JP4781409B2 - Synthetic quartz glass body - Google Patents

Synthetic quartz glass body Download PDF

Info

Publication number
JP4781409B2
JP4781409B2 JP2008219235A JP2008219235A JP4781409B2 JP 4781409 B2 JP4781409 B2 JP 4781409B2 JP 2008219235 A JP2008219235 A JP 2008219235A JP 2008219235 A JP2008219235 A JP 2008219235A JP 4781409 B2 JP4781409 B2 JP 4781409B2
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
glass body
ppm
silicon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008219235A
Other languages
Japanese (ja)
Other versions
JP2008280247A (en
Inventor
龍弘 佐藤
徹 瀬川
孝宏 垣内
朗 藤ノ木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2008219235A priority Critical patent/JP4781409B2/en
Publication of JP2008280247A publication Critical patent/JP2008280247A/en
Application granted granted Critical
Publication of JP4781409B2 publication Critical patent/JP4781409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

本発明は、多孔質石英ガラス体を熱処理して得られる合成石英ガラス体、特に黒色合成石英ガラス体に関する。   The present invention relates to a synthetic quartz glass body obtained by heat-treating a porous quartz glass body, particularly a black synthetic quartz glass body.

合成石英ガラスの製造は、主にハロゲン化珪素の火炎加水分解により得られた多孔質体を、高温で緻密化して製造する方法がよく知られている。このようにして得られる合成石英ガラス体は、火炎加水分解工程を経ているため、多孔質体内に多量の水酸基を含んでいる。石英ガラスの水酸基が多量に存在すると、ガラスの粘度や耐熱性が下がり、1000℃以上で使用される半導体工業用石英ガラス治具用途としては、変形を起こすため好ましくない。   As a method for producing synthetic quartz glass, a method is known in which a porous material obtained mainly by flame hydrolysis of silicon halide is produced by densification at a high temperature. Since the synthetic quartz glass body thus obtained has undergone a flame hydrolysis step, it contains a large amount of hydroxyl groups in the porous body. The presence of a large amount of hydroxyl groups in quartz glass is not preferable because the viscosity and heat resistance of the glass are lowered and the quartz glass jig for semiconductor industry used at 1000 ° C. or higher is deformed.

この対策として、特許文献1では、ガラス形成原料を熱酸化又は加水分解して、支持棒の端面に二酸化珪素(SiO)を主成分とするガラス形成物質を付着させ、多孔質ガラスを作製し、この多孔質ガラス燒結体を800℃〜1000℃でハロゲン元素を含むガラス形成原料ガスにさらした後、透明ガラス化して、無水ガラス母材を作製することを開示している。ガラス原料としては、SiCl、SiBr、GeCl、BBr、POCl、PCl等を例示している。
特開昭54−127914号公報 特開平4−254433号公報
As a countermeasure against this, in Patent Document 1, a glass forming material is thermally oxidized or hydrolyzed, and a glass forming material mainly composed of silicon dioxide (SiO 2 ) is attached to the end face of a support rod to produce a porous glass. The porous glass sintered body is exposed to a glass forming raw material gas containing a halogen element at 800 ° C. to 1000 ° C. and then converted into a transparent glass to produce an anhydrous glass base material. Examples of the glass raw material include SiCl 4 , SiBr 4 , GeCl 4 , BBr 3 , POCl 3 , PCl 3 and the like.
JP 54-127914 A JP-A-4-254433

上記の方法によって得られる合成石英ガラスは、不純物が少ないことから、半導体製造工程において使用される天然水晶を原料とする石英ガラス素材に代わるものとして期待されてきたが、高温製造工程における変形が大きな欠点として認識されてきた。   Synthetic quartz glass obtained by the above method has been expected to replace the quartz glass material made from natural quartz used in the semiconductor manufacturing process because it has few impurities, but the deformation in the high temperature manufacturing process is large. Has been recognized as a drawback.

また、従来、黒色石英ガラスを製造する方法としては、酸化銅、二酸化マンガン、三二酸化クロム、三二酸化鉄、及び五酸化バナジウム等の金属酸化物類を添加することにより黒色に着色する方法が知られている(特許文献2等)。しかしながら、黒色化剤を用いた方法では、完全に均一な黒色ガラスを得ることが困難であった。   Conventionally, as a method for producing black quartz glass, there is known a method of coloring black by adding metal oxides such as copper oxide, manganese dioxide, chromium sesquioxide, iron sesquioxide, and vanadium pentoxide. (Patent Document 2 etc.). However, it has been difficult to obtain a completely uniform black glass by the method using a blackening agent.

