーダ及び/又は硫化ソーダと硫化水素を反応させ
て水硫化ソーダを製造する場合、硫化ソーダを含まない
高純度の水硫化ソーダを製造し、かつ未反応の硫化水素
の放出を避けるためには、原料である苛性ソーダ及び/
又は硫化ソーダと硫化水素の供給量の比を一定に保つこ
とが必要となる。苛性ソーダ又は硫化ソーダが過剰な場
合には(3)又は (2)式の反応が完結せず、苛性ソ
ーダ又は硫化ソーダが製品の中に混在することになり、
一方硫化水素が過剰であれば排ガス中に硫化水素が残留
し系外に放出されてしまうからである。
When producing sodium bisulfide by reacting caustic soda and/or sodium sulfide with hydrogen sulfide, in order to produce high-purity sodium bisulfide that does not contain sodium sulfide and to avoid releasing unreacted hydrogen sulfide, Caustic soda and/or raw materials
Alternatively, it is necessary to keep the ratio of supply amounts of sodium sulfide and hydrogen sulfide constant. If there is an excess of caustic soda or sodium sulfide, the reaction of formula (3) or (2) will not be completed, and caustic soda or soda sulfide will be mixed in the product.
On the other hand, if hydrogen sulfide is in excess, hydrogen sulfide will remain in the exhaust gas and be released outside the system.

ソーダと硫化水素の供給比は、(2)及び(3)式から
l . O  mol/molとなる。ソーダの供給流
量、ソーダ濃度、原料ガス供給流量及び原料硫化水素濃
度が変動するとこの比は変化するので、正確に1.0に
保った運転を行うことは困難である。
The supply ratio of soda and hydrogen sulfide is calculated from equations (2) and (3) by l. O mol/mol. Since this ratio changes when the soda supply flow rate, soda concentration, raw material gas supply flow rate, and raw material hydrogen sulfide concentration fluctuate, it is difficult to maintain the ratio accurately at 1.0.

従来法では、排ガスに同伴されて放出される硫化水素量
の低減化や不純物の少ない水硫化ソーダを製造するため
には、吸収塔を3基以上必要なため、製造のコスト高や
フロースキームが複雑とならざるを得ない。また原料ガ
ス流量、原料ガスの硫化水素濃度、ソーダの供給流量や
ソーダ濃度の変動に対して充分対処しえる方法とは必ず
しも言えない。
Conventional methods require three or more absorption towers in order to reduce the amount of hydrogen sulfide emitted along with the exhaust gas and to produce sodium hydrogen sulfide with few impurities, resulting in high production costs and a complicated flow scheme. It has to be complicated. Furthermore, it cannot be said that this method can sufficiently cope with fluctuations in the raw material gas flow rate, the hydrogen sulfide concentration of the raw material gas, the soda supply flow rate, and the soda concentration.

【発明が解決しようとする課題] 本発明は、苛性ソーダ及び/又は硫化ソーダと硫化水素
を反応させて水硫化ソーダを製造するにあたり、硫化ソ
ーダを含まない高純度の水硫化ソーダを製造し、かつ未
反応の硫化水素の系外への放出を低減することができる
水硫化ソーダの製造方法及び製造装置を提供することを
目的とする。
[Problems to be Solved by the Invention] The present invention is directed to producing high-purity sodium hydrogen sulfide that does not contain sodium sulfide when producing sodium hydrogen sulfide by reacting caustic soda and/or sodium sulfide with hydrogen sulfide, and It is an object of the present invention to provide a method and apparatus for producing sodium hydrogen sulfide that can reduce the release of unreacted hydrogen sulfide to the outside of the system.

ロ.発明の構成 【課題を解決するための手段] 本発明による水硫化ソーダの製造法は、■気泡塔構造を
有する第1吸収塔の下部から硫化水素を含む原料ガスを
連続的に導入し、第1吸収塔の上部から連続的に導入さ
れ且つ前記連続的に導入される原料ガス中に含まれる硫
化水素を全量反応させるに必要な化学量論量よりも少な
い量の苛性ソーダ及び/又は硫化ソーダを含む吸収液と
接触させて水硫化ソーダを生成させ、水硫化ソーダを含
む反応生成液を第1吸収塔の底部から連続的に排出し、
■第1吸収塔の頂部から排出される残留硫化水素を含有
するガスを塔内又は塔外に大量の吸収液を保持する貯留
槽を有する第2吸収塔に導入して前記原料ガス中に含ま
れる硫化水素を全量反応させるに必要な化学量論量より
も過剰な量の苛性ソーダ及び/又は硫化ソーダを含む吸
収液と接触させ、第2吸収塔の頂部から硫化水素の除去
されたガスを排出し、◎第2吸収塔で使用した吸収液の
一部を第1吸収塔で使用する吸収液として供給し、■系
外から新鮮な苛性ソーダ及び/又は硫化ソーダを含む吸
収液を第2吸収塔で使用する吸収液に追加供給すること
を特徴とする。
B. Structure of the Invention [Means for Solving the Problems] The method for producing sodium hydrogen sulfide according to the present invention consists of: (1) continuously introducing a raw material gas containing hydrogen sulfide from the lower part of a first absorption tower having a bubble column structure; 1 Continuously introduced from the upper part of the absorption tower and containing an amount of caustic soda and/or soda sulfide in an amount smaller than the stoichiometric amount required to react the entire amount of hydrogen sulfide contained in the continuously introduced raw material gas. contact with the absorbing liquid containing sodium hydrogen sulfide to produce sodium hydrogen sulfide, and continuously discharging the reaction product liquid containing sodium hydrogen sulfide from the bottom of the first absorption tower,
■The gas containing residual hydrogen sulfide discharged from the top of the first absorption tower is introduced into the second absorption tower, which has a storage tank that holds a large amount of absorption liquid inside or outside the tower, so that the gas containing residual hydrogen sulfide is contained in the raw material gas. The hydrogen sulfide removed is brought into contact with an absorption liquid containing caustic soda and/or sodium sulfide in an excess amount than the stoichiometric amount required to react the entire amount of hydrogen sulfide, and the gas from which hydrogen sulfide has been removed is discharged from the top of the second absorption tower. ◎ A part of the absorption liquid used in the second absorption tower is supplied as the absorption liquid used in the first absorption tower, and ◎ Absorption liquid containing fresh caustic soda and/or sodium sulfide is supplied from outside the system to the second absorption tower. It is characterized by being additionally supplied to the absorption liquid used in

また本発明にかかわる水硫化ソーダの製造装置は下部に
硫化水素を含む原料ガスの送入管(ラインl1)、底部
に反応生成液の排出管(ラインl9)、頂部に未反応ガ
ス排出管(ライン12)、上部に下記第2吸収塔で使用
した吸収液の一部を供給する供給管(ライン18)を備
えた気泡塔構造を有する第1吸収塔(1)、頂部にガス
の排出管(ラインl3)、その下方に第1吸収塔の頂部
から排出されるガスの送入管(ライン12)を備え、塔
内又は塔外に大量の吸収液を保持する貯留槽(3)を有
する第2吸収塔(2)及び新鮮な吸収液を第2吸収塔の
吸収液として追加供給する供給管(ライン14)より構
成され、且つ第1吸収塔頂部から排出される未反応ガス
中の硫化水素濃度を検出しその値が一定値となるよう第
2吸収塔から第1吸収塔への吸収液の供給量を制御する
機構(濃度計2−−一一収液供給制御弁22)、第1吸
収塔の吸収液が一定液面を保持するよう第1吸収塔の吸
収液を系外へ排出する制御機構(液面計23一一一一排
出弁24)及び第2眼収塔の塔内又は塔外に設けた貯留
槽の液面が一定液面を保持するよう新鮮な吸収液を第2
吸収塔の吸収液として追加供給する制御機構(液面計2
5−一−一追加吸収液供給弁26)を備えていることを
特徴とする。
In addition, the soda hydrogen sulfide manufacturing apparatus according to the present invention has a feed pipe (line 11) for raw material gas containing hydrogen sulfide at the bottom, a discharge pipe (line 19) for the reaction product liquid at the bottom, and an unreacted gas discharge pipe (line 19) at the top. line 12), a first absorption tower (1) with a bubble column structure equipped with a supply pipe (line 18) at the top that supplies a part of the absorption liquid used in the second absorption tower below, a gas discharge pipe at the top (Line 13), below which is an inlet pipe (Line 12) for gas discharged from the top of the first absorption tower, and has a storage tank (3) that holds a large amount of absorption liquid inside or outside the tower. It is composed of a second absorption tower (2) and a supply pipe (line 14) for additionally supplying fresh absorption liquid as absorption liquid to the second absorption tower, and is sulfurized in the unreacted gas discharged from the top of the first absorption tower. A mechanism for detecting the hydrogen concentration and controlling the amount of absorption liquid supplied from the second absorption tower to the first absorption tower so that the value becomes a constant value (concentration meter 2--11 collected liquid supply control valve 22), A control mechanism for discharging the absorption liquid of the first absorption tower to the outside of the system so that the absorption liquid of the first absorption tower maintains a constant level (level gauge 23, discharge valve 24), and a tower of the second absorption tower. Fresh absorption liquid is added to the second tank so that the liquid level in the storage tank installed inside or outside the tower remains constant.
Control mechanism for additionally supplying absorption liquid to the absorption tower (level gauge 2)
5-1-1 Additional absorption liquid supply valve 26) is provided.

以下添付図面を用いて本発明を具体的に説明する。なお
添付図面においては、煩雑さを避けるために、反応熱除
去のための熱交換器は省略してある。
The present invention will be specifically described below using the accompanying drawings. Note that in the attached drawings, a heat exchanger for removing reaction heat is omitted to avoid complexity.

第1図は本発明の実施態様の一つの例を示すもので、第
1吸収塔lは気泡塔であり、下部に硫化水素を含む原料
ガスの送入管(ライン1l)、底部に反応生成液を排出
する排出管(ライン19)頂部に未反応ガスを排出する
排出管(ライン12)及び上部に第2吸収塔2の吸収液
の一部を供給する供給管(ライン18)を備えている。
FIG. 1 shows one example of the embodiment of the present invention, in which the first absorption tower 1 is a bubble tower, with a feeding pipe (line 1 1) for feed gas containing hydrogen sulfide at the bottom, and a reaction product at the bottom. A discharge pipe (line 19) for discharging the liquid, a discharge pipe (line 12) for discharging unreacted gas at the top, and a supply pipe (line 18) for supplying a part of the absorbed liquid of the second absorption tower 2 at the top. There is.

第2吸収塔2は塔内下部に苛性ソーダ及び/又は硫化ソ
ーダを含む吸収液を大量保持する貯留槽3を有する充填
塔であるり、頂部にガス排出管(ラインl1 1 3)を備え、このガス排出管の下方に第1吸収塔の頂部
から排出されるガスの送入管(ライン12・・・第1吸
収塔の未反応ガス排出管からのライン)を備えている。
The second absorption tower 2 is a packed tower having a storage tank 3 for holding a large amount of absorption liquid containing caustic soda and/or sodium sulfide in the lower part of the tower, and is equipped with a gas discharge pipe (line l1 1 3) at the top. An inlet pipe (line 12...a line from the unreacted gas discharge pipe of the first absorption tower) for gas discharged from the top of the first absorption tower is provided below the gas discharge pipe.

さらに新鮮な吸収液を第2吸収塔の吸収液として追加供
給するための供給管(ライン14)が、貯留槽からの吸
収液の循環ラインl7と合流し、ラインl5を介して第
2吸収塔に導かれている。
Furthermore, a supply pipe (line 14) for additionally supplying fresh absorption liquid as absorption liquid to the second absorption tower merges with the absorption liquid circulation line 17 from the storage tank, and passes through line 15 to the second absorption tower. guided by.

第2吸収塔で使用した吸収液の一部、すなわち貯留槽3
に保持されている吸収液の1部はラインl8を通して第
1吸収塔へ供給される。
Part of the absorption liquid used in the second absorption tower, that is, storage tank 3
A portion of the absorption liquid retained in the absorption liquid is supplied to the first absorption tower through line 18.

第1吸収塔1は気泡塔を使用することが必要である。即
ち第1吸収塔では吸収液中の苛性ソーダ及び/又は硫化
ソーダ含有量が少ないため反応速度が液の滞留時間に支
配されるようになるので、充填塔や棚段落を使用すると
気泡塔に比べて非常に高い吸収塔高が必要となり、実用
的でない。
It is necessary to use a bubble column as the first absorption column 1. In other words, in the first absorption tower, since the content of caustic soda and/or sodium sulfide in the absorption liquid is small, the reaction rate is controlled by the residence time of the liquid, so using a packed tower or tray stage is more effective than using a bubble column. This requires a very high absorption tower height, which is not practical.

第2吸収塔の形式は気泡塔でも、充填塔でも、棚段塔で
も良く、系の圧力損失の許容量や気液接触性能の特性に
よって選択すればよいが、第1図1 2 では充填塔を用いた場合について説明する。
The type of the second absorption tower may be a bubble column, a packed column, or a tray column, and it may be selected depending on the allowable pressure loss of the system and the characteristics of gas-liquid contact performance. We will explain the case using .

気泡塔構造を有する第1吸収塔1の下部からライン1l
より硫化水素を含む原料ガスを連続的に導入し、第1吸
収塔の上部からラインl8により連続的に導入される苛
性ソーダ及び/又は硫化ソーダを含む吸収液と接触させ
て水硫化ソーダを生成させ、水硫化ソーダを含む反応生
成液を第1吸収塔の底部からボンブ5、ライン19によ
り連続的に排出し製品化する。
Line 1l from the bottom of the first absorption tower 1 having a bubble column structure
A raw material gas containing more hydrogen sulfide is continuously introduced, and is brought into contact with an absorption liquid containing caustic soda and/or sodium sulfide that is continuously introduced from the upper part of the first absorption tower through line 18 to produce sodium hydrogen sulfide. The reaction product liquid containing sodium hydrogen sulfide is continuously discharged from the bottom of the first absorption tower through a bomb 5 and a line 19 to produce a product.

第1吸収塔に連続的に導入される吸収液中に含まれる苛
性ソーダ及び/又は硫化ソーダの量は、第1吸収塔に連
続的に導入される原料ガス中に含まれる硫化水素を全量
反応させるに必要な化学量論量よりも少ない量にするこ
とが必要で、好ましくは0.5〜0.75倍量程度とす
る。
The amount of caustic soda and/or sodium sulfide contained in the absorption liquid that is continuously introduced into the first absorption tower is such that the entire amount of hydrogen sulfide contained in the raw material gas that is continuously introduced into the first absorption tower reacts. It is necessary to use an amount smaller than the stoichiometric amount required for this, preferably about 0.5 to 0.75 times the amount.

第1吸収塔への吸収液の供給量のコントロールの仕方は
、上記の条件、即ち第1吸収塔へ導入される原料ガス中
に含まれる硫化水素を全量反応させるに必要な化学量論
量よりも少ない量にすることを達成し得るならばどのよ
うな方式でも採用できるが、特に第1吸収塔から排出さ
れるガス中の硫化水素濃度を測定し、これにより第1吸
収塔への吸収液の供給量を制御するようにすれば、原料
ガス供給流量や原料硫化水素濃度などの急激な変動に対
しても短時間に対応でき、高純度の水硫化ソーダが安定
して得られやすい。
The method of controlling the amount of absorption liquid supplied to the first absorption tower is based on the above conditions, that is, the stoichiometric amount required to react the entire amount of hydrogen sulfide contained in the raw material gas introduced into the first absorption tower. Any method can be adopted as long as it can reduce the amount of absorption liquid to the first absorption tower. By controlling the supply amount, it is possible to respond in a short time to sudden changes in the raw material gas supply flow rate, raw material hydrogen sulfide concentration, etc., and it is easy to stably obtain high-purity sodium hydrogen sulfide.

具体的には、第1吸収塔から排出されるガス中の硫化水
素濃度を濃度計21により測定し、カスケードコントロ
ールなどの制御装置を介して吸収液供給制御弁22を作
動させて、排出されるガス中の硫化水素が所定の濃度に
維持されるように制御すればよい。
Specifically, the concentration of hydrogen sulfide in the gas discharged from the first absorption tower is measured by a concentration meter 21, and the absorption liquid supply control valve 22 is operated via a control device such as a cascade control, and the hydrogen sulfide is discharged. The hydrogen sulfide in the gas may be controlled to be maintained at a predetermined concentration.

第1吸収塔には液面計23を設置し、液面が所定値を維
持するように排出弁24を作動させて第1吸収塔吸収液
の排出量を制御する。
A liquid level gauge 23 is installed in the first absorption tower, and a discharge valve 24 is operated to control the discharge amount of the liquid absorbed by the first absorption tower so that the liquid level is maintained at a predetermined value.

このように制御することにより、第1吸収塔の底部から
排出される水溶液中には未反応の苛性ソーダ又は硫化ソ
ーダは存在しなくなり、高純度の水硫化ソーダ水溶液が
得られる。
By controlling in this manner, unreacted caustic soda or sodium sulfide is not present in the aqueous solution discharged from the bottom of the first absorption tower, and a highly pure sodium hydrogen sulfide aqueous solution is obtained.

第1吸収塔の頂部からはライン12より残留硫化水素を
含有するガスが排出されるが、このガスは大量の吸収液
を保持する貯留槽3を有する第2吸収塔2に導入して前
記原料ガス中に含まれる硫化水素を全量反応させるに必
要な化学量論量よりも過剰な量の苛性ソーダ及び/又は
硫化ソーダを含む吸収液と接触させ、第2吸収塔の頂部
からライン13により硫化水素の除去されたガスを排出
し、第2吸収塔で使用した吸収液の一部をボンブ4、ラ
インl8を経て第1吸収塔で使用する吸収液として供給
し、系外から新鮮な苛性ソーダ及び/又は硫化ソーダを
含む吸収液をラインl4、ライン15を経て第2吸収塔
で使用する吸収液に追加供給する。
Gas containing residual hydrogen sulfide is discharged from the top of the first absorption tower through a line 12, but this gas is introduced into the second absorption tower 2, which has a storage tank 3 that holds a large amount of absorption liquid, to Hydrogen sulfide is brought into contact with an absorption liquid containing caustic soda and/or sodium sulfide in an excess amount than the stoichiometric amount required to react the entire amount of hydrogen sulfide contained in the gas, and hydrogen sulfide is transferred from the top of the second absorption tower through line 13. The removed gas is discharged, and a part of the absorption liquid used in the second absorption tower is supplied as an absorption liquid used in the first absorption tower via bomb 4 and line 18, and fresh caustic soda and/or Alternatively, the absorption liquid containing sodium sulfide is additionally supplied to the absorption liquid used in the second absorption tower via line 14 and line 15.

また第2吸収塔で使用した吸収液の残部は、貯留槽3か
らボンブ4、ライン17を経て、ラインl4から供給さ
れる新鮮な苛性ソーダ及び/又は硫化ソーダを含む吸収
液と併せてラインl5より第2吸収塔2の上部に循環供
給してラインl2から導入される残留硫化水素を含有す
るガスと接触させる。
The remainder of the absorption liquid used in the second absorption tower is passed from the storage tank 3 to the bomb 4 and line 17, and is then transferred from the line 15 together with the absorption liquid containing fresh caustic soda and/or sodium sulfide supplied from the line 14. The gas is circulated to the upper part of the second absorption tower 2 and brought into contact with the gas containing residual hydrogen sulfide introduced from the line 12.

1 5 第2吸収塔の吸収液貯留槽3には液面計25を設置し、
液面が所定値を維持するように吸収液追加供給弁26を
作動させてライン14から新鮮な吸収液を第2吸収塔に
導入する。
1 5 A liquid level gauge 25 is installed in the absorption liquid storage tank 3 of the second absorption tower,
The absorption liquid additional supply valve 26 is operated so that the liquid level is maintained at a predetermined value, and fresh absorption liquid is introduced from the line 14 into the second absorption tower.

この場合、第2吸収塔においてガスと接触する吸収液中
に含まれる苛性ソーダ及び/又は硫化ソーダの量は、第
1吸収塔に連続的に導入される原料ガス中に含まれる硫
化水素を全量反応させるに必要な化学量論量よりも過剰
な量とすることが必要で、好ましくは1.5倍量以上と
する。
In this case, the amount of caustic soda and/or soda sulfide contained in the absorption liquid that comes into contact with the gas in the second absorption tower is such that the entire amount of hydrogen sulfide contained in the raw material gas that is continuously introduced into the first absorption tower is reacted. It is necessary to use an amount in excess of the stoichiometric amount necessary to achieve the desired effect, preferably 1.5 times or more.

ラインl4から供給される吸収液中の新鮮な苛性ソーダ
及び/又は硫化ソーダの量の平均値は理論上第1吸収塔
に連続的に導入される原料ガス中に含まれる硫化水素を
全量反応させるに必要な化学量論量の1.0倍量となる
ので、貯留槽3からから抜き出され再度第2吸収塔上部
に導入される循環吸収液中の苛性ソーダ及び/又は硫化
ソーダの量を第1吸収塔に連続的に導入される原料ガス
中に含まれる硫化水素を全量反応させるに必要な化学量
論量の0.5倍量以上とすれば、合計して1 6 1.5倍量以上とすることができる。
The average amount of fresh caustic soda and/or sodium sulfide in the absorption liquid supplied from line 14 is theoretically enough to react the entire amount of hydrogen sulfide contained in the raw material gas continuously introduced into the first absorption tower. Since the amount is 1.0 times the required stoichiometric amount, the amount of caustic soda and/or sodium sulfide in the circulating absorption liquid that is extracted from the storage tank 3 and reintroduced into the upper part of the second absorption tower is If the amount is at least 0.5 times the stoichiometric amount required to react the entire amount of hydrogen sulfide contained in the raw material gas continuously introduced into the absorption tower, the total amount is at least 1 6 1.5 times. It can be done.

このように制御することにより、第2吸収塔の頂部から
ライン13により排出されるガス中には未反応の硫化水
素は殆ど無くなり、環境に悪影響を与える恐れがなくな
る。
By controlling in this way, there is almost no unreacted hydrogen sulfide in the gas discharged from the top of the second absorption tower through the line 13, and there is no possibility of adverse effects on the environment.

なおラインl4から供給される新鮮な苛性ソーダ及び/
又は硫化ソーダを含む吸収液は貯留槽3に導入するよう
にしても良い。
In addition, fresh caustic soda and/or water supplied from line 14
Alternatively, the absorption liquid containing sodium sulfide may be introduced into the storage tank 3.

第2吸収塔の塔内又は塔外に設ける貯留槽3の容量は、
原料ガス中の硫化水素濃度の変動巾や、系外から供給す
る新鮮な苛性ソーダ及び/又は硫化ソーダ溶液の制御方
式などによって異なるが、少なくとも原料ガス中に含ま
れる硫化水素1時間分の供給量を吸収させるに必要な吸
収液を保持し得る容量とすることが必要である。
The capacity of the storage tank 3 provided inside or outside the second absorption tower is:
Although it varies depending on the fluctuation range of the hydrogen sulfide concentration in the raw material gas and the control method for fresh caustic soda and/or sodium sulfide solution supplied from outside the system, it is necessary to supply at least the amount of hydrogen sulfide contained in the raw material gas for 1 hour. It is necessary to have a capacity that can hold the absorption liquid necessary for absorption.

このようにすることにより苛性ソーダ及び/又は硫化ソ
ーダの供給流量、それらの濃度、原料ガス供給流量及び
原料硫化水素濃度の変動をカバーすることができ、安定
操業が容易になる。この値よりも少ない場合には原料ガ
ス中の硫化水素量が変動した時などに短時間の内に排出
ガス中に硫化水素が漏洩する恐れがある。
By doing so, it is possible to cover fluctuations in the supply flow rate of caustic soda and/or sodium sulfide, their concentration, the raw material gas supply flow rate, and the raw material hydrogen sulfide concentration, thereby facilitating stable operation. If it is less than this value, there is a risk that hydrogen sulfide will leak into the exhaust gas within a short time when the amount of hydrogen sulfide in the raw material gas fluctuates.

第2図は本発明の実施態様の他の例を示すもので、貯留
槽3が第2吸収塔2の塔外に設けられていることを除け
ば第1図の実施態様と全く同じ構成であり、操業方法も
第1図の場合と全く同様である。なおライン16は第2
吸収塔2から外部の貯留槽3への送液ラインである。
FIG. 2 shows another example of the embodiment of the present invention, which has exactly the same configuration as the embodiment of FIG. 1 except that the storage tank 3 is provided outside the second absorption tower 2. The operating method is exactly the same as that shown in Figure 1. Note that line 16 is the second
This is a liquid feeding line from the absorption tower 2 to the external storage tank 3.

第3図は本発明の実施態様のまた別の例を示すもので、
第2吸収塔2が気泡塔であり、それ自身が吸収液の貯留
槽3を兼ねている。
FIG. 3 shows another example of the embodiment of the present invention,
The second absorption tower 2 is a bubble tower, and itself also serves as a storage tank 3 for the absorption liquid.

この場合第1吸収塔の頂部から排出される残留硫化水素
を含有するガスは、第2吸収塔に貯留されている大量の
吸収液中の下部から吹き込まれ気泡状で吸収液中を上昇
するので、吸収液を循環させなくても、残留硫化水素を
含有するガスは原料ガス中に含まれる硫化水素を全量反
応させるに必要な化学量論量よりも過剰な量の苛性ソー
ダ及び/又は硫化ソーダを含む吸収液と接触させられる
ようになる。もちろん吸収液を循環させても差し支えな
い。その他の操業方法は第1図の場合と全く同様である
In this case, the gas containing residual hydrogen sulfide discharged from the top of the first absorption tower is blown from the lower part of a large amount of absorption liquid stored in the second absorption tower and rises in the absorption liquid in the form of bubbles. , even without circulating the absorption liquid, the gas containing residual hydrogen sulfide contains an excess amount of caustic soda and/or soda sulfide than the stoichiometric amount required to react the entire amount of hydrogen sulfide contained in the raw material gas. It comes into contact with the containing absorbent liquid. Of course, the absorption liquid may be circulated. Other operating methods are exactly the same as those shown in FIG.

第4図は第2図により説明した実施態様において、第2
吸収塔2が第1吸収塔1の上部に重ねて設置された構造
の装置を用いた場合を示す。なおライン20は操業開始
時に使用する第1吸収塔吸収液の循環ラインである。こ
の第1吸収塔吸収液の循環ラインは第1図、第2図及び
第3図においては記載を省略した。
FIG. 4 shows the second
A case is shown in which an apparatus having a structure in which the absorption tower 2 is installed on top of the first absorption tower 1 is used. Note that the line 20 is a circulation line for the first absorption tower absorption liquid used at the start of operation. The circulation line for the liquid absorbed by the first absorption tower is not shown in FIGS. 1, 2, and 3.

また反応熱を除去するために、ライン20内に熱交換器
を設置して、操業中もこの循環ラインを使用するように
しても良い。
Further, in order to remove the reaction heat, a heat exchanger may be installed in the line 20, and this circulation line may be used during operation.

原料ガスは、二酸化炭素など苛性ソーダ及び/又は硫化
ソーダ液と反応する物質を実質的に含まず、硫化水素の
分圧が0.1 kg/cm” A以上であることが好ま
しい。苛性ソーダはJIS規格に規定されている最高品
位のものを使用するのが好ましい。水硫化ソーダや苛性
ソーダ以外の不純物を実質的に含まないのであれば除害
等に用いた廃ソーダも使用することができる。
It is preferable that the raw material gas does not substantially contain a substance such as carbon dioxide that reacts with caustic soda and/or the sodium sulfide solution, and that the partial pressure of hydrogen sulfide is 0.1 kg/cm"A or more. Caustic soda conforms to the JIS standard. It is preferable to use the highest quality soda specified in 1. Waste soda used for abatement, etc. can also be used as long as it does not substantially contain impurities other than sodium hydrogen sulfide and caustic soda.

1 9 [実施例] 第4図に示したフロースキームをもつ装置を使用して本
発明の有効性を検証した。
19 [Example] The effectiveness of the present invention was verified using an apparatus having the flow scheme shown in FIG.

第1吸収塔として内径1.0m、有効液層高さ2.0m
の気泡塔、第2吸収塔として内径0.5mで5/8イン
チのボールリングを層高2.0m充填した充填層を有す
るものを用いた。
As the first absorption tower, the inner diameter is 1.0 m, and the effective liquid layer height is 2.0 m.
A bubble column having a packed bed of 5/8 inch ball rings with an inner diameter of 0.5 m and a bed height of 2.0 m was used as the second absorption column.

第1吸収塔内に26重量%苛性ソーダ水溶液を1.6m
’,第2吸収塔の塔底と吸収液貯留槽3にそれぞれ0.
2m’ .3.0m3の前記水溶液を張り込んだ後、第
1吸収塔への吸収液供給ラインl8上のバルブ及び第1
吸収塔吸収液排出ラインl9上のバルブを閉じ、第1吸
収塔ボンプ5及び第2吸収塔ボンプ4を起動して、各々
の吸収塔で苛性ソーダ液を循環させた。次に原料ガスラ
インl1から硫化水素を含む原料ガスを導入した。
1.6 m of 26 wt% caustic soda aqueous solution was placed in the first absorption tower.
', 0 at the bottom of the second absorption tower and at the absorption liquid storage tank 3, respectively.
2m'. After charging 3.0 m3 of the aqueous solution, the valve on the absorption liquid supply line l8 to the first absorption tower and the first
The valve on the absorption tower absorption liquid discharge line 19 was closed, the first absorption tower pump 5 and the second absorption tower pump 4 were started, and the caustic soda solution was circulated in each absorption tower. Next, a raw material gas containing hydrogen sulfide was introduced from the raw material gas line l1.

第1吸収塔の循環液中に硫化ソーダが検出されなくなり
且つ第2吸収塔の循環液中のソーダがほぼ全量硫化ソー
ダに変換された時点で、ライン18を通じて第2吸収塔
の循環液の第1吸収塔への導入と、ライン14、15を
通じて新鮮な26重量%苛性ソーダ水溶液(比重1.2
6)0.440m’/hの第2吸収塔への導入を開始す
ると共に、ライン19を通じて水硫化ソーダ水溶液を抜
き出した。ライン15及びライン18の温度は50℃に
調整した。
When sodium sulfide is no longer detected in the circulating liquid of the first absorption tower and almost all of the soda in the circulating liquid of the second absorption tower has been converted to sodium sulfide, the circulating liquid of the second absorption tower is 1 into the absorption tower and through lines 14 and 15 a fresh 26% by weight aqueous caustic soda solution (specific gravity 1.2).
6) At the same time as the introduction into the second absorption tower at 0.440 m'/h was started, the sodium hydrogen sulfide aqueous solution was extracted through line 19. The temperature of line 15 and line 18 was adjusted to 50°C.

原料ガスの供給条件及び組成は下記の通りであった。The supply conditions and composition of the raw material gas were as follows.

流量:1105Nm’/h 圧力: 2.2Kg/cm’ G 温度:50℃ 組戒:I{2 S:7.3mo1%、 H2  :84.8mo1%、 H2 0:3.9mo1%、 CH4  :4.Omo1% ラインl7による第2吸収塔吸収液の循環量を0.99
5m’/hとし、第1吸収塔に連続的に導入される吸収
液中に含まれるソーダの量が第1吸収塔に連続的に導入
される原料ガス中に含まれる硫化水素を全量反応させる
に必要な化学量論量のO、5倍となるように制御して定
常状態となった時の、ラインl8からの第1吸収塔吸収
液供給量は0.497m”/h,ライン19からの第1
吸収塔吸収液排出量は0.545m3/hとなった。ま
た第2吸収塔においてガスと接触する吸収液中に含まれ
る苛性ソーダ及び硫化ソーダの量が第1吸収塔に連続的
に導入される原料ガス中に含まれる硫化水素を全量反応
させるに必要な化学量論量の約3倍であった。
Flow rate: 1105 Nm'/h Pressure: 2.2 Kg/cm' G Temperature: 50°C Group rules: I{2 S: 7.3 mo1%, H2: 84.8 mo1%, H2 0: 3.9 mo1%, CH4: 4 .. Omo1% Circulation amount of second absorption tower absorption liquid through line 17 is 0.99
5 m'/h, and the amount of soda contained in the absorption liquid that is continuously introduced into the first absorption tower reacts with the entire amount of hydrogen sulfide contained in the raw material gas that is continuously introduced into the first absorption tower. When the steady state is achieved by controlling the O to be 5 times the stoichiometric amount required for 1st of
The amount of liquid discharged from the absorption tower was 0.545 m3/h. In addition, the amount of caustic soda and sodium sulfide contained in the absorption liquid that comes into contact with the gas in the second absorption tower is controlled by the chemical reaction necessary to cause the entire amount of hydrogen sulfide contained in the raw material gas that is continuously introduced into the first absorption tower to react. It was about three times the stoichiometric amount.

また第2吸収塔の塔内及び塔外の貯留槽での吸収液の保
持量は原料ガス中の硫化水素3.6時間の供給分を吸収
しえる量であった。
Further, the amount of absorption liquid held in the storage tank inside the second absorption tower and outside the tower was enough to absorb 3.6 hours of supply of hydrogen sulfide in the raw material gas.

このようにしてラインl9より得られた水硫化ソーダ水
溶液0.545m3/hの水硫化ソーダ濃度は31.4
重量%(水溶液の比重1.18)で、硫化ソーダ濃度は
100重量ppm以下であった。
The sodium hydrogen sulfide concentration of 0.545 m3/h of the sodium hydrogen sulfide aqueous solution obtained from line 19 in this way is 31.4.
The sodium sulfide concentration was less than 100 ppm by weight (specific gravity of the aqueous solution: 1.18).

また第2吸収塔出口ガス中のH.S濃度を分析したが検
出されなかった。
In addition, H. The S concentration was analyzed, but it was not detected.

次に新鮮な苛性ソーダ水溶液の供給量を0.400m’
/hまで減らし、第1吸収塔からの排出液量をそれに応
じて変えた以外は他の条件は変えずに運転を続けたが2
4時間後においても製品中の硫化ソーダの分析値は10
0重量ppm以下で且つ第2吸収塔からの排出ガス中に
硫化水素は検出されなかった。
Next, the supply amount of fresh caustic soda aqueous solution is 0.400 m'
/h, and the operation continued without changing other conditions except for changing the amount of liquid discharged from the first absorption tower accordingly.
Even after 4 hours, the analysis value of sodium sulfide in the product was 10.
It was less than 0 ppm by weight and no hydrogen sulfide was detected in the exhaust gas from the second absorption tower.

上記から明らかなように、本発明の制御法によれば、変
動に際しても良好に運転ができることがわかる。
As is clear from the above, according to the control method of the present invention, good operation is possible even in the event of fluctuations.

なお、吸収液貯留槽を設置しないで同様に新鮮な苛性ソ
ーダの供給量を変えたところ、3時間後の製品中の硫化
ソーダ濃度は100重量ppm以下であったが、第2吸
収塔から排出されるガス中には硫化水素280容量pp
mが検出された。
When the amount of fresh caustic soda supplied was changed in the same way without installing an absorbent storage tank, the sodium sulfide concentration in the product after 3 hours was less than 100 ppm by weight, but the concentration of sodium sulfide was not discharged from the second absorption tower. The gas contains 280 pp by volume of hydrogen sulfide.
m was detected.

また第1吸収塔に連続的に導入される吸収液中に含まれ
る苛性ソーダ及び/又は硫化ソーダの量が第1吸収塔に
連続的に導入される原料ガス中に含まれる硫化水素を全
量反応させるに必要な化学量論量の0.9倍量としたと
ころ、製品中の硫化ソーダ濃度は980重量ppmとな
った。
In addition, the amount of caustic soda and/or sodium sulfide contained in the absorption liquid that is continuously introduced into the first absorption tower reacts with the entire amount of hydrogen sulfide contained in the raw material gas that is continuously introduced into the first absorption tower. When the amount was set at 0.9 times the stoichiometric amount required for this, the sodium sulfide concentration in the product was 980 ppm by weight.

23 また第2吸収塔においてガスと接触する吸収液中に含ま
れる苛性ソーダ及び/又は硫化ソーダの量が第1吸収塔
に連続的に導入される原料ガス中に含まれる硫化水素を
全量反応させるに必要な化学量論量の1.2倍量とし、
新鮮な苛性ソーダの供給量をO、440m3/hから0
.400m’/hに変えたところ、24時間後の製品中
の硫化ソーダ濃度は100重量ppm以下であったが、
第2吸収塔から排出されるガス中には硫化水素100容
量ppmが検出された。
23 In addition, the amount of caustic soda and/or sodium sulfide contained in the absorption liquid that comes into contact with the gas in the second absorption tower is large enough to react with all the hydrogen sulfide contained in the raw material gas that is continuously introduced into the first absorption tower. The amount should be 1.2 times the required stoichiometric amount,
Supply amount of fresh caustic soda from O, 440m3/h to 0
.. When the speed was changed to 400 m'/h, the sodium sulfide concentration in the product after 24 hours was less than 100 ppm by weight.
100 ppm by volume of hydrogen sulfide was detected in the gas discharged from the second absorption tower.

ハ.発明の効果 大量生産が可能な連続方式で、2基の吸収塔を用いるだ
けの簡単なフロースキームで硫化ソーダを実質的に含ま
ない水硫化ソーダを製造すると同時に排ガスに同伴され
て放出される硫化水素の量を低減することができる。
C. Effects of the invention A continuous method that allows mass production, with a simple flow scheme that uses only two absorption towers, produces sodium hydrogen sulfide that does not substantially contain sodium sulfide, and at the same time reduces sulfide that is released along with the exhaust gas. The amount of hydrogen can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様の一例を示す図、第2図は他
の実゛施態様を示す図、第3図はまた別の実施態様を示
す図、第4図は第2図により説明し9 A た実施態様において、第2吸収塔が第1吸収塔の上部に
重ねて設置された構造の装置を用いた場合を示す図であ
る。
FIG. 1 is a diagram showing an example of an embodiment of the present invention, FIG. 2 is a diagram showing another embodiment, FIG. 3 is a diagram showing another embodiment, and FIG. 4 is a diagram showing an example of the embodiment of the present invention. FIG. 9A is a diagram showing a case where an apparatus having a structure in which the second absorption tower is installed on top of the first absorption tower is used in the embodiment described above.

Claims (1)

【特許請求の範囲】 1(a)気泡塔構造を有する第1吸収塔の下部から硫化
水素を含む原料ガスを連続的に導入し、第1吸収塔の上
部から連続的に導入され且つ前記連続的に導入される原
料ガス中に含まれる硫化水素を全量反応させるに必要な
化学量論量よりも少ない量の苛性ソーダ及び/又は硫化
ソーダを含む吸収液と接触させて水硫化ソーダを生成さ
せ、水硫化ソーダを含む反応生成液を第1吸収塔の底部
から連続的に排出し、(b)第1吸収塔の頂部から排出
される残留硫化水素を含有するガスを塔内又は塔外に大
量の吸収液を保持する貯留槽を有する第2吸収塔に導入
して前記原料ガス中に含まれる硫化水素を全量反応させ
るに必要な化学量論量よりも過剰な量の苛性ソーダ及び
/又は硫化ソーダを含む吸収液と接触させ、第2吸収塔
の頂部から硫化水素の除去されたガスを排出し、(c)
第2吸収塔で使用した吸収液の一部を第1吸収塔で使用
する吸収液として供給し、(d)系外から新鮮な苛性ソ
ーダ及び/又は硫化ソーダを含む吸収液を第2吸収塔で
使用する吸収液に追加供給することを特徴とする水硫化
ソーダの製造法。 2 第1吸収塔に連続的に導入される吸収液中に含まれ
る苛性ソーダ及び/又は硫化ソーダの量が第1吸収塔に
連続的に導入される原料ガス中に含まれる硫化水素を全
量反応させるに必要な化学量論量の0.5〜0.75倍
量である請求項第1項記載の水硫化ソーダの製造法。 3 第2吸収塔においてガスと接触する吸収液中に含ま
れる苛性ソーダ及び/又は硫化ソーダの量が第1吸収塔
に連続的に導入される原料ガス中に含まれる硫化水素を
全量反応させるに必要な化学量論量の1.5倍量以上で
ある請求項第1項記載の水硫化ソーダの製造法。 4 吸収液貯留槽における吸収液の保持量が原料ガス1
時間以上の供給量に含まれる硫化水素を反応させるに必
要な苛性ソーダ及び/又は硫化ソーダを含む量である請
求項第1項記載の水硫化ソーダの製造法。 5 下部に硫化水素を含む原料ガスの送入管、底部に反
応生成液の排出管、頂部に未反応ガス排出管、上部に下
記第2吸収塔で使用した吸収液の一部を供給する供給管
を備えた気泡塔構造を有する第1吸収塔、頂部にガスの
排出管、その下方に第1吸収塔の頂部から排出されるガ
スの送入管を備え、塔内又は塔外に大量の吸収液を保持
する貯留槽を有する第2吸収塔及び新鮮な吸収液を第2
吸収塔の吸収液として追加供給する供給管より構成され
、且つ第1吸収塔頂部から排出される未反応ガス中の硫
化水素濃度を検出しその値が一定値となるよう第2吸収
塔から第1吸収塔への吸収液の供給量を制御する機構、
第1吸収塔の吸収液が一定液面を保持するよう第1吸収
塔の吸収液を系外へ排出する制御機構及び第2吸収塔の
塔内又は塔外に設けた貯留槽の液面が一定液面を保持す
るよう新鮮な吸収液を第2吸収塔の吸収液として追加供
給する制御機構を備えていることを特徴とする水硫化ソ
ーダの製造装置。
[Claims] 1(a) A raw material gas containing hydrogen sulfide is continuously introduced from the lower part of a first absorption tower having a bubble column structure, and the raw material gas containing hydrogen sulfide is continuously introduced from the upper part of the first absorption tower, and the continuous contact with an absorption liquid containing caustic soda and/or sodium sulfide in an amount smaller than the stoichiometric amount required to react the entire amount of hydrogen sulfide contained in the raw material gas introduced as The reaction product liquid containing sodium hydrogen sulfide is continuously discharged from the bottom of the first absorption tower, and (b) a large amount of gas containing residual hydrogen sulfide is discharged from the top of the first absorption tower into the tower or outside the tower. An excess amount of caustic soda and/or soda sulfide than the stoichiometric amount required to react the entire amount of hydrogen sulfide contained in the raw material gas by introducing it into a second absorption tower having a storage tank for holding an absorption liquid of (c)
A part of the absorption liquid used in the second absorption tower is supplied as the absorption liquid used in the first absorption tower, and (d) the absorption liquid containing fresh caustic soda and/or sodium sulfide is supplied from outside the system to the second absorption tower. A method for producing sodium hydrogen sulfide, which is characterized in that it is additionally supplied to the absorption liquid used. 2 The amount of caustic soda and/or sodium sulfide contained in the absorption liquid that is continuously introduced into the first absorption tower reacts with the entire amount of hydrogen sulfide contained in the raw material gas that is continuously introduced into the first absorption tower. 2. The method for producing sodium hydrogen sulfide according to claim 1, wherein the amount is 0.5 to 0.75 times the stoichiometric amount required for. 3 The amount of caustic soda and/or sodium sulfide contained in the absorption liquid that comes into contact with the gas in the second absorption tower is necessary to react the entire amount of hydrogen sulfide contained in the raw material gas that is continuously introduced into the first absorption tower. 2. The method for producing sodium hydrogen sulfide according to claim 1, wherein the amount is 1.5 times or more the stoichiometric amount. 4 The amount of absorption liquid held in the absorption liquid storage tank is 1
2. The method for producing sodium hydrogen sulfide according to claim 1, wherein the amount includes caustic soda and/or sodium sulfide necessary to react the hydrogen sulfide contained in the supplied amount over an hour. 5 At the bottom is a feed pipe for raw material gas containing hydrogen sulfide, at the bottom is a discharge pipe for reaction product liquid, at the top is an unreacted gas discharge pipe, and at the top is a supply pipe for supplying a portion of the absorption liquid used in the second absorption tower below. The first absorption tower has a bubble column structure equipped with a tube, a gas discharge pipe is provided at the top, and a gas inlet pipe below which is discharged from the top of the first absorption tower is provided. A second absorption tower having a storage tank for holding the absorption liquid and a second absorption tower for storing fresh absorption liquid.
It is composed of a supply pipe for additionally supplying the absorption liquid to the absorption tower, and detects the hydrogen sulfide concentration in the unreacted gas discharged from the top of the first absorption tower. 1. A mechanism for controlling the amount of absorption liquid supplied to the absorption tower;
A control mechanism for discharging the absorption liquid of the first absorption tower to the outside of the system so that the absorption liquid of the first absorption tower maintains a constant level, and a control mechanism that maintains the liquid level of the storage tank provided inside or outside the second absorption tower. An apparatus for producing sodium hydrogen sulfide, comprising a control mechanism for additionally supplying fresh absorption liquid as absorption liquid to a second absorption tower so as to maintain a constant liquid level.
JP29937489A 1989-11-17 1989-11-17 Method and apparatus for producing sodium hydrosulfide Expired - Fee Related JP2796746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29937489A JP2796746B2 (en) 1989-11-17 1989-11-17 Method and apparatus for producing sodium hydrosulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29937489A JP2796746B2 (en) 1989-11-17 1989-11-17 Method and apparatus for producing sodium hydrosulfide

Publications (2)

Publication Number Publication Date
JPH03159905A true JPH03159905A (en) 1991-07-09
JP2796746B2 JP2796746B2 (en) 1998-09-10

Family

ID=17871739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29937489A Expired - Fee Related JP2796746B2 (en) 1989-11-17 1989-11-17 Method and apparatus for producing sodium hydrosulfide

Country Status (1)

Country Link
JP (1) JP2796746B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4129566A1 (en) * 1991-09-06 1993-03-11 Thueringische Faser Ag Schwarz Absorption of hydrogen sulphide from waste contg. carbon di:sulphide from viscose prodn. - in sodium hydroxide soln. contg. silicone oil or paraffin or alcohol
JP2000247609A (en) * 1999-02-25 2000-09-12 Idemitsu Petrochem Co Ltd Production of anhydrous alkali metal sulfide
KR101033109B1 (en) * 2010-08-31 2011-05-16 한국산업단지공단 Generating apparatus of nash and a manufacturing process using the same
CN102765700A (en) * 2012-08-13 2012-11-07 成都德美工程技术有限公司 Technique method for producing sodium bisulfide
CN106744710A (en) * 2017-01-20 2017-05-31 山东金典化工有限公司 The method that continuity method produces NaHS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101067660B1 (en) * 2011-01-27 2011-09-27 (주)엔코아네트웍스 Apparatus for manufacturing nahs and method for manufacturing nahs

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4129566A1 (en) * 1991-09-06 1993-03-11 Thueringische Faser Ag Schwarz Absorption of hydrogen sulphide from waste contg. carbon di:sulphide from viscose prodn. - in sodium hydroxide soln. contg. silicone oil or paraffin or alcohol
JP2000247609A (en) * 1999-02-25 2000-09-12 Idemitsu Petrochem Co Ltd Production of anhydrous alkali metal sulfide
KR101033109B1 (en) * 2010-08-31 2011-05-16 한국산업단지공단 Generating apparatus of nash and a manufacturing process using the same
CN102765700A (en) * 2012-08-13 2012-11-07 成都德美工程技术有限公司 Technique method for producing sodium bisulfide
CN106744710A (en) * 2017-01-20 2017-05-31 山东金典化工有限公司 The method that continuity method produces NaHS
CN106744710B (en) * 2017-01-20 2021-02-19 山东金典化工有限公司 Method for producing sodium hydrosulfide by continuous process

Also Published As

Publication number Publication date
JP2796746B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
EP1008577B2 (en) Method of manufacturing methanol
US20070269358A1 (en) Processes for absorbing chlorine from a gas containing chlorine and carbon dioxide
CN103551018B (en) A kind of sulfur-containing tail gas purifies and recoverying and utilizing method
US6962683B2 (en) Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases
SE448007B (en) PROCEDURE AND DEVICE FOR RECOVERY OF CHEMICALS
IT9020531A1 (en) PROCESS FOR THE PRODUCTION OF DIMETHYLCARBONATE AND APPARATUS SUITABLE FOR THE PURPOSE
US6569398B2 (en) Method for treating hydrogen sulfide-containing waste gases
JPS5929521B2 (en) Manufacturing method of purified hydrochloric acid
UA57017C2 (en) A process for simultaneous producing ammonium and urea, an installation for simultaneous production of ammonium and urea and a process for simultaneous modernization of the ammonium synthesis installation and THE urea synthesis installation
CN105348145B (en) The method of ammonia type flue gas desulfurizing by-product cyclohexanone oxime
JPH03159905A (en) Production of sodium hydrosulfide and production equipment
US5458858A (en) Integrated procedure for high yield production of chlorine dioxide
JPH08506993A (en) Method and apparatus for absorbing hydrogen sulfide
US2881052A (en) Production of chlorine dioxide
CN102803131B (en) The method producing chlorine dioxide
US4781910A (en) Hydrogen sulfide removal and sulfur recovery
JPS61205602A (en) Manufacture of chlorine dioxide
US4439411A (en) Production of sodium hydrosulfide
CS209904B2 (en) Facility for regeneration of chemical substances from combustion products and green liquar
PT91419B (en) PREPARATION PROCEDURE FOR CHLORINE DIOXIDE
JPS63139007A (en) Production of sodium sulfide or sodium hydrosulfide
US20030223930A1 (en) Process for production of ammonium thiosulphate
CN112225639A (en) Methanol purge gas recycling system and process
US2013984A (en) Process for the oxidation of nitrites to nitrates
JP4391140B2 (en) Method for producing ammonium thiosulfate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees