JP2000216074A - 露光装置およびデバイス製造方法 - Google Patents

露光装置およびデバイス製造方法

Info

Publication number
JP2000216074A
JP2000216074A JP11014023A JP1402399A JP2000216074A JP 2000216074 A JP2000216074 A JP 2000216074A JP 11014023 A JP11014023 A JP 11014023A JP 1402399 A JP1402399 A JP 1402399A JP 2000216074 A JP2000216074 A JP 2000216074A
Authority
JP
Japan
Prior art keywords
exposure
shutter
abnormality
detected
shutter blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11014023A
Other languages
English (en)
Inventor
Teruya Sato
光弥 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11014023A priority Critical patent/JP2000216074A/ja
Publication of JP2000216074A publication Critical patent/JP2000216074A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

(57)【要約】 【課題】 露光光やその他の理由によるシャッタ羽根の
温度上昇や変形により生じる問題の発生を防止する。 【解決手段】 放電灯1からの露光光を露光シャッタ7
により開閉しながら原板50のパターンを基板61に露
光する露光装置およびデバイス製造方法において、露光
シャッタの異常を検出するようにする。異常検出は、シ
ャッタ羽根の露光光の反射率が所定値以下になった場合
を露光シャッタの異常として検出する。あるいは、シャ
ッタ羽根の周辺に露光光の漏れを防止するために設けら
れた導電性の遮閉板と導電性のシャッタ羽根との電気的
な接触を検出することにより露光シャッタの異常を検出
する。露光シャッタの異常が検出された場合は、放電灯
の点灯を中止し、または放電灯への投入電力を下げる。
あるいは、露光シャッタの駆動を停止する。さらには装
置全体の運転を中止し、異常が検出された旨の警報また
は表示を行なう。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は放電灯を露光光源に
用いた露光装置およびデバイス製造方法に関し、特に、
露光光を開閉するシャッタの異常検出機能を有するもの
に関する。
【0002】
【従来の技術】半導体露光装置では、その光源の1つと
して放電灯を使用しているが、この放電灯は近年、半導
体露光装置のスループット向上を目的として、大電力の
ものが多く用いられるようになってきている。そのた
め、照明系内部の各部品は、今まで以上に、光エネルギ
的にも、熱的にも過酷な条件で使用されるようになって
きている。この部品の代表的なものが、高速露光シャッ
タである。
【0003】露光シャッタは図2で示すような構造を有
しており、シャッタ羽根80は、高速に60°回転が可
能なように、薄い金属材料で製作されている。さらに、
この露光シャッタは高速回転をさせるために、シャッタ
羽根の慣性モーメントを小さくする必要があるため、光
束を一番絞った位置に配置されている。そのため、薄い
金属材料の狭い領域に、高い光エネルギが集中するの
で、非常に高温になりやすい。
【0004】そこで、従来の半導体露光装置では、シャ
ッタ羽根の表面を鏡面にして、熱の吸収が最小になるよ
うな工夫がされている。また、温度上昇を抑えるため
に、シャッタ羽根の表面にクーリングエアを吹き付ける
ようにしている。さらに、従来の半導体露光装置では、
上記問題を低減するために、放電灯からの光束を集光す
る楕円ミラーに、図5のような長波長カット特性を持た
せ、露光シャッタに対する入射光エネルギを低減するよ
うにしている。また、最近では、放電灯と露光シャッタ
の間に、中速のシャッタを設け、装置の停止中はこの中
速シャッタを閉じて、露光シャッタに光束が入らないよ
うにしたものも現われてきている。
【0005】
【発明が解決しようとする課題】しかしながら、近年の
放電灯の高出力化に対しては、従来の対策では限界に来
ている。さらに、シャッタ羽根は前述のような過酷な条
件下で使用されるため、以下のプロセスで変形する場合
がある。
【0006】冷却用のクーリングエア中の不純物もし
くは雰囲気中の不純物が、露光光によりシャッタ羽根表
面に付着し、反射率を低下させる。シャッタ羽根表面
の反射率が低下すると、熱吸収が大きくなる。熱吸収
が大きなると、表面と裏面の温度差による熱膨張差でシ
ャッタ羽根が変形する。さらに温度が上昇すると、シ
ャッタ材料の融点近くに達し、上記変形が固定してしま
い、温度が低下しても元の形状に戻らなくなる。
【0007】従来の半導体露光装置では、シャッタ羽根
の耐久性向上のために、シャッタ羽根の材質の最適化や
冷却条件の最適化を行なってきているが、上述のよう
に、シャッタ羽根の変形は、冷却用のエア中の不純物も
しくは雰囲気中の不純物にも影響されるものであるた
め、完全な対策はなかなか困難である。
【0008】また、従来の半導体露光装置では、上記異
常状態が発生していることを検出する手段がなかったた
め、上記現象が発生すると、シャッタ羽根が変形して、
積算露光量制御等が完全に異常になり、半導体露光装置
が停止するまで、不安定な動作を続行する場合がある。
【0009】また、シャッタ羽根は上述のように薄い金
属材料で製作されている一方、シャッタ羽根の遮閉能力
は完全解放時の約100万分の1以下であることが要求
されるため、遮閉能力を高める目的で、シャッタ羽根に
近接させて遮閉板を開口部周辺に配置している。したが
って、もしわずかでもシャッタ羽根の変形があった場合
には、シャッタ羽根は回転動作中にこれらの遮閉板と干
渉を起こし、正常動作が不可能となってしまう。上記シ
ャッタ羽根の変形の原因としては、熱変形、ユーザやサ
ービスマンによる誤ったメインテナンス、製造ミス、露
光シャッタ輸送時の機械的なダメージ等がある。
【0010】本発明の目的は、このような従来技術の問
題点に鑑み、露光装置およびデバイス製造方法におい
て、露光光やその他の理由によるシャッタ羽根の温度上
昇や変形により生じる問題の発生を防止することにあ
る。
【0011】
【課題を解決するための手段】この目的を達成するため
本発明の露光装置は、露光光源としての放電灯と、放電
灯からの露光光の光路を開閉する露光シャッタとを備え
た露光装置において、露光シャッタの異常を検出する異
常検出手段を具備することを特徴とする。また、本発明
のデバイス製造方法は、放電灯からの露光光を露光シャ
ッタにより開閉しながら原板に照射して、原板のパター
ンを基板に露光することによりデバイスを製造するデバ
イス製造方法において、露光シャッタの異常を検出する
異常検出工程を具備することを特徴とする。
【0012】従来は、露光シャッタの異常を検出するよ
うにしていなかったために、異常な状態で露光を継続し
てしまう場合があったが、本発明によれば、露光シャッ
タの異常が検出されるため、異常が検出されたときに
は、異常な状態で露光を継続することが回避される。
【0013】
【発明の実施の形態】本発明の好ましい実施形態におい
ては、放電灯からの光を検出するとともに、露光シャッ
タのシャッタ羽根からの露光光の反射光を検出し、これ
らの検出結果に基づきシャッタ羽根の反射率を得、この
反射率が所定値以下になった場合を露光シャッタの異常
として検出する。さらに、露光シャッタのシャッタ羽根
の表面温度を検出し、この表面温度が所定値以上になっ
た場合を露光シャッタの異常として検出する。これによ
れば、シャッタ羽根の変形等が起きる前に異常状態が検
出され、シャッタ羽根の変形等が未然に回避される。
【0014】また、シャッタ羽根の周辺に露光光の漏れ
を防止するために設けられた導電性の遮閉板と、これと
電気的に絶縁した状態で保持されている導電性のシャッ
タ羽根との電気的な接触を検出することにより露光シャ
ッタの異常を検出する。あるいは、露光光の漏れを防止
するためにシャッタ羽根の周辺に配置した遮閉板よりわ
ずかにシャッタ羽根の近くにシャッタ羽根と電気的に絶
縁した状態で配置した導電性の弾性体と、導電性のシャ
ッタ羽根との電気的な接触を検出することにより露光シ
ャッタの異常を検出する。これによれば、シャッタ羽根
の変形が生じた異常な状態での露光の継続が防止され
る。
【0015】露光シャッタの異常が検出された場合は、
放電灯の点灯を中止し、または放電灯への投入電力を下
げる。あるいは、露光シャッタの駆動を停止する。さら
には装置全体の運転を中止し、異常が検出された旨の警
報または表示を行なう。以下、本発明の実施形態を、実
施例を通じてより具体的に説明する。
【0016】
【実施例】図1は、本発明の一実施例に係る半導体露光
装置の全体図である。同図において、1は放電灯であっ
て図4のような分光出力特性を有するi線ランプ、2は
i線ランプ1の電源である点灯装置、3は放電灯1の光
束を集光するための楕円ミラー、4は半導体露光装置の
停止中に光束を遮断するための遮閉板、5は遮閉板4を
駆動するモータ、6は数10nm程度の中帯域i線フィ
ルタ、7は通常露光動作時に1ショット露光動作毎に開
閉動作を行なう高速露光シャッタ、8はアークモニタ結
像レンズ、9〜12はハーフミラー、13はミラー、1
4と15は峡帯域i線フィルタ、16は中帯域i線フィ
ルタ、17は峡帯域g線フィルタ、18は楕円ミラー3
の分光反射率とほぼ同等な分光透過率を有する広帯域フ
ィルタ、19はアーク形状を計測するためのCCDカメ
ラである。20〜23はそれぞれ峡帯域i線フィルタ1
5、中帯域i線フィルタ16、峡帯域g線フィルタ1
7、広帯域フィルタ18を透過してきた光エネルギを計
測するための光検出器であり、それぞれ峡帯域i線検出
器、中帯域i線検出器、峡帯域g線検出器、広帯域検出
器ということとする。24は高速露光シャッタ7からの
反射光を計測するための光検出器、25は要素1〜24
を内部に保持しているランプハウスである。
【0017】また、30はi線ランプ1のアーク形状を
最適な大きさでハエノ目34の前端に結像するための第
1ズームレンズ、31はズームレンズ30を駆動するた
めのモータ、32は最終的に露光波長を決定している帯
域幅が数nmの峡帯域i線フィルタ、33はミラー、3
4はハエノ目、35は照明系のシグマ値を設定するため
の絞り、36はレチクル面における中心部と周囲部の照
度分布を調整するための第2ズームレンズ、37は第2
ズームレンズ36を駆動するためのモータ、38は第2
ズームレンズ36からの光束の約1%程度を光検出器3
9に導入する平行平板、39はレチクル面中央部と共役
位置に配置されているレチクル面照度検出器、40はレ
チクル面からの反射光を集光するための集光レンズ、4
1は集光レンズ40によって集光されたレチクル反射光
を計測するためのレチクル反射光検出器、42は矢印5
7方向に移動可能な、レチクル上の露光領域をスキャン
方向に制限するマスキングブレード、43はレチクル上
のスリット状の露光領域を形成するためのスリット、4
4と46はコンデンサレンズ、そして45はミラーであ
る。
【0018】また、47はレチクル面およびウエハ面の
パターン画像を計測するための顕微鏡であり、露光光束
位置外に退避移動可能なようになっている。ここで、4
8は結像レンズ、49はCCDカメラである。50はレ
チクル、51はレチクルと同じ厚さのダミーレチクル、
52はレチクル50およびダミーレチクル51を搭載し
て矢印59の方向にスキャン動作可能なレチクルステー
ジである。60はレチクル50内のパターンをウエハ6
1の上面位置に縮小投影する投影レンズ、61はウエ
ハ、62はウエハを真空吸着して保持するためのウエハ
チャック、63はウエハチャック62を垂直方向および
チルト方向に駆動してウエハ61の上面を投影レンズ6
0の像面に一致させるためのθZステージ、64はθZ
ステージ63上に取付け可能な照度ムラ測定器、65は
θZステージ63上に取り付けられている基準マークブ
ロック、66はθZステージ63上に取り付けられてい
るレチクル回折光センサ、67はθZステージ63をス
キャン方向(矢印58方向)およびスキャン方向と直行
な方向に移動可能なウエハステージである。
【0019】また、70はi線ランプ1のアーク形状を
計測する画像処理装置、71は照明系制御部、72は半
導体露光装置の全体制御部、73は半導体露光装置の全
体制御部72から駆動指令を受けてレチクルステージ5
2、θZステージ63、ウエハステージ67を駆動する
ためのドライバ部、74はレチクル面およびウエハ面の
パターン画像を計測するための画像処理装置、75は半
導体露光装置の操作部であるコンソールである。
【0020】図2は高速露光シャッタ7の詳細図であ
る。同図において、80は回転駆動により露光光束を遮
断および開放するための、導電性を有する金属材料のシ
ャッタ羽根、81はシャッタ羽根80の回転軸、82
(斜線部)は露光光束、83はシャッタ羽根80を回転
駆動するためのACサーボモータ、84はモータ固定
板、85と86はシャッタ羽根80を挟むように配置さ
れている、導電性を有する金属材料の遮閉板、87、8
8および89は遮閉板85と86をモータ固定板84か
ら電気的に絶縁して保持するためのスペーサ、90は非
接触型温度計である。
【0021】図3は可変スリット部43の詳細図であ
る。100a〜100kおよび101a〜101kは矢
印方向に駆動可能な上部スリット板および下部スリット
板、102a〜102kおよび103a〜103kは上
記スリット板のガイド部、104a〜l04kおよび1
05a〜105kは上記スリット板と一体で移動する回
転可能突起部、106と107は上記回転可能突起部を
貫通して各スリットを連結しているバネ板、110〜1
13および120〜123は特定のスリット板を駆動す
るモータである。
【0022】図4はi線ランプ1の分光出力を示すグラ
フである。本実施例では、図4の分光出力中、365n
m付近の、図示してあるi線部分のみを、峡帯域i線フ
ィルタ32により抜き出して使用している。なお、図示
してある、436nm付近の分光出力をg線という。
【0023】図5は楕円ミラー3の分光反射率を示すグ
ラフである。楕円ミラー3は320nm〜400nm程
度の光束のみ反射するような特性をもっている。
【0024】図6の波線および実線は、各々中帯域i線
フィルタ6および峡帯域i線フィルタ32のカット特性
であり、中帯域i線フィルタ6のカット特性は、峡帯域
i線フィルタ32のカット特性を数十nm広げたものに
なっている。
【0025】図7はレチクル回折光センサ66を示す斜
視図であり、130は投影レンズ60の像面にθZステ
ージ63により駆動可能なスリット板、131は露光ス
リットとほぼ同じ長さを有する幅0.3mm程度のスリ
ット、132〜136はレチクル回折光を検出するため
の光検出器である。
【0026】図8は一般的なi線ランプの投入電力と純
度の関係を示すグラフである。同図にも示すように、i
線ランプは投入電力を増やすと、純度は減少する。
【0027】図9(a)は従来の半導体露光装置のスリ
ット内照度分布であり、理想的にはスリット方向の全て
の位置におけるスキャン方向の照度分布が全て同じにな
るようにしている(図中の斜線部分Sa、Sb、Scの
形状が全て同一)。
【0028】図9(b)は、本実施例におけるスリット
内照度分布であり、第2ズームレンズ36と可変スリッ
ト43により、投影レンズ60内で露光中に発生する露
光非点収差を軽減するために必要なスリット形状および
照度分布を形成可能にしている。
【0029】図10(a)および(b)はi線ランプ1
の半径方向および電極方向のi線強度分布であり、本実
施例の照明系では、図10(a)で示す半径方向のi線
強度分布がハエノ目34の入射側にズームレンズ30に
より投影されるようになっている。
【0030】本実施例の半導体露光装置は従来の半導体
露光装置に下記の機能を追加したものである。 A.i線ランプの異常検出 B.i線ランプのアーク形状補正機能 C.峡帯域i線フィルタおよび高速露光シャッタの耐久
性向上 D.i線ランプの純度管理 E.露光シャッタ羽根の反射率検出 F.露光シャッタ羽根の変形検出 G.非点収差低減 H.高精度積算露光量制御
【0031】以下に各機能毎に説明を行なう。 A.i線ランプの異常検出 本実施例の半導体露光装置は、図1に示すように、峡帯
域i線検出器20と峡帯域g線検出器22をランプハウ
ス25内に備えており、照明系制御部71の内部のCP
U(図示せず)の動作により、i線ランプ1の点灯後、
i線ランプ1の放電が安定してから、各検出器のアナロ
グ信号出力を数mSec毎に取り込み、ADコンバータ
(図示せず)でディジタル化して、メモリ(図示せず)
内に計測データとして記憶していく。CPUは、上記動
作と並行して、メモリ内に記憶した各検出器の計測デー
タについて、以下の判断を常時行なっている。
【0032】各検出器の計測データが所定許容範囲内
に入っているか 各検出器の計測データの変動が所定許容範囲に入って
いるか 各検出器の計測データの比率が所定許容範囲に入って
いるか 上記確認の結果、CPUが異常の発生を確認をした場合
には、即時、点灯装置2にi線ランプ1の消灯指令を出
し、かつ、全体制御部72にこの異常を通知する。全体
制御部72はこの異常通知を受け取ると、装置の運転を
停止し、警報と表示を行なう。以上の動作により、不完
全な露光プロセスを続行する可能性をなくし、また、i
線ランプ1の破裂等の事故も回避可能となる。
【0033】B.i線ランプ1のアーク形状補正機能 従来の半導体露光装置は、本実施例の半導体露光装置と
同様に、その照明系内部に開口径を変更可能な可変絞り
35を有しており、この絞りの大きさに対応するハエノ
目34の一部に、i線ランプ1のアークをズームレンズ
30により最適な大きさにして投影するようにしてい
る。ところが、図10(a)および(b)で表現される
ような、i線ランプ1のアーク形状および大きさは、ラ
ンプメーカ差、部品差(製造誤差)、投入電力差により
常に一定のものではなく、従来の方法では、常にi線ラ
ンプ1の光束を有効に、かつ安定して活用しているとは
言えない。
【0034】そこで、本実施例の半導体露光装置では、
図1に示すように、CCDカメラ19をランプハウス2
5内に備え、i線ランプ1のアーク形状を水平方向から
計測可能なようにしており、i線ランプ1の点灯後、放
電が安定してから、アーク形状および大きさの計測を行
なっている。この実際の計測は、画像処理装置70によ
り行なわれており、画像処理装置70はアーク画像をC
CDカメラ19から入力すると、この画像の中で最大輝
点の位置を特定し、この位置における水平方向の強度分
布を求める。この強度分布は図10(a)に示すような
形状のものである。次に画像処理装置70は、この強度
分布の半値幅(ピークの半分の幅)を求め、アーク半径
値として照明系制御部71に送り込む。照明系制御部7
1内のCPU(図示せず)は、上記アーク半径値を受け
取ると、基準i線ランプのアーク半径値と比較し、最適
でないと判断した場合には、これが最適な大きさで、ハ
エノ目34の入射部に投影されるように、ズームレンズ
30の駆動を行なう。
【0035】また、本実施例の半導体露光装置は、上記
動作を常時行なっており、定照度モード等で、i線ラン
プ1に対する投入電力が変わり、アーク形状が変わった
場合でも、自動的に最適なアーク形状をハエノ目34の
入射部に投影するようになっている。
【0036】C.峡帯域i線フィルタおよび高速露光シ
ャッタの耐久性向上 本実施例の半導体露光装置では、実際の露光光は、図4
の分光出力特性を有するi線ランプ1の光束から、図5
に示すような、長波長カット特性を有する楕円ミラー3
を用いて、320〜400nmの範囲の光束を抜き出
し、さらに、図6の波線で示す特性の、中帯域i線フィ
ルタ6により、i線付近の数十nm幅の光束を抜き出
し、さらに、図6の実線で示す特性の、峡帯域i線フィ
ルタ32により、i線付近の数nm幅の光束を抜き出す
ようにしている。このため、実際の露光光に極めて近い
波長帯域の光束のみがシャッタ羽根80または峡帯域i
線フィルタ32に入射するようになっている。
【0037】D.i線ランプの純度管理 本実施例の半導体露光装置では、従来、ジョブとは独立
であったi線ランプ1の電力制御方法を、コンソール7
5から、ジョブ毎に設定可能にしている。具体的な電力
制御方法は下記の通りである。
【0038】1.定入力モード 従来の定入力モードと同様、i線ランプ1に対する投入
電力を指定する。ほぼ純度一定となるが、純度計測等は
実行しない。
【0039】2.定照度モード 従来の定照度モードと同様、像面照度を指定する。但
し、照度が一定になるように、i線ランプ1に対する投
入電力を制御しているため、純度は変化してしまう。投
入電力を変更するタイミングは、ウエハ毎、ジョッブ毎
の指定が可能である。
【0040】3.定純度モード 本実施例で追加したモードであり、i線ランプ1の純度
を指定する。純度計測により投入電力を制御して指定純
度を保つ。投入電力を変更するタイミングは、ウエハ
毎、ジョブ毎の指定が可能である。
【0041】以下に本実施例で追加した、上記「3.定
純度モード」について説明を行なう。本実施例の半導体
露光装置では、図1に示すように、i線波長±10nm
程度の光束を計測する中帯域i線検出器21と、i線波
長±数nm程度の光束を計測する峡帯域i線検出器20
とを設けており、照明系制御部71の内部のCPU(図
示せず)の動作により、i線ランプ1の点灯後、i線ラ
ンプ1の放電が安定してから、各検出器のアナログ信号
出力を数mSec毎に取り込んで、ADコンバータ(図
示せず)でディジタル化してから、各検出器の計測デー
タの比率計算、つまり純度の計算を行なっている。この
純度計算結果が所定純度に対して許容範囲を超えた場合
には、指定タイミングにおいて、投入電力許容範囲を超
えない範囲でi線ランプ1に対する投入電力を制御する
ことにより、目標純度を達成するようにしている。
【0042】なお、指定純度を達成するための投入電力
が、投入電力許容範囲を超える場合には、全体制御部7
2に露光動作続行不能を通知する。全体制御部72はこ
の通知を受け取ると、装置の運転を停止し、警報と表示
を行なう。
【0043】E.露光シャッタ羽根の反射率検出 本実施例の半導体露光装置では「C.峡帯域i線フィル
タおよび高速露光シャッタの耐久性向上」で示したよう
な露光シャッタ保護対策を実施しているが、これだけで
は完全な保護になっているとは言えない。何故ならば、
シャッタ羽根80の冷却エアに不純物が混入し、これが
シャッタ羽根80の表面に付着してシャッタ羽根80の
表面反射率を下げ、熱吸収の増加が起きる可能性がある
からである。
【0044】そこで、本実施例では、図1に示すよう
に、楕円ミラー3で集光される光束と同じ帯域の波長を
直接検出する広帯域検出器23と、シャッタ羽根80か
らの反射光を検出する光検出器24とを設け、i線ラン
プ1の点灯後、i線ランプ1の放電が安定してから、遮
閉板4が開放状態の時に、照明系制御部71内部のCP
U(図示せず)の動作により、各検出器のアナログ信号
出力を数mSec毎に取り込んでADコンバータ(図示
せず)でディジタル化してから、各検出器の計測データ
の比率計算、つまりシャッタ羽根80の表面反射率の計
算を行なっている。この反射率の計算結果が所定値に対
して許容範囲を超えた場合には、即時、点灯装置2にi
線ランプ1の消灯指令を出し、かつ全体制御部72にこ
の異常を通知する。全体制御部72はこの異常通知を受
け取ると、装置の運転を停止し、警報と表示を行なう。
【0045】F.露光シャッタ羽根の変形検出 また、本実施例の半導体露光装置では、露光シャッタ7
に対し、上記対策以外に、シャッタ羽根80と周囲部材
との接触検出を行なっている。これは、シャッタ羽根8
0の変形を起こす原因としては、前述の熱変形以外に、
ユーザ若くはサービスマンの誤ったメインテナンス、製
造ミス、輸送時の機械的なダメージ等が想定されるから
である。
【0046】そこで、本実施例では、図2に示すよう
に、シャッタ羽根80を導電性の金属材料とし、かつ開
口部周辺の遮閉板85と86も導電性の金属材料とし、
これらを絶縁材のスペーサ87、88および89で電気
的に絶縁した状態で保持している。一方、照明系制御部
71の内部のCPU(図示せず)は、シャッタ羽根80
と遮閉板85および86の電気的な接触を常時監視して
おり、もし、電気的な接触が検出された場合には、即
時、点灯装置2にi線ランプ1の消灯指令を出力し、か
つ、全体制御部72にこの異常を通知する。全体制御部
72はこの異常通知を受け取ると、装置の運転を停止
し、警報と表示を行なう。
【0047】なお、本実施例ではシャッタ羽根80と直
接に電気的接続をするのが困難であるため、図2に示す
ACサーボモータ83の匡体と、遮閉板85および86
との間の電気的な接触を検出するようにしている。
【0048】G.露光非点収差軽減 本実施例の半導体露光装置は、露光中に発生する非点収
差を軽減する機能を有している。本実施例は投影レンズ
設計段階において、各照明モード毎に、露光による非点
収差発生を最小にするスリット形状およびスリット形状
内照度分布を求めておき、これを半導体露光装置上で実
現するものである。
【0049】従来の半導体露光装置のスリット形状およ
びスリット形状内照度分布の例を図9(a)に示す。こ
の図からも明らかなように、従来の半導体露光装置で
は、スリット方向の積算露光量を均一化する目的で、ス
リット上の各点における、スキャン方向の照度分布が同
じになるようにしている。つまり、図9(a)における
斜線部分Sa、Sb、Scの形状がほぼ同じになるよう
にしている。また、従来の半導体露光装置では、スリッ
ト方向の照度分布が均一でない場合に、スリット方向の
積算露光量を均一化する目的で、スリット上の各点にお
けるスリット幅を可変にすることにより、スキャン方向
の照度積算量が同じになるように工夫されたものもあ
る。つまり、この場合には、図9(a)における、斜線
部分Sa、Sb、Scの面積がほぼ同じになるようにし
ている。
【0050】本実施例の半導体露光装置は、上記従来例
と類似の構成を有しているが、その目的は全く異なる。
本実施例の半導体露光装置では、スリット形状、および
スリット形状内照度分布が任意に設定可能になってお
り、この機能により、露光中に発生する非点収差等を軽
減する。
【0051】図9(b)は、ある照明モードに対する、
露光非点収差を軽減するために最適なスリット形状およ
びスリット形状内照度分布の例を示す。同図のスリット
照明は、レチクルやウエハに近いレンズにおいて、レン
ズ中心付近を通過する光束の光エネルギ密度を下げ、光
束が通過する領域内において、レンズ中心付近と周辺部
との温度差が大きくならないようにしている。また、上
記露光非点収差の発生は当然、レチクル面照度、レチク
ル透過率、レチクル平均回折率に依存するものであるた
め、本実施例では、これらの計測結果も、スリット形状
およびスリット形状内照度分布の決定に使用している。
この様子を以下に述べる。
【0052】図7は本実施例の半導体露光装置のθZス
テージ63上に搭載されているレチクル回折センサ66
を示す。レチクル回折センサ66はスキャン方向のレチ
クル回折の程度を計測するものである。同図において、
131は露光スリット長と同等の長さを有する幅0.3
mm程度のスリットであり、132〜136は各々光検
出部である。ここで、レチクル上の露光パターンに微細
なパターンが多いほど周辺の光検出器への入射光エネル
ギが多くなる。
【0053】本実施例の半導体露光装置では、レチクル
50が最初にレチクルステージ52上に設定されると、
レチクル平均回折率、およびレチクル透過率の測定が行
なわれる。この測定は実際の露光と同じ照明モード(照
明系σ設定または変形照明)で行なわれる。この時、レ
チクル回折センサ66は、露光光束のほぼ中央位置で静
止して、レチクル50をスキャン動作している間に入射
してくる光エネルギを積分計測する。このレチクル回折
センサ66の各センサ132〜136の積分計測値の比
率から、設定されているレチクルの平均回折率が計算さ
れる。
【0054】また、上記計測中、照明系内のレチクル面
照度検出器39も積分計測を行なっており、レチクル回
折センサ66の各センサ132〜136の積分出力の総
和と、レチクル面照度検出器39の積分計測値の比率か
ら、レチクル透過率も算出される。以上の計測により、
レチクル平均回折率とレチクル透過率が求められる。本
実施例の半導体露光装置では、実際のウエハの露光動作
に入る直前にレチクル面照度検出器39により、レチク
ル面照度の計測も行なうようにしている。
【0055】以上の動作により、設定されたレチクル5
0のレチクル平均回折率、レチクル透過率、および現在
設定している照明モードでのレチクル面照度が解るた
め、露光非点収差を最小にするためのスリット形状およ
びスリット形状内照度分布の算出が可能となる。なお、
この決定のための計算量は膨大なものとなるため、本実
施例の半導体露光装置では、本体制御部72内のメモリ
上に、設計段階において各照明モード毎に計算した、レ
チクル平均回折率、レチクル透過率、レチクル面照度
と、最適スリット形状およびスリット形状内照度分布の
代表的なデータを予め用意しておき、前述のレチクル平
均回折率、レチクル透過率、レチクル面照度の計測値か
ら補間計算により、容易に最適スリット形状およびスリ
ット形状内照度分布が求められるようにしている。
【0056】前記最適スリット形状およびスリット形状
内照度分布が決定されると、これらのデータは、本体制
御部72から照明系制御部71に送られ、照明系制御部
71は、図3の可変スリット43のモータ110〜11
3および120〜123を駆動することにより、最適ス
リット形状を実現し、また、第2ズームレンズ36のモ
ータ37を駆動することにより、最適スリット形状内照
度分布を実現する。
【0057】本実施例の半導体露光装置は上記動作後、
レチクルステージ52を移動することにより、透明なダ
ミーレチクル51を照明領域に移動させ、最適スリット
形状およびスリット形状内照度分布が実現されているか
を、照度ムラ測定器64を用いて計測する。この照度ム
ラ測定器64は、スキャン方向に長い計測範囲を有する
リニアCCDセンサであり、これを像面位置に移動させ
て、スリット上の1点のスキャン方向の光エネルギ分布
を計測する。この後、上記計測をスリット上の複数点で
実施し、最適値が実現されていることの確認を行ない、
もし、誤差がある場合には、可変スリット43および第
2ズームレンズ36の微調整を実施する。なお、当然、
スリット方向の積算露光量の均一化のため、ここで実現
されたスキャン方向の光エネルギ分布は、スキャン方向
に積分すると、どのスリット位置においても同じ値にな
るべきものである。
【0058】以上の設定が完了すると、本実施例の半導
体露光装置は、レチクルステージ52をスキャンスター
ト位置に戻し、次に示す「H.高精度積算露光量制御」
のためのレチクル反射率計測に移る。
【0059】なお、本実施例では、露光非点収差の変化
をさらに最小にするために、露光中においても、投影レ
ンズ60に入射する総光エネルギを光検出器39の出力
値とレチクル透過率とから計算し、露光中に最適スリッ
ト照明形状および光エネルギ分布の微調整を自動的に実
行するようにしている。また、本実施例の半導体露光装
置では、一定時間毎に、図1で示す顕微鏡47を露光領
域に挿入し、θZステージ63上に取り付けられている
基準マークブロック上の縦、横パターンをCCDカメラ
49で計測し、露光非点収差が確実に許容範囲に収まっ
ていることを確認可能なようにしている。
【0060】H.高精度積算露光量制御 本実施例の半導体露光装置では、前記「G.露光非点収
差軽減」のためのスリット形状およびスリット形状内照
度分布の決定後、積算露光量制御をより高精度に実施す
るのに必要なレチクル反射計測に入る。以下に、レチク
ル反射計測および実際の露光動作の説明を行なう。
【0061】(1)照明系制御部71から点灯装置2に
対してi線ランプ1に投入する指令電力を伝え、点灯装
置2はこの指令電力をi線ランプ1に投入する。
【0062】(2)次に、レチクルステージ52をスキ
ャンスタート位置に移動させ、この時のレチクル面照度
検出器39の計測値を基準照度として記憶しておく。な
お、レチクルステージ52がスキャンスタート位置にあ
る場合には、照明系からの光束は照明系に戻らないよう
になっている。すなわち、レチクル反射光が全くレチク
ル面照度検出器39に戻っていない状態である。
【0063】(3)レチクルステージ52を、通常露光
時よりも十分遅いスピードで全露光領域についてスキャ
ン動作させ、各レチクル位置毎のレチクル面照度検出器
39の計測値を、照明系制御部71内のメモリに記憶す
る。
【0064】(4)照明系制御部71内のCPUは、上
記計測後、レチクル各位置におけるレチクル面照度検出
器39の計測値から、上記(2)で計測した計測値の引
き算を実行し、これをレチクル反射計測値として、レチ
クル各位置毎にメモリに記憶する。
【0065】(5)以上の計測後、本実施例の半導体露
光装置は、実際のウエハ処理動作に入る。実際のウエハ
処理では、まず、ウエハの搬入と並行して、上記(2)
と同様の動作を実行し、現在のレチクル面照度を計測
し、このレチクル面照度から、目標露光量を達成するた
めに必要なスキャンスピードを決定する。また、このレ
チクル面照度と、上記(2)で求めた基準照度の比率を
計算し、この比率から、上記(4)で求めたレチクル反
射計測値を補正計算し、現在のレチクル反射計測値とし
て、レチクル各位置毎にメモリに記憶する。
【0066】(6)上記動作後、本実施例の半導体露光
装置は、プリアライメント計測、ファインアライメント
計測、フォーカス計測等を実行した後、レチクル50お
よびウエハ61を投影系60の縮小比率と同じ速度比率
で、矢印59および58のように、互いに逆方向にスキ
ャンさせながら、レチクル50の全面のパターンをウエ
ハ61上の1チップ領域に転写していくスキャン露光動
作をスタートする。
【0067】(7)スキャン露光動作がスタートし、各
ステージが露光領域の直前に来た時に、高速露光シャッ
タ7を開放させる。
【0068】(8)高速露光シャッタ7を開放させる
と、レチクル面照度検出器39でレチクル面照度が計測
可能になる。ここで、本実施例の半導体露光装置では、
上記レチクル面照度検出器39の計測値をレチクル面照
度とはせず、この計測値から、上記(5)で求めた、現
在のレチクル位置毎のレチクル反射計測値を引き算した
値をレチクル面照度とし、この値が常に上記(5)で記
憶した現在のレチクル面照度と同じになるように点灯装
置2の電力制御を行なう。この動作はスキャン露光動作
中続行する。
【0069】(9)スキャン露光動作が完了すると、点
灯装置2に対する電力指令値を上記(1)で指令した投
入電力指令値に固定し、高速露光シャッタ7を閉じる。
【0070】以上の動作により1ショット分の露光動作
が完了し、同様な動作を繰り返すことによりウエハ全面
へのスキャン露光を完了させる。
【0071】<デバイス製造方法の実施例>次に上記説
明した露光装置を利用したデバイス製造方法の実施例を
説明する。図11は微小デバイス(ICやLSI等の半
導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マ
イクロマシン等)の製造のフローを示す。ステップ1
(回路設計)ではデバイスのパターン設計を行なう。ス
テップ2(マスク製作)では設計したパターンを形成し
たマスクを製作する。一方、ステップ3(ウエハ製造)
ではシリコンやガラス等の材料を用いてウエハを製造す
る。ステップ4(ウエハプロセス)は前工程と呼ばれ、
上記用意したマスクとウエハを用いて、リソグラフィ技
術によってウエハ上に実際の回路を形成する。次のステ
ップ5(組立て)は後工程と呼ばれ、ステップ4によっ
て作製されたウエハを用いて半導体チップ化する工程で
あり、アッセンブリ工程(ダイシング、ボンディン
グ)、パッケージング工程(チップ封入)等の工程を含
む。ステップ6(検査)ではステップ5で作製された半
導体デバイスの動作確認テスト、耐久性テスト等の検査
を行なう。こうした工程を経て、半導体デバイスが完成
し、これが出荷(ステップ7)される。
【0072】図12は上記ウエハプロセス(ステップ
4)の詳細なフローを示す。ステップ11(酸化)では
ウエハの表面を酸化させる。ステップ12(CVD)で
はウエハ表面に絶縁膜を形成する。ステップ13(電極
形成)ではウエハ上に電極を蒸着によって形成する。ス
テップ14(イオン打込み)ではウエハにイオンを打ち
込む。ステップ15(レジスト処理)ではウエハにレジ
ストを塗布する。ステップ16(露光)では上記説明し
た露光装置または露光方法によってマスクの回路パター
ンをウエハの複数のショット領域に並べて焼付露光す
る。ステップ17(現像)では露光したウエハを現像す
る。ステップ18(エッチング)では現像したレジスト
像以外の部分を削り取る。ステップ19(レジスト剥
離)ではエッチングが済んで不要となったレジストを取
り除く。これらのステップを繰り返し行なうことによっ
て、ウエハ上に多重に回路パターンが形成される。
【0073】本実施例の生産方法を用いれば、従来は製
造が難しかった大型のデバイスを低コストに製造するこ
とができる。
【0074】[実施例の変形例]本発明は、上述実施例
に限定されることなく、適宜変形して実施することがで
きる。上述実施例の変形例としては以下のものが考えら
れる。 シャッタ羽根の反射率が低下してきた場合には、冷却
用のクーリングエア中の不純物もしくは雰囲気中の不純
物の問題を解決し、シャッタ交換が完了するまで、放電
灯への投入電力を下げて装置の使用を続行可能なように
してもよい。 シャッタ羽根の反射率を計測する代わりに、シャッタ
羽根の温度を直接計測してもよい。 上述実施例ではシャッタ羽根と周辺の遮閉部材の電気
的接触を検出していたが、この代わりに、遮閉板よりわ
ずかにシャッタ羽根の近くに導電性の弾性体を配置し、
シャッタ羽根と弾性体とを電気的に絶縁した状態で保持
し、これらの電気的な接触の有無を常時検出することに
より、シャッタの異常検出を行なうようにしてもよい。 上述実施例では、シャッタ羽根と電気的に接触してい
るシャッタ羽根駆動用のモータ匡体とシャッタ羽根周辺
の遮閉部材との電気的接触を検出していたが、この代わ
りに、シャッタ羽根に直接接触するブラシ等を設けて、
このブラシとシャッタ羽根周辺の遮閉部材との電気的接
触を検出するようにしてもよい。 上述実施例では、露光シャッタとして回転型のものを
示したが、本発明はリニア駆動型の露光シャッタを用い
る場合にも容易に適用可能である。
【0075】
【発明の効果】以上説明したように本発明によれば、露
光シャッタの異常を検出するようにしたため、異常な状
態で露光を継続するのを回避することができる。また、
シャッタ羽根の反射率が所定値以下になった場合を露光
シャッタの異常として検出するようにしたため、冷却用
のクーリングエア中の不純物や雰囲気中の不純物により
シャッタ羽根の反射率が低下する場合でも、シャッタ羽
根が変形して積算露光量制御等が異常になる等の大きな
問題が生じる前に、シャッタ羽根の異常の発生を知るこ
とができる。したがって、問題発生時の被害を未然に防
止しあるいは最小にとどめて、装置の信頼性を向上させ
ることができる。
【0076】また、シャッタ羽根の表面温度が所定値以
上になった場合を露光シャッタの異常として検出するよ
うにしたため、クーリングエアの供給異常、温度異常等
も含めた異常検出が可能となる。
【0077】また、シャッタ羽根と遮閉板との電気的な
接触を検出することにより露光シャッタの異常を検出す
るようにしたため、非常に簡易にシャッタ羽根の変形を
検出することができる。そのため、装置の信頼性を向上
させることが可能になる。
【0078】さらに、遮蔽版よりわずかにシャッタ羽根
の近くに配置した導電性の弾性体とシャッタ羽根との電
気的な接触を検出することにより露光シャッタの異常を
検出するようにしたため、シャッタ羽根と周囲の遮閉部
材との干渉問題が発生する前に異常状態を検出すること
ができる。したがって、装置の稼働率を向上させること
が可能になる。
【図面の簡単な説明】
【図1】 本発明の一実施例に係る半導体露光装置の全
体図である。
【図2】 図1の装置における高速露光シャッタの詳細
図である。
【図3】 図1の装置における可変スリット部の詳細図
である。
【図4】 図1の装置におけるi線ランプの分光出力を
示すグラフである。
【図5】 図1の装置における楕円ミラーの分光反射率
を示すグラフである。
【図6】 図1の装置における中帯域i線フィルタおよ
び峡帯域i線フィルタのカット特性を示すグラフであ
る。
【図7】 図1の装置におけるθZステージ上に搭載さ
れているレチクル回折センサを示す斜視図である。
【図8】 i線ランプの投入電力と純度の関係を示すグ
ラフである。
【図9】 従来および図1の半導体露光装置におけるス
リット内照度分布の説明図である。
【図10】 図1の装置におけるi線ランプの半径方向
および電極方向のi線強度分布を示すグラフである。
【図11】 本発明の露光装置を利用できるデバイス製
造方法を示すフローチャートである。
【図12】 図11中のウエハプロセスの詳細なフロー
チャートである。
【符号の説明】
1:i線ランプ、2:点灯装置、3:楕円ミラー、4:
遮閉板、5:モータ、6:中帯域i線フィルタ、7:高
速露光シャッタ、8:アークモニタ結像レンズ、9〜1
2:ハーフミラー、13:ミラー、14,15:峡帯域
i線フィルタ、16:中帯域i線フィルタ、17:峡帯
域g線フィルタ、18:広帯域フィルタ、19:CCD
カメラ、20:峡帯域i線検出器、21:中帯域i線検
出器、22:峡帯域g線検出器、23:広帯域検出器、
24:光検出器、25:ランプハウス、30:第1ズー
ムレンズ、31:モータ、32:峡帯域i線フィルタ、
33:ミラー、34:ハエノ目、35:絞り、36:第
2ズームレンズ、37:モータ、38:平行平板、3
9:レチクル面照度検出器、40:集光レンズ、41:
レチクル反射光検出器、42:マスキングブレード、4
3:スリット、44,46:コンデンサレンズ、45:
ミラー、47:顕微鏡、48:結像レンズ、49:CC
Dカメラ、50:レチクル、51:ダミーレチクル、5
2:レチクルステージ、60:投影レンズ、61:ウエ
ハ、62:ウエハチャック、63:θZステージ、6
4:照度ムラ測定器、65:基準マークブロック、6
6:レチクル回折光センサ、67:ウエハステージ、7
0:画像処理装置、71:照明系制御部、72:全体制
御部、73:ドライバ部、74:画像処理装置、75:
コンソール、80:シャッタ羽根、81:シャッタ羽根
の回転軸、82(斜線部):露光光束、83:ACサー
ボモータ、84:モータ固定板、85,86:遮閉板、
87〜89:スペーサ、90:非接触型温度計、100
a〜100k:上部スリット板、101a〜101k:
下部スリット板、102a〜102k,103a〜10
3k:ガイド部、104a〜104k,105a〜10
5k:回転可能突起部、106,107:バネ板、11
0〜113,120〜123:モータ。

Claims (15)

    【特許請求の範囲】
  1. 【請求項1】 露光光源としての放電灯と、前記放電灯
    からの露光光の光路を開閉する露光シャッタとを備えた
    露光装置において、前記露光シャッタの異常を検出する
    異常検出手段を具備することを特徴とする露光装置。
  2. 【請求項2】 前記異常検出手段は、前記放電灯からの
    光を検出する光検出器と、前記露光シャッタのシャッタ
    羽根からの前記露光光の反射光を検出する光検出器と、
    これらの光検出器の出力に基づき前記シャッタ羽根の反
    射率を得る演算手段とを備え、この反射率が所定値以下
    になった場合を前記露光シャッタの異常として検出する
    ものであることを特徴とする請求項1に記載の露光装
    置。
  3. 【請求項3】 前記異常検出手段は、前記露光シャッタ
    のシャッタ羽根の表面温度を検出する温度検出手段を備
    え、この表面温度が所定値以上になった場合を前記露光
    シャッタの異常として検出するものであることを特徴と
    する請求項1または2に記載の露光装置。
  4. 【請求項4】 前記シャッタ羽根の周辺に前記露光光の
    漏れを防止するための導電性の遮閉板を備え、前記シャ
    ッタ羽根は導電性のものであり、前記シャッタ羽根と遮
    閉板とは電気的に絶縁した状態で保持されており、前記
    異常検出手段は、前記シャッタ羽根と遮閉板との電気的
    な接触を検出することにより前記露光シャッタの異常を
    検出するものであることを特徴とする請求項1〜3のい
    ずれか1項に記載の露光装置。
  5. 【請求項5】 前記露光光の漏れを防止するために前記
    シャッタ羽根の周辺に配置した遮閉板と、この遮蔽版よ
    りわずかに前記シャッタ羽根の近くに前記シャッタ羽根
    と電気的に絶縁した状態で配置した導電性の弾性体とを
    備え、前記シャッタ羽根は導電性のものであり、前記異
    常検出手段は、前記シャッタ羽根と弾性体との電気的な
    接触を検出することにより前記露光シャッタの異常を検
    出するものであることを特徴とする請求項1〜3のいず
    れか1項に記載の露光装置。
  6. 【請求項6】 前記露光シャッタの異常が検出された場
    合に前記放電灯の点灯を中止する手段を備えることを特
    徴とする請求項2または3に記載の露光装置。
  7. 【請求項7】 前記露光シャッタの異常が検出された場
    合に前記放電灯への投入電力を下げる手段を有すること
    を特徴とする請求項2または3に記載の露光装置。
  8. 【請求項8】 前記シャッタ羽根との電気的な接触を検
    出することにより検出される前記露光シャッタの異常は
    前記シャッタ羽根の変形であることを特徴とする請求項
    4または5に記載の露光装置。
  9. 【請求項9】 前記露光シャッタの異常が検出された場
    合に前記露光シャッタの駆動を停止する手段を有するこ
    とを特徴とする請求項4、5または8に記載の露光装
    置。
  10. 【請求項10】 前記露光シャッタの異常が検出された
    場合に装置全体の運転を中止し、異常が検出された旨の
    警報または表示を行なう手段を有することを特徴とする
    請求項1〜9のいずれか1項に記載の露光装置。
  11. 【請求項11】 放電灯からの露光光を露光シャッタに
    より開閉しながら原板に照射して、原板のパターンを基
    板に露光することによりデバイスを製造するデバイス製
    造方法において、前記露光シャッタの異常を検出する異
    常検出工程を具備することを特徴とするデバイス製造方
    法。
  12. 【請求項12】 前記異常検出工程では、前記放電灯か
    らの光を検出するとともに、前記露光シャッタのシャッ
    タ羽根からの前記露光光の反射光を検出し、これらの検
    出結果に基づき前記シャッタ羽根の反射率を得、この反
    射率が所定値以下になった場合を前記露光シャッタの異
    常として検出することを特徴とする請求項11に記載の
    デバイス製造方法。
  13. 【請求項13】 前記異常検出工程では、前記露光シャ
    ッタのシャッタ羽根の表面温度を検出し、この表面温度
    が所定値以上になった場合を前記露光シャッタの異常と
    して検出することを特徴とする請求項11または12に
    記載のデバイス製造方法。
  14. 【請求項14】 前記異常検出工程では、前記シャッタ
    羽根の周辺に前記露光光の漏れを防止するために設けら
    れた導電性の遮閉板と、これと電気的に絶縁した状態で
    保持されている導電性の前記シャッタ羽根との電気的な
    接触を検出することにより前記露光シャッタの異常を検
    出することを特徴とする請求項11〜13のいずれか1
    項に記載のデバイス製造方法。
  15. 【請求項15】 前記異常検出工程では、前記露光光の
    漏れを防止するために前記シャッタ羽根の周辺に配置し
    た遮閉板よりわずかに前記シャッタ羽根の近くに前記シ
    ャッタ羽根と電気的に絶縁した状態で配置した導電性の
    弾性体と、導電性の前記シャッタ羽根との電気的な接触
    を検出することにより前記露光シャッタの異常を検出す
    ることを特徴とする請求項11〜13のいずれか1項に
    記載のデバイス製造方法。
JP11014023A 1999-01-22 1999-01-22 露光装置およびデバイス製造方法 Pending JP2000216074A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11014023A JP2000216074A (ja) 1999-01-22 1999-01-22 露光装置およびデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11014023A JP2000216074A (ja) 1999-01-22 1999-01-22 露光装置およびデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2000216074A true JP2000216074A (ja) 2000-08-04

Family

ID=11849594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11014023A Pending JP2000216074A (ja) 1999-01-22 1999-01-22 露光装置およびデバイス製造方法

Country Status (1)

Country Link
JP (1) JP2000216074A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624065B1 (ko) * 2001-05-23 2006-09-15 삼성전자주식회사 노광 장치
CN107153327A (zh) * 2016-03-03 2017-09-12 佳能株式会社 快门单元、光刻装置及物品的制造方法
JP2020134829A (ja) * 2019-02-22 2020-08-31 キヤノン株式会社 露光装置、および物品の製造方法
CN111736430A (zh) * 2019-03-25 2020-10-02 佳能株式会社 快门装置、曝光装置以及物品制造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624065B1 (ko) * 2001-05-23 2006-09-15 삼성전자주식회사 노광 장치
CN107153327A (zh) * 2016-03-03 2017-09-12 佳能株式会社 快门单元、光刻装置及物品的制造方法
JP2020134829A (ja) * 2019-02-22 2020-08-31 キヤノン株式会社 露光装置、および物品の製造方法
TWI787574B (zh) * 2019-02-22 2022-12-21 日商佳能股份有限公司 曝光裝置及物品之製造方法
JP7241564B2 (ja) 2019-02-22 2023-03-17 キヤノン株式会社 露光装置、および物品の製造方法
CN111736430A (zh) * 2019-03-25 2020-10-02 佳能株式会社 快门装置、曝光装置以及物品制造方法
KR20200115177A (ko) 2019-03-25 2020-10-07 캐논 가부시끼가이샤 셔터 장치, 노광 장치 및 물품의 제조 방법
CN111736430B (zh) * 2019-03-25 2024-04-05 佳能株式会社 快门装置、曝光装置以及物品制造方法

Similar Documents

Publication Publication Date Title
JP3862438B2 (ja) 走査露光装置、走査露光方法およびデバイス製造方法
JP3395280B2 (ja) 投影露光装置及び方法
JP3186011B2 (ja) 投影露光装置及びデバイス製造方法
JP2009192271A (ja) 位置検出方法、露光装置、及びデバイス製造方法
JPH1027743A (ja) 投影露光装置、デバイス製造方法及び収差補正光学系
JPH0578008B2 (ja)
US8345221B2 (en) Aberration measurement method, exposure apparatus, and device manufacturing method
JP2000232049A (ja) 露光装置およびデバイス製造方法
JP3624048B2 (ja) 照度測定方法
JP2000216074A (ja) 露光装置およびデバイス製造方法
JPH11133621A (ja) 投影露光装置及びそれを用いたデバイスの製造方法
US6519024B2 (en) Exposure apparatus and device manufacturing apparatus and method
US6063530A (en) Control of critical dimensions through measurement of absorbed radiation
JP2000260698A (ja) 投影露光装置およびそれを用いた半導体デバイスの製造方法
JP2000208399A (ja) 露光装置およびデバイス製造方法
JP2000208400A (ja) 露光装置およびデバイス製造方法
JP2000208398A (ja) 露光装置およびデバイス製造方法
US6765649B2 (en) Exposure apparatus and method
JP3854734B2 (ja) 面位置検出装置及びそれを用いたデバイスの製造方法
JP2003318095A (ja) フレア計測方法及びフレア計測装置、露光方法及び露光装置、露光装置の調整方法
JP4027080B2 (ja) 位置検出装置およびそれを用いた露光装置
JP3365567B2 (ja) 投影露光方法及び装置、並びに素子製造方法
EP0947881B1 (en) Control of critical dimensions
JP2000306816A (ja) 投影露光装置、フォーカス検出装置およびデバイス製造方法
JP5006711B2 (ja) 露光装置、露光方法及びデバイス製造方法