本発明の目的は、天然石英ガラス並の高温粘度特性を有し、高温環境下にあっても変形し難い高粘度の合成石英ガラス体、特に黒色合成石英ガラス体を提供することにある。   An object of the present invention is to provide a high-viscosity synthetic quartz glass body, particularly a black synthetic quartz glass body, which has a high-temperature viscosity characteristic comparable to that of natural quartz glass and hardly deforms even in a high-temperature environment.

従来の製造方法によって得られる合成石英ガラスは、加水分解反応を伴うため、得られる多孔質体中に多量の水酸基を含む。この水酸基は、ガラスの粘度を下げ、半導体工業用分野に使用される石英素材としては、好ましくないため、通常、上記したように、塩素系のガスを使用して、多孔質体中の水酸基と反応させて除去する脱水処理が行われている。しかしながら、塩素系のガスを使用する脱水処理によって、多孔質体中には相当量の塩素が残ることになる。   Synthetic quartz glass obtained by a conventional production method involves a hydrolysis reaction, and therefore contains a large amount of hydroxyl groups in the resulting porous body. Since this hydroxyl group lowers the viscosity of the glass and is not preferable as a quartz material used in the field of semiconductor industry, usually, as described above, a chlorine-based gas is used to form the hydroxyl group in the porous body. Dehydration treatment is performed to remove by reaction. However, a considerable amount of chlorine remains in the porous body by the dehydration treatment using a chlorine-based gas.

本発明者らは、鋭意研究の結果、多孔質体中に残留する塩素が、加熱処理して緻密化した石英ガラスの高温での粘度を下げる一因となっていることを見出した。さらに、高温での粘度を上げるには、多孔質体中の脱水処理から緻密工程に入るまでの間に、脱水を完全に実施するとともに、残留する塩素濃度を粘度に対する影響がでないレベルまで低減すればよいことを見出した。また、本発明者らは、水酸基を含むシリカ多孔質ガラスとハロゲン化シランを除く揮発性珪素化合物、特に窒素を含む珪素化合物とを反応させる際の反応温度に応じて、容易に黒色合成石英ガラスを得ることができることを見出した。   As a result of intensive studies, the present inventors have found that chlorine remaining in the porous body contributes to lowering the viscosity at high temperature of quartz glass densified by heat treatment. Furthermore, in order to increase the viscosity at a high temperature, the dehydration is completely performed during the period from the dehydration process in the porous body to the dense process, and the residual chlorine concentration is reduced to a level that does not affect the viscosity. I found out that I should do it. Further, the inventors of the present invention can easily perform black synthetic quartz glass depending on the reaction temperature when reacting a silica porous glass containing a hydroxyl group and a volatile silicon compound excluding a halogenated silane, particularly a silicon compound containing nitrogen. Found that you can get.

上記課題を解決するために、本発明の合成石英ガラス体は、水酸基を含むシリカ多孔質ガラス体を、ハロゲン化シランを除く揮発性珪素化合物雰囲気中800℃を超え1300℃以下の反応温度で気相反応させた後、1300℃以上1900℃以下で焼成してなる緻密な黒色合成石英ガラス体であって、1280℃における粘度がlogη=11.9を超えるものであるとともに、含有される炭素の濃度が300ppmを超え50000ppm以下であり且つ水酸基の濃度が1ppm未満及び塩素の濃度が30ppm未満であり、天然石英ガラス並みの高温粘度特性を有し、高温環境下にあって変形し難いものであることを特徴とする。 In order to solve the above-described problems, the synthetic quartz glass body of the present invention is a silica porous glass body containing a hydroxyl group in a volatile silicon compound atmosphere excluding a halogenated silane at a reaction temperature of 800 ° C. or higher and 1300 ° C. or lower. A dense black synthetic quartz glass body that is fired at 1300 ° C. or higher and 1900 ° C. or lower after phase reaction, and has a viscosity at 1280 ° C. exceeding log η = 11.9, and containing carbon Concentration is more than 300 ppm and less than or equal to 50000 ppm, hydroxyl group concentration is less than 1 ppm and chlorine concentration is less than 30 ppm. It has high-temperature viscosity characteristics similar to natural quartz glass and is not easily deformed in a high-temperature environment. It is characterized by that.

本発明の合成石英ガラス体は、1280℃における粘度がlogη=11.9を超えるものが好ましく、1280℃における粘度がlogη=12.1以上であるものが、より好ましい。前記揮発性珪素化合物が、窒素を含む珪素化合物であることが好ましい。前記窒素を含む珪素化合物としては、シラザン及びオルガノシラザンからなる群から選択された少なくとも1種の化合物が好ましく、ヘキサメチルジシラザンが更に好ましい。 The synthetic quartz glass body of the present invention preferably has a viscosity at 1280 ° C. exceeding log η = 11.9, and more preferably has a viscosity at 1280 ° C. of log η = 12.1 or higher. The volatile silicon compound is preferably a silicon compound containing nitrogen. The silicon compound containing nitrogen is preferably at least one compound selected from the group consisting of silazane and organosilazane, and more preferably hexamethyldisilazane.

本合成石英ガラス体の一つの態様として、前記気相反応を100℃以上800℃以下の反応温度で行った後、1300℃以上1900℃以下で焼成して得られる透明合成石英ガラス体であって、含有される窒素の濃度が1ppm以上300ppm以下及び含有される炭素の濃度が300ppm以下であり且つ水酸基の濃度が30ppm以下である透明合成石英ガラス体とすることができる。   One aspect of the present synthetic quartz glass body is a transparent synthetic quartz glass body obtained by performing the gas phase reaction at a reaction temperature of 100 ° C. or higher and 800 ° C. or lower and then firing at 1300 ° C. or higher and 1900 ° C. or lower. The transparent synthetic quartz glass body having a nitrogen concentration of 1 ppm or more and 300 ppm or less, a carbon concentration of 300 ppm or less, and a hydroxyl group concentration of 30 ppm or less can be obtained.

また、本発明の合成石英ガラス体の特徴点について再説すれば、前記気相反応を800℃を超え1300℃以下の反応温度で行った後、1300℃以上1900℃以下で焼成して得られる黒色合成石英ガラス体であって、含有される炭素の濃度が300ppmを超え50000ppm以下であり且つ水酸基の濃度及び塩素の濃度が所定の値未満である黒色合成石英ガラス体であるFurther, the characteristics of the synthetic quartz glass body of the present invention will be reexplained. The black color obtained by firing the gas phase reaction at a reaction temperature of more than 800 ° C. and not more than 1300 ° C. and then firing at not less than 1300 ° C. and not more than 1900 ° C. A synthetic quartz glass body, which is a black synthetic quartz glass body in which the concentration of contained carbon is more than 300 ppm and not more than 50000 ppm, and the concentration of hydroxyl group and the concentration of chlorine are less than predetermined values .

本発明の合成石英ガラスにおいては、水酸基の濃度が1ppm未満及び塩素の濃度が30ppm未満であることが必要であるIn the synthetic quartz glass of the present invention, it is necessary that the hydroxyl group concentration is less than 1 ppm and the chlorine concentration is less than 30 ppm.

本発明の石英ガラス体は、水酸基を含むシリカ多孔質ガラス体を、ハロゲン化シランを除く揮発性珪素化合物雰囲気中で気相反応させた後焼成して得られた緻密な黒色石英ガラス体であって、天然水晶を原料とする天然石英ガラスと同等の高温時の粘度を有し、高温環境下において変形し難いという優れた性能を有るという利点がある。 The quartz glass body of the present invention is a dense black quartz glass body obtained by subjecting a silica porous glass body containing a hydroxyl group to a gas phase reaction in a volatile silicon compound atmosphere excluding a halogenated silane, followed by firing. Te, a natural crystal has a viscosity at a high temperature equivalent to the natural quartz glass raw material, there is an advantage that you have a superior performance in that it is difficult to deform in a high-temperature environment.

以下に本発明の実施の形態を説明するが、これらの実施の形態は例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。   Embodiments of the present invention will be described below, but these embodiments are exemplarily shown, and it goes without saying that various modifications can be made without departing from the technical idea of the present invention.

本発明の合成石英ガラス体は、水酸基を含むシリカ多孔質ガラス体とハロゲン化シランを除く揮発性珪素化合物を気相反応させた後、焼成して得られる緻密な合成石英ガラス体である。前記水酸基を含むシリカ多孔質ガラス体はハロゲン化珪素の火炎加水分解によって得ることが好ましい。   The synthetic quartz glass body of the present invention is a dense synthetic quartz glass body obtained by subjecting a porous silica glass body containing a hydroxyl group and a volatile silicon compound excluding a halogenated silane to a gas phase reaction and firing. The silica porous glass body containing a hydroxyl group is preferably obtained by flame hydrolysis of silicon halide.

上記ハロゲン化シランを除く揮発性珪素化合物(反応ガス)としては、Si−X結合を有さない揮発性珪素化合物(ただし、X=F,Cl,Br及びI)であれば特に限定されないが、窒素を含む珪素化合物を用いることが好ましく、シラザンやオルガノシラザン等のSi−N結合を有する珪素化合物がより好ましく、ヘキサメチルジシラザン等のオルガノシラザンがさらに好ましい。   The volatile silicon compound (reactive gas) excluding the halogenated silane is not particularly limited as long as it is a volatile silicon compound having no Si-X bond (provided that X = F, Cl, Br and I). A silicon compound containing nitrogen is preferably used, a silicon compound having a Si—N bond such as silazane or organosilazane is more preferable, and an organosilazane such as hexamethyldisilazane is more preferable.

本発明の合成石英ガラス体の製造に用いられる揮発性珪素化合物としては、具体的には、酢酸珪素、オルガノアセトキシシラン(例えば、アセトキシトリメチルシラン等)、メタ珪酸、シラン(例えば、モノシラン、ジシラン、トリシラン等)、オルガノシラン(例えば、メチルシラン、テトラメチルシラン、トリメチルプロピルシラン、アリルトリメチルシラン、ジメチルシラン、テトラエチルシラン、トリエチルシラン、テトラフェニルシラン等)、オルガノポリシラン(例えば、ヘキサメチルジシラン、ヘキサエチルジシラン等)、オルガノシラノール(例えば、トリメチルシラノール、ジエチルシランジオール等)、トリメチル(トリフルオロメタンスルホニルオキシ)シラン、トリメチル(メチルチオ)シラン、アジドトリメチルシラン、シアノトリメチルシラン、(エトキシカルボニルメチル)トリメチルシラン、N,O−ビス(トリメチルシリル)アセトアミド、シロキサン(例えば、ジシロキサン、トリシロキサン等)、オルガノシロキサン(例えば、ヘキサメチルジシロキサン、オクタメチルトリシロキサン、ヘキサメチルシクロトリシロキサン、ヘキサフェニルシクロトリシロキサン、オクタメチルスピロ[5.5]ペンタシロキサン等)、シラザン(例えば、ジシラザン、トリシラザン等)、オルガノシラザン(例えば、ヘキサメチルジシラザン、ヘキサエチルジシラザン、ヘキサフェニルシラザン、トリエチルシラザン、トリプロピルシラザン、トリフェニルシラザン、ヘキサメチルシクロトリシラザン、オクタメチルシクロテトラシラザン、ヘキサエチルシクロトリシラザン、オクタエチルシクロテトラシラザン、ヘキサフェニルシクロトリシラザン等)、アルコキシシラン(例えば、テトラメトキシシラン、トリメトキシメチルシラン、ジメトキシジメチルシラン、メトキシトリメチルシラン、トリメトキシフェニルシラン、ジメトキシジフェニルシラン、テトラエトキシシラン、トリエトキシメチルシラン、ジエトキシジメチルシラン、トリエトキシフェニルシラン、ジエトキシジフェニルシラン、トリメトキシヘキシルシラン、トリエトキシヘキシルシラン、トリメトキシデシルシラン、トリエトキシデシルシラン、トリフルオロプロピルトリメトキシシラン、ヘプタデカトリフルオロデシルトリメトキシシラン等)、アロキシシラン(例えば、トリメチルフェノキシシラン等)、オルガノシランカルボン酸(例えば、トリメチルシリルプロピオン酸、トリメチルシリル酪酸等)、オルガノシランチオール(例えば、トリメチルシランチオール等)、オルガノシリコンイソシアナート(例えば、トリメチルシリコンイソシアナート、トリフェニルシリコンイソシアナート等)、オルガノシリコンイソチオシアネート(例えば、トリメチルシリコンイソチオシアナート、フェニルシリコントリイソチオシアナート等)、オルガノシルチアン(例えば、ヘキサメチルジシルチアン、テトラメチルシクロジシルチアン等)、オルガノシルメチレン(例えば、ヘキサメチルジシルメチレン、オクタメチルトリシルメチレン等)などが挙げられる。上記揮発性珪素化合物は、単独で用いてもよく、2種以上併用してもよい。   Specific examples of the volatile silicon compound used in the production of the synthetic quartz glass body of the present invention include silicon acetate, organoacetoxysilane (for example, acetoxytrimethylsilane), metasilicic acid, silane (for example, monosilane, disilane, Trisilane, etc.), organosilane (eg, methylsilane, tetramethylsilane, trimethylpropylsilane, allyltrimethylsilane, dimethylsilane, tetraethylsilane, triethylsilane, tetraphenylsilane), organopolysilane (eg, hexamethyldisilane, hexaethyldisilane) Etc.), organosilanols (eg, trimethylsilanol, diethylsilanediol, etc.), trimethyl (trifluoromethanesulfonyloxy) silane, trimethyl (methylthio) silane, azidotrimethyl Lan, cyanotrimethylsilane, (ethoxycarbonylmethyl) trimethylsilane, N, O-bis (trimethylsilyl) acetamide, siloxane (eg, disiloxane, trisiloxane, etc.), organosiloxane (eg, hexamethyldisiloxane, octamethyltrisiloxane) Hexamethylcyclotrisiloxane, hexaphenylcyclotrisiloxane, octamethylspiro [5.5] pentasiloxane, etc.), silazane (eg, disilazane, trisilazane, etc.), organosilazane (eg, hexamethyldisilazane, hexaethyldisilazane, etc.) , Hexaphenylsilazane, triethylsilazane, tripropylsilazane, triphenylsilazane, hexamethylcyclotrisilazane, octamethylcyclotetrasilazane, hexaethyl Cyclotrisilazane, octaethylcyclotetrasilazane, hexaphenylcyclotrisilazane, etc.), alkoxysilane (eg, tetramethoxysilane, trimethoxymethylsilane, dimethoxydimethylsilane, methoxytrimethylsilane, trimethoxyphenylsilane, dimethoxydiphenylsilane, tetra Ethoxysilane, triethoxymethylsilane, diethoxydimethylsilane, triethoxyphenylsilane, diethoxydiphenylsilane, trimethoxyhexylsilane, triethoxyhexylsilane, trimethoxydecylsilane, triethoxydecylsilane, trifluoropropyltrimethoxysilane, Heptadecatrifluorodecyltrimethoxysilane etc.), alloxysilane (eg trimethylphenoxysilane etc.), Olga Nosilane carboxylic acid (eg, trimethylsilylpropionic acid, trimethylsilylbutyric acid, etc.), organosilane thiol (eg, trimethylsilane thiol, etc.), organosilicon isocyanate (eg, trimethylsilicon isocyanate, triphenylsilicon isocyanate, etc.), organosilicon iso Thiocyanates (for example, trimethylsilicon isothiocyanate, phenylsilicon triisothiocyanate, etc.), organosilthians (for example, hexamethyldisilthiane, tetramethylcyclodisilthiane, etc.), organosilmethylenes (for example, hexamethyldisil) Methylene, octamethyltrisylmethylene, etc.). The said volatile silicon compound may be used independently and may be used together 2 or more types.

また、上記シリカ多孔質ガラス体に反応ガスを供給するに先立ち、シリカ多孔質ガラス体を減圧雰囲気で反応温度近傍で余熱するのが好ましい。多孔質ガラス体を反応ガスと反応させた後、減圧下で焼成することが好適である。さらに上記シリカ多孔質ガラス体として、ゾルゲル法によって得られた多孔質体を用いることができる。   Prior to supplying the reaction gas to the silica porous glass body, it is preferable that the silica porous glass body is preheated in the vicinity of the reaction temperature in a reduced pressure atmosphere. After the porous glass body is reacted with the reaction gas, it is preferable to fire under reduced pressure. Furthermore, as the silica porous glass body, a porous body obtained by a sol-gel method can be used.

以下に、本発明の合成石英ガラス体の製造において、反応ガスとして使用するガスとして、ヘキサメチルジシラザン:[(CHSi]NHを用いた態様を例に詳細に説明する。まず、公知の方法でテトラクロロシランを加水分解してシリカ微粒子を堆積させて多孔質体を作る。この多孔質体を電気炉内に設けられた石英ガラス製の炉心管内にセットし、所定の温度まで昇温する。このとき多孔質体を反応温度近傍で一定時間保持することにより多孔質体に吸着している水分を除くことが好ましい。 Hereinafter, an embodiment in which hexamethyldisilazane: [(CH 3 ) 3 Si] 2 NH is used as a reaction gas in the production of the synthetic quartz glass body of the present invention will be described in detail. First, tetrachlorosilane is hydrolyzed by a known method to deposit silica fine particles to make a porous body. This porous body is set in a quartz glass furnace tube provided in an electric furnace, and the temperature is raised to a predetermined temperature. At this time, it is preferable to remove moisture adsorbed on the porous body by holding the porous body for a certain period of time near the reaction temperature.

次にヘキサメチルジシラザン蒸気を窒素ガスで希釈しながら流し、多孔質体と結合している水酸基とヘキサメチルジシラザンとを反応させる。このとき下記式(1)のような反応が起こると考えられる。   Next, hexamethyldisilazane vapor is flowed while diluting with nitrogen gas to react the hydroxyl group bonded to the porous body with hexamethyldisilazane. At this time, it is considered that the reaction represented by the following formula (1) occurs.


Si−OH + [(CHSi]NH →
Si−N−[(CHSi] + HO ・・・(1)

Si-OH + [(CH 3 ) 3 Si] 2 NH →
Si-N - [(CH 3 ) 3 Si] 2 + H 2 O ··· (1)

反応の終了した多孔質体を1×10−3mmHg以下の減圧雰囲気内に移し加熱する。反応温度が、100〜800℃の温度では、反応終了後、多孔質体をこの温度範囲で減圧排気し、ついで1300〜1900℃の温度で緻密化することによって、透明な合成石英ガラス体が得られる。加熱温度が約800℃を超えると、多孔質体中に残留したシラザンガスが分解して、遊離炭素を多量に生成し、その後の減圧下での加熱においても石英ガラス体中に残留して、得られた合成石英ガラスは黒色に着色する。いずれの場合も、多孔質体中に残留したSi−N−[(CHSi]は、Si−N又はSi−Cを一部形成し、粘度の向上に寄与する。 The porous body after the reaction is transferred to a reduced pressure atmosphere of 1 × 10 −3 mmHg or less and heated. When the reaction temperature is 100 to 800 ° C., after completion of the reaction, the porous body is evacuated in this temperature range, and then densified at a temperature of 1300 to 1900 ° C. to obtain a transparent synthetic quartz glass body. It is done. When the heating temperature exceeds about 800 ° C., the silazane gas remaining in the porous body is decomposed to produce a large amount of free carbon, and it remains in the quartz glass body even in the subsequent heating under reduced pressure. The resulting synthetic quartz glass is colored black. In any case, Si—N — [(CH 3 ) 3 Si] 2 remaining in the porous body partially forms Si—N or Si—C and contributes to the improvement of the viscosity.

以下に本発明の実施例を挙げてさらに具体的に説明するが、この実施例は例示的に示されるもので、限定的に解釈されるべきでないことはいうまでもない。   The present invention will be described more specifically with reference to the following examples. However, it is needless to say that the examples are shown by way of example and should not be interpreted in a limited manner.

実験例1〜3及び実施例1)
テトラクロロシランの火炎加水分解によって得た、直径100mmの柱状をした石英ガラスの多孔質体約1kgを、電気炉内に装着された石英ガラス製の炉心管(直径200mm)内にセットした。次いで、炉心管内を排気した後、500℃に加熱し、この温度で60分間予熱した。その後反応温度まで昇温し、多孔質体中の水酸基と反応ガスとしてヘキサメチルジシラザンガス蒸気をNガスで希釈しながら供給し、反応させた。加熱は、表1に示した反応温度にて、表示された反応時間の間その温度にて保持して行った。なお、Nガスの流量は1mol/hrである。反応終了後、処理された多孔質体を真空炉内に移し、800℃に昇温し、1×10−3mmHg以下に減圧後、1時間保持し、さらに1600℃に昇温して緻密化された合成石英ガラスを得た。
( Experimental Examples 1-3 and Example 1)
About 1 kg of a columnar quartz glass porous body having a diameter of 100 mm obtained by flame hydrolysis of tetrachlorosilane was set in a quartz glass core tube (diameter 200 mm) mounted in an electric furnace. Next, after exhausting the inside of the furnace tube, it was heated to 500 ° C. and preheated at this temperature for 60 minutes. Thereafter, the temperature was raised to the reaction temperature, and hexamethyldisilazane gas vapor was supplied as a reaction gas while being diluted with N 2 gas as a reaction gas and reacted. Heating was carried out at the reaction temperatures shown in Table 1 and held at that temperature for the indicated reaction time. The flow rate of N 2 gas is 1 mol / hr. After completion of the reaction, the treated porous body is transferred into a vacuum furnace, heated to 800 ° C., depressurized to 1 × 10 −3 mmHg or less, held for 1 hour, and further heated to 1600 ° C. to be densified. A synthetic quartz glass was obtained.

Figure 0004781409
Figure 0004781409

(比較例1〜3)
比較例1として、反応ガスに従来の塩素ガスを用いて脱水反応を行った。比較例2として、反応ガスとしてトリクロロメチルシランを用いて脱水反応を行った。比較例3は、反応ガスを使用しないでNガス雰囲気下で多孔質体の焼成を行ったものである。多孔質体と反応ガスとの反応を表1に示す通りにした以外は、実験例1〜3及び実施例1と同様の処理条件にて緻密化された合成石英ガラスを得た。
(Comparative Examples 1-3)
As Comparative Example 1, a dehydration reaction was performed using conventional chlorine gas as a reaction gas. As Comparative Example 2, a dehydration reaction was performed using trichloromethylsilane as a reaction gas. In Comparative Example 3, the porous body was baked in an N 2 gas atmosphere without using a reaction gas. Synthetic quartz glass densified under the same processing conditions as in Experimental Examples 1 to 3 and Example 1 except that the reaction between the porous body and the reaction gas was performed as shown in Table 1 was obtained.

天然品として、天然水晶を酸水素火炎により溶融して石英ガラスとしたものを用いた。   As a natural product, a quartz crystal obtained by melting natural quartz with an oxyhydrogen flame was used.

得られた石英ガラス中に残留する水酸基(OH)及び塩素(Cl)をそれぞれ赤外分光光度法及び比濁塩素分析法を用いて測定し、炭素(C)及び窒素(N)をそれぞれ燃焼−赤外線吸収法及び水蒸気蒸留−中和滴定法で測定した。さらに1280℃に加熱してビームベンディング法によりその温度における粘度を測定した。また、目視により石英ガラスの色を判別した。その結果を表2に示す。   Hydroxyl groups (OH) and chlorine (Cl) remaining in the obtained quartz glass were measured using infrared spectrophotometry and turbidimetric chlorine analysis, respectively, and carbon (C) and nitrogen (N) were each burned- It measured by the infrared absorption method and the steam distillation-neutralization titration method. Furthermore, it heated to 1280 degreeC and measured the viscosity in the temperature by the beam bending method. Moreover, the color of quartz glass was discriminated visually. The results are shown in Table 2.

Figure 0004781409
Figure 0004781409

表2に示したように、実験例1〜3及び実施例1で得られた合成石英ガラスの高温時の粘度は、いずれも天然水晶を原料とする天然石英の粘度に比較して、同程度ないしそれ以上であって、高温環境下にあっても変形し難いものであった。これに対して、比較例1の合成石英ガラスは、脱水は充分になされていたが、塩素の残留濃度が高く、比較例2の合成石英ガラスは、脱水は充分になされていたが、塩素の残留濃度が数百ppm確認された。比較例3の合成石英ガラスは、真空での焼成の為、多少減少してはいるものの水酸基が残留していた。比較例1〜3で得られた合成石英ガラスの高温時の粘度は、天然石英に比較して、明確に低い値を示した。また、表2に示したように、反応温度300℃(実例1)、500℃(実例2)及び700℃(実例3)では透明な合成石英ガラス体が得られ、反応温度1000℃(実施例)では黒色の合成石英ガラス体が得られた。 As shown in Table 2, the high-temperature viscosities of the synthetic quartz glasses obtained in Experimental Examples 1 to 3 and Example 1 are comparable to those of natural quartz using natural quartz as a raw material. Even more than that, it was difficult to deform even in a high temperature environment. On the other hand, the synthetic quartz glass of Comparative Example 1 was sufficiently dehydrated, but the residual concentration of chlorine was high, and the synthetic quartz glass of Comparative Example 2 was sufficiently dehydrated. A residual concentration of several hundred ppm was confirmed. In the synthetic quartz glass of Comparative Example 3, although it was somewhat reduced due to firing in vacuum, hydroxyl groups remained. The viscosity at high temperature of the synthetic quartz glass obtained in Comparative Examples 1 to 3 was clearly lower than that of natural quartz. Further, as shown in Table 2, the reaction temperature 300 ° C. (Experiment Example 1), 500 ° C. (Experiment Example 2) and 700 ° C. (Experiment Example 3) In the transparent synthetic quartz glass body is obtained, the reaction A black synthetic quartz glass body was obtained at a temperature of 1000 ° C. (Example 1 ).

Claims (4)

水酸基を含むシリカ多孔質ガラス体を、ハロゲン化シランを除く揮発性珪素化合物雰囲気中800℃を超え1300℃以下の反応温度で気相反応させた後、1300℃以上1900℃以下で焼成してなる緻密な黒色合成石英ガラス体であって、1280℃における粘度がlogη=11.9を超えるものであるとともに、含有される炭素の濃度が300ppmを超え50000ppm以下であり且つ水酸基の濃度が1ppm未満及び塩素の濃度が30ppm未満であり、天然石英ガラス並みの高温粘度特性を有し、高温環境下にあって変形し難いものであることを特徴とする合成石英ガラス体。 A silica porous glass body containing a hydroxyl group is subjected to a gas phase reaction at a reaction temperature of more than 800 ° C. and not more than 1300 ° C. in a volatile silicon compound atmosphere excluding halogenated silane, and then fired at 1300 ° C. or more and 1900 ° C. or less. A dense black synthetic quartz glass body having a viscosity at 1280 ° C. of more than log η = 11.9, a concentration of contained carbon of more than 300 ppm and not more than 50000 ppm, and a concentration of hydroxyl group of less than 1 ppm and A synthetic quartz glass body having a chlorine concentration of less than 30 ppm , high-temperature viscosity characteristics similar to natural quartz glass, and being hardly deformed in a high-temperature environment. 前記揮発性珪素化合物が、窒素を含む珪素化合物であることを特徴とする請求項記載の合成石英ガラス体。 Said volatile silicon compound, the synthetic quartz glass body according to claim 1, characterized in that a silicon compound containing nitrogen. 前記窒素を含む珪素化合物が、シラザン及びオルガノシラザンからなる群から選択された少なくとも1種の化合物であることを特徴とする請求項記載の合成石英ガラス体。 The synthetic quartz glass body according to claim 2, wherein the nitrogen-containing silicon compound is at least one compound selected from the group consisting of silazane and organosilazane. 前記オルガノシラザンが、ヘキサメチルジシラザンであることを特徴とする請求項記載の合成石英ガラス体。 4. The synthetic quartz glass body according to claim 3 , wherein the organosilazane is hexamethyldisilazane.
JP2008219235A 2002-07-31 2008-08-28 Synthetic quartz glass body Expired - Lifetime JP4781409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219235A JP4781409B2 (en) 2002-07-31 2008-08-28 Synthetic quartz glass body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002223757 2002-07-31
JP2002223757 2002-07-31
JP2008219235A JP4781409B2 (en) 2002-07-31 2008-08-28 Synthetic quartz glass body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003179207A Division JP4204398B2 (en) 2002-07-31 2003-06-24 Method for producing quartz glass

Publications (2)

Publication Number Publication Date
JP2008280247A JP2008280247A (en) 2008-11-20
JP4781409B2 true JP4781409B2 (en) 2011-09-28

Family

ID=40141367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219235A Expired - Lifetime JP4781409B2 (en) 2002-07-31 2008-08-28 Synthetic quartz glass body

Country Status (1)

Country Link
JP (1) JP4781409B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301733A (en) * 1992-04-28 1993-11-16 Tosoh Corp Silica glass and its production
JPH06122533A (en) * 1992-10-14 1994-05-06 Tosoh Corp Silica glass containing silicon carbide and its production
JPH07309615A (en) * 1994-05-17 1995-11-28 Shin Etsu Chem Co Ltd Production of synthetic quartz glass powder
JP3818603B2 (en) * 1996-05-21 2006-09-06 信越石英株式会社 Method for producing quartz glass
JP3574577B2 (en) * 1998-11-30 2004-10-06 東芝セラミックス株式会社 High viscosity synthetic quartz glass and method for producing the same
JP4540160B2 (en) * 1999-12-27 2010-09-08 京セラ株式会社 Black sintered quartz

Also Published As

Publication number Publication date
JP2008280247A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
US7841211B2 (en) Production process of synthetic quartz glass
JP5048445B2 (en) Black synthetic quartz glass with transparent layer
JP4117641B2 (en) Method for treating synthetic quartz powder and quartz glass product thereof
US9051203B2 (en) Black synthetic quartz glass with transparent layer and method for producing the same
JP3818603B2 (en) Method for producing quartz glass
US7975507B2 (en) Process for producing synthetic quartz glass and synthetic quartz glass for optical member
JP4204398B2 (en) Method for producing quartz glass
JP5583082B2 (en) Method for producing black synthetic quartz glass with transparent layer
JP6351727B2 (en) Method for producing iron-doped silica glass
JP4781409B2 (en) Synthetic quartz glass body
JP4437745B2 (en) Manufacturing method of high heat-resistant synthetic quartz glass
JP2011530468A (en) Sol-gel process for producing quartz glass monolithic articles
JP5312313B2 (en) Black synthetic quartz glass and manufacturing method thereof
JP5013573B2 (en) Method for producing high heat-resistant quartz glass powder, high heat-resistant quartz glass powder and glass body
JP6769893B2 (en) Quartz glass material with OH group diffusion inhibitory ability and its manufacturing method
US6763683B2 (en) Method for pure, fused oxide
JPH02208230A (en) Production of high-purity, high-viscosity silica glass
US20040007026A1 (en) Glass base material and method of manufacturing glass base material
JP2019099417A (en) Silica glass member and dry gel, and method of manufacturing silica glass member
JPH03183632A (en) Production of glass preform for optical fiber
JPS58151341A (en) Manufacture of glass fiber for optical transmission

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4781409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term