JPH02157132A - Production of high-purity quatrz glass - Google Patents

Production of high-purity quatrz glass

Info

Publication number
JPH02157132A
JPH02157132A JP31012288A JP31012288A JPH02157132A JP H02157132 A JPH02157132 A JP H02157132A JP 31012288 A JP31012288 A JP 31012288A JP 31012288 A JP31012288 A JP 31012288A JP H02157132 A JPH02157132 A JP H02157132A
Authority
JP
Japan
Prior art keywords
glass
chlorinating agent
quartz glass
vitrification
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31012288A
Other languages
Japanese (ja)
Other versions
JP2722573B2 (en
Inventor
Eiji Shioda
塩田 英司
Takashi Matsuda
俊 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP63310122A priority Critical patent/JP2722573B2/en
Publication of JPH02157132A publication Critical patent/JPH02157132A/en
Application granted granted Critical
Publication of JP2722573B2 publication Critical patent/JP2722573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To increase the transmissivity of the subject glass and to eliminate the 2,730nm absorption based on the OH stretching vibration by allowing the porous base material obtained by depositing fine SiO2 particles to react with a chlorinating agent, then removing the residual chlorinating agent and vitrifying the material. CONSTITUTION:Silicon halide (e.g. SiCl4) is hydrolyzed in a flame under the conditions where the flow rate ratio of H2 to O2 is controlled to 0.5-2.0 and that of H2 to silicon halide to 10-100, and the obtained fine SiO2 particles are deposited to obtain a porous base material. The base material is then allowed to react with a chlorinating agent (e.g. Cl2) at 1,000-1,300 deg.C. The reaction product is dehydrated, then heated at 1,000-1,300 deg.C to remove the residual chlorinating agent, and vitirfied at 1,450-1,550 deg.C. Consequently, the high-purity quartz glass having >=88% transmissivity in the 200-2,500nm wavelength region and without the 2,730nm absorption based on the OH stretching vibration is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高純度石英ガラスの製造方法に関し、特に波
長200nmから2,500nmの広範囲の波長領域て
、透過率が88%以上でかつ011伸縮振動に基づく2
.730nmの吸収かない、高純度石英ガラスの製造力
dミに関するものである。高純度石英ガラスは理化学器
具、照明管、ケルマニウムやシリコン半導体製造の炉心
管、光学用累月として広く使用されている。また高純度
石英ガラスの特性を生かした電子産業、光産業から宇宙
産業等の高度科学技術産業の高機能祠料としての利用分
野か期待される。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing high-purity quartz glass, and particularly to a method for manufacturing high-purity quartz glass, which has a transmittance of 88% or more over a wide wavelength range of 200 nm to 2,500 nm, and Based on stretching vibration 2
.. This relates to the production capacity of high-purity quartz glass with no absorption at 730 nm. High-purity quartz glass is widely used in scientific instruments, lighting tubes, furnace tubes for kermanium and silicon semiconductor manufacturing, and optical crystals. It is also expected to be used as a high-performance abrasive material in advanced science and technology industries such as the electronics industry, optical industry, and space industry, taking advantage of the characteristics of high-purity quartz glass.

〔従来の技術〕[Conventional technology]

従来、石英ガラスを得る方法としては天然水晶粉を原料
として、酸水素炎にて溶融するベルタイ法か知られてい
る。この方法で得られる溶融石英ガラスは、主に半導体
用に使用されているが、天然水晶粉を原料として用いる
ので高純度の物は1号られにくい。石英ガラスを光学索
4Aとして使用する場合、ガラス中に含まれる不純物は
紫外透過率に影響する。また酸水素炎で溶融を行うので
011基をカラス中に含有している。ガラス中にO1l
基が存在すると、光学累月として使用する場合011伸
縮振動に基つ(2,730nmの吸収を生じ、又半導体
装置して使用する場合、耐熱性に劣るという欠点かある
Conventionally, a known method for obtaining quartz glass is the Bertai method, in which natural quartz powder is used as a raw material and melted in an oxyhydrogen flame. The fused silica glass obtained by this method is mainly used for semiconductors, but since natural crystal powder is used as a raw material, it is difficult to achieve high purity. When using quartz glass as the optical cable 4A, impurities contained in the glass affect the ultraviolet transmittance. Furthermore, since melting is performed using an oxyhydrogen flame, 011 groups are contained in the glass. 1 liter of O in the glass
The presence of such groups causes absorption at 2,730 nm due to 011 stretching vibration when used as an optical moon, and has the disadvantage of poor heat resistance when used as a semiconductor device.

