JP2000185924A - Production of glass material - Google Patents

Production of glass material

Info

Publication number
JP2000185924A
JP2000185924A JP10363894A JP36389498A JP2000185924A JP 2000185924 A JP2000185924 A JP 2000185924A JP 10363894 A JP10363894 A JP 10363894A JP 36389498 A JP36389498 A JP 36389498A JP 2000185924 A JP2000185924 A JP 2000185924A
Authority
JP
Japan
Prior art keywords
nitrogen
gas
atmosphere
heat treatment
silica glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10363894A
Other languages
Japanese (ja)
Inventor
Shinji Ishikawa
真二 石川
Tadashi Enomoto
正 榎本
Masahiro Takagi
政浩 高城
Taku Yamazaki
卓 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10363894A priority Critical patent/JP2000185924A/en
Publication of JP2000185924A publication Critical patent/JP2000185924A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/24Doped silica-based glasses doped with non-metals other than boron or fluorine doped with nitrogen, e.g. silicon oxy-nitride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/24Doped silica-based glasses containing non-metals other than boron or halide containing nitrogen, e.g. silicon oxy-nitride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a nitrogen-incorporated silica glass material, capable of introducing high-concentration nitrogen gas into a silica glass porous form and easily setting nitrogen incorporation level as well. SOLUTION: This method for producing a nitrogen-incorporated glass material comprises treating a silica glass porous form under heating in an ammonia- contg. atmosphere to introduce nitrogen into the porous form which is then vitrified; wherein the porous form is heat-treated in an atmosphere containing a silicon halide gas followed by heat treatment of the resulting halogen- incorporated porous form in the ammonia-contg. atmosphere and then further heat treatment of the resultant nitrogen-incorporated porous form to effect vitrification thereof to obtain transparent glass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体工業におけ
る各種容器などの材料、各種光学材料等に広く利用され
ている窒素を添加したガラス材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a glass material to which nitrogen is added, which is widely used for various containers and other optical materials in the semiconductor industry.

【0002】[0002]

【従来の技術】シリカガラス体は、半導体工業における
熱処理容器や各種治具類、各種化学反応用器具類、光フ
ァイバ、レンズ、導波路など各種光学材料等に広く利用
されている材料であり、その高温における失透や変形に
対する耐性付与、光ファイバ等に使用する場合の屈折率
の調整等を目的として、窒素の添加(ドープ)が行われ
ている。窒素を添加する方法としてはアンモニア含有雰
囲気でガラス多孔質体を熱処理する方法が知られている
が、更にその改良方法が種々提案されている。例えば特
開平5−279049号公報にはガラス多孔質体をアン
モニア処理後、昇温して焼結させる際の昇温速度を緩や
かにしてNH3 の分解による発泡の影響を少なくし、高
濃度で窒素をドープした石英ガラスを得る方法が提案さ
れているが、窒素の導入量については0.15wt%以
上との記載はあるが、実施例では焼結前の窒素ドープ多
孔体の段階で最大5.2wt%とあるだけで、焼結後の
導入量は記載されていない。また、特公平7−6458
0号及び64581号公報にはアンモニア処理後の窒素
含有多孔質体を酸素ガスあるいは水蒸気含有雰囲気中で
加熱処理して部分脱窒素化し、表面部分と中心部分との
窒素の濃度差を無くす方法が開示されているが、その窒
素導入量は濃度の高い表面でも4000ppmという低
い値になっている。
2. Description of the Related Art Silica glass bodies are materials widely used in heat treatment vessels, various jigs, various chemical reaction instruments, various optical materials such as optical fibers, lenses, and waveguides in the semiconductor industry. Nitrogen is added (doped) for the purpose of imparting resistance to devitrification or deformation at the high temperature, adjusting the refractive index when used in an optical fiber or the like. As a method of adding nitrogen, a method of heat-treating a porous glass body in an ammonia-containing atmosphere is known, and various improvements have been proposed. For example, Japanese Patent Application Laid-Open No. H5-279049 discloses that the effect of foaming due to decomposition of NH 3 is reduced by slowing the rate of temperature rise when sintering by heating the glass porous body after ammonia treatment, thereby reducing Although a method of obtaining quartz glass doped with nitrogen has been proposed, the introduction amount of nitrogen is described as being 0.15 wt% or more. .2 wt%, the amount introduced after sintering is not described. In addition, 7-6458
No. 0 and 64581 disclose a method of subjecting a nitrogen-containing porous body after ammonia treatment to heat treatment in an oxygen gas or water vapor-containing atmosphere to partially denitrify, thereby eliminating the difference in nitrogen concentration between the surface portion and the central portion. Although disclosed, the amount of nitrogen introduced is as low as 4000 ppm even on highly concentrated surfaces.

【0003】更に、特表平10−502324号公報に
は多孔性シリカプリフォームにヒドロキシル又はハロゲ
ン基を付与した後、アンモニアと反応させて化学結合さ
れた窒素を含有する物性の改良された窒化石英ガラス製
品を得る方法が開示されているが、窒素の導入量につい
ては少なくとも約150ppm、約150〜250pp
mなどの記載があるだけで具体的な実施例の数値はな
く、反応基の導入方法についてもヒドロキシル基につい
ての説明はあるが、ハロゲン基については全く説明され
ておらずその効果は定かではない。その他、特開平1−
313341号公報には、光ファイバ母材をフッ素化合
物を含む雰囲気中で焼結した後、窒素ガス含有雰囲気中
で線引きして表面に光ファイバの疲労強度を向上させ、
しかもH2 OやH2 の侵入を防止するバリヤ層となるシ
リコンオキシナイトライド層を形成させた光ファイバの
製造方法が開示されているが、窒素の導入は表面だけ
で、窒素源もアンモニアではなく窒素ガスであり、線引
き時の高温(約2000℃)での処理である。また、特
開昭56−155036号公報には、多孔質ガラス体を
窒素ガスとハロゲン化アンモニウムガスまたはその分解
ガス中で加熱処理し、窒素とハロゲンとをコドープする
ことによって、紡糸時における粘度を高くし、コアガラ
スとして用いた場合、これに対応するクラッドガラスが
紡糸時に溶融するようにしてファイバ自体の強度を大き
くできるようにした高ケイ酸ガラスの製造方法が提案さ
れているが、これは窒素とハロゲンとを同時にドープす
る方法である。なお、窒素以外にシリカガラスの屈折率
を上昇させる添加物として塩素ガスが知られており、例
えば特開平10−53423号公報には、シリカガラス
微粒子を堆積させて得られる多孔質ガラス体を加熱処理
して透明ガラス化する合成シリカガラスの製造方法にお
いて、該透明ガラス化を不活性ガスと四塩化珪素(Si
Cl4 )との混合ガスからなるガス雰囲気中で行うこと
により、塩素の導入を効果的にして屈折率上昇と屈折率
分布の平坦化を効率的に達成する方法が開示されている
が、窒素導入方法との関連性は記載されていない。
Further, Japanese Patent Application Laid-Open No. 10-502324 discloses that a porous silica preform is provided with a hydroxyl or halogen group and then reacted with ammonia to improve the physical properties of nitrogen containing chemically bonded nitrogen. Although a method for obtaining a glass product is disclosed, the amount of nitrogen introduced is at least about 150 ppm, about 150 to 250 pp.
There is no numerical value of a specific example only with the description of m, etc., and there is also a description of a hydroxyl group in the method of introducing a reactive group, but the halogen group is not described at all and its effect is not clear. . In addition, JP
No. 313341 discloses that after sintering an optical fiber preform in an atmosphere containing a fluorine compound, it is drawn in an atmosphere containing nitrogen gas to improve the fatigue strength of the optical fiber on the surface,
In addition, a method for manufacturing an optical fiber having a silicon oxynitride layer serving as a barrier layer for preventing H 2 O and H 2 from penetrating is disclosed. However, nitrogen is introduced only on the surface, and the nitrogen source is not ammonia. This is a treatment at a high temperature (about 2000 ° C.) at the time of drawing. JP-A-56-155036 discloses that a porous glass body is subjected to a heat treatment in a nitrogen gas and an ammonium halide gas or a decomposition gas thereof, and co-doped with nitrogen and halogen to thereby reduce the viscosity during spinning. When used as a core glass, a method for producing a high silicate glass has been proposed in which the corresponding clad glass is melted during spinning so that the strength of the fiber itself can be increased. This is a method of simultaneously doping nitrogen and halogen. Chlorine gas is known as an additive other than nitrogen to increase the refractive index of silica glass. For example, Japanese Patent Application Laid-Open No. Hei 10-53423 discloses heating a porous glass body obtained by depositing silica glass fine particles. In a method for producing a synthetic silica glass which is treated to be transparent vitrified, said transparent vitrification is performed by using an inert gas and silicon tetrachloride (Si).
By performing in Cl 4) composed of a mixed gas of a gas atmosphere, but efficient way to achieve flattening of the refractive index distribution and effective to index raising the introduction of chlorine is disclosed, nitrogen No relevance to the introduction method is described.

【0004】[0004]

【発明が解決しようとする課題】前記のように窒素を添
加して物性を改善したシリカガラス材を得る方法とし
て、アンモニア含有雰囲気中での熱処理により方法が種
々提案されている。しかしながら、これら従来の方法に
おいてはいずれも窒素の導入量が少なく、特に光学用途
として必要とされる窒素添加量のものは得られていな
い。また、窒素導入に長時間を要しガラスの生産性の点
で問題がある。シリカガラス多孔質体への窒素添加反応
は(1)、(2)式のように考えられている。
As a method for obtaining a silica glass material having improved physical properties by adding nitrogen as described above, various methods have been proposed by heat treatment in an atmosphere containing ammonia. However, none of these conventional methods introduces a small amount of nitrogen, and a nitrogen addition amount required particularly for optical applications has not been obtained. Further, it takes a long time to introduce nitrogen, and there is a problem in productivity of glass. The nitrogen addition reaction to the porous silica glass body is considered as in the equations (1) and (2).

【化1】 SiO2 +NH3 = OSi〔NH〕+H2 O (1) SiOH+NH3 = SiNH2 +H2 O (2) 生成するH2 Oが上記反応平衡上重要であり、H2 O濃
度が高くなると上記反応が左方向に進み、窒素離脱反応
が生じるため、高濃度の窒素添加が困難になる。また、
これらの反応により、非常に長い時間ガスの置換を行い
ながら添加を進めれば、生成ガスであるH2 Oの雰囲気
中からの除去が進むので、窒素の添加は進行する。しか
しながら、ガスの置換を効率よく進めるには、加熱反応
容器の容積を小さくするかガスの流量を多くするしかな
く、前者では処理可能な多孔質体のサイズの制限から生
産性が落ちるし、後者では使用ガス量の増大によってガ
スの価格や、排ガス処理コストの増大を引き起こすこと
になる。本発明はこのような従来技術に鑑み、高濃度の
窒素の導入を容易に行うことができ、しかも窒素の導入
量の設定が容易な窒素を添加したシリカガラス材の製造
方法を提供することを目的とする。
Embedded image SiO 2 + NH 3 = OSi [NH] + H 2 O (1) SiOH + NH 3 = SiNH 2 + H 2 O (2) The H 2 O to be produced is important for the above reaction equilibrium, and the H 2 O concentration is high. When this happens, the above reaction proceeds to the left and a nitrogen desorption reaction occurs, making it difficult to add a high concentration of nitrogen. Also,
According to these reactions, if the addition is carried out while replacing the gas for a very long time, the removal of H 2 O, which is a generated gas, from the atmosphere proceeds, so that the addition of nitrogen proceeds. However, in order to efficiently promote gas replacement, the only option is to reduce the volume of the heated reaction vessel or increase the flow rate of the gas. In the former, the productivity is reduced due to the limitation of the size of the porous body that can be treated, and the latter is reduced. In this case, an increase in the amount of gas used causes an increase in the price of the gas and the cost of treating the exhaust gas. The present invention has been made in view of such conventional techniques, and provides a method for producing a silica glass material to which nitrogen can be easily added at a high concentration, and the amount of nitrogen to be introduced can be easily set. Aim.

【0005】[0005]

【課題を解決するための手段】本発明は、(1)シリカ
ガラス多孔質体をアンモニア含有雰囲気中で加熱処理し
て窒素を導入した後、透明ガラス化する窒素を添加した
ガラス材の製造方法において、シリカガラス多孔質体を
ハロゲン化珪素ガスを含む雰囲気中で加熱処理し、得ら
れたハロゲン元素を添加したシリカガラス多孔質体をア
ンモニア含有雰囲気中で加熱処理して窒素含有多孔質体
とし、該窒素含有多孔質体を更に加熱処理して透明ガラ
ス化することを特徴とする窒素を添加したガラス材の製
造方法、(2)ハロゲン化珪素を構成するハロゲン元素
がフッ素又は塩素であることを特徴とする前記(1)の
窒素を添加したガラス材の製造方法、(3)ハロゲン化
珪素ガスを含む雰囲気中での加熱処理及びアンモニア含
有雰囲気中での加熱処理を、酸素濃度が100ppm未
満の雰囲気中で行うことを特徴とする前記(1)又は
(2)の窒素を添加したガラス材の製造方法、及び
(4)窒素含有多孔質体を透明ガラス化する加熱処理
を、窒素ガス、窒素ガス以外の不活性ガス及び酸素ガス
の混合ガス雰囲気中で行うことを特徴とする前記(1)
〜(3)のいずれかの窒素を添加したガラス材の製造方
法である。
According to the present invention, there is provided (1) a method for producing a glass material in which nitrogen is introduced by heating a porous silica glass body in an ammonia-containing atmosphere to introduce nitrogen, and then adding vitrification to the glass. In the above, the silica glass porous body is heat-treated in an atmosphere containing a silicon halide gas, and the obtained silica glass porous body to which a halogen element is added is heat-treated in an ammonia-containing atmosphere to form a nitrogen-containing porous body. A method for producing a glass material to which nitrogen is added, wherein the nitrogen-containing porous body is further heat-treated to be vitrified, and (2) the halogen element constituting the silicon halide is fluorine or chlorine. (1) the method for producing a glass material to which nitrogen is added as described in (1), (3) heat treatment in an atmosphere containing a silicon halide gas, and heat treatment in an ammonia-containing atmosphere. (1) The method for producing a glass material to which nitrogen is added as described in (1) or (2) above, wherein the oxygen concentration is less than 100 ppm, and (4) the vitrification of the nitrogen-containing porous body. (1) wherein the heat treatment is performed in a mixed gas atmosphere of nitrogen gas, an inert gas other than nitrogen gas, and oxygen gas.
A method for producing a glass material to which any one of (3) to (3) is added.

【0006】本発明の方法により、予めシリカガラス多
孔質体にハロゲン元素を添加した後、アンモニア含有雰
囲気中で加熱処理することにより、(3)式に示すよう
にハロゲン元素がアンモニアと置換し、効率よくシリカ
ガラス中に窒素を添加することができる。
According to the method of the present invention, a halogen element is added to a porous silica glass body in advance, and a heat treatment is performed in an ammonia-containing atmosphere, whereby the halogen element is replaced with ammonia as shown in formula (3). Nitrogen can be efficiently added to the silica glass.

【化2】 SiO1.5 X+NH3 =SiO1.5 〔NH2 〕+HX (3) (X:F,Cl,Br,I) この反応の利点は、(1) 反応平衡上生成反応を阻害する
酸素を含有するガス状生成物がないので、ほぼ100%
の反応率が得られる、(2) 生成したハロゲン化水素は、
ガスの置換に従い速やかに炉外へ排出が可能、という点
にある。この反応を行わせることによって、従来の方法
に比較し反応速度が速くなるので、短時間での窒素添加
が可能になり、かつ、予め添加しておいたハロゲン量に
応じた窒素の添加が可能となり、窒素添加量の制御が容
易となる効果がある。
Embedded image SiO 1.5 X + NH 3 SiOSiO 1.5 [NH 2 ] + HX (3) (X: F, Cl, Br, I) The advantages of this reaction are as follows: (1) Oxygen that inhibits the production reaction due to reaction equilibrium Almost 100% because there are no gaseous products
(2) The generated hydrogen halide is:
The point is that the gas can be quickly discharged out of the furnace in accordance with the gas replacement. By performing this reaction, the reaction rate is increased as compared with the conventional method, so that nitrogen can be added in a short time, and nitrogen can be added in accordance with the amount of halogen added in advance. Thus, there is an effect that the control of the amount of added nitrogen becomes easy.

【0007】[0007]

【発明の実施の形態】本発明の方法においては、先ずシ
リカガラス多孔質体をハロゲン化珪素ガスを含む雰囲気
中で加熱処理して多孔質体中にハロゲン元素を導入する
(ハロゲン添加工程)。シリカガラス多孔質体として
は、例えばガラス原料の珪素化合物から、気相での酸化
反応あるいは火炎加水分解反応等によりガラス微粒子を
合成してスス状堆積体とするVAD法、OVD法の気相
合成法によるもの、ゾル・ゲル法により合成したもの、
ガラス微粒子(微粉末)を加圧成形したものなどが使用
できる。これらの手法で作製したかさ比重0.2〜0.
5g/cm3 の領域の多孔質体が連続気孔を持ち得るの
で、気相でのハロゲン元素、窒素の添加に望ましいもの
となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of the present invention, first, a porous silica glass body is heated in an atmosphere containing a silicon halide gas to introduce a halogen element into the porous body (halogen addition step). As the porous silica glass, for example, a gas phase synthesis of a VAD method or an OVD method is performed by synthesizing glass fine particles from a silicon compound as a glass raw material by a gas phase oxidation reaction or a flame hydrolysis reaction to form a soot-like deposit. By sol-gel method,
Pressure-molded glass fine particles (fine powder) can be used. The bulk specific gravity of 0.2-0.
Since the porous body in the region of 5 g / cm 3 can have continuous pores, it is desirable for adding a halogen element and nitrogen in a gas phase.

【0008】シリカガラス多孔質体にハロゲン元素を添
加する手法としては、既に光ファイバ用ガラス母材の処
理方法として知られている手法を適用することができ
る。すなわち、シリカガラス多孔質体をハロゲン化合物
含有雰囲気中で加熱処理することにより脱水過程、ハロ
ゲン添加過程を伴いハロゲン元素が添加される。ハロゲ
ン添加工程で用いられるハロゲン化合物としてはC
2 、SiCl4 、CCl4などの塩化物、SiF4
CF4 、SF6 などのフッ化物のほか、Br2 やI2
れらの炭化物や珪化物が効果があるが、本発明の方法に
おいて使用するハロゲン化合物としてはSiCl4 、S
iF4 などのハロゲン化珪素が好ましい。その理由は、
SiO2 へのハロゲン元素の添加は(4)式の化学反応
平衡に従い進行するので副生成物の生成がなく、効率的
かつ高濃度にハロゲン元素が添加できるからである。
As a method for adding a halogen element to a porous silica glass body, a method already known as a method for treating a glass base material for optical fibers can be applied. That is, by subjecting the porous silica glass body to heat treatment in a halogen compound-containing atmosphere, a halogen element is added with a dehydration step and a halogen addition step. The halogen compound used in the halogen addition step is C
chlorides such as l 2 , SiCl 4 , CCl 4 , SiF 4 ,
In addition to fluorides such as CF 4 and SF 6 , Br 2 and I 2, their carbides and silicides are effective. The halogen compounds used in the method of the present invention include SiCl 4 , S
Silicon halides such as iF 4 are preferred. The reason is,
This is because the addition of the halogen element to SiO 2 proceeds according to the chemical reaction equilibrium of the formula (4), so that no by-product is generated, and the halogen element can be added efficiently and at a high concentration.

【化3】 3SiO2 +SiX4 =4SiO1.5 X (4) (X:F,Cl,Br,I)Embedded image 3SiO 2 + SiX 4 = 4SiO 1.5 X (4) (X: F, Cl, Br, I)

【0009】ハロゲン化珪素としてはSiCl4 などの
塩化珪素が最適である。フッ化珪素を使用した場合でも
高濃度にフッ素を添加することができるが、アンモニア
を反応させた際の反応生成物がフッ化水素であり、シリ
カガラス多孔質体のエッチングが進行する恐れがある。
また、臭化珪素やヨウ化珪素を使用する場合には、原料
の供給のために原料供給系を高温(100℃以上)に保
持する必要があるなどの困難性がある上、ハロゲン元素
の原子量が増大すると、シリカガラスへの飽和濃度が低
下する問題がある。
As the silicon halide, silicon chloride such as SiCl 4 is most suitable. Even when silicon fluoride is used, fluorine can be added at a high concentration, but the reaction product when ammonia is reacted is hydrogen fluoride, and the etching of the porous silica glass body may proceed. .
In addition, when silicon bromide or silicon iodide is used, it is difficult to maintain the temperature of the raw material supply system at a high temperature (100 ° C. or higher) in order to supply the raw materials. Increases, the saturation concentration in the silica glass decreases.

【0010】ハロゲン添加工程はシリカガラス多孔質体
をハロゲン化珪素ガスを含有するHe、N2 などの不活
性ガス雰囲気中で800〜1300℃、好ましくは11
00〜1200℃で30〜100分間加熱処理すること
によって行う。ハロゲン化珪素ガスの濃度は0.1〜1
00%の範囲とする。温度が800℃未満ではハロゲン
の添加速度が遅くなり、また、温度が1300℃を超え
るとガラスの収縮により添加ができにくくなる。ハロゲ
ン化合物含有雰囲気中の酸素濃度は100ppm未満と
するのが好ましい。酸素濃度が100ppm以上では酸
素とハロゲン化合物との反応でSiO2粒子の生成が生
じるおそれがある(ただし、F化合物の場合はSiO2
よりSi−Fの結合の方が強いのでSiO2 は生じな
い)。このハロゲン添加工程において0.1〜3wt%
程度のハロゲン元素が添加できる。
In the halogen addition step, the porous silica glass body is heated at 800 to 1300 ° C., preferably 11 ° C., in an atmosphere of an inert gas containing silicon halide gas such as He or N 2.
The heat treatment is performed at 00 to 1200 ° C. for 30 to 100 minutes. The concentration of the silicon halide gas is 0.1 to 1
Within the range of 00%. If the temperature is lower than 800 ° C., the rate of addition of the halogen becomes slow, and if the temperature exceeds 1300 ° C., the addition becomes difficult due to shrinkage of the glass. The oxygen concentration in the halogen compound-containing atmosphere is preferably less than 100 ppm. An oxygen concentration is 100ppm or more, there is a possibility that the formation of SiO 2 particles in the reaction between oxygen and a halogen compound occurs (However, in the case of compound F SiO 2
SiO 2 is not generated because the bond of Si—F is stronger than that of Si—F). 0.1 to 3 wt% in this halogen addition step
Some halogen elements can be added.

【0011】次に、ハロゲン添加工程で得られたハロゲ
ン元素を添加したシリカガラス多孔質体を、He、N2
などの不活性ガス中に1〜20%の濃度のアンモニアガ
スを含有するアンモニア含有雰囲気中で加熱処理して窒
素を導入する(窒素添加工程)。熱処理温度は800〜
1200℃、好ましくは900〜1000℃の範囲とす
る。温度が800℃未満では窒素の添加速度が遅くな
り、また、温度が1200℃を超えるとアンモニアガス
の分解が生じてN2 とH2 に解離してしまい、窒素の添
加が進行しにくくなる。また、アンモニアガスの濃度が
20%を超えると取扱いが難しくなるので好ましくな
い。また、熱処理時間は10〜300分間とする。処理
時間が10分未満ではハロゲン元素の窒素への置換が不
十分となり、300分を超えると生産性の点で問題とな
る。アンモニア含有雰囲気中の酸素濃度が高いと生成し
たSi−N結合が酸素にとって代わられて窒素の添加量
が減少してしまう。窒素の酸素への置換は反応平衡上で
ほぼ100%生じてしまうので、雰囲気中の酸素濃度は
アンモニア濃度に対して十分小さくする必要がある。前
記のとおりアンモニアガス分圧は1〜20%の範囲で反
応させるので、雰囲気中の酸素濃度は100ppm未満
とすることが、窒素の添加の観点で望ましい。この窒素
添加工程において、前工程でのハロゲン元素添加量に対
応して0.2〜3wt%の窒素が添加できる。
Next, the porous silica glass to which the halogen element added in the halogen addition step is added is made of He, N 2
Heat treatment is performed in an ammonia-containing atmosphere containing 1 to 20% ammonia gas in an inert gas such as nitrogen to introduce nitrogen (nitrogen addition step). Heat treatment temperature is 800 ~
1200 ° C., preferably in the range of 900 to 1000 ° C. If the temperature is lower than 800 ° C., the rate of addition of nitrogen becomes slow. If the temperature exceeds 1200 ° C., ammonia gas is decomposed and dissociated into N 2 and H 2 , making it difficult for the addition of nitrogen to proceed. On the other hand, if the concentration of ammonia gas exceeds 20%, handling becomes difficult, which is not preferable. The heat treatment time is 10 to 300 minutes. If the treatment time is less than 10 minutes, the replacement of the halogen element with nitrogen becomes insufficient, and if it exceeds 300 minutes, there is a problem in terms of productivity. When the oxygen concentration in the ammonia-containing atmosphere is high, the generated Si—N bond is replaced by oxygen, and the amount of added nitrogen decreases. Substitution of nitrogen with oxygen occurs almost 100% on the reaction equilibrium, so the oxygen concentration in the atmosphere needs to be sufficiently smaller than the ammonia concentration. As described above, since the reaction is performed with the ammonia gas partial pressure in the range of 1 to 20%, it is desirable that the oxygen concentration in the atmosphere be less than 100 ppm from the viewpoint of adding nitrogen. In this nitrogen addition step, nitrogen of 0.2 to 3 wt% can be added corresponding to the halogen element addition amount in the previous step.

【0012】次に、窒素添加工程で得られた窒素含有多
孔質体を更に加熱処理して透明ガラス化する(透明ガラ
ス化工程)。透明ガラス化は窒素含有多孔質体を不活性
雰囲気中で1450〜1650℃の範囲に加熱すること
によって行う。温度が1450℃未満では透明化が不十
分となり、また、温度が1650℃を超えると炉心管の
変形が生じるおそれがある。処理時間は温度にもよるが
10〜100分間程度とする。この透明ガラス化工程に
おける加熱処理により、ハロゲン元素の添加量に対応し
て0.2〜3wt%の窒素が添加された透明なシリカガ
ラス体を得ることができる。
Next, the nitrogen-containing porous body obtained in the nitrogen addition step is further subjected to a heat treatment to form a transparent vitrification (a transparent vitrification step). Transparent vitrification is performed by heating the nitrogen-containing porous body to 1450 to 1650 ° C. in an inert atmosphere. When the temperature is lower than 1450 ° C., the transparency is insufficient, and when the temperature is higher than 1650 ° C., the furnace tube may be deformed. The processing time is about 10 to 100 minutes, depending on the temperature. By the heat treatment in the transparent vitrification step, a transparent silica glass body to which 0.2 to 3 wt% of nitrogen is added corresponding to the amount of the halogen element added can be obtained.

【0013】この透明ガラス化工程において、加熱処理
雰囲気を窒素ガス以外の不活性ガス(例えばHe,A
r,Ne等の希ガス元素)に1〜10%の窒素ガス及び
0.1〜5%の酸素ガスを添加した混合ガス雰囲気とす
ることによって、部分的に脱窒化反応を生じさせ、屈折
率分布を形成することも可能である。
In this transparent vitrification step, the heat treatment atmosphere is changed to an inert gas other than nitrogen gas (for example, He, A
A rare gas element such as r or Ne) is mixed with 1 to 10% of nitrogen gas and 0.1 to 5% of oxygen gas to cause a partial denitrification reaction to cause a refractive index. It is also possible to form a distribution.

【0014】[0014]

【実施例】以下、実施例により本発明の方法をさらに具
体的に説明する。 (実施例1)シリカガラス多孔質体として、SiCl4
を原料とし、火炎加水分解法により合成したガラス微粒
子を軸方向に堆積させるVAD法により作製したかさ比
重0.25g/cm3 の多孔質体を使用した。作製した
シリカガラス多孔質体を電気抵抗加熱炉に入れ、温度1
200℃まで毎分10℃の昇温速度で昇温し、SiCl
4 ガス流量0.2リットル/分、ヘリウムガス流量10
リットル/分の雰囲気中(酸素濃度100ppm未満)
で1200℃で30分間の加熱雰囲気処理を行い、シリ
カガラス多孔質体に塩素を添加した。30分間の加熱処
理後、SiCl 4 ガスの供給を停止し、毎分5℃の降温
速度で炉温を1000℃まで下げ、1000℃でNH3
ガス流量1リットル/分、窒素ガス流量10リットル/
分の雰囲気中(酸素濃度100ppm未満)で60分間
熱処理してシリカガラス多孔質体に導入された塩素を窒
素で置換させた。NH3 含有雰囲気中での熱処理終了
後、供給ガスをヘリウムガス流量10リットル/分、窒
素ガス流量1リットル/分に切替え(雰囲気中の酸素濃
度100ppm未満)、毎分5℃の昇温速度で1550
℃まで昇温し、同温度で10分間保持後、1000℃ま
で炉温を下げてシリカガラス体を取り出した。得られた
ガラス体は可視光で透明で、赤外吸収法により水酸基濃
度を測定したところ濃度は0.1ppm未満であった。
このガラス体の窒素添加量は化学分析法により2wt%
であり、塩素の残存量は0.05wt%以下であった。
The following examples further illustrate the method of the present invention.
Explain physically. (Example 1) As a porous silica glass, SiClFour
Glass granules synthesized by flame hydrolysis
Ratio produced by the VAD method in which the elements are deposited in the axial direction
Weight 0.25g / cmThreeWas used. Made
Place the porous silica glass body in an electric resistance heating furnace,
The temperature was raised to 200 ° C. at a rate of 10 ° C./min.
FourGas flow rate 0.2 liter / min, helium gas flow rate 10
In an atmosphere of liter / min (oxygen concentration less than 100 ppm)
At 1200 ° C. for 30 minutes.
Chlorine was added to the Kagurasu porous body. Heating for 30 minutes
After treatment, SiCl FourTurn off gas supply and cool down at 5 ° C per minute
The furnace temperature is lowered to 1000 ° C at aThree
Gas flow rate 1 liter / min, nitrogen gas flow rate 10 liter / minute
For 60 minutes in an atmosphere of less than 100 minutes (oxygen concentration less than 100 ppm)
Heat treatment to reduce the chlorine introduced into the porous silica glass
Was replaced with a prime. NHThreeEnd of heat treatment in containing atmosphere
Thereafter, the supply gas was supplied at a helium gas flow rate of 10 L / min.
Switch to elemental gas flow rate 1 liter / min (oxygen concentration in atmosphere
Less than 100 ppm) at a rate of 5 ° C./min.
℃, hold at the same temperature for 10 minutes, then up to 1000 ℃
And the silica glass body was taken out. Got
The glass body is transparent with visible light, and the hydroxyl concentration is determined by infrared absorption.
When the degree was measured, the concentration was less than 0.1 ppm.
The amount of nitrogen added to this glass body was 2 wt% by chemical analysis.
And the residual amount of chlorine was 0.05 wt% or less.

【0015】(実施例2)実施例1と同様の手法により
作製したシリカガラス多孔質体を使用した。作製したシ
リカガラス多孔質体を電気抵抗加熱炉に入れ、温度12
00℃まで毎分10℃の昇温速度で昇温し、SiF4
ス流量1リットル/分、ヘリウムガス流量1リットル/
分の雰囲気中(酸素濃度100ppm未満)で1200
℃で30分間の加熱雰囲気処理を行い、シリカガラス多
孔質体にフッ素を添加した。30分間の加熱処理後、S
iF4 ガスの供給を停止し、毎分5℃の降温速度で炉温
を1000℃まで下げ、1000℃でNH3 ガス流量2
リットル/分、窒素ガス流量10リットル/分の雰囲気
中(酸素濃度100ppm未満)で60分間熱処理して
シリカガラス多孔質体に導入されたフッ素を窒素で置換
させた。NH3 含有雰囲気中での熱処理終了後、供給ガ
スをヘリウムガス流量10リットル/分、窒素ガス流量
1リットル/分に切替え(雰囲気中の酸素濃度100p
pm未満)、毎分5℃の昇温速度で1550℃まで昇温
し、同温度で10分間保持後、1000℃まで炉温を下
げてシリカガラス体を取り出した。得られたガラス体は
可視光で透明で、赤外吸収法により水酸基濃度を測定し
たところ濃度は0.1ppm未満であった。このガラス
体の窒素添加量は化学分析法により3wt%であり、フ
ッ素の残存量は0.3wt%であった。
(Example 2) A porous silica glass body produced in the same manner as in Example 1 was used. The prepared porous silica glass body was placed in an electric resistance heating furnace, and the temperature was adjusted to 12 ° C.
The temperature was raised to 00 ° C. at a rate of 10 ° C./minute, and the flow rate of SiF 4 gas was 1 liter / minute, and the flow rate of helium gas was 1 liter / minute.
1200 minutes in an atmosphere (oxygen concentration less than 100 ppm)
A heating atmosphere treatment was performed at 30 ° C. for 30 minutes, and fluorine was added to the porous silica glass body. After heat treatment for 30 minutes, S
iF 4 the supply of gas is stopped, lowered at a cooling rate per minute 5 ° C. the furnace temperature to 1000 ° C., NH 3 gas flow rate 2 at 1000 ° C.
Heat treatment was performed for 60 minutes in an atmosphere (oxygen concentration less than 100 ppm) in an atmosphere (oxygen concentration less than 100 ppm) at a rate of 10 liters / minute with a nitrogen gas flow rate to replace the fluorine introduced into the silica glass porous body with nitrogen. After the completion of the heat treatment in the NH 3 -containing atmosphere, the supply gas is switched to a helium gas flow rate of 10 L / min and a nitrogen gas flow rate of 1 L / min (oxygen concentration in the atmosphere is 100 p.
pm), the temperature was raised to 1550 ° C. at a rate of 5 ° C. per minute, and held at the same temperature for 10 minutes, the furnace temperature was lowered to 1000 ° C., and the silica glass body was taken out. The obtained glass body was transparent with visible light, and the hydroxyl group concentration was measured by an infrared absorption method. The concentration was less than 0.1 ppm. The amount of nitrogen added to this glass body was 3 wt% according to a chemical analysis method, and the remaining amount of fluorine was 0.3 wt%.

【0016】(比較例)実施例1と同様の手法により作
製したシリカガラス多孔質体を使用した。作製したシリ
カガラス多孔質体を電気抵抗加熱炉に入れ、温度120
0℃まで毎分2℃の昇温速度で昇温し、1200℃でN
3 ガス流量2リットル/分、窒素ガス流量10リット
ル/分の雰囲気中(酸素濃度100ppm未満)で10
0分間熱処理してシリカガラス多孔質体に窒素を添加し
た。NH3 含有雰囲気中での熱処理終了後、供給ガスを
ヘリウムガス流量10リットル/分、窒素ガス流量1リ
ットル/分に切替え(雰囲気中の酸素濃度100ppm
未満)、毎分1.5℃の昇温速度で1550℃まで昇温
し、同温度で10分間保持後、1000℃まで炉温を下
げてシリカガラス体を取り出した。得られたガラス体は
可視光で透明で、赤外吸収法により水酸基濃度を測定し
たところ濃度は0.1ppm未満であった。このガラス
体の窒素添加量は化学分析法により0.5wt%であっ
た。また、窒素添加処理後の昇温速度を2℃/分以上に
すると、ガラス体表面に発泡する現象が生じた。そのた
め、加熱処理に長時間が必要であった。
Comparative Example A porous silica glass body produced by the same method as in Example 1 was used. The prepared silica glass porous body was placed in an electric resistance heating furnace, and the temperature was set to 120.
The temperature was raised to 0 ° C. at a rate of 2 ° C./min.
H 3 gas flow rate 2 liter / min, nitrogen gas flow rate 10 liter / min atmosphere (oxygen concentration less than 100 ppm)
Heat treatment was performed for 0 minutes to add nitrogen to the porous silica glass body. After the completion of the heat treatment in the NH 3 -containing atmosphere, the supply gas is switched to a helium gas flow rate of 10 liter / minute and a nitrogen gas flow rate of 1 liter / minute (oxygen concentration in the atmosphere is 100 ppm).
), The temperature was raised to 1550 ° C. at a rate of 1.5 ° C. per minute, and the temperature was maintained at the same temperature for 10 minutes, and then the furnace temperature was lowered to 1000 ° C. to take out the silica glass body. The obtained glass body was transparent with visible light, and the hydroxyl group concentration was measured by an infrared absorption method. The concentration was less than 0.1 ppm. The amount of nitrogen added to this glass body was 0.5 wt% according to a chemical analysis method. In addition, when the heating rate after the nitrogen addition treatment was set to 2 ° C./min or more, a phenomenon of foaming on the surface of the glass body occurred. Therefore, a long time was required for the heat treatment.

【0017】[0017]

【発明の効果】本発明の方法によれば、従来の方法に比
較して短時間で容易に高濃度の窒素を添加したシリカガ
ラス体を製造することができる。また、ハロゲン元素の
導入量を制御することにより窒素の添加量を制御するこ
ともできる。
According to the method of the present invention, a silica glass body to which a high concentration of nitrogen is added can be easily produced in a short time as compared with the conventional method. Also, the amount of nitrogen added can be controlled by controlling the amount of halogen element introduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高城 政浩 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 山崎 卓 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 Fターム(参考) 4G014 AH00 4G021 CA14  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masahiro Takagi 1st Tayacho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works (72) Inventor Taku Yamazaki 1st Tayacho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Electric Ki Kogyo Co., Ltd. Yokohama Works F-term (reference) 4G014 AH00 4G021 CA14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリカガラス多孔質体をアンモニア含有
雰囲気中で加熱処理して窒素を導入した後、透明ガラス
化する窒素を添加したガラス材の製造方法において、シ
リカガラス多孔質体をハロゲン化珪素ガスを含む雰囲気
中で加熱処理し、得られたハロゲン元素を添加したシリ
カガラス多孔質体をアンモニア含有雰囲気中で加熱処理
して窒素含有多孔質体とし、該窒素含有多孔質体を更に
加熱処理して透明ガラス化することを特徴とする窒素を
添加したガラス材の製造方法。
1. A method for producing a glass material in which nitrogen is introduced by heat-treating a porous silica glass body in an ammonia-containing atmosphere to introduce nitrogen and then adding vitrified nitrogen to the glass material. A heat treatment is performed in an atmosphere containing gas, and the obtained silica glass porous body to which the halogen element is added is heat-treated in an ammonia-containing atmosphere to obtain a nitrogen-containing porous body, and the nitrogen-containing porous body is further heat-treated. And producing a glass material to which nitrogen is added.
【請求項2】 ハロゲン化珪素を構成するハロゲン元素
がフッ素又は塩素であることを特徴とする請求項1に記
載の窒素を添加したガラス材の製造方法。
2. The method for producing a glass material to which nitrogen is added according to claim 1, wherein the halogen element constituting the silicon halide is fluorine or chlorine.
【請求項3】 ハロゲン化珪素ガスを含む雰囲気中での
加熱処理及びアンモニア含有雰囲気中での加熱処理を、
酸素濃度が100ppm未満の雰囲気中で行うことを特
徴とする請求項1又は2に記載の窒素を添加したガラス
材の製造方法。
3. A heat treatment in an atmosphere containing a silicon halide gas and a heat treatment in an atmosphere containing ammonia.
The method for producing a glass material to which nitrogen is added according to claim 1, wherein the method is performed in an atmosphere having an oxygen concentration of less than 100 ppm.
【請求項4】 窒素含有多孔質体を透明ガラス化する加
熱処理を、窒素ガス、窒素ガス以外の不活性ガス及び酸
素ガスの混合ガス雰囲気中で行うことを特徴とする請求
項1〜3のいずれか1項に記載の窒素を添加したガラス
材の製造方法。
4. The method according to claim 1, wherein the heat treatment for vitrifying the nitrogen-containing porous body is performed in a mixed gas atmosphere of nitrogen gas, an inert gas other than nitrogen gas, and oxygen gas. A method for producing a glass material to which nitrogen is added according to any one of the preceding claims.
JP10363894A 1998-12-22 1998-12-22 Production of glass material Pending JP2000185924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10363894A JP2000185924A (en) 1998-12-22 1998-12-22 Production of glass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10363894A JP2000185924A (en) 1998-12-22 1998-12-22 Production of glass material

Publications (1)

Publication Number Publication Date
JP2000185924A true JP2000185924A (en) 2000-07-04

Family

ID=18480457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10363894A Pending JP2000185924A (en) 1998-12-22 1998-12-22 Production of glass material

Country Status (1)

Country Link
JP (1) JP2000185924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104485A1 (en) 2007-02-27 2008-09-04 Heraeus Quarzglas Gmbh & Co. Kg Optical component made from synthetic quartz glass with enhanced radiation resistance, and method for producing the component
WO2009106134A1 (en) * 2008-02-27 2009-09-03 Heraeus Quarzglas Gmbh & Co. Kg Method for producing an optical component of quartz glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104485A1 (en) 2007-02-27 2008-09-04 Heraeus Quarzglas Gmbh & Co. Kg Optical component made from synthetic quartz glass with enhanced radiation resistance, and method for producing the component
WO2009106134A1 (en) * 2008-02-27 2009-09-03 Heraeus Quarzglas Gmbh & Co. Kg Method for producing an optical component of quartz glass

Similar Documents

Publication Publication Date Title
TWI399347B (en) Quartz glass jig for processing semiconductor wafers and method for producing the jig
US5474589A (en) UV light-permeable glass and article comprising the same
US3933454A (en) Method of making optical waveguides
US5523266A (en) Optical member of synthetic quartz glass for excimer lasers and method for producing same
JP3845906B2 (en) Method for producing synthetic silica glass
US4338111A (en) Process for producing a glass preform for optical fiber
JPH08290935A (en) Highly purified molten silica glass member with resistance to optical damage and its preparation
JPS61247633A (en) Production of glass base material for optical fiber
JPH02293340A (en) Production of glass object having zones of different refraction of light
US7975507B2 (en) Process for producing synthetic quartz glass and synthetic quartz glass for optical member
JPH0526731B2 (en)
KR20060087570A (en) High-purity pyrogenically prepared silicon dioxide
JPH09309735A (en) Production of silica glass
JP2000185924A (en) Production of glass material
KR100545813B1 (en) Optical fiber preform manufacturing method using crystal chemical vapor deposition including dehydration and dechlorination process and optical fiber manufactured by this method
JP2785430B2 (en) Quartz glass for optical transmission
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JP2722573B2 (en) Manufacturing method of high purity quartz glass
JPS6289B2 (en)
JPH06227827A (en) Transparent silica glass and its production
JPH0776092B2 (en) Glass manufacturing method
JPH0551542B2 (en)
JPS6081038A (en) Manufacture of optical glass fiber containing tio2
JPH01145346A (en) Production of optical fiber preform
JPS6251215B2 (en)