JPH09309735A - Production of silica glass - Google Patents

Production of silica glass

Info

Publication number
JPH09309735A
JPH09309735A JP12526496A JP12526496A JPH09309735A JP H09309735 A JPH09309735 A JP H09309735A JP 12526496 A JP12526496 A JP 12526496A JP 12526496 A JP12526496 A JP 12526496A JP H09309735 A JPH09309735 A JP H09309735A
Authority
JP
Japan
Prior art keywords
temperature
quartz glass
glass
reduced pressure
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12526496A
Other languages
Japanese (ja)
Other versions
JP3818603B2 (en
Inventor
Hiroshi Matsui
宏 松井
Atsushi Shimada
敦之 嶋田
Kasumi Hoshikawa
佳寿美 星川
Tatsuhiro Sato
龍弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP12526496A priority Critical patent/JP3818603B2/en
Publication of JPH09309735A publication Critical patent/JPH09309735A/en
Application granted granted Critical
Publication of JP3818603B2 publication Critical patent/JP3818603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a synthetic silica glass having viscosity characteristics at high temperature similar to a natural one by reacting a porous glass material of silica including a prescribed hydroxyl group with a halogenated silane under a specific condition and treating the resultant product to form a silica glass material. SOLUTION: A porous glass material of silica obtained by a flame hydrolysis of a silane compound (e.g. tetrachlorosilane) is preheated preferably in a reduced pressure atmosphere and below the reaction temperature, further reacted with a halogenated silane, preferably methyltrichlorosilane or tetrachlorosilane, in an inactive gas atmosphere at 300-800 deg.C. Thereafter, the resultant product is treated under a reduced pressure by an evacuation at a temperature of 850 deg.C or more and the beginning temperature of a sintering (1000 deg.C) or less and further compacted at high temperature of 1600 deg.C or more under a reduced pressure to form the objective transparent glass material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、火炎加水分解によ
って作られた多孔質体を処理して得られる石英ガラスの
製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing quartz glass obtained by treating a porous body produced by flame hydrolysis.

【0002】[0002]

【従来の技術】合成石英ガラスの製造は、主にハロゲン
化珪素の火炎加水分解により得られた多孔質体を、高温
で緻密化して製造する方法がよく知られている。このよ
うにして得られる合成石英ガラスは、火炎加水分解工程
を経ているため、多孔質体内に大量のOH基を含んでい
る。石英ガラス中にOH基が多量に存在すると、ガラス
の粘度を下げ、耐熱性が下がり、かつ通信用光ファイバ
ーの母材ガラスとして用いるにも近赤外線領域に吸収を
生じ好ましくない。
2. Description of the Related Art The production of synthetic quartz glass is well known by densifying a porous body mainly obtained by flame hydrolysis of silicon halide at high temperature. The synthetic quartz glass thus obtained has undergone a flame hydrolysis step and therefore contains a large amount of OH groups in the porous body. The presence of a large amount of OH groups in the quartz glass unfavorably lowers the viscosity of the glass, lowers the heat resistance, and causes absorption in the near-infrared region even when it is used as a base glass for a communication optical fiber.

【0003】この対策として、特開昭54-127914 号公報
では、ガラス形成原料を熱酸化または加水分解して、支
持棒の端面に二酸化珪素(SiO2) を主成分とするガラス
形成物質を付着させ、多孔質ガラス焼結体を作製し、こ
の多孔質ガラス焼結体を、800 〜1000℃でハロゲン元素
を含むガラス形成原料ガスにさらした後、透明ガラス化
して、無水ガラス母材を作製することを開示している。
ガラス形成原料としては、SiCl4 、SiBr4 、GeCl4 、BB
r3、 POCl3、PCl3等を例示している。
As a countermeasure against this, in Japanese Patent Laid-Open No. 54-127914, a glass forming raw material is thermally oxidized or hydrolyzed to adhere a glass forming substance containing silicon dioxide (SiO 2 ) as a main component to the end face of a supporting rod. Then, a porous glass sintered body is produced, and the porous glass sintered body is exposed to a glass forming raw material gas containing a halogen element at 800 to 1000 ° C., and then made into a transparent glass to produce an anhydrous glass base material. Is disclosed.
Glass forming raw materials include SiCl 4 , SiBr 4 , GeCl 4 , BB
Examples are r 3 , POCl 3 , PCl 3 and the like.

【0004】また、特開昭54-134128 号公報は、火炎加
水分解により製造した多孔質プリフォームの脱OH基反応
を、透明ガラス化を起こさずに脱OH基反応を起こすこと
ができる400 〜 500℃の温度で、ハロゲン化合物を含む
Heの雰囲気中で行い、その後、1000〜 1600 ℃の温度で
透明ガラス化するものである。
Further, Japanese Patent Laid-Open No. 54-134128 discloses that a de-OH group reaction of a porous preform produced by flame hydrolysis can be carried out without causing transparent vitrification. Contains halogen compounds at a temperature of 500 ° C
It is carried out in an atmosphere of He and then vitrified into a glass at a temperature of 1000 to 1600 ° C.

【0005】さらに、特開昭55-10412号公報は、酸水素
バーナー炎により、二酸化珪素(SiO2) を主成分とする
ガラス形成物質を支持棒に付着させ、多孔質ガラス体を
得ている。次いで、ヘリウムガス(He) 2 l/min と、
液体状の塩素含有化合物( S2Cl2、SCl2、SiCl4 、PC
l3、CCl4等)を加熱炉に送り込み、発生した蒸気を熱分
解して得られた塩素ガス雰囲気中にて、多孔質ガラス体
を1500℃に加熱して透明ガラス化を行う。このとき、透
明ガラス化に先立ち、多孔質ガラス体を800 ℃で、塩素
ガスで予備脱水処理を予め行っておくことが好ましい、
ことを開示している。
Further, in Japanese Patent Laid-Open No. 55-10412, a glass forming substance containing silicon dioxide (SiO 2 ) as a main component is adhered to a supporting rod by an oxyhydrogen burner flame to obtain a porous glass body. . Then, helium gas (He) 2 l / min,
Liquid chlorine-containing compounds (S 2 Cl 2 , SCl 2 , SiCl 4 , PC
( 3 , CCl 4, etc.) are sent to a heating furnace, and the porous glass body is heated to 1500 ° C. in a chlorine gas atmosphere obtained by thermally decomposing the generated vapor to perform transparent vitrification. At this time, prior to the transparent vitrification, the porous glass body is preferably preliminarily dehydrated with chlorine gas at 800 ° C.,
Is disclosed.

【0006】[0006]

【発明が解決しょうとする課題】これらの方法によって
得られる合成石英ガラスは、不純物が少ないことから光
通信用の光ファイバーとして使用されてきたが、未だに
高温での粘度が天然水晶を原料とする石英ガラスよりも
低く、高温作業工程における変形が大きな欠点として認
識されていた。このため、石英ガラスを大量に使用する
半導体工業分野にあってもその用途が限られていた。本
発明の目的は、天然石英ガラス並みの高温粘度特性を有
する合成石英ガラスの製造方法を提供することにある。
The synthetic quartz glass obtained by these methods has been used as an optical fiber for optical communication because of its small amount of impurities. However, the quartz whose raw material has a viscosity at high temperature is natural quartz. Lower than glass and deformation in the hot working process was recognized as a major drawback. Therefore, even in the semiconductor industry field where a large amount of quartz glass is used, its use is limited. An object of the present invention is to provide a method for producing synthetic quartz glass having high temperature viscosity characteristics comparable to those of natural quartz glass.

【0007】[0007]

【課題を解決するための手段】従来の製造方法によって
得られる合成石英ガラスは、加水分解反応をともなうた
め、得られる多孔質体中に多量のOH基を含む。このOH基
は、ガラスの粘度を下げ、かつ特定波長に吸収を有し、
光ファイバー用母材ガラスとして好ましくないため、通
常、上記したように、塩素系のガスを使用して、多孔質
体中のOH基と反応させて除去する脱水処理が行われてい
る。しかしながら、塩素系のガスを使用する脱水処理に
よって、多孔質体中には相当量の塩素が残ることとな
る。
The synthetic quartz glass obtained by the conventional production method is accompanied by a hydrolysis reaction, so that the obtained porous body contains a large amount of OH groups. This OH group reduces the viscosity of the glass and has absorption at a specific wavelength,
Since it is not preferable as the base material glass for optical fibers, a chlorine-based gas is usually used to carry out a dehydration treatment in which it is reacted with the OH groups in the porous body to be removed, as described above. However, a considerable amount of chlorine remains in the porous body by the dehydration treatment using a chlorine-based gas.

【0008】本発明者等は、鋭意研究の結果、多孔質体
中に残留する塩素が、加熱処理して緻密化した石英ガラ
スの高温での粘度を下げる一因となっていることを見出
し、高温での粘度を上げるには、多孔質体の脱水処理か
ら緻密化工程に入るまでの間に、脱水を完全に実施する
とともに、残留する塩素濃度を粘度に対する影響がでな
いレベルまで低減すればよいことを見出し、上記課題を
解決した。本発明の石英ガラスの製造方法は、シラン化
合物の火炎加水分解で得た水酸基を含むシリカ多孔質ガ
ラス体とハロゲン化シランとを、不活性ガス雰囲気中で
温度300 〜800 ℃で反応させた後、850 ℃以上かつ焼結
開始温度以下の温度で減圧排気し、次いで1600℃以上の
高温減圧下で緻密化して透明な石英ガラス体とすること
を特徴としている。
As a result of earnest studies, the present inventors have found that chlorine remaining in the porous body is one of the causes of lowering the viscosity at high temperature of quartz glass densified by heat treatment. In order to increase the viscosity at a high temperature, it is sufficient to completely perform dehydration between the dehydration treatment of the porous body and the densification step, and reduce the residual chlorine concentration to a level that does not affect the viscosity. Therefore, the above problems have been solved. The method for producing quartz glass of the present invention is a method in which a silica porous glass body containing a hydroxyl group obtained by flame hydrolysis of a silane compound and a halogenated silane are reacted at a temperature of 300 to 800 ° C. in an inert gas atmosphere. It is characterized in that it is evacuated at a temperature not lower than 850 ° C. and not higher than the sintering start temperature, and then densified under a high temperature reduced pressure of not lower than 1600 ° C. to obtain a transparent quartz glass body.

【0009】このとき前記ハロゲン化シランに、メチル
トリクロロシランまたはテトラクロロシランを用いるの
が好ましい。前記シリカ多孔質ガラス体に反応ガスを供
給するに先立ち、シリカ多孔質ガラス体を減圧雰囲気中
でかつ反応温度以下で予熱するのが好ましい。さらに、
前記シリカ多孔質ガラス体として、ハロゲン化珪素単
独、またはハロゲン化珪素とハロゲン化アルミニウムと
の混合物を火炎加水分解して得られた多孔質体を用いる
ことができる。特公平7-115881号公報に開示されている
ように微量のアルミニウムを含んだ合成石英ガラスは高
温での粘度が向上するが、本発明の方法を適用すること
で更に粘度を向上させることができ、より耐熱性を上げ
ることができる。
At this time, it is preferable to use methyltrichlorosilane or tetrachlorosilane as the halogenated silane. Prior to supplying the reaction gas to the silica porous glass body, it is preferable to preheat the porous silica glass body in a reduced pressure atmosphere at a reaction temperature or lower. further,
As the silica porous glass body, a silicon halide alone or a porous body obtained by flame hydrolysis of a mixture of silicon halide and aluminum halide can be used. As disclosed in Japanese Examined Patent Publication No. 7-115881, synthetic quartz glass containing a trace amount of aluminum has improved viscosity at high temperature, but it is possible to further improve the viscosity by applying the method of the present invention. The heat resistance can be increased.

【0010】[0010]

【発明の実施の形態】本発明の石英ガラスの製造方法
を、反応ガスとして使用するハロゲン化シランとして、
メチルトリクロロシラン(SiCH3Cl3)を用いた態様を例
に詳細に説明する。先ず、公知の方法でテトラクロロシ
ランを加水分解して、シリカ微粒子を堆積させて多孔質
体を作る。この多孔質体を、電気炉内に設けられた石英
ガラス製の炉芯管内にセットし、所定の温度まで昇温す
る。このとき、多孔質体を反応温度以下で一定時間保持
することにより多孔質体に吸着している水分を除くこと
が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION According to the method for producing quartz glass of the present invention, the halogenated silane used as a reaction gas is
An embodiment using methyltrichlorosilane (SiCH 3 Cl 3 ) will be described in detail as an example. First, tetrachlorosilane is hydrolyzed by a known method to deposit silica fine particles to form a porous body. The porous body is set in a quartz glass furnace core tube provided in an electric furnace and heated to a predetermined temperature. At this time, it is preferable to remove the water adsorbed on the porous body by keeping the porous body at a temperature lower than the reaction temperature for a certain period of time.

【0011】次に、メチルトリクロロシラン蒸気を窒素
ガスで希釈しながら流し、多孔質体と結合しているOH基
とメチルトリクロロシランとを反応させる。このとき次
のような反応が起こると考えられる。式中、Meはメチル
基を表す。 Si-OH + SiMeCl3 → Si-O-SiMeCl2 + HCl 反応の終了した多孔質体を1×10-3mmHg以下の減圧雰囲
気内に移し、加熱する。加熱温度が約 600℃を超えると
多孔質体内でSi-O結合とSi-C結合の交換が起こり、メチ
ルトリクロロシランの塩素は、例えば、Cl2MeSiOSiMeCl2
などの分子の一部となって排出されるため、加熱は、排
気しながら600 ℃〜焼結開始温度まで充分な時間をかけ
ることが望ましい。
Next, methyltrichlorosilane vapor is flown while being diluted with nitrogen gas to react the OH groups bonded to the porous material with methyltrichlorosilane. At this time, the following reaction is considered to occur. In the formula, Me represents a methyl group. Si-OH + SiMeCl 3 → Si-O-SiMeCl 2 + HCl The porous body after the reaction is transferred into a reduced pressure atmosphere of 1 × 10 −3 mmHg or less and heated. When the heating temperature exceeds about 600 ℃, exchange of Si-O bond and Si-C bond occurs in the porous body, and chlorine of methyltrichlorosilane is converted into Cl 2 MeSiOSiMeCl 2
Since it is discharged as a part of molecules such as, it is desirable that heating is performed for a sufficient time from 600 ° C. to the sintering start temperature while exhausting.

【0012】その後、さらに、1600〜 1800 ℃程度の温
度まで昇温し、多孔質体を緻密な透明ガラスとする。こ
のとき、Cl2MeSiOSiMeCl2 のような大きな分子は、ガラ
ス内に溶け込むことができずに排出される結果、残留塩
素が極めて少なくなる。一方、従来の方法によって脱水
反応を行った場合は、多孔質体内のOH基と塩素原子の置
換反応が主体となるため、多孔質体の緻密化を行う加熱
工程において、加熱により塩素分子が生成し、この塩素
分子はガラス中に溶け込むのに充分なほど小さいため、
ガラス中に残留することになる。
Thereafter, the temperature is further raised to a temperature of about 1600 to 1800 ° C. to make the porous body into a dense transparent glass. At this time, large molecules such as Cl 2 MeSiOSiMeCl 2 cannot be dissolved in the glass and are discharged, resulting in extremely small residual chlorine. On the other hand, when the dehydration reaction is performed by the conventional method, the substitution reaction between the OH group and the chlorine atom in the porous body is the main, so chlorine molecules are generated by heating in the heating step for densifying the porous body. However, since this chlorine molecule is small enough to dissolve in the glass,
It will remain in the glass.

【0013】多孔質体とメチルトリクロロシランとの反
応温度は、300 〜 800℃が好ましい。300 ℃未満では反
応が進行せず、 800℃を超えると多孔質体にメチルトリ
クロロシランが大量に吸着され、その後の加熱により熱
分解して炭素微粒子を発生し、得られた石英ガラスが着
色することがある。より炭素数の多いエチルトリクロロ
シラン等を使用する場合、あるいはジメチルジクロロシ
ランのような2以上の置換体を使用する場合には、同様
に熱分解炭素が発生したり、シラン分子が大きくなるこ
とにより脱水反応が遅くなる場合があるので、使用する
シラン化合物によって反応時間や加熱速度を適宜調整す
ることが必要である。
The reaction temperature between the porous material and methyltrichlorosilane is preferably 300 to 800 ° C. If the temperature is lower than 300 ° C, the reaction does not proceed, and if the temperature exceeds 800 ° C, a large amount of methyltrichlorosilane is adsorbed on the porous body, and it is thermally decomposed by the subsequent heating to generate carbon fine particles, and the obtained quartz glass is colored. Sometimes. When ethyl trichlorosilane or the like having a larger number of carbon atoms is used, or when two or more substitution products such as dimethyldichlorosilane are used, similarly, pyrolytic carbon is generated or the silane molecule becomes large. Since the dehydration reaction may be delayed, it is necessary to appropriately adjust the reaction time and the heating rate depending on the silane compound used.

【0014】さらに、反応ガスとしてテトラクロロシラ
ンを使用することも可能である。この場合、メチルトリ
クロロシランを使用した場合よりも多少残留塩素が多く
なり、それにともなって若干粘度の向上幅が小さくなる
傾向がみられるが、テトラクロロシランは多孔質体製造
の原料としても使用されているため、わざわざ他の材料
を使用することもなく製造上好都合である。また、テト
ラクロロシランは熱分解して炭素を発生することもな
く、反応温度を上げて短時間で脱水処理を終わらせるこ
ともできる。
Furthermore, it is also possible to use tetrachlorosilane as the reaction gas. In this case, the residual chlorine becomes a little larger than that in the case of using methyltrichlorosilane, and there is a tendency that the degree of improvement in viscosity becomes slightly smaller accordingly, but tetrachlorosilane is also used as a raw material for producing a porous body. Therefore, there is no need to use any other material, which is convenient in manufacturing. Further, tetrachlorosilane does not thermally decompose to generate carbon, and the reaction temperature can be raised to complete the dehydration treatment in a short time.

【0015】温度300 〜800 ℃での多孔質体とハロゲン
化シランとの反応終了後、多孔質体を850 〜1000℃の温
度で減圧排気し、次いで、1600℃以上の高温減圧下で緻
密化することによって透明な石英ガラス体が得られる。
なお、1000℃は、実質的に多孔質体の焼結が始まる温度
である。以下、本発明を実施例にもとづき説明する。
After the reaction between the porous body and the halogenated silane at a temperature of 300 to 800 ° C., the porous body was evacuated at a temperature of 850 to 1000 ° C. and then densified under a high temperature and reduced pressure of 1600 ° C. or more. By doing so, a transparent quartz glass body is obtained.
It should be noted that 1000 ° C. is a temperature at which sintering of the porous body substantially starts. Hereinafter, the present invention will be described based on Examples.

【0016】[0016]

【実施例】【Example】

実施例1〜7;テトラクロロシランの火炎加水分解によ
って得た、直径100 mmの柱状をした石英ガラスの多孔質
体約1kgを、電気炉内に装着された石英ガラス製の炉芯
管(直径200 mm)内にセットした。次いで、炉芯管内を
排気した後、300 ℃に加熱し(加熱しながら排気しても
よい)、この温度で60分間予熱した。その後、反応温度
まで昇温し、多孔質体中のOH基との反応ガスとしてメチ
ルトリクロロシラン蒸気あるいはテトラクロロシラン蒸
気を、N2 ガスで希釈しながら供給し、反応させた。な
お、実施例1及び5で使用した多孔質体は、テトラクロ
ロシランとハロゲン化アルミニウムとの混合気体を火炎
加水分解して得たものであり、その使用量比は多孔質体
内にアルミニウムが 5重量ppm 程度含まれるように調整
した。他の実施例及び後述の比較例は、テトラクロロシ
ランのみを火炎加水分解して得た多孔質体を使用した。
反応条件は、表1に示したとおりである。
Examples 1 to 7; about 1 kg of a columnar quartz glass porous body having a diameter of 100 mm, obtained by flame hydrolysis of tetrachlorosilane, was installed in an electric furnace and made of a quartz glass furnace core tube (diameter 200). mm). Next, after exhausting the inside of the furnace core tube, the furnace core tube was heated to 300 ° C. (the gas may be exhausted while heating) and preheated at this temperature for 60 minutes. Then, the temperature was raised to the reaction temperature, and methyltrichlorosilane vapor or tetrachlorosilane vapor was supplied as a reaction gas with the OH group in the porous body while being diluted with N 2 gas to cause a reaction. The porous materials used in Examples 1 and 5 were obtained by flame hydrolysis of a mixed gas of tetrachlorosilane and aluminum halide, and the usage ratio was 5% by weight of aluminum in the porous body. It was adjusted to contain about ppm. In other examples and comparative examples described later, a porous body obtained by flame hydrolysis of only tetrachlorosilane was used.
The reaction conditions are as shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】加熱は、表に示した反応温度にて、表示さ
れた反応時間の間その温度にて保持して行った。なお、
2 ガスの流量は 1 mol/hr である。反応終了後、処理
された多孔質体を真空炉内に移し、900 ℃まで昇温し、
1 ×10-3mmHg以下に減圧後、1時間保持し、さらに1600
℃まで昇温して緻密化された透明石英ガラスを得た。
The heating was carried out at the reaction temperature shown in the table, while maintaining that temperature for the indicated reaction time. In addition,
The flow rate of N 2 gas is 1 mol / hr. After the reaction was completed, the treated porous body was transferred into a vacuum furnace and heated to 900 ° C,
After reducing the pressure to 1 × 10 -3 mmHg or less, hold it for 1 hour, then
The temperature was raised to ° C to obtain a densified transparent quartz glass.

【0019】比較例1,2;また、比較例1として、反
応ガスに従来の塩素ガスを用いて脱水反応を行った。比
較例2は、反応ガスを使用しないで多孔質体の緻密化を
行ったものである。他の処理条件は実施例と同じであ
り、表1に示したとおりである。なお、天然品は、天然
水晶を酸水素火炎により溶融して石英ガラスとしたもの
である。
Comparative Examples 1 and 2; Further, as Comparative Example 1, dehydration reaction was carried out using a conventional chlorine gas as a reaction gas. In Comparative Example 2, the porous body was densified without using a reaction gas. Other processing conditions are the same as those in the example and are as shown in Table 1. The natural product is a quartz glass obtained by melting natural quartz with an oxyhydrogen flame.

【0020】得られた石英ガラス中に残留するOH、塩素
をそれぞれ赤外吸光分光及び比濁塩素分析法を用いて測
定し、さらに1280℃に加熱してビームベンディング法に
よりその温度における粘度を測定した。その結果を表2
に示す。
OH and chlorine remaining in the obtained quartz glass were measured by infrared absorption spectroscopy and nephelometric chlorine analysis, respectively, and further heated at 1280 ° C. to measure the viscosity at that temperature by the beam bending method. did. The results are shown in Table 2.
Shown in

【0021】[0021]

【表2】 [Table 2]

【0022】実施例1〜7で得られた石英ガラスの高温
時の粘度は、いずれも天然水晶を原料とする天然品の粘
度と比較して、同程度ないしそれ以上であり、高温環境
下にあっても変形し難いものであった。また、多孔質体
の原料としてテトラクロロシランとハロゲン化アルミニ
ウムの混合物を使用した実施例1と5の石英ガラスは、
さらに高温時の粘度が増大し、極めて耐熱性が向上し
た。これに対して、比較例1の石英ガラスは、脱水は充
分になされていたが、塩素の残留濃度が高く、比較例2
の石英ガラスは、真空での緻密化により多少減少しては
いるもののOHが残留していた。そのため比較例1,2で
得られた石英ガラスの高温時の粘度は、かなり低いもの
となった。なお、天然水晶を原料とした天然品は、OH濃
度が高いにもかかわらず高温時の粘度が高いのは、出発
原料の差異にもとづくガラス構造の違いに起因してい
る。
The quartz glass obtained in Examples 1 to 7 has a viscosity at a high temperature which is about the same as or higher than that of a natural product using natural quartz as a raw material. Even if there was, it was difficult to deform. Further, the quartz glass of Examples 1 and 5 using a mixture of tetrachlorosilane and aluminum halide as the raw material of the porous body,
Further, the viscosity at high temperature was increased, and the heat resistance was extremely improved. On the other hand, the quartz glass of Comparative Example 1 was sufficiently dehydrated, but the residual concentration of chlorine was high, and Comparative Example 2
In the quartz glass of No. 3, OH remained although it was slightly reduced due to the densification in vacuum. Therefore, the silica glass obtained in Comparative Examples 1 and 2 had a considerably low viscosity at high temperature. In addition, the high viscosity at high temperature of natural products made from natural quartz despite the high OH concentration is due to the difference in glass structure due to the difference in starting materials.

【0023】[0023]

【発明の効果】以上、詳述したように、水酸基を含むシ
リカ多孔質ガラス体を、メチルトリクロロシランまたは
テトラクロロシランと不活性ガス雰囲気中で温度300 〜
800 ℃で反応させた後、850 ℃以上かつ焼結開始温度以
下の温度で減圧排気し、次いで1600℃以上の高温減圧下
で緻密化することによつて、天然水晶を原料とする天然
品の高温時の粘度と比較しても遜色のない高い粘度を有
する石英ガラスが得られた。
As described above in detail, a silica porous glass body containing a hydroxyl group is treated with methyltrichlorosilane or tetrachlorosilane in an inert gas atmosphere at a temperature of 300 to 300.degree.
After reacting at 800 ℃, it is evacuated at a temperature of 850 ℃ or higher and below the sintering start temperature, and then densified under high temperature and reduced pressure of 1600 ℃ or higher. Quartz glass having a high viscosity comparable to that at high temperature was obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 龍弘 福井県武生市北府2丁目13番60号 信越石 英株式会社武生工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuhiro Sato 2-13-60 Kitafu, Takefu City, Fukui Prefecture Shin-Etsuishi Ei Takefu Factory Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シラン化合物の火炎加水分解で得た水酸
基を含むシリカ多孔質ガラス体とハロゲン化シランと
を、不活性ガス雰囲気中で温度300 〜800 ℃で反応させ
た後、850 ℃以上かつ焼結開始温度以下の温度で減圧排
気し、次いで1600℃以上の高温減圧下で緻密化して透明
な石英ガラス体とすることを特徴とする石英ガラスの製
造方法。
1. A silica porous glass body containing hydroxyl groups obtained by flame hydrolysis of a silane compound and a halogenated silane are reacted at a temperature of 300 to 800 ° C. in an inert gas atmosphere, and then at 850 ° C. or higher. A method for producing a quartz glass, which comprises evacuating at a temperature not higher than a sintering start temperature and then densifying at a high temperature and a reduced pressure of 1600 ° C. or more to obtain a transparent quartz glass body.
【請求項2】 前記ハロゲン化シランが、メチルトリク
ロロシランまたはテトラクロロシランであることを特徴
とする請求項1に記載の石英ガラスの製造方法。
2. The method for producing quartz glass according to claim 1, wherein the halogenated silane is methyltrichlorosilane or tetrachlorosilane.
【請求項3】 前記シリカ多孔質ガラス体に反応ガスを
供給するに先立ち、シリカ多孔質ガラス体を減圧雰囲気
中でかつ反応温度以下で予熱することを特徴とする請求
項1に記載の石英ガラスの製造方法。
3. The quartz glass according to claim 1, wherein the silica porous glass body is preheated in a reduced pressure atmosphere and at a reaction temperature or lower prior to supplying the reaction gas to the silica porous glass body. Manufacturing method.
【請求項4】 前記シリカ多孔質ガラス体として、ハロ
ゲン化珪素単独、またはハロゲン化珪素とハロゲン化ア
ルミニウムとの混合物を火炎加水分解して得られた多孔
質体を用いることを特徴とする請求項1または3に記載
の石英ガラスの製造方法。
4. A porous body obtained by flame hydrolysis of silicon halide alone or a mixture of silicon halide and aluminum halide, as the silica porous glass body. 1. The method for producing quartz glass according to 1 or 3.
JP12526496A 1996-05-21 1996-05-21 Method for producing quartz glass Expired - Lifetime JP3818603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12526496A JP3818603B2 (en) 1996-05-21 1996-05-21 Method for producing quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12526496A JP3818603B2 (en) 1996-05-21 1996-05-21 Method for producing quartz glass

Publications (2)

Publication Number Publication Date
JPH09309735A true JPH09309735A (en) 1997-12-02
JP3818603B2 JP3818603B2 (en) 2006-09-06

Family

ID=14905785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12526496A Expired - Lifetime JP3818603B2 (en) 1996-05-21 1996-05-21 Method for producing quartz glass

Country Status (1)

Country Link
JP (1) JP3818603B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126165A (en) * 1997-11-10 2000-10-03 Aruze Corporation Game machine with a hit expectation sound emitting function
US6306034B1 (en) 1997-12-05 2001-10-23 Aruze Corporation Game machine informing prize mode information in a series of flow of game
US6315289B1 (en) 1997-11-26 2001-11-13 Aruze Corporation Game machine informing small hit prize
US6497617B1 (en) 1998-06-04 2002-12-24 Aruze Corporation Game machine notifying formation of a specific prize mode
EP1319635A2 (en) 2001-12-14 2003-06-18 Shin-Etsu Chemical Co., Ltd. Glass optical fibre preform and method of its manufacture
WO2003091171A3 (en) * 2002-04-26 2004-10-14 Heraeus Tenevo Ag Method for the production of a cylindrical quartz glass body having a low oh content
JP2006193408A (en) * 2004-12-16 2006-07-27 Furukawa Electric Co Ltd:The Method for producing optical fiber preform and method for producing optical fiber
JP2006193409A (en) * 2004-12-16 2006-07-27 Furukawa Electric Co Ltd:The Method for producing optical fiber
JP2008280247A (en) * 2002-07-31 2008-11-20 Shinetsu Quartz Prod Co Ltd Synthetic quartz glass body
US7841211B2 (en) 2002-11-29 2010-11-30 Shin-Etsu Quartz Products Co., Ltd. Production process of synthetic quartz glass
US8789393B2 (en) 2004-11-29 2014-07-29 The Furukawa Electric Co., Ltd. Optical fiber preform, method of manufacturing optical fiber preform, and method of manufacturing optical fiber

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126165A (en) * 1997-11-10 2000-10-03 Aruze Corporation Game machine with a hit expectation sound emitting function
US6315289B1 (en) 1997-11-26 2001-11-13 Aruze Corporation Game machine informing small hit prize
US6306034B1 (en) 1997-12-05 2001-10-23 Aruze Corporation Game machine informing prize mode information in a series of flow of game
US6497617B1 (en) 1998-06-04 2002-12-24 Aruze Corporation Game machine notifying formation of a specific prize mode
KR100768115B1 (en) * 2001-12-14 2007-10-17 신에쓰 가가꾸 고교 가부시끼가이샤 Method for manufacturing preform and preform
EP1319635A2 (en) 2001-12-14 2003-06-18 Shin-Etsu Chemical Co., Ltd. Glass optical fibre preform and method of its manufacture
EP1319635A3 (en) * 2001-12-14 2003-12-17 Shin-Etsu Chemical Co., Ltd. Glass optical fibre preform and method of its manufacture
CN100413798C (en) * 2001-12-14 2008-08-27 信越化学工业株式会社 Manufacturing method for preplasticizing parison and preplasticizing parison
WO2003091171A3 (en) * 2002-04-26 2004-10-14 Heraeus Tenevo Ag Method for the production of a cylindrical quartz glass body having a low oh content
CN1305791C (en) * 2002-04-26 2007-03-21 赫罗伊斯·坦尼沃有限责任公司 Method for the production of a cylindrical quartz glass body having a low oh content
JP2008280247A (en) * 2002-07-31 2008-11-20 Shinetsu Quartz Prod Co Ltd Synthetic quartz glass body
US7841211B2 (en) 2002-11-29 2010-11-30 Shin-Etsu Quartz Products Co., Ltd. Production process of synthetic quartz glass
US8789393B2 (en) 2004-11-29 2014-07-29 The Furukawa Electric Co., Ltd. Optical fiber preform, method of manufacturing optical fiber preform, and method of manufacturing optical fiber
JP2006193409A (en) * 2004-12-16 2006-07-27 Furukawa Electric Co Ltd:The Method for producing optical fiber
JP2006193408A (en) * 2004-12-16 2006-07-27 Furukawa Electric Co Ltd:The Method for producing optical fiber preform and method for producing optical fiber

Also Published As

Publication number Publication date
JP3818603B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
EP0529189B1 (en) Method of making fused silica
US7841211B2 (en) Production process of synthetic quartz glass
KR101569797B1 (en) Method for producing synthetic quartz glass
JPH0138063B2 (en)
IL180213A (en) Quartz glass jig for processing semiconductor wafers and method for producing the jig
US20090098370A1 (en) Black synthetic quartz glass with a transparent layer
JPH09309735A (en) Production of silica glass
AU743831B2 (en) Germanium chloride and siloxane feedstock for forming silica glass and method
JPH07300324A (en) Production of heat-resistant synthetic quartz glass
JPH07277751A (en) Method for producing synthetic quartz glass member
JP3470983B2 (en) Manufacturing method of synthetic quartz glass member
JP4204398B2 (en) Method for producing quartz glass
JP4437745B2 (en) Manufacturing method of high heat-resistant synthetic quartz glass
JPH03109223A (en) Quartz glass and production thereof
JP5013573B2 (en) Method for producing high heat-resistant quartz glass powder, high heat-resistant quartz glass powder and glass body
GB2138416A (en) Optical fibre preform manufacture
JPS6289B2 (en)
JPH02157132A (en) Production of high-purity quatrz glass
US6763683B2 (en) Method for pure, fused oxide
JP4781409B2 (en) Synthetic quartz glass body
JP2000185924A (en) Production of glass material
JPH0813689B2 (en) Manufacturing method of optical fiber preform
JPH0460056B2 (en)
JP4162952B2 (en) Synthetic quartz glass manufacturing method and porous quartz glass manufacturing apparatus
JPH0460057B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term