酸水素炎の代りに天然水晶粉を′上気抵抗、高周波なと
の電熱により加熱溶融する方法も知られている。この方
法で得られるいわゆる電融品は、ガラス中に011基を
含有せす、耐熱性か良好な為半導体用として使用され、
また011伸縮振動に基づく2.730nmの吸収が生
しないので赤外透過用のガラスとしても使用される。し
かしなから重用i品は、天然水晶粉を原料とするので溶
融石英ガラスと同様に、低純度で紫外部の透過率が悪く
、紫外用の光学利としては使用されていない。
Instead of using an oxyhydrogen flame, a method is also known in which natural crystal powder is heated and melted using electric heat such as high-air resistance and high-frequency waves. The so-called electrical products obtained by this method contain 011 groups in the glass and are used for semiconductors because they have good heat resistance.
Furthermore, since it does not absorb absorption at 2.730 nm due to 011 stretching vibration, it is also used as a glass for infrared transmission. However, since the most important product is made from natural quartz powder, like fused silica glass, it has low purity and poor ultraviolet transmittance, so it is not used for ultraviolet optical applications.

高純度で紫外透過率か良好な石英ガラスを得る方法とし
ては、S + Cl 4を原料として酸水素炎で加水分
解し石英ガラスを1(すられる方法か知られている。
A known method for obtaining quartz glass with high purity and good ultraviolet transmittance is to use S + Cl4 as a raw material, hydrolyze it with an oxyhydrogen flame, and then grind the quartz glass.

この方法で14られる合成石英ガラスは、原料として便
;純度化可能なS + C14を使用することか出来る
ので高純度の石英ガラスが得られ紫外透過率も良好であ
るが、合成に酸水素炎を使用するので011基を多量に
ガラス中に含有しOH伸縮振動に基づく2 、730 
n mの吸収か生じ、赤外透過用のガラスとして使用す
ることか出来ない。
Synthetic quartz glass produced by this method can use S + C14, which can be purified, as a raw material, so high-purity quartz glass can be obtained and the ultraviolet transmittance is good, but oxyhydrogen flame is used for synthesis. 2,730, which contains a large amount of 011 group in the glass and is based on OH stretching vibration.
It produces absorption in the nm range, so it cannot be used as an infrared transmitting glass.

紫外透過率か良好て2.730nmの吸収か生しない石
英)lラスを11する方法としては、S i Cl 4
をプラズマ加熱により熱酸化反応させて合成石英ガラス
を111る方法か有るか、この方法は装置が複雑なうえ
合成11.+1′の収率か低く i’ノられる合成石英
ガラスは高(曲な物となっている。
A method for preparing quartz (quartz) with good ultraviolet transmittance but no absorption at 2.730 nm is S i Cl 4
Is there a way to make synthetic quartz glass by thermal oxidation reaction using plasma heating? This method requires complicated equipment and requires a lot of synthesis time. Synthetic silica glass with a yield of +1' or low i' is highly curved.

従って、通常は紫外透過用には合成石英ガラス、赤外透
過用には電融品かそれぞれ別々に使用されている。
Therefore, synthetic quartz glass is usually used for ultraviolet transmission, and fused glass is used for infrared transmission, respectively.

方、上記の方法以外で石英ガラスを得る方法として、光
フアイバー用1す祠の製造方法であるVAD法か知られ
ている。VAD法とは酸水素炎内でハロケン化ケイ素を
加水分解して、S + 02微粒子を形成し、該S i
 02微粒子を堆積させて、多孔質母材を形成させた後
、該多孔質母材を脱水処理及びガラス化して光ファイバ
ー用母利を得る方法である。この方法の特徴は、光ファ
イバーとして問題となる叶基伸縮振動の吸収損失を低下
させるため、塩素化剤を用いて脱水処理を行うことにあ
り、この処理によって011伸縮振動に基づく2.73
0nmの吸収かないものが111られている。
On the other hand, as a method for obtaining quartz glass other than the above-mentioned method, the VAD method, which is a method for manufacturing a single-shaft for optical fiber, is known. The VAD method is to hydrolyze silicon halide in an oxyhydrogen flame to form S + 02 fine particles, and the Si
In this method, after depositing 02 fine particles to form a porous preform, the porous preform is dehydrated and vitrified to obtain a preform for optical fibers. The feature of this method is that dehydration treatment is performed using a chlorinating agent in order to reduce the absorption loss of leaf base stretching vibration, which is a problem in optical fibers.
Items with no absorption at 0 nm are shown in 111.

特開昭54−103038号公報には、5oc12を用
いて011話をC1と置換さぜることによりOllを含
まない光ファイバー用無水石英ガラス母拐を?11る方
法が記載されている。
JP-A No. 54-103038 describes an anhydrous silica glass motherboard for optical fibers that does not contain Oll by replacing the 011 story with C1 using 5oc12. 11 methods are described.

しかし、V A D ?、lで得られる石英ガラスは、
光ファイバーを使用目的とするので屈折率分布を形成す
ることを目的にGc等の添加剤が加えられ純度的に低下
しており、伝送効率を高める為Offの吸収、使用波長
である赤外での透過率か重要視され、石英ガラスの特性
の−っである紫外透過率については不明であった。
But VAD? The quartz glass obtained with , l is
Since it is intended to be used as an optical fiber, additives such as Gc are added to form a refractive index distribution, reducing the purity. Emphasis was placed on transmittance, and ultraviolet transmittance, which is a characteristic of silica glass, was unknown.

特開昭58−1.7[1134号公報には、多孔質1す
祠を塩素化剤含有ガス雰囲気中で熱処理をして透明ガラ
ス化を行なう方法が記載されている。この方法は光ファ
イバーの改造度を上げる為おこなわれ、011基の伸縮
振動に基づ< 2,730nmの吸収は生じてぃないか
紫外透過率は不明であった。また特開昭5413412
8号公報には、多孔質母材を脱水処理部分と透明ガラス
化部分とか上下に連続した加熱炉の上方にセットし回転
させなから徐々に下降させ、脱水処理部分で400°C
〜500°Cに加熱し、CCl415をlleガスとと
もに送り込み脱水処理を行ない、次にガラス化をIlc
等の不活性ガス中でガラス化部分で行なう方法か記載さ
れている。この方法は光ファイバーとして使用する際に
、ガラス中に012が残留し、波長700nm〜1.l
100nに吸収損失が生しる事を防ぐ為におこなわれて
おり、波長700nm〜l 、 1.0(lnmに吸収
損失の無いガラスが得られていたか紫外透過率は不明で
あった。
JP-A-58-1.7 [1134] describes a method of heat-treating a porous stone in a gas atmosphere containing a chlorinating agent to obtain transparent vitrification. This method was carried out to increase the degree of modification of the optical fiber, and based on the stretching vibration of the 011 group, no absorption occurred at <2,730 nm or the ultraviolet transmittance was unknown. Also, Japanese Patent Publication No. 5413412
Publication No. 8 discloses that a porous base material is set above a heating furnace with a dehydration treatment area and a transparent vitrification area connected vertically, and is gradually lowered without rotating, and heated to 400°C in the dehydration treatment area.
Heating to ~500°C, dehydration treatment is carried out by feeding CCl415 together with Ilc gas, and then vitrification is carried out using Ilc gas.
A method is described in which the vitrification is carried out in an inert gas such as . When this method is used as an optical fiber, 012 remains in the glass and the wavelength ranges from 700 nm to 1. l
This was done to prevent absorption loss from occurring at wavelengths of 700 nm to 1.0 nm, and it was unclear whether a glass with no absorption loss at wavelengths of 700 nm to 1.0 nm was obtained or not, and its ultraviolet transmittance was unknown.

本発明者らが塩素化剤含有ガス雰囲気中2段方式により
、あるいは連続式により脱水処理後連続して不活性ガス
中でガラス化を行ったところ、0基の伸縮振動に基づ<
 2.730nmの吸収の無い石英カラスは11Jられ
たか、紫外240nm −280nmにしばしば吸収を
生じていた。
When the present inventors carried out vitrification in an inert gas continuously after dehydration treatment in a two-stage method in a chlorinating agent-containing gas atmosphere or in a continuous method, they found that
The quartz glass, which had no absorption at 2.730 nm, was exposed to 11 J or often exhibited absorption in the ultraviolet wavelength range of 240 nm to 280 nm.

以上の様に従来の方法では、波長200 n mから2
.500nn+の広範囲の波長領域で透過率か88%以
上でかつ011伸縮振動に基づ< 2,730nmの吸
収かない高純度石英ガラスを容易に?1ノることは困難
であった。
As mentioned above, in the conventional method, wavelengths from 200 nm to 2
.. Is it easy to produce high-purity quartz glass that has a transmittance of 88% or more in a wide wavelength range of 500nm+ and does not absorb <2,730nm based on 011 stretching vibration? It was difficult to get the first result.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

本発明のL1的は、波長200 n mから2,500
nmの広範囲の波長領域で透過率か88%以上でかつ0
11伸縮振動に基つ< 2,730nmの吸収かない高
純度石英ガラスを、複雑な装置を使用することなく容易
に製造する方法を提f」(することにある。
The L1 target of the present invention is from wavelength 200 nm to 2,500 nm.
Transmittance of 88% or more in a wide wavelength range of nm and 0
The purpose of the present invention is to provide a method for easily manufacturing high-purity quartz glass, which is based on stretching vibrations and has no absorption at <2,730 nm, without using complicated equipment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは紫外の吸収を抑える為に種々の検討を行っ
た結果、塩素化剤により脱水処理を行った後、カラス化
を行う前に多孔質号月内に残留している塩素化剤をガラ
ス化雰囲気ガスで除去することにより、波長200旧1
]から2.50 On +nの広範囲の波長領域で透過
率か88%以上でかつ、011伸縮振動に基つ< 2.
730nmの吸収かない間純度石英ガラスを?Uること
を見い出した。
As a result of various studies conducted by the present inventors in order to suppress the absorption of ultraviolet light, we found that after dehydration treatment with a chlorinating agent, the chlorinating agent remaining in the porous material was By removing with vitrification atmosphere gas, wavelength 200 old 1
] to 2.50 On +n, the transmittance is 88% or more in a wide wavelength range, and based on the 011 stretching vibration < 2.
Pure quartz glass with no absorption at 730nm? I found out that.

本発明の要旨は、ハロゲン化ゲイ素を火炎内で加水分解
して5in2微粒子を形成し、該S jo 2微粒子を
堆積させ多孔質母材を形成させた後、該多孔質母材を塩
素化剤と反応させて脱水処理を行った後、ガラス化する
ことにより石英ガラスを得る方法において、ガラス化を
行う前に多孔質母月内に残留している塩素化剤をガラス
化雰囲気ガスで除去することを特徴とする高純度石英ガ
ラスの製造方法にあり、以下その詳細について説明する
The gist of the present invention is to hydrolyze halogenated silicon in a flame to form 5in2 fine particles, deposit the S jo 2 fine particles to form a porous matrix, and then chlorinate the porous matrix. In the method of obtaining quartz glass by reacting it with a dehydrating agent and then vitrifying it, the chlorinating agent remaining in the porous matrix is removed using a vitrification atmosphere gas before vitrification. The method of manufacturing high-purity quartz glass is described in detail below.

本発明において使用する原料ハロゲン化ケイ素としては
S i Cl  、  S r If Cl 3等か挙
げられるが5IC14か一般的である。
The raw material silicon halide used in the present invention includes S i Cl, S r If Cl 3, etc., but 5IC14 is generally used.

多孔質N利を合成する為のバーナーは特に限定はしない
が、石英製同心円多重盾バーナー、石英製角型多重管バ
ーナー笠か使用できる。大型の多孔質母材をiH:;i
速で合成する為には複数のバーナーを使用したり、多重
管数を多く用いたりすること笠か必要であり、それらバ
ーナーの構造1合成方法により使用するガス流量は変化
する。
The burner for synthesizing porous nitrogen is not particularly limited, but a quartz concentric multiple shield burner or a quartz square multi-tube burner shade can be used. iH: ; i
In order to synthesize at high speed, it is necessary to use a plurality of burners or a large number of multiplexed tubes, and the gas flow rate used changes depending on the structure of these burners and the synthesis method.

使用するガスは特に限定しないか、H2ガス02ガス及
びArガスが使用できる。これら使用するカスの流量は
、火炎/IL IU + バーナ〜の+1111造使用
本数−・ンに基ついて6盾からのガス流量の適性化を図
り、バーナー中心より5jc14を流し周辺の酸水素炎
で包む状態で合成を9jい多孔質Jす利を形成する。通
常使用されるH 、02の流=比及びH,、、5il1
4流量比は各々H2102=f1.5−2.0.1(2
/5ie14= 1O−1O1lが適当である。この様
な条件テ40 m mφ−230nv φX 200’
nvL −1200mm1の多孔質)す)]を得ること
かできる。
The gas used is not particularly limited, and H2 gas, 02 gas, and Ar gas can be used. The flow rate of these dregs to be used is based on the flame/IL IU + burner~+1111 structure and the number of used -・n, and the gas flow rate from the 6 shields is optimized. The composite material is wrapped in a porous material. The flow=ratio of commonly used H,02 and H,,5il1
The four flow rate ratios are each H2102=f1.5-2.0.1(2
/5ie14=1O-1O1l is suitable. Such conditions Te40 m mφ-230nv φX 200'
nvL -1200 mm1)] can be obtained.

?IIられた多孔質Jす祠を、次に脱水処理及びガラス
化することにより、高純度石英ガラスを?1ノることか
できる。この時、脱水処理、ガラス化を行う加熱炉は特
に限定しないが、脱水処理、ガラス化を連続で行う連続
式又は、脱水処理後ガラス化を行う2段方式!、Liか
用いられ、加熱源のヒーターはSiC,カーボン等を使
用することができる。
? High-purity quartz glass is produced by dehydrating and vitrifying the porous J-shaped glass. I can only say 1 no. At this time, the heating furnace that performs the dehydration treatment and vitrification is not particularly limited, but it may be a continuous type that performs dehydration treatment and vitrification continuously, or a two-stage type that performs vitrification after dehydration treatment! , Li are used, and the heater of the heat source can be made of SiC, carbon, etc.

脱水処理工程で使用する塩素化剤としては、例えばC1
、CCl4.5(1c1.、等を挙げルコとが出来る。
As the chlorinating agent used in the dehydration process, for example, C1
, CCl4.5 (1c1., etc.).

しかしながら、C12以外の化合物、例えばC(+4あ
るいは5OC12を使用した場合、各々CあるいはSか
ガラス中に残留する事があるので、C12か望ましい。
However, if a compound other than C12 is used, such as C (+4 or 5OC12), C or S may remain in the glass, so C12 is preferable.

C12を使用して脱水処理を行う場合、処理温度は1.
000°C未?茜では塩素とOllの置換反応か進みに
< < 、1,300°Cを越えると多孔買付Hの収縮
か進行し脱水及び後工程の多孔質母祠内に残留するC1
2とカラス化雰囲気ガスとの置換か困難となる。従って
1.000〜1,300°Cで引2と反応さぜなければ
ならない。
When dehydrating using C12, the treatment temperature is 1.
000°C yet? In Akane, the substitution reaction between chlorine and Oll progresses <<, and when the temperature exceeds 1,300°C, the shrinkage of the porous material H progresses, resulting in C1 remaining in the porous matrix during dehydration and post-processing.
It becomes difficult to replace 2 with the glass-forming atmosphere gas. Therefore, it is necessary to react with 2 at 1,000 to 1,300°C.

脱水処理を行なった後、ガラス化を行なう。After dehydration, vitrification is performed.

本発明においては、脱水処理後ガラス化を行なう前に多
孔質母祠内に残留している塩素化剤を、ガラス化雰囲気
ガスで除去することか必須であり、例えば脱水処理後ツ
ノラス化を行う2段方式においてはガラス化前に、塩素
化剤の流入を止めガラス化温度よりも低い温度で、多孔
質母材が開孔状態−C多孔質母利内に残留する塩素化剤
をガラス化雰囲気ノノスて除去するればよい。また脱水
処理後連続してカラス化を行う連続式においては、脱水
処理部分とガラス化部分との間に、ガラス化温度よりも
低い温度で、多孔質Iす4」が開孔状態となって] 0 いる加熱帯部分をもうけ、この部分で多孔質母+A内に
残留する塩素化剤をガラス化雰囲気ガスで除去する申も
可能である。
In the present invention, it is essential to remove the chlorinating agent remaining in the porous matrix with vitrification atmosphere gas before performing vitrification after dehydration. In the two-stage method, before vitrification, the flow of the chlorinating agent is stopped and the porous matrix is in an open state at a temperature lower than the vitrification temperature - C. The chlorinating agent remaining in the porous matrix is vitrified. All you have to do is remove it by removing the atmosphere. In addition, in a continuous method in which vitrification is performed continuously after dehydration treatment, the porous I4 is opened between the dehydration treatment portion and the vitrification portion at a temperature lower than the vitrification temperature. ] 0 It is also possible to provide a heating zone portion and use this portion to remove the chlorinating agent remaining in the porous matrix +A with the vitrification atmosphere gas.

C12を使用して脱水処理を行う場合の処理温度1 、
000〜1..3[]0°Cでは、多孔質Iす祠は開孔
状態となっているので、脱水処理後多孔質母月内の02
をガラス化雰囲気ガスで容易に除去出来る。
Processing temperature 1 when dehydrating using C12,
000~1. .. 3[] At 0°C, the porous Isu shrine is in an open state, so after dehydration treatment, the 02
can be easily removed with vitrification atmosphere gas.

300°Cを越えると多孔買付Hの収縮か進み閉孔状態
となるので多孔質+J月内の012の除去が困難となり
、C12かガラス中に残留する。
When the temperature exceeds 300°C, the porous material H shrinks and becomes closed, making it difficult to remove 012 within the porous +J month, and C12 remains in the glass.

従って除去は、多孔質1寸祠か閉孔状態となる1 、 
300°Cを越える温度で行なう事は好ましくなく、ま
た脱水処理温度より低い温度では011.!、!、によ
るメIj染、ガラス処理の長時間化1′、5から脱水処
理温度と同しI 、 000°C〜l 、 300℃の
温度で行なうのか適当である。
Therefore, removal will result in either a porous 1-sun shrine or a closed pore state 1,
It is not preferable to carry out the process at a temperature exceeding 300°C, and if the temperature is lower than the dehydration treatment temperature, the temperature may exceed 0.11°C. ! ,! It is appropriate to carry out the dyeing process at a temperature of 1,000° C. to 300° C., which is the same as the dehydration treatment temperature due to the long glass treatment time 1' and 5.

多孔質母利内の塩素化剤をガラス化雰囲気ガスで除去を
行った後、ガラス化を行う。
After removing the chlorinating agent in the porous motherboard with a vitrification atmosphere gas, vitrification is performed.

ガラス化は、ガラス化雰囲気ガスを用いて450°C〜
I 、 550°Cで行う。ガラス化雰囲気ガスとしで
は例えば乾燥したlle、  0  、  H2、空気
などか用いられるが、特にIlcガスを用いると石英ガ
ラスの透過性か良好で、ガラス中の脱泡か容易に行える
′]1か知られている。N2等の透過性が低いガスでは
閉孔状態からの脱泡か困難となりガラスこ泡か残留する
。ガラス化温度は1.450℃未満ては透明なカラスと
ならす、1 、550°Cを越えると使用している炉心
管の消耗か激しく好ましくない。
Vitrification is performed at 450°C or higher using a vitrification atmosphere gas.
I, performed at 550°C. For example, dry lle, 0, H2, air, etc. can be used as the vitrification atmosphere gas, but especially if Ilc gas is used, the permeability of quartz glass is good, and bubbles can be easily removed from the glass. Are known. When using a gas with low permeability such as N2, it is difficult to remove bubbles from the closed pore state, and glass bubbles remain. If the vitrification temperature is less than 1.450°C, the glass will become transparent, but if it exceeds 1.550°C, the furnace tube used will be severely worn out, which is not preferable.

以」二の方法により、波長200 n mから2.50
0nmの広範囲の波長領域で透過率が88%以上でかつ
011伸縮振動に基づ< 2,730nmの吸収がない
高純度石英ガラスを得ることが出来る。
By the method 2 below, the wavelength is 200 nm to 2.50 nm.
It is possible to obtain high-purity quartz glass that has a transmittance of 88% or more in a wide wavelength range of 0 nm and has no absorption at <2,730 nm based on 011 stretching vibration.

また本発明における高純度石英ガラスはVAD法の商収
率、高速合成という特徴を生かしているので、プラズマ
法と比較して安価に高純度石英ガラスを?1する申か出
来る。
In addition, the high-purity quartz glass in the present invention takes advantage of the commercial yield and high-speed synthesis characteristics of the VAD method, so high-purity quartz glass can be produced at a lower cost than the plasma method. I can do 1.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな様に本発明によれば、プラズマ
法の様な煩雑な操作及び高価な設備を要せず簡t1tな
方法で安価に、波長200 n mから2,500] 
1 ] 2 II Illの広範囲の波長領域で透過率か88%以上
でかつ、011伸縮振動に基つ< 2,730nmの吸
収がない高純度石英ガラスを得る+9か出来る。
As is clear from the above description, according to the present invention, wavelengths from 200 nm to 2,500 nm can be obtained using a simple method and at low cost without requiring complicated operations and expensive equipment such as the plasma method.
1 ] 2 II II It is possible to obtain high purity quartz glass with a transmittance of 88% or more in a wide wavelength range and no absorption at <2,730 nm based on 011 stretching vibration.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに具体的に説明する。し
かし本発明はこれら実施例にのみ限定されるものではな
い。
Next, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited only to these examples.

実施例1 石英製多重管バーナー中央にS + Cl 4を導入し
、酸水素炎中で加水分解を行ないS iO2微粒子を形
成し、該S + 02微粒子を堆積させてマJ法GOm
mφ×250 m m l、の多孔質1す材を形成した
Example 1 S + Cl 4 was introduced into the center of a quartz multi-tube burner, hydrolyzed in an oxyhydrogen flame to form SiO2 fine particles, and the S + 02 fine particles were deposited to perform MAJ method GOm.
A porous material having a size of mφ×250 mm ml was formed.

?1ノられた多孔質母材をSiCh−ター電気炉均熱帯
部分に入れ昇温を開始した。1,200°Cに到達後、
C12ガスを35n+l/minで流し、1..200
°C一定で2時間脱水処理を行なった。
? The heated porous base material was placed in the soaking zone of the SiCh-tar electric furnace and the temperature was started to rise. After reaching 1,200°C,
Flow C12 gas at 35n+l/min, 1. .. 200
Dehydration treatment was carried out at a constant temperature of 2 hours.

2時間後C12ガスの流入を市め、次いでIlcガスを
流m 3 ’!H’g /midで流し15分間120
0°Cを保持し多孔質ノリ刊内の012ガスの除去を行
った。
After 2 hours, the inflow of C12 gas was started, and then the Ilc gas was started flowing m3'! 120 for 15 minutes at H'g/mid
The temperature was maintained at 0°C and the 012 gas inside the porous paste was removed.

その後、y1′温速度を06°C/secにして1..
500°Cまで上昇し、1.500°C到達後1.50
0°Cて一時間保持し、透明ガラス化を行った。
After that, the temperature rate of y1' was set to 06°C/sec and 1. ..
Rise to 500°C, 1.50 after reaching 1.500°C
The mixture was kept at 0°C for 1 hour to achieve transparent vitrification.

第1図に得られた高純度1莢ガラス(t−10mm)の
透過率曲線を示した。
FIG. 1 shows the transmittance curve of the obtained high-purity one-cup glass (t-10 mm).

111られた高純度石英ガラスは、波長200 n m
から2.500nmの範囲で透過率か88%以上であり
、O1+伸縮振動に基づ< 2.730nmの吸収も生
じなかった。
111 high purity quartz glass has a wavelength of 200 nm
The transmittance was 88% or more in the range from 2.500 nm to 2.500 nm, and no absorption occurred at <2.730 nm based on O1+ stretching vibration.

実施例2 実施例1と同様の方法で−・J法60IIlllφX 
250mm1.の多孔質1す祠を?1ノだ。得られた多
孔質母材を脱水処理部分、加熱帯部分、ガラス化部分か
上から順に連続している加熱炉の上部にセットL 4n
v/minの速度で徐々に引下げた。長さ250 m 
m Lの脱水処理部分は、1 、200°Cに加熱し、
CI。ガスを35m1/min流入し脱水処理を行なっ
た。長さ1. OOm m l、の加熱帯部分は脱水処
理部分と同様に1,200°Cに加熱し、lleガス3
 ’l;C/ m ! 11で流し多孔質母月内に残留
している] 3 部分は]、、500’Cに加熱し、+10カス3 XI
C/ In I In中でガラス化を行った。
Example 2 In the same manner as in Example 1 - J method 60IIlllφX
250mm1. A porous shrine? It's 1 no. The obtained porous base material is set in the upper part of the heating furnace, which is continuous from the top to the dehydration treatment section, heating zone section, and vitrification section L 4n
It was gradually lowered at a speed of v/min. length 250 m
The dehydration treatment part of mL was heated to 1,200 °C,
C.I. Gas was introduced at a rate of 35 ml/min to perform dehydration treatment. Length 1. The heating zone part of OOml was heated to 1,200°C in the same way as the dehydration treatment part, and lle gas 3
'l;C/m! 11 and remained in the porous mother moon ] 3 part ],, heated to 500'C, +10 scum 3 XI
Vitrification was carried out in C/InIIn.

1[Iられた高純度石英ガラスは、波長200 n m
から2 、500nmの範囲で透過率か88%以」二で
あり、O11伸縮振動に基つ< 2 、730 n m
の吸収は生じなかった。
1 [I high purity quartz glass has a wavelength of 200 nm
The transmittance is more than 88% in the range from 2 to 500 nm, and < 2 to 730 nm based on the O11 stretching vibration.
No absorption occurred.

〔比φ受側〕[Ratio φ receiving side]

実施例]と同様にして、多孔質ノリ+Aを形成し、脱水
処理を行った。これを012ガスの除去を行わず、直ち
に実施例]と同様にして透明カラス化をjj つ jこ
 。
In the same manner as in [Example], porous glue +A was formed and dehydrated. This was immediately made into a transparent glass in the same manner as in Example] without removing the 012 gas.

11.7られた石英ガラスは、011基伸縮振動に基づ
く2.730nmの吸収は生しなかったか、紫外240
〜280 n mに吸収を生じた。
11.7 The fused silica glass did not exhibit absorption at 2.730 nm based on 011 group stretching vibrations, or
Absorption occurred at ~280 nm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例]で?IIられた高純度石英ガラスの
透過率曲線を示す図である。 ]
Figure 1 is an example]? FIG. 2 is a diagram showing a transmittance curve of high-purity quartz glass. ]

Claims (1)

【特許請求の範囲】[Claims] ハロゲン化ケイ素を火炎内で加水分解して、SiO_2
微粒子を形成し、該SiO_2微粒子を堆積させて、多
孔質母材を形成させた後、該多孔質母材を塩素化剤と反
応させて脱水処理を行った後、ガラス化することにより
石英ガラスを得る方法において、ガラス化を行う前に、
多孔質母材内に残留している塩素化剤を、ガラス化雰囲
気ガスで除去することを特徴とする高純度石英ガラスの
製造方法。
By hydrolyzing silicon halide in a flame, SiO_2
After forming fine particles and depositing the SiO_2 fine particles to form a porous base material, the porous base material is reacted with a chlorinating agent to perform dehydration treatment, and then vitrified to form quartz glass. In the method of obtaining
A method for producing high-purity quartz glass, which comprises removing a chlorinating agent remaining in a porous base material using a vitrification atmosphere gas.
JP63310122A 1988-12-09 1988-12-09 Manufacturing method of high purity quartz glass Expired - Fee Related JP2722573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310122A JP2722573B2 (en) 1988-12-09 1988-12-09 Manufacturing method of high purity quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310122A JP2722573B2 (en) 1988-12-09 1988-12-09 Manufacturing method of high purity quartz glass

Publications (2)

Publication Number Publication Date
JPH02157132A true JPH02157132A (en) 1990-06-15
JP2722573B2 JP2722573B2 (en) 1998-03-04

Family

ID=18001442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310122A Expired - Fee Related JP2722573B2 (en) 1988-12-09 1988-12-09 Manufacturing method of high purity quartz glass

Country Status (1)

Country Link
JP (1) JP2722573B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743288A1 (en) * 1995-05-19 1996-11-20 Corning Incorporated Method for dehydraring and sintering an optical fiber preform
EP0744383A1 (en) * 1995-05-22 1996-11-27 Corning Incorporated Method for drying and sintering an optical fiber preform
US6011644A (en) * 1994-07-29 2000-01-04 Corning Incorporated Hybrid fiber amplifier
JP2014101236A (en) * 2012-11-16 2014-06-05 Sumitomo Electric Ind Ltd Production method of optical fiber preform, and optical fiber
JP2020169103A (en) * 2019-04-01 2020-10-15 信越化学工業株式会社 Moldable transparent silica glass composition, transparent silica glass and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317229A (en) * 1986-07-10 1988-01-25 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPS6350340A (en) * 1986-08-20 1988-03-03 Nippon Telegr & Teleph Corp <Ntt> Production of base material for functional quartz optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317229A (en) * 1986-07-10 1988-01-25 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPS6350340A (en) * 1986-08-20 1988-03-03 Nippon Telegr & Teleph Corp <Ntt> Production of base material for functional quartz optical fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011644A (en) * 1994-07-29 2000-01-04 Corning Incorporated Hybrid fiber amplifier
EP0743288A1 (en) * 1995-05-19 1996-11-20 Corning Incorporated Method for dehydraring and sintering an optical fiber preform
EP0744383A1 (en) * 1995-05-22 1996-11-27 Corning Incorporated Method for drying and sintering an optical fiber preform
AU691749B2 (en) * 1995-05-22 1998-05-21 Corning Incorporated Method for drying and sintering an optical fiber preform
JP2014101236A (en) * 2012-11-16 2014-06-05 Sumitomo Electric Ind Ltd Production method of optical fiber preform, and optical fiber
JP2020169103A (en) * 2019-04-01 2020-10-15 信越化学工業株式会社 Moldable transparent silica glass composition, transparent silica glass and method for producing the same

Also Published As

Publication number Publication date
JP2722573B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
JP7195441B2 (en) Method for preparing high-purity quartz glass with low hydroxyl groups
US5766291A (en) Method for producing heat-resistant synthetic quartz glass
JPH029727A (en) Production of optical fiber preform
JPH02157132A (en) Production of high-purity quatrz glass
JP3818603B2 (en) Method for producing quartz glass
JP2612871B2 (en) Method of manufacturing graded-in-desk type optical fiber preform
JPS6143290B2 (en)
JPH04260630A (en) Production of preform optical fiber
JP4565221B2 (en) Optical fiber preform
JPH04164836A (en) Production of glass preform for optical fiber
JPS6036343A (en) Production of glass material for optical transmission
JPS63151639A (en) Production of glass preformer for optical fiber
JPS6183639A (en) Production of quartz pipe of high purity
JP2004338992A (en) Method for manufacturing glass preform
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JP3174682B2 (en) Method for producing glass preform for optical fiber
JPS5855341A (en) Manufacture of optical fiber
JPS5978943A (en) Manufacture of glass containing fluorine
JPS60239339A (en) Preparation of parent material for optical fiber
JPH0218333A (en) Heat treatment of porous base material
JPS6028604A (en) Manufacture of light transmitting material
JPH0764574B2 (en) Method for manufacturing rod-shaped quartz glass preform
JPH1059730A (en) Production of synthetic quartz glass
JPH03232732A (en) Production of glass preform for hydrogen-resistant optical fiber
JPS62191434A (en) Production of parent material for optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees